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ABSTRACT  

As the energy resources running out, scientists are trying to provide 

sustainable energy. They move toward the hydrogen economy although it has 

large technical difficulties that need to be solved. Hydrogen is considered as a 

clean fuel. Storing hydrogen using clathrate hydrates is one of the promising 

ways to provide required energy. The high hydrogen content in sII clathrate 

hydrate proposes some applications like replacing gasoline to fuel vehicles, 

using as a gas separation substance, and transporting some dangerous gases.  

 

In addition, clathrate hydrate is found in nature in huge amounts. Generally 

speaking, it is approximated that about 3000 billion tons of carbons of clathrate 

hydrates exist as a worldwide reserves. This large amount can replace usual 

fossil fuel like oil and coal, and be a new energy source. All what we need is to 

investigate these compounds and find the ways to make use of them.  

 

Clathrate hydrates are inclusion compounds, physically resembles ice, can 

trap a guest small non polar molecule behind walls made by water via 

confining the guest molecules by a definite structure. So, it isn’t a chemical 

storage but physical. From the historical point of view, it is thought that the 

hydrogen and its isotopes are very small to make clathrate compounds stable 

but, recently, it is used to build a simple cubic structure II with water 

molecules. Formation of clathrate hydrates depends on the applied high 

pressure, low temperature, and the guest molecule.   

 

In this research, a full detailed picture of deuterium clathrate hydtare 

including structure, occupancy number per cage, deuterium dynamics, and 

ortho-para conversion of deuterium inside the cages has been conducted. The 

storage of deuterium in clathrate hydrate has been tested, and basal concepts of 

enclathrated deuterium have been evaluated. Manifold cavity occupation and 

small inter-molecular separation are some new exciting aspects. The small 
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cages of sII structure can contain one deuterium molecule which represents 

deuterium content of 1.0 wt%.   

 

Raman spectroscopy is an important tool to study the dynamics of the 

trapped deuterium and the occupancy of deuterium inside the cages of the 

clathrate hydrate. It shows the vibrational and rotational bands of deuterium 

molecules. In sII hydrates, we have two types of cages: small cages and large 

cages. Enclathrated deuterium at all cages vibrates at lower frequency than free 

gas phase. In addition, the single deuterium occupied cages vibrates at lower 

frequency than multiple deuterium occupied cages. 

 

 

Raman spectra was collected from many samples of in-situ prepared 

deuterium clathrate placed in a cell to see the formation of the clathrate 

structure and the changes occur while applying heating and quenching cycles. 

Analysis of the vibrational bands of different cages has been explored and 

calculations regarding average occupancy number have been done. 
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Chapter 1 INTRODUCTION TO CLATHRATE 

COMPOUNDS, CLATHRATE HYDRATES AND 

HYDROGEN CLATHRATES 

 

1.1     Clathrate Compounds 

 

Clathrate compounds are inclusion compounds of host molecules; make a 

network of bonds of different sizes and shapes, and a guest molecule. There is 

no any chemical bond between the guest molecules and host molecules. These 

compounds are formed under particular low temperature and high pressure in 

addition to the presence of the guest molecule. Without the guest molecules, 

the structure of the clathrate will collapse and will be a normal ice crystal 

structure. There are some similar properties between clathrate hydrates and 

conventional ice but clathrates are stable above 273.15 K. 
[1] 

 

Historically, the name clathrate is derived from the Latin clathratus that 

means enclosed by bars or network. Powell did this in 1948. In 1778, Joseph 

Priestley may have been the first to discover clathrates taking advantage of the 

cold winters in Birmingham to refrigerate his samples of sulfur dioxide and 

water. Credit for the discovery is usually given to Michael Faraday’s boss, Sir 

Humphry Davy who reported a clathrate in the chlorine and water system in 

1811. 
[2]
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1.2     Clathrate Hydrates 

 

 To be more specific, we will focus on a special type of clathrate hydrates 

made from trapped deuterium gas and water cages (~ 1nm in size). They both 

form what we call deuterium hydrate. It needs to be investigated because it is 

considered an energy resource and a clean fuel. This research is a cutting-edge 

level and fits with the local and international needs of energy resources.  To 

study deuterium clathrate, we can use many spectroscopic techniques like IR, 

near UV and neutron diffraction but our concerning here is to study it using 

Raman spectroscopy. Raman spectroscopy is one of the most powerful techni-

ques to study both vibrational and rotational modes of the system. It depends 

on the inelastic scattering of a monochromatic line (a laser beam) by the guest 

molecule. The laser beam will interact with the vibrational bands, phonons of 

the guest molecule, rotational bands, or any other excitations in the system to 

give us a full detailed picture about the guest molecule. 

Clathrate hydrate formation conditions differ according to the volume of the 

guest molecules. Clathrate hydrates have three crystal structures like cubic sI, 

sII and hexagonal sH. These structures have space groups of Pm3n, Fd  m and 

P6/mmm respectively. The radii of the cages depend on the volume of the guest 

molecule. The cage’s form is a polyhedron of pentagonal faces or hexagons. 

The most common three structures are shown in figure 1.5. 

 

To determine the geometry of the cage we can use the following nom-

enclature:    

A
x
 B

y 
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Where A and B is the shape of the face (pentagon or hexagon), and x and y are 

the number of sided faces in the cavity. For example, 5
12

 mean that we have 

twelve pentagonal faces to form the cage. Figure 1.1 show the geometry of 

possible clathrate hydrates cavities.  

 

 

 

Figure 1.1. The geometry of possible clathrate hydrates cavities: (a) pentagonal 

dodecahedron (5
12

), (b) tetrakaidecahedron (5
12

 6
2
), (c) hexakaide-cahedron (4

3
 

5
6
 6

3
), and (e) icosahedron (5

12
 6

8
). 

[1] 
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The first unit cell of type sI (Pm3n space group) contains 46 water 

molecules, generating two types of cages: small and large. A pentagonal 

dedecahedron (5
12

) will be the shape of the small cage but the large cage will 

have a tetradecahedron (5
12

 6
2
) (figure 1.2). 

 

The second unit cell of type sII (Fd  m space group) contains 136 water 

molecules, generating two types of cages: small (average radius 3.95 Ǻ) (5
12

) 

and large (average radius 4.33 Ǻ) (5
12

 6
4
). The case of sII like the case of sI but 

the shape of the large cage is a hexadecahedron (figure 1.3).  

The third unit cell of type sH (P6/mmm space group) contains 34 water 

molecules producing three cages. The three cages are two small cages different 

in type and one large. To form type H, the two guest molecules (large one and 

Figure 1.3. Sixteen small cages (5
12

) in addition to eight large cages (5
12

 6
4
) 

makes the unit cell of sII crystalline structure with an average lattice constant 

(a ~ 17.3 Ǻ). 
[3]

   

Figure 1.2. Two small cages (5
12

) in addition to six large cages (5
12

 6
2
) makes 

the unit cell of sI crystalline structure with an average lattice constant (a ~ 12 

Ǻ). 
[3] 



 

 
5 

small one in size) must cooperate to make the compound stable. The large 

guest molecule will fit in the large cage giving the help to fill other smaller 

cages (figure 1.4). 

 

 

Figure 1.4. Three small cages (5
12

) in addition to two mid cages (4
3
 5

6
 6

3
) and 

one large cage (5
12

 6
8
) makes the unit cell of sH crystalline structure with an 

average lattice constant (a ~ 12 Ǻ). 
[3] 

 

 

Figure 1.5. The possible three common clathrate hydrate structures. 
[2]
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Although the chemistry of the trapped molecule affects the structure shape 

and stability of the compound strongly, 
[4]

 the structure formation depends on 

the size of the guest molecule. 

Gases ranging in size (d ~ 4-6 Ǻ) like carbon dioxide CO2, methane CH4, 

ethane C2H6 and hydrogen sulfide form sI structure of Pm3n space group with 

a unit cell consists of two small (5
12

) cages and six large (5
12

 6
2
) cages  with an 

average lattice constant (a ~ 12 Ǻ).  

Molecules ranging in size (d ~ 4 Ǻ) like nitrogen N2, or less than (d < 4 Ǻ) 

like hydrogen H2 in addition to bigger molecules ranging in size (d ~ 6-7 Ǻ) 

like propane C3H8, can form sII structure of Fd  m space group with a unit cell 

consists of sixteen small (5
12

) and eight large (5
12

 6
4
) cavities with an average 

lattice spacing (a ~ 17.3 Ǻ). 

To form sH structure, two different species are needed to make the clathrate 

stable. One large organic guest molecule (d ~ 7.5 - 9 Ǻ) like methylcyclohexa-

ne, iso-pentane, or 2,2-dimethylbutane should occupy the large (5
12

 6
8
) cavity 

which is one per unit cell. Another small guest molecule like deuterium D2, 

hydrogen H2 and methane CH4 should be stored inside (4
3
 5

6
 6

3
) cavity (two 

per unit cell) beside (5
12

)  cavity (three per unit cell). Therefore, we have in this 

case two lattice constants (a ~ 12, c ~ 10 Ǻ) and the space group is P6/mmm. 

