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ABSTRACT 

The American University in Cairo 

Low Complexity Blind and Data-Aided IQ Imbalance Compensation Methods for Low 

IF Receivers 

Student name: Mohamed Hussein Eissa 

Thesis supervisor: Dr. Ayman Elezabi 

Thesis co-supervisor: Dr. Ahmad Gomaa 

 

 Low-IF and Zero-IF (direct conversion) down converters showed a great potential 

in implementing multi standard single chip solutions, eliminating the need to use off chip 

components and so reduce the area and the cost of the wireless receivers. One of the main 

performance limitations in the low-IF & Zero-IF down-converters is the components 

mismatch between the in-phase path and the quadrature-path named the IQ Imbalance 

(IQI) which limits the achievable image rejection ratio (IRR) of the down converters. 

Many techniques had been proposed to enhance the achievable IRR either by using 

calibration methods, e.g. using lab calibration, or by doing online compensation during 

signal reception. In this work those techniques are reviewed, proposing three new 

methods for blind IQI compensation techniques, the first proposed method targets the low 

input signal to interference ratio (low SIRin) while the second and third methods targets 

the moderate and high SIRin, showing that the proposed methods reach better 

performance and/or lower complexity than the methods already introduced in the 

literature. Also two techniques to perform data aided IQI compensation are introduced 

exploiting pilot symbols within the desired signal with no prior knowledge about the 

image signal. The first method exploits a preamble sequence assuming slow fading 

condition while the second approach exploits a sequence of pilots to compensate for the 

IQI being suitable for fast fading conditions as well. Simulation results showed that the 

proposed data aided techniques achieved shorter convergence time and higher image 

rejection ratio compared to the blind methods at high SNR values.  
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1. Introduction 

1.1.  Background & Motivation 

 The wireless communication market has grown substantially in the last few decades. In 

order to fulfill the unlimited demands of the wireless market, more sophisticated communication 

standards were invented to achieve more enhanced performance, supporting more applications 

with lower costs and longer battery life. Having a separate design for each standard is a high cost 

solution, that is why SDR (software defined radio) is becoming more of a demand in order to 

support multi communication standards by just loading the appropriate software configuration 

for the transceiver, this implies that the hardware radio front end must be able to support the 

different standards including different frequency carriers and channel bandwidths instead of 

using different hardware sets for each standard and switching between them. That is why having 

flexible transceiver topologies & adaptive design techniques is of a main concern when targeting 

a multi standard hardware radio front end. 

 To support SDR transceivers using the same hardware frontend, the off chip components 

such as image reject filters and RF filtering stages, normally used for Super-heterodyne 

receivers, must be eliminated. That is why low IF and direct conversion receiver architectures 

showed a huge potential in achieving a single chip solution that support SDR transceivers[1]. 

Different approaches have been used to do image rejection such as using image reject mixers, 

complex filters or complex ADC's. Historically those image reject approaches showed acceptable 

performance, but recently due to the need to support more sophisticated multi channel 

communication standards the IRR (Image rejection ratio) specification became more stringent 

and hard to achieve using the traditional layout techniques used before [2], that is why IQ 

mismatch calibration & compensation techniques were implemented in the last decade and 

proved to be efficient in enhancing the IRR. Another advantage for using the IQ mismatch 

calibration & compensation techniques is the ability to track the changing operating conditions, 

such as temperature variation, operating RF power variations and drifting without adding extra 

complexity on the analog front end circuitry, especially that the analog front end circuitry 

dominates the total power consumptions in typical receivers. In general adaptive design 

techniques are one the most important approaches used recently to achieve wideband, multi 

standard designs.  