Figure 1.6 show dependence of the formed structure on the size of the guest 

molecule.  
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Figure 1.6.  Comparison of guest molecule sizes and cavities occupied as 

simple hydrates. 
[5] 
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1.3     Hydrogen Clathrates 

 

If the former of the clathrate hydrate is the hydrogen gas, it is called hydro-

gen clathrate hydrate. Monatomic hydrogen is the smallest abundant element 

on the earth. 
[6]

 Due to its small size, it was thought that it could not provide 

stability for clathrate hydrate phase. 
[7]

 However, in the last decade, it is proven 

experimentally that hydrogen can make stable clathrate compounds regardless 

of being alone (simple hydrogen hydrate) or enclosed with another guest 

molecule (binary hydrogen hydrate) like tetrahydrofuran (THF). 
[8]

 Dihydrogen 

(H2) is a hydrophobic (hate water), highly combustible, nonmetallic element in 

addition to being a clean fuel. Storing hydrogen in tanks using liquefying ways 

is a very jeopardizing task due to the high combustion of the hydrogen. In 

addition, it is very expensive process. Therefore, scientists moved to 

investigate new efficient economic safe mean of storage. Hydrogen hydrates is 

a promising material to do so. It offers appreciable solutions for transport and 

storage of hydrogen.   

Hydrogen forms sII clathrate hydrates. This clathrate as mentioned before 

has a simple cubic unit cell containing 136 water molecules forming sixteen 

small cages (5
12

) and eight large cages (5
12

 6
4
). It is believed that the small cage 

can hold one hydrogen molecule only, regardless of the type of the clathrate 

hydrate whether it is simple or binary, while the large cage can afford up to 

four molecules of hydrogen in case of simple hydrates, or, one large organic 

compound (such as THF) in case of binary hydrates. 
[9]

 

Also, hydrogen can form sI and sH structures but under particular 

circumstances. It needs another guest molecule with a suitable size to make the 

clathrate stable. 
[10]

  

From the history point of view, Dyadin et al. made the first experiment to 

study simple hydrogen hydrate (H2 + H2O) in 1999. 
[11], [12]

 The structure of the 
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clathrate was guessed by comparing the P-T diagram of the hydrogen hydrate 

sample with known rare gases hydrates (Xe, Kr, Ar) (Figure 1.7). 

Mao et al. (2002) 
[13]

 did another experiment to give more account about 

simple hydrogen hydrate. Mao et al. applied high pressure to about 300 MPa 

using diamond anvil cell on the sample. After cooling the cell to 250 K, a new 

phase started to raise between the distinct hydrogen and liquid water phases. 

Mao et al. used Raman spectroscopy and the figure 1.8 is the output of the run. 

Figure 1.8 shows Raman spectra for hydrogen gas and hydrogen hydrate over a 

range of temperature and pressure circumstances in the region of H2 region. 

The figure 1.8 illustrates the vibrational bands of trapped H2 molecules 

inside the clathrate cages. Beside, these bands have lower frequency than free 

H2 molecules, which fits with guest molecules being trapped in the hydrate 

cages. 
[14]

 Additionally, the dissemination and positions of the new peaks 

introduce the fact that there are small (5
12

) and large (5
12

 6
4
) cages (sII 

structure). Mao et al. reported that the peaks at low frequencies appeared by H2 

inside large cages (5
12

 6
4
), while the peaks at high frequencies resulted from H2 

in small cages (5
12

). This assumption was based on the fact that some clathrates 

are stable with single large cavity occupancy in addition to the intensity 

decrease of the high frequencies peaks with temperature.   

Mao et al. compared the areas of peaks of hydrogen in both hydrate and gas 

phase in addition to volumetric ratio of the two phases inside the cell to 

calculate hydrogen to water ratio. The ratio was about 0.45 and represented 

hydrogen content of ~ 5.3 wt%. Based on this H2:H2O ratio, Mao and his 

colleagues tried to guess the possible structure that fits with this ratio. Finally, 

they agreed that two hydrogen molecules occupy the small cages while four 

hydrogen molecules occupy the large cages.   
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Figure 1.7. P-T diagram for simple hydrogen hydrate compared with other 

known hydrates of rare gases. 
[11]
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Figure 1.8. Raman spectra of hydrogen hydrate in H2 vibration region. 
[13] 
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On the contrary to what Mao et al. did, Lokshin et al. 
[15]

 reported one 

hydrogen (D2) molecule occupied the small cages while the large cavities 

contains two to four molecules depending on the applied pressure and 

temperature in 2004. The structure still sII. Figure 1.9 shows the occupancy of 

small and large cages at 2000 bar and 1 bar as a function of temperature.  

Moreover, Lokshin et al. found that the distance D2-D2 is 2.93 Ǻ when the 

large cavity is filled with four hydrogen molecules. The arrangement is tetrahe-

dral. This distance is very distinctive because the intermolecular distance betw-

een solid hydrogen molecules is 3.78 Ǻ at 1 bar and 4.2 K. 
[16]

 As a result of 

this characteristic distance, the potential of hydrogen hydrates storage has 

increased as the energy density may be abnormally high. Figure 1.10 shows the 

arrangements of D2 molecules.  
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Figure 1.9. The occupancy of small and large cages at 2000 bar and 1 bar as a 

function of temperature. 
[15] 
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Figure 1.10. Arrangments of hydrogen molecules: (left) D2-D2 distance of 2.93 

Ǻ in the large cavity at 50 K and 1 bar, (right) H2-H2 distance of 3.78 Ǻ in solid 

hydrogen at 4.2 K and 1 bar. 
[15] 
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1.3.1    Hydrogen Hydrates as Future Fuel 

 

Scientists and engineers always seek for solutions to the problems that face 

the world, especially those related to energy. It is expected that the usual fossil 

fuel sources like petroleum and coal will be finished within the upcoming 

years. We need to find new energy sources. Clathrate hydrates can provide the 

world with sufficient amount of energy. Around 6.4 trillion tons of mathane 

hydrates be present on ocean floor. 
[17]

  

The world moves toward hydrogen economy because it is considered clean 

and environmentally friend. In recent years, some research have been done to 

investigate hydrogen hydrate properities. they revealed unique properities of 

clathrates that  made the clathrate a hot topic of research. Hydrogen is 

transported by liquefying the gas under high pressure and low temperature in 

tanks. This technique is expensive, dangerous, needs particular tools to 

maintain these conditions. Clathrates can be used to store and transport of 

hydrogen in efficient economic safe mean. Actually, one of the main 

challenges to hydrogen economy is to prvide high energy density similar to 

available liquid transportation fuels. 
[18] 

  

Simple hydrogen hydrates have many advantages: the trapping material is 

just water, the formation and dissociation is so quick, 
[19]

 no chemical reacion is 

required to release hydrogen from the clathrate, and water is cheap.   
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1.4     Hydrate Formation and Dissociation Processes   

 

The clathrate hydrate formation and dissociation processes are not well 

understood until now. At the common pressures, in the three hydrate structures, 

each cavity can contain at most one guest molecule. At very high pressures, 

nitrogen, hydrogen, methane, and argon can multiply occupy the large cavity of 

structure II. 

 Although we need to provide a guest gas with high pressure and water in a 

low temperature to form the clathrate, some clathrates are formed at high temp-

eratures above 300 K and at subatmospheric pressures relying on the forming 

gas. 
[7]

  

To make a simple hydrogen hydrate, it is found that the synthesis pressures 

required to form it around 100 MPa in low temperatures. If we want to form the 

clathrate at higher temperatures like 273 K, we should increase the applied pre-

ssure as well to 200 MPa. Therefore, we can control the formation process thr-

ough two options: lowering the temperature, or, raising the pressure. Both have 

the same effect but the formation process needs more time in case of lowering 

the temperature because molecules become less energetic. Figure 1.11 shows 

P-T diagram of hydrogen hydrate formation conditions.  

The optimum conditions to make sII hydrogen hydrates stable are: pressure 

~ 220 MPa, and, temperature at 249 K. This structure is transformed to a filled 

ice II structure when the pressure increases to 1 GPa. With further increasing of 

the pressure to 2 GPa, the structure transforms to cubic ice Ic. 
[20] 

To study the formation process, we need to go down to the microscopical 

scale. The hydrate formation is a stochastic process that means it is non-

determministic state, needs a supersaturated system to happen. 
[21]

 It is 

considered one of the crystallization processes.  

Crystallization process consists of two stages. The first stage is the 

nucleation includes the formation of the hydrate nuclei. 
[21]

 Nucleation is the 
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stage that the diffused solute molecules induces a gathering process to form 

clusters, generating a small solute aggregate in a nanometer region, that 

become stable under the operating conditions. If this aggregate isn't stable, it 

will redissolve again in the liquid. As a result, the clusters need to reach the 

critical volume in order to be stable and prevent redissolving. The critical 

volume is controlled by the driving force of the phases. This driving force 

results from the difference in the chemical potential between the initial phase 

and the new phase. 
[22]

 Its amount depends on the temperature, pressure, 

concentration difference and the operating conditions. 
[23] 

 The second stage of hydrate formation process is the hydrate growth. The 

hydrate growth begins following formation of a stable hydrate nuclei. The 

growth continues until the exhaustion of the supersaturation. At this moment, 

the crystallization process is complete and an equilibrium occurs among 

different interfaces. 

There are two techniques for the formation of hydrogen hydrate. The first 

technique: we can allow pressurized hydrogen gas to diffuse into powdered ice 

whether their structure is ice-II or ice-Ih. 
[19]

 In this technique, the interface is 

gas-solid and it is called solid-state phase transition. The second technique: we 

allow pressurized hydrogen to diffuse into water, making a liquid solution of 

hydrogen in water, then starts to cool  down the sample, so the clathrate  starts 

to be formed. 
[24]

 In the second technique, there are two cases: low and high 

pressure. In case of low pressure (i.e. low concentration of hydrgen solution), 

the clathrate is generated at the gas-liquid interface . In case of high pressure, it 

is thought that there are some particular cages in the supecooled water to host 

hydrogen solution inside. [25]  

To collapse the hydrogen hydrate, we need to increase the temperature to the 

ambient temperature, or, leaving the compound at 150 K and 1 bar for a long 

time, as they start to lose the hydrogen gas trapped inside.  
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Figure 1.11. P-T diagram of the formation conditions of hydrogen hydrates 

done by Dyadin, 
[11][12]

 Lokshin, 
[15]

 and Duarte. 
[26]
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1.5     Thesis Objectives and Outline 

 

The aim of this research is to study the molecular dynamics of trapped 

deterium (D2) molecules in sII simple hydrates using high resolution Raman 

spectroscopy in addition to some important aspects like multiple cage 

occupation and small inter-nuclear distance of D2 as they control the hydrogen 

storage inside hydrates. In addition, there will be an account of ortho-para 

conversion in case of free gas and inside the cages of the clathrate. Furthemore, 

it is an opportunity to study the quantum dynamics of confined hydrogen in a 

well defined external potential. Previous work in various literatures has been 

introduced, followed by addressing of the problem. Solutions and 

recommendations will be stated to problems mentioned above through 

comprehensive investigation of the experimental work done in this research. 

In Chapter 2, a full detailed picture of the Raman spectroscopy theory from 

both classical and quantum views shall be presented.  

In Chapter 3, studying the behavior of hydrogen hydrates using Raman 

spectroscopy and challenges regarding the assignment of the vibrational peaks 

will be introduced.  

In Chapter 4, account of the experiment equipment, procedure, results, data 

analysis and discussion will be presented in full details.  

In Chapter 5, different applications of clathrate hydrates in addition to some 

recommendations for future work.  
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Chapter 2 THE THEORY OF RAMAN SPECTROSCOPY 

 

2.1     Raman Spectroscopy  

 

Raman spectroscopy is one of the most important spectroscopic techniques 

that are used to study the molecular dynamics of molecules and atoms. It gives 

details regarding vibrational and rotational bands of them. It depends on 

inelastic scattering of a monochromatic beam, a laser beam at the visible range. 

The laser beam interacts with the vibration and rotation of the molecule. The 

molecules absorb the incident photons energy of the laser beam, they become 

excited and move up to virtual states. At this moment, there are three cases for 

the excited molecules: 

1- To go back to the original energy level emitting a photon with energy                                

equal to the incident photon energy without any loss. This is called 

Rayleigh scattering (see figure 2.1). 

2- To go back to a higher vibrational level emitting a photon with an 

energy lower than the incident photon energy making a loss of amount 

⧍ν. This is called Stokes Raman scattering (see figure 2.2).  

3- To go back to lower vibrational level emitting a photon with an energy 

higher than the incident photon energy making a gain of amount ⧍ν. This 

is called anti-Stokes Raman scattering (see figure 2.3).  

Therefore, the rotational and vibrational frequencies of the scattered molecule 

by the incident light appear as difference frequencies with respect to the 

Rayleigh scattering. Figure 2.4 shows a complete Raman spectrum for a 

diatomic molecule.      
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Figure 2.1. Shows the Rayleigh scattering process and there is no loss in 

energy between the incident and scattered photon.  
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Figure 2.2. Shows the Stokes Raman scattering and there is a loss in energy 

with amount ⧍ν between the emitted and incident photon. 
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Figure 2.3. Shows the anti-Stokes Raman scattering and there is an increment 

of amount ⧍ν between the emitted and incident photon.  
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Figure 2.4. The figure shows a complete Raman spectrum of a diatomic 

molecule. The Rayleigh line at a frequency       is surrounded by spaced shifted 

rotational lines. Q, S, and O are the rotational-vibrational Raman lines. From 

the graph, we can notice that the intensity of the Rayleigh line is the maximum 

followed by Stokes lines at frequency (          ) while anti-Stokes lines (on the 

right) and the second harmonics are so weak. 
[27] 
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2.2     Classical Theory of Raman Scattering  

 

To interpret Raman scattering, there are two ways: classical wave 

explanation or quantum particle explanation. In the classical wave explanation, 

we assume that there are two atoms with masses    and    connected together 

by a bond (with a bond strength  ), which is a massless spring in the classical 

view, and both masses are moving in the outward direction making 

displacements    and    as shown in figure 2.5.  

 

Figure 2.5. Diatomic molecule connected by a massless spring. 
[27] 

   

By applying the Hooke's law, the equation of motion for this molecule 

between the atoms can be expressed as following:  

    

      
  

    

   
  

    

   
                ……........... (2.1) 

By replacing                with   (reduced mass) and       with  , 

the equation can be simplified to,  

 
   

   
       …………….…………..……. (2.2) 

This equation is simple harmonic equation that can be solved for   we get,  

                   ……………….......................... (2.3) 

Where      is the molecular vibration frequency and is equal to,  
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 ……………………..……..... (2.4) 

From equations (2.3) and (2.4), it is so clear that the vibrational frequency is 

directly proportional with the bond strength and inversely proportional with the 

reduced mass. 

The laser beam is considered an electromagnetic wave associated with a 

fluctuating electric field  . This electric field reacts with the polarizability of 

the molecule. The polarizability α of the molecule depends on the interaction of 

the molecule's electron density with the electric field of the incident wave. 

Therefore, the incident wave induces a dipole moment   and this dipole 

moment directly proportional to the electric field by 

       …………………………. ……….. (2.5) 

This induced dipole moment vibrates with a definite frequency, hence, the 

polarization changes with this oscillation. Therefore, the emitted beam will 

depend on the frequency of polarizability and the frequency of the incident 

beam. 
[25]

 For a light wave with a frequency   , the time varying electric field is 

given by 

               ………………….……... (2.6) 

Where    is the amplitude of the vibrating electric field. From (2.5) and (2.6), 

so the induced dipole moment can be expressed,  

                 …………………..….. (2.7) 

Such an oscillating dipole emits radiation of its own oscillations with a 

frequency   , making the Rayleigh scattered beam. If the polarizability changes 

a little bit than the molecular vibration, so we can use the small amplitude 

approximation and the polarizability can be a linear function of displacement,  

           
  

  
 
   

    …………..….... (2.8) 
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By substituting (2.3) into (2.8), we can get,  

                        
  

  
 
   

………..…... (2.9) 

By substitution (2.9) into (2.7), we get,  

                        
  

  
 
   

                 …….............. (2.10) 

                                               
  

  
 
   

….. (2.11) 

From the last equation, the first part is the Rayleigh scattering component that 

is the dominant part. The second part is the Raman scattering component.  

Using the trigonometric relation  

           
 

 
                    …………… (2.12) 

Therefore,  

                  
 

 
      

  

  
 
   

                   

                  …………………………………………………... (2.13) 

The equation (2.13) shows how the dipole moment changes with the frequency. 

It has three frequency components:  

i. (  ) with an amplitude        

ii. (       ) with an amplitude 
 

 
      

  

  
 
   

  

iii. (       ) with an ampitude 
 

 
      

  

  
 
   

 

Therefore, we expect to get three peaks: one for Rayleigh scattering with a 

frequency   , one on the left for Stokes Raman scattering with a frequency 

       , and one on the right for anti-Stokes Raman scattering with a 

frequency         . See figure 2.6. 
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Figure 2.6. The expected three regions, one for Rayleigh scattering at   , one 

on the left for Stokes Raman scattering at        , and one on the right for 

anti-Stokes Raman scattering. 
[28]

   

The last formulation is applied for both vibrational and rotational motion 

but, in the rotational motion, we must take into account that the effect of the 

same electric field that can make the molecule to rotate with the same amount 

in two different directions. As a result, the equation of the induced dipole 

moment changes with the rotation frequency like following: 

                  
 

 
      

  

  
 
   

                    

                   ……………………………………………….. (2.14) 

Where      is the rotational frequency. When the vibration of molecule 

doesn't change the polarizability of the molecule (i.e  
  

  
 
   

  ) so the 

dipole vibrates only at the incident light's frequency. Therefore, to get Raman 

scattering in vibrational and rotational motion, there must be a change in the 

polarizability (i.e  
  

  
 
   

  ). 

In case of homonuclear diatomic molecules like H2, N2, or O2, they do not 

show any response for IR because there is no permanent dipole moment. On 

the other hand, they show Raman scattering because the vibration is associated 

with a change in the polarizability and, hence, change in the dipole moment.  
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The classical theory succeeded to show the dependence of Raman and 

Rayleigh on the frequency, and hence, the polarizability but there are serious 

problems encountered with the classical theory. First, it cannot be applied for 

the rotational motion. From the rigid rotor model, the rotational frequency      

can take any value, so the spectrum must be continuous and this contradicts the 

experimental results that show discrete lines.  

Another limitation of the classical theory, according to equation (2.13), the 

assumed intensities of both Stokes Raman lines and anti-Stokes Raman lines 

are the same while this contradicts with the experimental results. To get anti-

Stokes Raman lines, we need a population in some higher vibrational energy 

levels which isn't satisfied in all cases. On the other hand, the Stokes Raman 

lines arise from the ground energy level, so that it is easy to get them. 

Therefore, scientists moved to the quantum particle explanation to make the 

theoretical background fits with the quantitative experimental result.  
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2.3     Quantum Particle Explanation of Raman Scattering    

  

In the quantum particle explanation, the light is considered a beam of 

photons with a fixed amount of energy called quanta. The photon energy is 

directly proportional with the frequency     . When a photon scatters with a 

molecule, this molecule absorbs the energy of the incident photon and moves to 

a higher excited virtual energy state. In this case, the energy state is a 

combination of rotational and vibrational bands. After a while, the molecule 

goes back to either the original energy state or a shifted energy state. If the 

molecule goes back to the initial energy level without any changing in 

frequency, the collision is an elastic scattering and the spectral line is called 

Rayleigh line. If the molecule goes back to a higher energy state than the 

original one, the collision is inelastic collision and the spectral lines called 

Stokes lines. In case of the molecule goes back to an energy level lower than 

the original energy state, the process is inelastic and the resulted lines are anti-

Stokes lines. 
[29]

 Figure 2.7 shows quantum energy transitions for Rayleigh and 

Raman lines.  