 The image reject mixers using secondary quadrature mixing shown in Fig. 1 showed a lot 

of potential in implementing image reject receivers with high IRR because ideally if no IQ 

mismatch exists it achieves an infinite image rejection ratio over a wide bandwidth unlike  the 

case for complex filters or image reject mixers using poly-phase filters which are band limited 

and being in the signal path introduces losses to the signal reducing the receiver sensitivity 

unless higher power is consumed [3, 4, 5, 6]. A small overhead of two extra real adders are 
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required to generate the image signal in the secondary quadrature mixing architecture [4, 7], 

which adds more flexibility in implementing IQ mismatch compensation and calibration 

techniques that require the image signal to be part of cancellation process [8].  
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Fig. 1: Secondary Double Quadrature Mixing Image Reject Receiver (Modified Weaver Architecture) 

1.2.  IQ Mismatch Calibration & Compensation 
 Secondary quadrature mixing receiver achieves infinite IRR if the I and Q paths are fully 

symmetric, which is not the case because of the finite manufacturing accuracy, these mismatches 

between the I & Q paths are called IQ imbalances (IQI) or IQ mismatches or quadrature 

imbalance, traditionally layout techniques were used to minimize these imbalances. Typical 

achievable IQI using the layout techniques is a gain mismatch of 1-2% and a phase mismatch of 

1-2degrees, this is equivalent to IRR of 35-40dB as shown Fig. 2 and expressed in (1.1) [9]: 

 
    

             

             
 

(1.1) 

Where     is the gain mismatch between I & Q paths and     is the phase mismatch in the first 

quadrature mixer, given that the secondary digital mixing stage is ideal and do not add extra IQ 

imbalances. 

This finite IRR will not be suitable for low IF receivers where the IF frequency can be chosen so 

that the image signal can be an in-band channel with power level 50 dB or more higher  than the 

desired signal as shown in Fig. 3 [10], especially that using such layout techniques adds a new 

design constrain on the analog frontend which by default compromises other performance 

parameters. 

Digital techniques for IQI estimation and compensation have been proposed achieving much 

better IRR and so relax the specification on the analog frontends circuitry in terms of IQ 

mismatches. Some techniques were based on offline lab-calibration using test tones, other 

techniques were based on online IQI compensation exploiting the signal statistics to compensate 

for the IQI.  
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Fig. 2: IRR across Phase Mismatch (ϕ) at different gain mismatches (g) 

R(f)

WdesWimagWimagWdes FrequencyWc Wc

 

Fig. 3: Multi channel frequency band 

1.2.1. IQI Calibration 
IQI calibration is the process of adjusting the gain and the phase mismatches to meet certain 

image rejection requirement. This process can be non-adaptive where the calibration is done 

once as a factory or a lab calibration, but it is not repeated during normal operation or even at 

idle modes. In the non adaptive calibration methods a test signal at the image frequency is used 

as an input to the image-reject down-converter, ideally the image signal will be rejected and so 

the output will be null, but due to the existence of the IQI some of the image signal will leak to 

the output, so the output signal is used as an error signal in an iterative (feedback based) 

algorithm (e.g. LMS,RLS..etc) [11] to update the gain and phase adjustment knobs in the LO 

amplifiers and the mixers to minimize the IQI. Also it can be adaptive where the calibration can 

be repeated in the field at the receiver idle modes using an internally generated image signal[8]. 

IQI calibration is normally a simple approach but it is either not adaptive or requires an extra 

hardware. Also doing factory calibration is not a preferred solution in mass production due to the 

extra testing time and cost. That is why IQI compensation methods were proposed. 
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1.2.2. IQI Compensation 

In the IQI compensation approaches the gain and phase mismatches are not adjusted instead their 

effect are cancelled in the digital domain during normal operation and so this approach is an 

online adaptive approach compensating for the IQI and tracking temperature variations, varying 

operating conditions or aging [8, 10, 12]. A good example for the varying operating conditions is 

having a variable gain amplifier (VGA) at the receiver front end and so as the gain of the VGA 

changes the IQI will change as well which will be a time varying process depending on the 

received signal power, this is an example that clarify why an adaptive IQI compensation 

technique would be a must have in many cases. Different methods were proposed to do the IQI 

compensation; these different methods will be reviewed in chapter 2. 