Let's assume that the incident photon energy is   , and the scattered photon 

energy is   , so the difference in energy is given by 

         …………………………….. (2.15) 

But     , So  

           ………………………….. (2.16) 

In case of Rayleigh scattering,  

            ……………………….. (2.17) 

In other words,  

       …………………………………. (2.18) 
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Figure 2.7. Quantum energy transitions for Raman and Rayleigh scattering. 
[30]
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In case of Stokes Raman lines,  

                     …………………….. (2.19) 

            …………………………………. (2.20) 

So, there is a loss of energy with amount (  ). 

In case of anti-Stokes lines,  

                    …………………….. (2.21) 

            ………………………………… (2.22) 

From the last equation, we found that the molecule has gained energy larger 

than the incident photon energy.  

To study the intensity of Stokes and anti-Stokes lines, we should make a 

comparison between the populations in the first energy states. We can use 

Boltzmann distribution. Since, the anti-Stokes lines result from a transition 

between a higher vibrational-rotational level to a lower one, they needs a 

population in the original higher level and this opportunity decreases with 

decreasing the temperature that makes the atoms less energetic and prefer to 

stay in the ground level than being in a higher energy state.   

From Boltzmann distribution function,  

     
 

  
    …………………………………. (2.23) 

Where Ni is number of particles occupying the energy state i, N is the total 

number of particles, Ei is the energy of the particles, kB is the Boltzmann 

constant, and T is the temperature of the system, we can study the intensity as 

following,  

            

       
 

      

      
  

 
     
    ………………… (2.24) 
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If we set                and        , we obtain a numerical value of 

    from the last equation, i.e. 0.7% for the relative intensity. The selection 

rules in the quantum particle explanation are       (in addition to 

       with very low possibilities.  

To interpret the rotational transition using the quantum particle treatment, 

we should first check the geometry of the molecular rotors which can be 

divided into linear, spherical, symmetric and asymmetric rotors. For H2, N2, 

and O2, they are considered as linear rigid rotors.  

In the diatomic molecule, the rotational energy depends on the moment of 

inertia of the system   where it is equal,  

       ………………………………….. (2.25) 

Where μ is the reduced mass of the molecule and R is half the distance between 

the two atoms.  

According to Schrödinger equation:  

        …………………………………. (2.26) 

Where    is the Hamiltonian energy operator,   is the wave function, and   is 

the corresponding energy. In the free space, the energy operator corresponds to 

the system kinetic energy, 
[31]

 so 

    
  

  
   ………………………………. (2.27) 

Where   reduced Planck constant and    is the Laplacian. The energy operator 

can be rewritten in terms of the spherical polar coordinates as following,  

    
  

  
  

 

    

 

  
     

 

  
  

 

      

  

   
 …………………. (2.28) 
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The eigenvalue equation of the last equation is, 

     
       

  

  
        

       ………………….. (2.30) 

Where   
       is a set of functions (spherical harmonics). So the energy can 

be expressed as following,  

   
  

  
        ………………………….. (2.31) 

Let B = 
  

  
 where B is the rotational constant, we write,  

            …………………………... (2.32) 

In case of linear rotor, the selection rule ⧍l = ±2, the degeneracy is     , so 

that the shift of rotational Raman lines relative to the Rayleigh line can be 

written as,  

                                              .. (2.33) 

(±) sign refers to the position of the line on the right or on the left of the 

primary line. Therefore, the first rotational Raman line (l = 0) will appear after 

a separation of amount,  

                  …………………….. (2.33) 

All the other lines will be separated a part of amount    with each other  

(See figure 2.8). 
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Figure 2.8. A diagram explaining the rotational Raman lines. 
[27] 
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2.4     The Quantum Agreement with the Classical Theory and 

Experimental Data 

 

Using the wave mechanics, we can prove that there is agreement to between 

the quantum theory, classical theory and the experimental data. If there is a 

transition due to Raman scattering between two states n and m. the scattering 

moment can be given by 

         
       …………………………. (2.34)  

Where     and    are the associated wave functions with the two states. By 

substituting the value of P under the integral from equation 2.5, we will notice 

that   
 ,   , and   have time exponential parts. In addition,       will vary 

with a frequency             . Therefore, we can rewrite the last 

equation for the amplitude as following 

           
        ……………………... (2.35) 

From the last equation, it is clear that the transition between the two energy 

states    and    will happen, after the scattering of the incident light of 

frequency    resulting a scattered light of frequency             , if the 

integral is non-zero. To calculate the intensity of the corresponding Raman 

lines, we need to find the probability which is the square of the amplitude 

stipulated in the last equation giving a quantitative agreement of the quantum 

explanation and the experimental data.  

If the polarizability in equation (2.35) is constant, so we can take it out of the 

integral giving 

               
       ……………………. (2.36) 

 

Since     and    are orthogonal, the above integral will vanish except if n = m 

giving the Rayleigh line, i.e. at constant polarizability, we will get Rayleigh 
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scattering process but if the polarizability changes, Raman lines will appear. 

The last conclusion agrees with both the classical theory and the experimental 

data.  
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Chapter 3 RAMAN SPECTROSCOPIC STUDIES OF 

HYDROGEN CLATHRATES  

 

3.1     Introduction 

 

There are numerous means to study the hydrogen hydrates like X-ray 

diffraction, IR, neutron scattering and Raman spectroscopy. Our concern here 

is to study hydrogen hydrates using Raman spectroscopy. Raman spectroscopy 

can provide information regarding the vibrational and rotational bands of 

enclathrated hydrogen.  

 

3.2     Analysis of the Rotatinal Modes using Raman Spectroscopy 

 

Raman spectrum reveals the pure rotational transition of the compound. Pure 

rotational transitions can be described with the notation      , with   = 0, 1, 

2,….etc. The rotational transitions (rotons) are controlled by a selection rule to 

allow the transition, otherwise, it will be forbidden. This selection rule comes 

from the wave function constraints. In the Raman scattering, the selection rule 

for rotational transitions is         while the transition       is 

forbidden in Raman scattering although it is allowed in IR rotational 

transitions. 
[32]

   

 The occurrence of the rotational transition depends on the population of 

particles in the energy level. Therefore, at room temperature, we expect to have 

many transitions like      ,      ,      , and       for H2 molecule. They are 

closely equal separated. The same transitions appear for D2 molecule but with 

additional       at room temperature. The fifth band of D2 arises due to the 

increases mass (small rotational constant). Furthermore, D2 bands are shifted to 

a lower frequency by a factor of two due to the mass ratio. The intensities of 
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the lines depend on the nuclear spin in addition to the population of the energy 

levels. Figure 3.1 shows the comparison between the rotational transitions of 

H2 gas and D2 gas at ambient standard temperature/ pressure (STP) conditions. 

 

Figure 3.1. Raman spectra for rotons of H2 gas (blue solid line) at the bottom 

and D2 gas rotons (black solid line) at STP. 
[33]

  

 

For H2, as temperature decreases down to 77 K, the population of the higher 

rota-tional level decreases. As a result, only       and       rotational 

transitions appear and others vanish.       appears at 354 cm
-1

 with a 

transition (          , para-H2). In addition,       is observed at 587 

cm
-1

 with a transition (          , ortho-H2). In the clathrate phase, 
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these bands are widely broadened and their positions are slightly shifted to 

lower frequencies that are quite close to those of the free gas state which 

indicating that the trapped H2 inside the clathrate undergoes nearly free rotation 

within a confining space. The rotational Raman spectral lines for H2 gas at 0.1 

MPa and 295 K and H2 + THF (tetrahydrofuran) formed at 50MPa and 250 K, 

measured at 0.1 MPa and 76 K are shown in figure 3.2.  

 

 

Figure 3.2. Rotational Raman spectrum for H2 gas and H2 + THF hydrate. 
[33]
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For H2 gas, from section (2.3) above, the rotational energy states are 

degenerate with a value of      . The degenerate levels of   can be divided 

into sub-levels of using the second quantum number m. m can take values from 

                . At    , so m will equal zero too meaning that the 

spherical harmonics probability density will be a sphere, therefore, it doesn't 

depend on the orientation. At    , m can take values 1, 0, -1. This makes the 

spherical harmonics probability density to be flattened or elongated spheroids. 

[34]
 For all values of m, the energy levels are equal in terms of energy and this 

affect the population which, in turn, affects the intensity of the Raman spectral 

lines.  

Since hydrogen suffers from strong interaction with water to form the 

clathrate, so the degeneracy may be completely lifted and, hence, there will be 

five possibilities for the Raman transition (     ) of para-H2 to move 

from    , m = 0 to one of the five different m (   , m = 2, 1, 0, -1, -2). 

However, we find three transitions only resolvable in figure 3.3. 

Figure 3.3. Rotational transitions of H2 in H2+THF (blue line). 
[33] 

.  
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According to recent theoretical calculations for one H2 molecule trapped in 

the small cavity, it is proven that there are five transitions from        , 

to sub-levels of                  . They appear at 348.6, 349.6, 356.0, 

363.4, and 364.3 cm
-1

. 
[28]

 We can notice that the energy difference between the 

first and the last two lines is small. Therefore, we cannot detect the five 

transitions and we, instead, observe only three.  

In case of ortho-H2, we cannot detect individual transitions because of the 

large number of possibilities accompanied by small energy differences.  

In case of simple hydrogen hydrate, there are hydrogen molecules captured 

in the small and large cages. To find the rotational Raman line, it is a 

superposition of ortho-H2 and para-H2 in both small and large cages. In 2011, 

Giannasi et al. did a research to study the share of individual small and large 

cages. 
[35]

 Giannasi et al. assumed that the small cages are occupied with one 

hydrogen molecule in both simple and binary clathrate hydrates. Therefore, the 

contribution of the small cages will be the same in the output rotational 

transitions. Giannasi et al. prepared binary clathrate of H2+THF. The THF 

occupies the large cages in the binary clathrate hydrate. They obtained the 

      and       for THF and subtracted the output signal from the spectrum of 

simple hydrogen hydrate to obtain the contribution of the hydrogen in the large 

cages only.  

To evaluate the amount of hydrogen occupying the small and large cages, 

Giannasi et al. analyzed the intensity of the separate contribution. They found 

that 40% of H2 occupy the large cages, while the remaining 60% occupy the 

small cages. They confirmed their results using the vibrational spectrum.  
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Figure 3.4. Para- and ortho- hydrogen showing the individual contribution of 

small and large cages. 
[35]  

 

3.2.1      Ortho-Para Conversion 

 

The overall wavefunction of the molecule is the product of the spatial 

functions and the spin functions. Exchange of the nuclei means inversion in 

space.  Under this condition, the odd rotational eigenfunctions           

will change their sign, so they have negative parity and are anti-symmetric. On 

the other hand, the even eigenfunctions           will have the same sign 

under the inversion in space; therefore, they have positive parity and are 

symmetric. Full details regarding the parity of the overall wavefunction, spatial 

function, and spin function of H2 is explained in figure 3.5. 

Unlike the H2, D2 is a considered a boson not a fermion with integer spin 

making the overall parity of the wavefunction to be positive and symmetric. 

Thus, ortho-D2 can have spin       can appear only with even rotational 

states (statistical weight 2) while D2 can have     in the case of odd 

rotational states (statistical weight 1). 
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Figure 3.5. A schematic diagram to show the constraints of the rotational states 

in ortho and para-H2.  
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For a diatomic molecule, From section 2.3, the rotational energy,     , can 

be expressed as following 

             …………………………… (3.1) 

Where   is the rotational constant (59.322 cm
-1

 for H2 in the ground level and 

29.904 cm
-1

 for D2) and   is the rotational quantum number. Both ortho and 

para-H2 exist at the same time. The ratio between them is a function of 

temperature. The ratio can be expressed as 

  

    
              

     

              
      

 …………….. (3.2) 

Where        ,      is the degeneracy of the rotational states and factor 

of three due to the statistical weights.   is the Boltzmann constant.  

At high temperature,  

  
   

  
 ……………………………….. (3.3) 

The ratio of ortho to para decreases to the ratio of the statistical weights (3:1 

for H2, and 2:1 for D2) because the high temperature makes the molecules more 

energetic and hence the conversion occurs easily. Figure 3.6 shows the 

equilibrium percentage of ortho and para for both H2 and D2 with changing the 

temperature. Because of the low rotational constant for D2, the ortho-para 

conversion ratio deviates at low temperature than H2 from the normal ratio. 

Giannasi et al. 
[36]

 introduced a new equation to determine the relative 

population of para-H2 from the rotational spectral lines       and      , which 

is given by 

   

   
  

   

   
 
  

 

  
  

  
 

  
  

  

    
 
  

  
 …………………… (3.4) 
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Where 

   : The area under S0 (0), while    stands for the area under S0 (1) 

   : The statistical weight for transition from 0 to 2, and the same for   . 

   : The polarization anisotropy for the initial energy state 

υ  : the freque  y  f the   attered rad at     

   : The parahydrogen population at energy state J = 1  

   : The orthohydrogen population at energy state J = 2 

  

In the clathrate hydrate, the self-conversion process in the small cages takes 

a long time than the large cages because the clathrate isolates the trapped 

molecule from the extrinsic effect of the surroundings. Generally, the trapped 

molecules undergo self-conversion slower than the free gas because the 

clathrate cavities reduce the extrinsic effects which are responsible for flipping 

the nuclear spin. 
[36]

 Figure 3.7 shows the concentration of para-H2 with time 

for simple and binary clathrate hydrate. 
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Figure 3.6. Shows the equilibrium percentage of ortho and para for both H2 

and D2 with changing the temperature. 
[33] 
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Figure 3.7. Shows the concentration of para-H2 with time for simple and 

binary clathrate hydrate. 
[36] 
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3.3     Analysis of the Vibrational Modes using Raman Spectroscopy 

 

Raman spectrum, as we explained before, has both vibrational and rotational 

transitions. The rotational transitions have been studied in the last section, so 

our concern will be studying the vibrational bands. Vibrational transitions with 

no rotational transition (i.e.     ) occurs from the ground state to an excited 

state are called   transitions. Quantum mechanically, the energy of different 

energy states can be given by  

      
 

 
    …………………………….. (3.5) 

Where   is the vibrational quantum number and its selection rule         

(in this research it is always 1),   is the Planck constant and ν is the frequency. 

To identify a specific vibrational transition, we can use the notation        

where   is the rotational quantum number. 

 

3.3.1    Vibrational Modes of H2  

 

H2 gas at room temperature has obvious four vibrational lines labeled      , 

     ,       and      . The intensity of the second transition is large because 

of the ortho-para ratio and by the rotational population. 
[37]

 Figure 3.8 shows 

the four vibrational lines of H2 gas at room temperature and 1 bar.  

Figure 3.8. H2 vibrational Raman spectrum at room 

temperature and 1 bar. 
[33]
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As the temperature decreases, the population of higher rotational energy 

levels decreases reducing the observed vibrational transitions to two only 

instead of four. The lines are       and       and they represents transitions 

from                 (para-H2) and               

  (ortho-H2) respectively. The separation between them is 6 cm
-1

 in the H2 

fluid at 76 K. The hydrogen molecule trapped inside a cavity will show the 

same two lines but down shifted from the free gas lines due to the applied 

potential that molecules experience inside the cage. 
[19]

 In addition, we can find 

that as, the size of the cage differs, or, the occupancy of a cage changes, the 

vibrational lines frequencies of the trapped H2 changes too. For example, if we 

have singly occupied small cages, they will show two spectral lines (ortho and 

para) down shifted from those of the free gas, however, if we have doubled 

occupied cages, they will give two spectral line in a different region than the 

small cages or the free gas. 

 The assignment of the spectral lines to specific occupancy number and a 

specific cage is challenging. The hydrogen has two spectral lines with a 

difference between them around 6 cm
-1

. Each certain occupancy in a definite 

cage will give these two lines. The small cage can hold one molecule giving 

two spectral lines and their positions are separated from those of molecules in 

the large cavity. The assignment becomes more complicated for the large cage. 

There are cages with one, two, three, or four hydrogen molecules giving many 

spectral lines that overlap together. The difficulty of the assignment process 

increases as we take into account; the ortho-para conversion with time, and, 

the change of the large cage occupancy with the temperature and pressure 

changes.   

In sII clathrate, there are small cages and large cages. In 2002, Mao et al. 

assigned the two lowest frequency peaks to hydrogen in the large cage and the 

others to hydrogen in the small cages. 
[13]

  

However, in 2007, Strobel et al. has proven that the two lowest frequency 

peaks are assigned to the hydrogen in the small cage not the large cage, and the 
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other three lines to hydrogen in the large cage not the small. 
[37]

 Strobel et al. 

prepared a binary clathrate hydrate (H2+THF) at 150 MPa and 250 K. In this 

situation, the THF molecule occupies the large cavity so; the Raman spectral 

line of the clathrate will be due to the hydrogen in small cavities only. In 

addition, they formed a pure H2 hydrate at 150 MPa and 250 K. This hydrate 

will show hydrogen Raman spectral lines of both small and large cages. Figure 

3.9 compares Raman spectra for pure H2 fluid, binary THF+H2 and pure H2 

hydrate measured at 76 K and atmospheric pressure. The pure and binary sII 

hydrates have an intense line at 4120 cm
-1

 and a shoulder at 4125 cm
-1

. Unlike 

the binary sII hydrate, the pure hydrate has other three lines. Therefore, they 

must belong to hydrogen in the large cage, as this cage is filled with THF in the 

binary hydrate. Thus, the assignment is the reverse of Mao et al. suggestion.  

The free H2 gas consists of 75% ortho-H2 and 25% para-H2. After the 

synthesis of the clathrate, the vibrational line will show the same ortho to para 

ratio but, as time passes, this ratio changes because the conversion takes place.  

Strobel et al. confirmed the ortho-para conversion. They take an immediate 

measurement of Raman spectrum for the binary clathrate hydrate (H2+THF) 

after synthesis at 0.1 MPa and 76 K. They compared the resulted spectrum with 

the spectrum of another measurement for the same material after six days of 

storage at liquid N2. ortho to para conversion happened and para-H2 becomes 

the dominant. Figure 3.10 shows the ortho to para conversion for H2 at 

H2+THF binary clathrate.   

 

 

 

 

 

 

 



 

 
52 

 

 

 

 

 

Figure 3.9. Raman spectrum at 76 K and atmospheric 

pressure for: (a) H2 gas, (b) H2+THF and (c) hydrogen 

hydrate. Both hydrates were formed at 150 MPa and 250 K. 
[33]
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Figure 3.10. Vibrational Raman spectrum for free H2 gas at 0.1 MPa and 296 

K (dashed green curve), H2+THF at 0.1 MPa and 76 K after the synthesis 

directly (solid red curve), and for the same sample after 6 days of storage in 

liquid N2 (dotted blue curve). 
[33]
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To specify the spectral peaks, measured at 76 K produced from hydrogen 

trapped inside a sII structure of clathrate hydrate formed at 200 MPa and 250 

K, to definite occupancies, Strobel et al. 
[8]

 assumed that there is one hydrogen 

molecule in the small cages and large cages are filled with two (2L), three (3L), 

or four molecules (4L). Therefore, we must have eight lines but some of them 

may overlap. To get more resolution, we can heat the sample up to 150 K and 

cool it again to 76 K. Figure 3.11 shows the resulted Raman spectrum of simple 

H2 hydrates after many heat/quench cycles. 