1.3.  Research Objectives 
 The objective of this work is to review the main IQI calibration and compensation 

techniques introduced in the literature, and to improve upon them for the case of low-IF 

receivers, focusing on low-complexity techniques. We propose three low complexity and robust 

methods for blind IQI compensation. In the first method a single tap filter is used to cancel the 

leaked image from the desired signal similar to the interference cancellation method introduced 

in the literature, but instead of using iterative LMS algorithm the filter coefficient is estimated 

using the method of moments, enhancing the steady state output signal to interference ratio 

(SIRout) and/or the settling time. Furthermore, the output SIR performance analysis was carried 

out for this method to verify the simulation results. The second method is a variant for the IQI 

compensation method using a dual-tap filter, in the proposed method the input signal to 

interference (SIRin) ratio is estimated and used to optimize for the number of symbols required to 

do the IQI compensation, where again the method of moments is used to estimate the filter 

coefficient and the estimated SIRin. Then in the third method we propose a simplification for the 

symmetric adaptive de correlation method introduced before in the literature reaching the same 

performance with less complexity. Also two data aided IQI compensation method are proposed, 

exploiting pilot symbols within the desired signal with no prior knowledge about the image 

signal, the first approach exploit a preamble sequence assuming slow fading conditions while the 

second approach is suitable for fast fading conditions as well exploiting a sequence of pilot 

signals to do IQI compensation. 

1.4.  Thesis Organization 
 In this work an overview will be given for the different receiver architectures & the 

image reject receivers focusing on the secondary quadrature mixer receiver in chapter 2. In 

chapter 3 more insight will be given for the different types of IQI calibration and compensation 

techniques. The first proposed blind IQI compensation method using a single tap filter will be 

introduced in chapter 4. Then the two blind IQI compensation methods using dual tap filter will 

be introduced in chapter 5. In chapter 6 the data aided IQI compensation will be introduced and 

concluding in chapter 7. 
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2. Image Reject Receivers & Mixers 

2.1.  Receiver Architectures 

2.1.1.  Super-Heterodyne Receiver 
 Over the last few decades the Superheterodyne receiver architecture was the mostly used 

architecture for high performance wireless communication standards frontends [13], basically 

because high image rejection ratios are achieved using off chip image reject filters. As shown in 

Fig. 4 the line up of the super-heterodyne receiver frontend consists of an antenna that collect the 

signal for an off-chip RF filter to select the band of interest, then the low noise amplifier is used 

to amplify the signal adding the minimal possible noise, after that the high image rejection 

rations (IRR) are achieved using an off chip IR (Image Reject) filter, at this stage a mixer is used 

to down-convert the band of interest from RF frequency to IF frequency, using another off chip 

IF filter to do the channel selection before using another mixer to convert the IF signal to 

baseband signal and using an on chip LPF to remove the higher order harmonics. 
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Fig. 4: Superheterodyne Receiver Architecture 

 In the past few years a lot of effort had been done to integrate the LNA, RF Mixer, IF 

Filter, IF AMP, IF Mixer, LPF & ADC in a single chip solution, leaving only the RF filter, IR 

Filter & IF filter as the only off chip components. This was the first step toward having a single 

chip solution, the second step was to get rid of the off chip filters by using different receiver 

architectures as will be discussed in the next sections.  

 An important choice in the Superheterodyne receiver is the value of the IF frequency 

which depends on the RF frequency and the level of image rejection required from the off chip 

filters, so to achieve high IRR the IF frequency must be high enough for the IR filter to supply 

enough rejection [9]. Using off-chip components increases the solution cost and reduce the 

solution flexibility because for each IF frequency a different IR and IF filters is needed, this 

means that a bank of filters is needed if multi standards are targeted. This is contradicting with 

the recent trend to have low cost and multi standard solutions to satisfy the software defined 

radio (SDR) receivers. That is why a lot of interest had been given to the low IF & direct 

conversion receivers because of their great potential to achieve a single chip solution reducing 

the required off-chip components as will be discussed in the next subsections. 
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2.1.2. Direct Conversion Receiver (homodyne receiver) 
 In order to avoid the image problem it was proposed to convert the RF signal directly to 

baseband, which is equivalent to using an IF frequency of zero, that is why it is called a zero-IF 

or homodyne or direct conversion receiver. In the direct conversion receiver the down 

conversion occur from the RF frequency to the dc frequency directly using a single mixer as 

shown in Fig. 5. In direct conversion receivers the channel select filter is a LPF instead of the 