After the first heat/quench cycle, it is clear that the 4L intensity decreased 

meaning a loss of the hydrogen while the intensity of 3L aroused. With one 

more heat/quench cycle, double occupied large cages population started to 

increase. The fourth heat/quench cycle makes the 4L to completely dissociated.  

Figure 3.11. Vibrational Raman spectra for simple H2 hydrate. Curves 

(a), (b), (c), and (d) are the vibrational spectral curves after heating the 

sample to 150 K and cooling to 76 K repeatedly. 
[33] 
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On the other hand, Giannasi et al. 
[36]

 proposed a different assignment of 

peaks to cages population. They suggested that small cages are filled with one 

molecule of H2 while the large cages can be occupied with one (1L), two (2L), 

and three (3L) molecules. Therefore, we must have eight spectral components 

in the Raman spectrum. Figure 3.12 shows a comparison between the Raman 

measurements for H2 hydrates: one obtained after the formation of the clathrate 

and the other after three months storage at low temperature.  

 

Figure 3.12. Two Gaussian fitted Raman spectra: (a) spectrum obtained at 77 

K after the formation of the hydrate. (b) spectrum obtained at 77 K after three 

months storage in low temperature. 
[36]

  



 

 
56 

 

3.3.2    Vibrational Modes of D2 

 

D2 gas at room temperature has five vibrational transitions      ,      , 

     ,      ,      . The figure 3.13 shows the D2 vibrational transitions at 

room temperature. The intensity of the third transition is large because of the 

ortho-para ratio and by the rotational population. By comparing the figure 3.8 

with figure 3.13, it clear that the D2 vibration bands appear at lower frequencies 

than H2.   

As the temperature decreases, the population of higher rotational energy 

levels decreases reducing the observed vibrational transitions to three only 

instead of five. The lines are      ,      , and       representing transitions 

from                 (ortho-D2),                 

(para-D2), and                 (ortho-D2)  respectively. 

Therefore, in normal D2, the ratio of ortho to para is 2:1 although the rotational 

constant for D2(B ~ 30 cm
-1

) is about half of that H2 (B ~ 60 cm
-1

). Figure 3.14 

shows the three vibrational transitions for enclathrated D2.  

For the D2 hydrate, the frquency difference between the first two transitions 

is nearly two cm
-1

 (               cm 
-1

). The frequency difference 

between the last two transitions is nearly four cm
-1

 (              cm
-1

). 

The D2 molecule trapped inside a cavity will show the same three lines but 

down shifted from the free gas line.  

The same procedure of how we have assigned the Raman vibrational peaks 

to definite occupancy per cage for H2 will be applied for D2 as well. Measuring 

the total Raman spectrum, then suggesting occupancies like 1S, 2L, 3L, and 4L 

if we followed Strobel et al. way (figure 3.15), or, 1S, 1L, 2L, and 3L if we 

follow Giannasi et al. way (figure3.16). After that, applying heat/quench cycles 

many times to get more resolved data and to verify the suggestion we used.   
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Figure 3.13. D2 gas vibrational transition at room temperature. 
[33]
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Figure 3.14. Shows the three vibrational transitions for enclathrated 

D2+THF formed at 100 MPa and 265 K. Solid blue line is the Raman 

measurement directly after formation, dashed line is the Raman 

spectrum after 10 days storage in liquid nitrogen. 
[33] 
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Figure 3.15.  (a) vibron Raman spectrum of unperturbed D2 

hydrate formed at 192 MPa and 260 K, measured at 76 K and 0.1 

MPa. (b)-(d) heat to 150 K / quench 76 K. Vertical lines indicates 

                           contributions: 1 D2/small cage 

(1s), 2 D2/large cage (2L), 3 D2/large cage (3L), 4 D2/large cage 

(4L).       isn't labeled for clarity. 
[33]
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Figure 3.16. Fitted Raman spectrum with constrained eight Gaussian curves of 

D2. The assignment of the large cage occupancy proposed by Giannasi et al. is 

shown. 
[36]
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Chapter 4 THE EXPERIMENTAL PROCEDURE AND 

ANALYSIS OF RAMAN SPECTRUM OF SIMPLE sII 

DEUTERIUM CLATHRATE HYDRATES 

 

As shown in the last chapter, there are two scopes for the assignment of the 

Raman peaks due to large cages to their prospective occupancy. Giannasi et al. 

[36]
 assigned the Raman peaks of deuterium in large cages to be filled with one 

(1L), two (2L), and three (3L) molecules. On the other hand, Strobel et al. 
[33]

 

suggested that the large cages of simple deuterium hydrates could be filled with 

two (2L), three (3L) and four (4L). In this chapter, the experimental procedure 

and the analysis of Raman peaks with a new assignment of peaks will be 

introduced. This experimental part has been done in Raman Laboratory of 

Institute of Complex Systems in the National Research Center (CNR) at Sesto 

Fiorentino, in Italy. 

 

4.1     Equipment and Experimental Procedure 

 

The devices have been used in the experiment will be described in details in 

addition to the procedure itself. The experiment has the following components:  

1. Argon laser (Coherent Innova 300)  

2. Mirrors and lenses  

3. Notch filter 

4. Cell made from beryllium-copper alloy 

5. Cryogenic system (helium closed cycle refrigerator) 

6. Evacuating pump (Turbomolecular pump) 

7. Barksdale pressure transducer 

8. Pipelines  

9. Nova-Swiss membrane compressor 
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10. Horiba Symphony Charge coupled device detector (CCD) 

11. Telescope (made locally in CNR) connected to a television  

12. Monochromator (Spex 1877 triple-mate spectrometer) 

13. Temperature sensors  

4.1.1    Setup of the Cell 

 

To form the clathrate, we need a specific designed cell for this purpose. This 

cell must be connected to a gas source and bear gas pressure up to 3000 bar at a 

temperature range from 300 to 20 K. In addition, it must have an optical 

diamond window, to let the laser to fall on the sample, and to be collected after 

the scattering process. Moreover, the cell volume must be relatively small to be 

placed in the cryogenic system. To satisfy the last conditions, the cell material 

has been chosen to be beryllium-copper alloy (Berylco 25A bought from NGK 

Metals Corporation). This material is characterized by high thermal conduction 

coefficient in addition to very high yield strength. The cell shape is cylindrical 

with a diameter of 40 mm and a thickness of around 25 mm. Two or three 

drops of distilled water are placed in a container inside this cell. The surface of 

the distilled water is illuminated with the incident laser. The laser beam is 

incident at 90
o
 degree, therefore, we uses the back-scattering technique. This 

technique is preferred because it depends only on one window instead of two 

for any another configuration. The window of the cell must be clear, made 

from diamond in order to be transparent for the incident laser beam. In 

addition, the diamond window can afford up to 5000 bar without need to 

increase the thickness. Also, the window has a cylindrical geometry with a 

diameter 5.0 mm and a thickness 1.25 mm. By using a very thin layer of silicon 

glue, the window can be mounted to the clamping disk. This glue has no effect 

on the seal of the window. To make the cell withstand at very high pressure, a 

"Bridgman seal" can be used between the optical plug and the cell body. 
[34]

 In 

the Bridgman seal, we depend on a viscous material such as copper is set to 
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expand longitudinally against the increasing internal pressure. Full description 

of the cell components and dimensions are presented in figure 4.1. 

To control the temperature of the cell, the cell is connected with a closed 

circuit refrigerator (CCR) (uses helium as cooling gas) able to cool the cell 

down to 10 K. In addition, the cell is embedded into a copper block for good 

thermal stability. To measure cryogenic temperatures, a silicon diode 

(Lakeshore DT 471) has been placed few millimeters away of the cell and in 

good contact with the copper block. A similar one must be connected to the 

cold finger of the cryostat. The difference between both sensors is always less 

than 2 K. A stainless steel capillary, welded to the cell, allows gas evacuation 

and transfer of deuterium (D2). To get the required high pressure to the 

synthesis of deuterium clathrate, we use a Nova-Swiss membrane compressor 

that can provide a high pressure up to 3000 bar. Barksdale pressure transducer 

is used to measure the pressure up to 3500 bar. The CCR head and the sample 

holder are enclosed into a copper radiation shield. Finally, all are enclosed in a 

steel vacuum chamber equipped with a glass window. This steel vacuum 

chamber is evacuated from air and any other contaminating gases by a 

turbomolecular pump to 8.32 x 10
-7

 mbar.  The overall system is mounted on a 

movable rack, which can be easily aligned with the optical system during 

spectroscopic measurements. Photographs of the cell and of its details are 

reported in figure 4.2. A photograph of the CCR mounted over a movable rack, 

controlled by wheels, is shown in figure 4.3. Figure 4.4 shows the Nova-Swiss 

membrane compressor. Lakeshore DT 471 is being used to measure the 

temperature of the cell device is shown in figure 4.5. The cryogenic system and 

its evacuating pump are shown in figures 4.6 and figure 4.7. Figure 4.8 shows 

the turbomolecular pump that evacuates the steel chamber from air down to 

8.32 x 10
-7

 mbar.          
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Figure 4.1. Schematic diagram of the dismounted cell (top 

drawing), and the mounted one (down drawing). The cell consists 

of (A) Cell body, (B) flange, (C) diamond window, (D) optical 

plug, and (E) pressing ring. 
[38]
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Figure 4.2. (a) Photograph of the mounted cell, (b) photograph of the 

dismounted cell. The pressing ring is still mounted on the optical plug 

where the glued diamond window is visible.   
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Figure 4.3. The overall system mounted on a movable rack, which can be 

easily aligned with the optical system during spectroscopic measurements.  

Figure 4.4. The Nova-Swiss membrane compressor that can raise the pressure 

of the gas up to 3500 bar.  
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Figure 4.5. Lakeshore DT 471 that is used to measure the temperature of the 

cell and another similar one is used to measure the temperature of the cold 

finger of the CCR.  

Figure 4.6. The cryogenic device, capable of cooling the system down to 10 K. 
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Figure 4.7. The evacuating pump connected with the cryogenic device. 

Figure 4.8. The turbomolecular pump that evacuate the steel chamber 

from atmospheric pressure to 8.32 x 10
-7

 mbar.   
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4.1.2    Optical Path Setup  

 

Figure 4.9 shows a schematic diagram of the optical setup used in this 

experiment. An argon laser beam, after being reflected by the two aluminum-

coated mirror M1 and M2, reaches the notch filter that has an optimum 

working angle of 10
o
. This notch filter reflects the incident laser beam but it 

allows the scattered beam to pass through it. Then, the laser beam is collimated 

into the sample using a L1 lens, that is, a 3 x microscope objective (70 mm 

focal length). The same lens collects the scattered beam and let it to pass 

through the notch filter to be reflected by M3 mirror. After that, a second 

collimating lens L2 is used to focus the radiation on the entrance slit of Spex 

triple-mate spectrometer. The lenses L1 and L2 have a magnification factor of 

five. The sample position (horizontal position) and focusing (vertical position) 

is aligned using a (infinite-adjusted) telescope to get high-resolution images. 

The same technique is used to adjust the focusing of the lens L2 on the 

Figure 4.9. The optical path for back-scattering configuration. Incident 

laser beam path is blue and solid line, while the scattered beam path is 

red and dashed. M1, M2 and M3 are totally reflecting mirrors 

(aluminum-coated). L1 and L2 are collimating lenses. NF is a notch 

filter.   
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entrance slit of the spectrometer. A periscope, connected with a camera, is 

mounted inside the spectrometer to detect the laser spot resulted from 

scattering process of the sample. The Ar laser beam wavelength is 514.5 nm 

with a spot diameter of about 20 μm and a power on the sample surface of 45 

mW. A diffraction grating is used to remove the plasma from the laser beam. 

All the optical tools are mounted on an optical bench. The Spex triple-mate 

spectrometer settings have been adjusted to get a high-resolution images (first 

slit width of 200 μm, second slit width of 50 μm, diffraction grating of 1800 

grooves/mm). The CCD is calibrated at the vibrational and rotational bands of 

D2 using a known spectra of a Neon lamp. Figure 4.10 show a wide picture of 

the assembly of the experiment components.  

        

Figure 4.10. An assembly of the experiment components, (a) Ar laser, (b) the 

diffraction grating, (c) and (d) are aluminum coated mirror, (e) Lakeshore DT 

471, (f) the steel vacuum chamber holding the cell mounted on a movable rack, 

(g) He Cryogenic system, (h) the position the of the cell under investigation, (i) 

CCD, (k) the turbomolecular pump, (l) the Spex triple-mate spectrometer.  
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Figure 4.11 shows the path of the scattered radiation inside the spectrometer. 

Figure 4.12 shows the Ar laser beam device. Figure 4.13 show the laser path in 

the back-scattering configuration. Figure 4.14 shows part of the pipeline system 

used in the experiment. Figure 4.15 shows Spex triple-mate spectrometer + 

CCD.  

  

 

Figure 4.11. Shows the path of the scattered radiation inside Spex triple-mate 

spectrometer. The exit is connected with the CCD. All "G's" are gratings.   
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Figure 4.12. The Ar laser beam device.  

Figure 4.13. The path of the laser in the back-scattering configuration.  
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Figure 4.14. Part of the piplines used in the experiment.  
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4.1.3    Procedure 

 

To start investigating the deuterium hydrates, we put three distilled water 

drops in a small container inside the designed cell. Before mounting the flange 

into the cell body using screws to close the cell, we make sure that the diamond 

window is clean using ethanol solution to remove tiny particles on its surface. 

As we close the cell using screws, we must be very careful for the leveling of 

the flange because any small disturbance for the leveling on one side rather 

than the others may cause break of the diamond window. After closing the cell 

and inserting it in its position on the cryogenic arm, we put the copper shield 

that has a good thermal conductivity. After that, we fix the steel vacuum 

Figure 4.15. (a) is the infinite adjusted telescope used to adjust the position of 

the sample, (b) the second lens L2 that focus the image on the entrance slit of 

the spectrometer, (c) the second slit inside the spectrometer, (d) the first 

entrance slit, (e) Symphony CCD, (f) the periscope mounted inside the 

spectrometer and its image is shown on the monitor. (g) the diffraction grating 

resolution of the image (1800 gr/mm).  
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chamber as an outer shield for the overall system making sure that its glass 

window is at the top of the position of the cell. The turbomolecular pump starts 

to evacuate the system outside the copper shield from the atmospheric pressure 

down to 8.32 x 10
-7

 mbar. To remove air particles from the cell, we pump a He 

gas inside the cell using the soldered capillary tube at pressure of around 40 bar 

and let it out again. We use He as a flushing gas for four times. Then, we adjust 

the position of the sample and the focusing using the (infinite-adjusted) 

telescope. We can move the sample using the movable rack by wheels. We let 

the D2 gas to enter the cell with a pressure of 2124 bar. We leave the system for 

two days to let the gas to diffuse inside the water and to make the system 

stable. The Spex triple-mate spectrometer and the CCD are calibrated, at the 

vibrational (605-610 nm) frequency region to measure the vibrational Raman 

of D2, or, at the rotational (518-523 nm) frequency region to measure the rotons 

of D2, using a Ne lamp with known spectrum. If we are measuring at one 

region and want to move to another region, a new calibration is required. The 

calibration is done by taking the Raman spectrum of the neon lamp at the 

required region (acquisition of two and exposure time of two seconds in order 

to get sharp Raman spectrum without saturation of the CCD). If there is a shift 

between the Ne Raman lines and expected lines, we ask the computer to adjust 

the spectral lines at their correct positions. We let the Ar laser beam with low 

power (in order not to heat the sample) to fall on the sample after aligning the 

optical system and start taking the Raman lines. 

To prepare the clathrate, we follow the P-T diagram (figure 1.11). We cool 

the all set using the cryogenic temperature control down to 266 K as a first 

step. As the temperature decreases, the pressure also decreases physically 

(pressure inside the cell become 1816 bar). Second step, we continue to cool 

the all set to 70 K. We start to evacuate the cell from the pressurized gas 

gradually (in steps of 50 bar) not suddenly until we have three bar. We leave 

very little amount of D2 gas inside the cell to protect the sample from 

unexpected increase in the laser power. The clathrate is formed and we can 

study different Raman transitions. 
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4.2     Results and Data analysis 

 

As we mentioned before, the problem of Raman spectrum explanation of 

clathrate hydrate is the assignment of occupancies per cages. In simple hydrate, 

there are small cages and large cages. The small cages can trap only one 

deuterum molecule. On the other hand, the large cages can host, two, three or 

four molecules according to Strobel , 
[33]

 or, one, two or three molecules 

according to Giannasi. 
[36]

 The small cages frequencies are lower than the large 

cages frequencies. As the cage accommodates more molecules, as the Raman 

peaks of these cages appear at higher frequencies.  

The intensities of Raman spectral lines depend on the population of 

molecules at the different energy states. Therefore, to investigate the population 

of D2 molecules at these states, Raman spectrum at the rotational region of D2 

should be collected. Figure 4.16 shows the rotational spectrum of D2 hydrate at 

70 K and 20 K. From this figure, it is clear that the first three             and 

      transitions are existing at 70 K, while, at 20 K, the       transition 

disappears. This happens because the energy state that allows       transition 

becomes unpopulated at very low temperatures (like 20 K). As a result, D2 

molecule will have only two rotational transitions at this specific temperature. 

From the last conclusion, we expect that each deuterium occupancy will 

contribute with two vibrational lines (ortho  and para) with a separation of  

approximately 2 cm
-1

.  

In our laboratory, we have performed high resolution Raman measurements 

for the simple D2 hydrate. Each spectrum is collected through the CCD with a 

specific acquisition and exposure time. The acquisition and exposure time 

depend on the signal to noise ratio. Then, the collected spectrums are fitted 

using Origin 8.6 Peak fitting module. The fitting process is a theoretical 

process that shows the way that each deuterium molecule per cage will 

contribute to give the full experimental Raman spectrum. To do fitting for a  
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D2 Raman spectra, we should apply two constraints. First, the distance between 

the center of ortho curve and para curve for the same molecule is 2 cm
-1

. 

Second, the all Gaussians must have the same full width at half maximum 

(FWHM).  

Figure 4.17 shows the result of peak fitting for Raman spectrum of D2 

simple clathrate collected at 20 K. We have used eight Gaussians to interpret 

the Raman peaks in the large cages instead of six stated by Strobel or Giannasi. 

We suggest that D2 will occupy the large cages with one, two, three and four 

molecules. This model can be considered as a combination of both Strobel and 

Giannasi models. Actually, we cannot apply either Strobel model or Giannasi 

model. If we apply Strobel or Giannasi assignment, we will find an extra peak 

(its center ~ 2990 cm
-1

) without any assignment to a specific occupancy.           