BPF used in the Superheterodyne receiver. If the modulation scheme produces a symmetric 

magnitude spectrum, i.e. where the lower and upper sidebands exhibit even symmetry in the 

magnitude spectrum of the signal,  then the image problem is eliminated , but for the non 

symmetric channels the signal will act as an image for itself, where half of the channel band 

width act as an image for the other half as shown in Fig. 6 which is called "self imaging", which 

requires an image reject receiver as well to reject it [13]. 
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Fig. 5: Direct Conversion Receiver Architecture 
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Fig. 6: Self Imaging In Direct Conversion Receiver 

Furthermore, the direct conversion receiver suffers from some disadvantage such as the flicker 

noise [13], i.e. which is the 1/f noise that form a skirt across the DC frequency, because the 

desired signal now is converted directly to the base band, also the RF frequency is now equal to 

the LO frequency so LO to RF leakage lead to DC offset which destroys the baseband signal. 
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IM2 become an issue in direct conversion, these drawbacks complicate the design process adding 

a lot of constrains on the front end design in order to satisfy the flicker noise and IM2 

requirements. DC offset cancellation loops with very narrow cut off frequencies are used to 

cancel the DC offsets along the receiver chain in order to avoid SNR degradation for the 

baseband signals, this might cause some limitations because of the need to use off chip 

capacitors [14]. 

 In order to avoid the drawbacks of the direct conversion receiver and the superheterodyne 

receivers a compromised solution was proposed which is the Low-IF receiver as discussed next 

[15].  

2.1.3. Low IF Receivers 

 In order to compromise between the Superheterodyne receiver and the direct conversion 

receiver the low IF architecture was suggested, in which down conversion is done to a low IF 

frequency but not a zero IF frequency as shown in Fig. 7, in such case the IF frequency is low 

enough that having an on-chip IF band pass filter is possible unlike the Superheterodyne 

receiver. This solved the drawbacks of the direct conversion and benefited from the idea of going 

to an IF frequency, but the image problem is critical now because the low IF frequency means 

that the image might be an in band signal, and therefore cannot be attenuated by the RF BPF.  

Such an image might be stronger than the desired signal by 60-100dB [10, 16]. In some 

applications the dynamic range might reach 80dB (e.g. GSM and point to point 

communications). For example if user 1 receives a signal at -90dBm, and user 2 receives a signal 

at -10dBm, and if user 2 is at the image frequency of user 1 then the input signal to interference 

ratio for user 1 will be -80dB. 

Worth mentioning that the channel selection filter can be implemented in the digital domain as 

well, but it worth mentioning that as much as the channel select filter is delayed in the chain, the 

linearity of the front end blocks become harder to be achieved because the whole band will be 

experienced by the receiver chain, in other words the blocker will be a factor that must be 

considered through the receiver chain till the channel select filter is reached, so the earliest the 

better. 
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Fig. 7: Low IF Receiver Architecture 

 The choice of the IF frequency affects the digital sampling rate and  so the power 

consumption, also it affects the image separation from the desired signal and so it is power and 

how much image rejection is required. Usually the IF frequency is chosen to be equal to or 

double the channel band width. Generally low IF receivers consumes less power and area 

compared to direct conversion receivers, because no large on chip or off chip DC decoupling 

capacitors are required also no need to use large devices to decrease the flicker noise as done in 

the direct conversion receivers, but the image rejection specifications become more stringent in 

the low IF receivers because the image signal can be an in band channel that is 50-80 dB stronger 

than the desired signal. Different solutions to do image rejection in low IF receivers will be 

discussed in chapter 3 after giving a brief introduction about the complex signaling and the IQ 

signaling in the next section. 

2.2.  IQ Signaling & Complex Signaling 

2.2.1. Complex Signaling 

 Complex signaling is used to represent the image reject receiver architectures in a 

simplified manner, to be easily understood and derived. Instead of using the real signaling 

representation which is more complicated and not as intuitive as the complex representation. 

 All physically existing signals are real signals with symmetric frequency responses, and a  

complex signal is basically two real signals in two separate signal paths, as shown in Fig. 8, the 

two signals Yr(t) & YQ(t)  are mathematically represented as one complex quantity Y(t), where 

the Yr(t) represents the real part of Y(t) and YQ(t) represents the imaginary part of Y(t). Note that 

the complex signal on its own is not a physically existing signal so its frequency response might 

not be symmetric, the basic complex signaling processes will be briefed comparing the real 

signal flow diagram (RSFD) to the complex signal flow diagram (CSFD) based on the 

formulations in [4]. 
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Fig. 8: Quadrature Mixing In Real & Complex Domain 

2.2.2. Complex Signal Processing 

2.2.2.1. Complex Signal Multiplication 

Defining two complex signals X & (a+jb), where the outcome for the signal multiplication of X 

& (a+jb) is Y in equation(2.3) and shown in Fig. 9 in the real signaling domain and in the 

complex domain, showing how the complex representation of such multiplication is much easier 

than the real signaling multiplication. 

          (2.1) 

          (2.2) 

                                     (2.3) 
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Fig. 9: Real & Complex Signal Multiplication 

2.2.2.2. Complex Signal Addition 
Defining two complex signals X1 & X2 , adding X1 & X2 is equivalent to adding the real 

components and imaginary components together as shown in Fig. 10. 

             (2.4a) 

             (2.4b) 

                        (2.5) 
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Fig. 10: Complex Signal Addition 

2.2.2.3. Complex Signal Conjugation 
Taking a conjugate for a complex signal in the time domain is equivalent to mirroring the 

frequency response across the Y-axis in the frequency, which is not equivalent to multiplying by 

"j". The real and complex signaling diagrams for conjugation and multiplication by "j" are shown 

in Fig. 11 & Fig. 12. 

Now after reviewing the main complex processes we can review the IQ quadrature signaling and 

relate it to the complex signaling.  
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Fig. 11: Complex Signal Multiplication By "j" 
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Fig. 12: Complex Signal Conjugation 

2.2.3. Quadrature Signaling 

 Quadrature signaling (IQ signaling) consists of two paths, I path & Q path, having a 

phase shift of 90 degrees between them, IQ signaling is mainly used for two aspects, the first one 

is the quadrature modulation schemes to increase the data rate within the same channel band 

width making advantage of the orthogonal characteristics between the I & Q signals, the second 

aspect is the image rejection making advantage of the phase shift existing between the down-

converted desired and image signals. 

 The IQ signaling is represented in complex domain (complex signaling) by considering 

the I signal as the real part and the Q signal as the imaginary part, again this is done to simplify 

the analysis and representation of the image reject receivers and image reject mixers. 
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2.3.  Image Reject Receivers 
 Image reject receiver architectures are needed in zero & low IF down converters to do 

image rejection. In the next section we will review the basic image rejection techniques 

introduced in the literature, focusing on the secondary down conversion mixer receiver 

architecture. 

2.3.1. Image Reject LNA  
 In this architecture the image rejection is done using the LNA [18], by having a notch 

filter after the LNA to null the image frequency as shown in Fig. 13. Using the LNA to cancel 

the image is a simple approach that can be used for the low IF architecture, that consume low 

power because no IQ signaling is required, but it's a narrow band solution as shown in Fig. 14 

because the filter is tuned at a definite frequency, also if multi carriers are supported this 

topology will not be adequate because re-tuning such filters will suffer from process 

limitations and will be limited in the frequency step resolution.  

LNA

IR Notch Filter

FIM 

RFIN 
Image Free

 Signal

 
Fig. 13: Image Reject LNA using an image reject notch filter 

 

 
Fig. 14: Frequency Response of the image reject LNA [18] 
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2.3.2. Image Reject Mixers 
 In this series of topologies the image is rejected using the phase difference between the 

image signal and the desired signal when multiplied by the in phase LO signal (cos (wlot)) and 

the quadrature phase LO signal (sin (wlot)) as shown next. 