 

Figure 4.16. The rotational spectral lines of D2 simple clathrate at 20 and 70 K. 
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So that, we have introduced the 1L occupancy (one D2 molecule occupies the 

large cage). The new assignment has been elucidated by heating/quenching 

cycles. Heat/quench cycle means heating the sample to a specific temperature 

(90 K as an example) and cooling the sample to the original temperature. 

Heat/quench cycles forces some deuterium molecules to get out from their 

cages and occupy neighboring cages with lower occupancies. For example, if 

we have a D2 molecule in a 3L cage, upon heating, it may transfer to 2L or get 

out the clathrate. Heating the sample can provide more sharp images with high 

resolution. By applying heat/quench cycle for the last fitted spectrum, we get 

the new spectrum shown in figure 4.18.  

Figure 4.17. Fitted Raman spectra of simple D2 hydrate formed at 1816 bar 

and 266 K, and collected at 20 K. Constraints were forced on the fit such that 

each Gaussian pair should have the 2 cm
-1

 frequency separation and all 

Gaussians should have the same FWHM. The introduced assignment of the 

large cages is 1L, 2L, 3L and 4L. As shown in the figure, each occupancy has 

both ortho and para Gaussians.      
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Upon heating the sample, some molecules of 3L cages get out and move to 

2L cages making the intensity of the 2L larger, and increasing the intensity of 

shoulder strongly (at 2980 cm
-1

) as shown in figure 4.18. In addition, heating of 

the sample makes the molecules more energetic and some ortho-para 

conversion occurs. Ortho-para conversion can be happen as a function of time 

too. Figure 4.19 shows the Raman spectrum of D2 hydrate after three days. 

From the graph, we can notice the rise of a peak at 2972.5 cm
-1

. The rise of this 

peak has been explained as a result of some ortho-para conversion. This 

conversion has been done within three days.  

 

 

 

Figure 4.18. New fitted Raman spectrum of D2 hydrate, formed at 266 K and 

1816 bar, measured at 20 K. After applying heat (90 K)/quench cycle (20K), 

we can notice the strong appearance of the shoulder at around 2980 cm
-1

. In 

addition, we can notice the supposed increase in the intesity of 2L.  
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After applying another thermal treatment (heating up to 100 K and cooling 

to 20 K again), it is clear that the 2L and 1L peaks have higher intensities than 

before. The shoulder at ~ 2976      is the cumulative Raman spectra of both 

1L and 2L. Therefore, we can notice the decrease in the 3L intensity. The 4L 

and 1L remain approximately unchanged because they are away of the 

cluttered region that host 3L and 2L (there is strong interaction of molecules 

and cages in this region) but, generally, their intensities decrease. Figure 4.20 

shows the effect of applying second heat/quench cycle.  

 

 

Figure 4.19. Ortho-Para conversion occurs within three days after the 

formation of D2 hydrate formed at 1816 bar and 266 K. The appearance of the 

new peak at ~ 2972.5 cm
-1

 has been introduced as a result of this conversion.  
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We can get more resolution and further confirmation of the supposed 

assignment by applying third heat/quench cycle. We cannot heat the sample to 

100 K in order not to destroy the clathrate because the clathrate will be 

destroyed if the 3L cages have been dissociated, and, with heating the sample 

up to 100 K, will help 3L molecules to get out more, and hence, destroying the 

clathrate. Therefore, we will heat the sample up to 45 K only. Before doing the 

heat treatment, we let some of free D2 gas trapped inside the cell to get out in 

order not to contribute in the resulted Raman spectrum. Figure 4.21 show the 

Raman spectra of simple D2 hydrate after the third heat treatment. As shown in 

the graph 4.21 the intensity of the 3L has been decreased considerably. It 

Figure 4.20. New fitted Raman spectrum of D2 hydrate, formed at 266 K and 

1816 bar, measured at 20 K. After applying second heat (100 K)/quench cycle 

(20K), we can notice the strong appearance of the shoulder at around ~ 2976 

cm
-1

. In addition, we can notice the supposed increase in the intesity of 2L and 

1L. 
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becomes very close to the 2L intensities and slightly higher than the 1L 

intensities. This confirms our assignment for the large occupancies of 1L, 2L, 

3L and 4L.      

 

  

Figure 4.22 shows overall combination of D2 Raman spectrums under 

investigation in this research with respect occupancies per cages.  

 

 

 

Figure 4.21. Fitted Raman spectrum of D2 hydrate, formed at 266 K and 1816 

bar, measured at 20 K. After applying third heat (45 K)/quench cycle (20K), we 

can notice the growth of 1L and 2L intensities. In addition, we can notice the 

decrease in the intesity of 3L.  
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Figure 4.22. An overall view of Raman spectrums resulted by simple D2 

hydrate sample synthesised at 1816 bar and 266 K, measured at 20 K. (a) 

represents the simple hydrate in-situ prepared. (b) the sample after one heat (90 

K)/quench (20 K) cycle. (c) is the same conditions of (b) but after three days. 

(d) the sample after a second heat (100 K)/quench (20K) cycle. (e) the Raman 

spectra after the third heat (45 K)/quench (20 K) cycle. The position of each 

Gaussian is clarified.  
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4.3     Conclusion  

 

D2 + H2O simple hydrate has never been investigated before; therefore, a 

sample, prepared at 1816 bar and 266 K, has been synthesized in-situ. Raman 

measurements have been performed to the sample before and after many 

heating/quenching cycles. The measurements are taken at 20 K. Peak fitting 

tool has been utilized to help predicting the individual contribution of each 

occupancy per cage. Applying constraints on the Gaussian curves in order to 

help predicting correctly. The Gaussian curves consist of a pair of peaks 

represent ortho and para transitions of the molecule. The constraints are fixing 

the separation between ortho and para to be 2 cm
-1

, and assuming that all 

Gaussians must have the same FWHM.  

A new assignment for the large cages occupancies has been introduced. 

Without the new assignment, we cannot interpret the Raman spectra correctly. 

There will be additional unassigned peak according to old models. The new 

assignment suggests that large cages can host one, two, three and four 

molecules. This assignment has been confirmed using heat/quench cycle. By 

applying any heat/quench cycle, the molecules in large cages tend to get out of 

the cage and move to a neighboring cage with lower occupancy number. By 

using this concept, we have explained the formation of 1L peaks. In addition, 

the clathrate will be destroyed in case of complete dissociation of 3L.  

In addition, ortho-para conversion has been observed. It is shown that it 

depends on the temperature change in addition to being a function of time.        
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Chapter 5 APPLICATIONS AND RECOMMENDATIONS 

FOR FUTURE WORK   

 

There are many applications can be initiated based on clathrate compounds. 

In this chapter, some possible applications will be introduced. In addition, 

recommendations for future research work will be presented to create new 

horizons regarding the physics and chemistry of the clathrates and to overcome 

some technical problems regarding the usage of clathrate compounds in 

industry or in our life. 

     

5.1     Commercial and Industrial Applications 

 

Although the science of clathrates is an old science, we could not make use 

of it until now. We still in need to investigate clathrates chemical and physical 

aspects because we do not know exactly how they are formed or dissociated. 

By the available knowledge regarding the clathrates, we expect that clathrates 

can be used to store and transport gases like H2, CH4, and C2H6… Etc. In 

addition, the huge amount of clathrates in nature can be used as a future clean 

fuel.  

 

5.1.1    Storage and Transport 

 Clathrates can be used to trap molecules of different sizes. Recently, it is 

found that they can store hydrogen and form stable compounds. Therefore, 

scientists suggest the clathrates as a potential storage material.  
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5.1.2    Energy Reservoir  

Methane hydrate is an abundant with a reservoir of around 6.4 trillion tons 

presented on ocean floor. 
[17]

 This huge amount is twice the amount of carbon 

found in all known fossil fuel sources. This amount still negligible although it 

can cover the world needs for decades.  

5.1.3    Solving Environmental Problems 

 Clathrates can be used to solve some environmental problems. The excess 

presence of CO2 gas represents a very big problem because it plays an 

important role in the green house effect. We can reduce the CO2 percentage by 

forming carbon dioxide hydrates.  

5.1.4    Method of Separation 

 The clathrate hydrate can be used to separate a specific material from a 

mixture of materials. If we have a mixture of gases for example, we can trap a 

definite gas from this mixture inside the clathrate cages. In addition, the 

formation process of the clathrate depends on the applied pressure, temperature 

and the size of the guest molecule. Therefore, by applying the required 

conditions, the clathrate will be able to choose a particular guest molecule and 

reject the others.  

 

5.2     Recommendations for Future Work 

 

To open a new area of clathrate research, new concepts must be introduced 

in addition to develop the known knowledge and theories. The development 

must be in two ways, experimentally and theoretically.  
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Multiple occupancy per cage has opened new horizons for clathrate research. 

H2, Ne, and He can occupy the large cages with multiple molecules. This needs 

further investigation to develop a new clathrate that can provide high energy 

density. In addition, the enclathration of two or more guest molecules inside 

one large cage is a new challenging research interest. It may provide solutions 

for some technical problems and innovate new materials that can replace 

normal fossil fuel.    

The influence of a second guest molecule in binary clathrates on small 

cavity hydrogen filling needs more investigation. THF + H2 and cyclohexanone 

+ H2 propose perfect cavity size for optimized H2-H2O interaction. This idea 

may be experimentally experienced by forming several binary clathrate 

hydrates with hydrogen and a second guest of varying size. This second guest 

will occupy the large cage and affects the lattice parameters allowing us to 

study this effect.     

Molecular simulations are needed to give insight view regarding the ability 

of molecule to occupy a clathrate cage. In addition, they can provide some 

explanation regarding the unexpected experimental data.  
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