2.3.2.1.  Hartley Receiver 
 In Hartley receiver architecture, quadrature mixing is used to convert the RF signal to an 

IF frequency followed by a 90 degree shift in the I-path, then the I & Q path are added to cancel 

the image signal as shown in Fig. 15 [13]. In superheterodyne or low IF receivers the addition 

occurs on chip and the output is a single ended signal, but in direct conversion the output is an I 

and Q signal and therefore the image rejection can not be performed by summing since this will 

eliminate the desired signal. Note that, while image rejection is accomplished a single mixer and 

a low pass filter are needed to bring the signal down to baseband.  
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Fig. 15: Hartley Receiver Architecture  

Note that in this architecture two 90
0
 shifters are required, one in the LO path and the other is in 

the IF path as shown in Fig. 15. But the same function can be obtained if the 90
0
 shifter where in 

the LO path and in the RF path as shown in Fig. 16, or even in the RF path and the IF path as 

shown in Fig. 17, but this is not a favorable architecture because the two 90
0
 phase shifters are in 

the signal path and so more insertion loss takes place. 
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Fig. 16: Hartley Receiver Architecture Using 90
0
 Hybrid at the LO & RF Sides 
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Fig. 17: Hartley Receiver Architecture Using 90
0
 Hybrid at the RF & IF Sides 

 To implement the 90
0
 shift, the simplest way is to use two RC filter [13] in the I & Q 

paths and so the R & C values determine the center frequency of the 90
0
 phase shifter, this 

architecture is simple but suffers from low band width. An alternative is to use the poly-phase 

filter shown in Fig. 18, being wider in bandwidth than the first solution but it suffers from more 

components mismatches, which adds complexity to model such mismatches and degrade the 

overall performance. The poly-phase filter can also be used as an image reject filter and this will 

be discussed in section 2.3.3.  

When the poly-phase filter is used as a 90
0
 shift, two of its inputs are grounded, and so it will 

have 2-inputs and 4-outputs. but when it is used as an image reject filter it will have 4-inputs and 

4-outputs. 

Another approach used to get the 90 degrees in the LO path is to use a divide by 2 frequency 

divider that generate the LO quadrature signaling [19] from a signal that is twice the frequency, 

this approach can only be used in the LO path. 
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Fig. 18: Poly Phase Filter 
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2.3.2.2. Weaver Architecture 

 Quadrature mixing is used in this topology, but it is used twice as shown in Fig. 19. 

That's why it is sometimes called secondary quadrature mixing. In this architecture, the second 

quadrature mixing is used to support multi IF frequencies whereas the Hartley architecture is 

typically fixed to a single IF for a simple 90 degree phase shifter designs. 

The Weaver architecture is mostly used in standards where the image rejection specification is 

tough either due to the standard itself or due to the usage of low IF down converters, which 

means that the image power can be another adjacent channel with power levels 40-80 dB 

stronger than the desired signal [10]. Also it is preferred for multi IF and multi standard designs 

because normally the mixer BW, for our purpose it is the range of the IF frequencies, is wider 

than the poly phase filter BW [20, 21]. 
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Fig. 19: Weaver Receiver Architecture For Image Reject Mixers (For Low IF Receivers or Direct Conversion 

Receivers with Symmetric Channel Responses) 

 Although the fact that implementing two mixers instead of one increase the substrate 

coupling and increase the power consumption, the quadrature mixing receiver showed a very 

good potential in multi standard designs because in ideal conditions it allow an infinite IRR over 

wide band width. 

To mathematically explain the image rejection operation that is performed by the weaver 

architecture, we will assume that a RF signal consists of the summation of the desired signal s(t) 

and the image signal q(t) as: 

                      (2.6a) 

                       (2.6b) 

                                      (2.6c) 

And so after the first mixing stage and low pass filtering we get the IF signal as: 

 
                    

 
 

 
                              

(2.7a) 

 
                    

 
 

 
                               

(2.7b) 
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After that the IF signals rIF_I and rIF_Q are multiplied by the secondary mixers the signals at the 

output of the low pass filters are as follows: 

 

                 
 

 
            (2.8a) 

                  
 

 
            (2.8b) 

 

Then by adding (2.8a) to (2.8b) as shown in Fig. 19, the image signal is cancelled leaving only 

the desired signal as the output signal. The above analysis shows that infinite image rejection is 

theoretically achievable, but in practical situations the existence of the gain and phase 

mismatches only allows a finite IRR as will be discussed in more details in section 2.4. 

In Fig. 19 it is assumed that non-quadrature modulation is applied at the transmitter, e.g. 

amplitude modulation or BPSK, for quadrature modulations the second down conversion must 

consists of four mixers producing the I-path and the Q-path as shown in Fig. 20. The second 

mixing stage can be performed either in the analog or digital domain but it is typically performed 

in the digital domain as shown in Fig. 20. In the literature this architecture is sometimes called 

"Modified Weaver Architecture " or " Secondary Double Quadrature Receiver" [22]. 

The modified Weaver architecture showed high flexibility in terms of re generating the image 

signals as easy as re generating the desired signal, this is a good characteristic that adds 

flexibility when choosing the IQI compensation technique. Throughout this work, we operate on 

quadrature modulation signals (QPSK). 
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Fig. 20: Modified Weaver Receiver Architecture (Secondary Double Quadrature Receiver) 
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2.3.3. Image Reject Complex Filters 
 The complex filter, also called positive pass filter(PPF), is a filter that reject the image 

signal as shown in Fig. 21. The complex filter basically consists of two low pass filters cross 

coupled in a certain way to reject the image frequency [1, 17]. The mostly basic PPF is the 

Hartley architecture where two RC filters are used at the I & Q paths followed by an adder to 

reject the image frequency. Another approach which is less sensitive to the process variations is 

to use the poly-phase filter to generate a 90 degree shift instead of using two LPF filters. The real 

signal model of the complex filter is shown in Fig. 22. 

The complex filter can be implemented in the analog domain [23] or in the digital domain [24]. 

The analog complex filter is mostly used in standards where the power specification is the main 

concern, but the image rejection requirements is somehow relaxed compared to high 

performance standards where the image rejection ration is more stringent. 
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Fig. 21: Complex Frequency Spectrum For the Quadrature Mixing & Image Signal Filtration 
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Fig. 22: Real Signal Model For the Complex Filter 

  

 The rejection achieved by the complex filter depends on the filter order even at ideal 

conditions, were the filter is centered at a definite IF frequency with a certain resolution for the 

filter tuning, this adds a limitation into the range of the IF frequency that can be covered, unlike 

the image reject mixer which normally covers wider bandwidths achieving ideal IRR of infinity, 

another limitation is that designing a BPF at high IF frequency is not easy as well, that is why 

when complex filters are used more constrains occur on the choice of the IF frequency unlike the 

image reject mixers which adds no constrains on the choice of the IF frequency value. 

Increasing the order of the filter will increase its rejection ratio, but unfortunately the component 

mismatches will increase as well, due to the extra filter stages, degrading the SNDR once again, 

so there is an optimum order for the filter beyond which the SNDR will not be enhanced [25].  
 

 After discussing the advantages and disadvantages of the basic image reject receiver 

architectures, this work will focus on the secondary double quadrature mixer receiver (Modified 

Weaver architecture) being a potential solution for multi standard single chip solutions. The 

mathematical model will be derived using real and complex signaling considering the IQ 

mismatch in the model. 

2.4.  Secondary Quadrature Mixer Receiver Mathematical Model With IQI 

 As discussed in section 2.3.3, the secondary quadrature mixing generates the desired 

signal using two cascaded mixing stages followed by an addition process, in the same way the 

image signal can be generated using two more adders as sown in Fig. 23, generating the image 

signal with such a little overhead is an important advantage for this topology. The mathematical 

derivation for the modified Weaver architecture generating the desired and the image signal 

assuming frequency independent IQI will be derived in this section using the complex signaling 

approach [9, 10]:  
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Fig. 23: Modified Weaver Architecture Model Including IQ Mismatches 

2.4.1. Secondary Quadrature Mixing Receiver Mathematical model 
 The secondary quadrature mixing receiver shown in Fig. 23 can be expressed in the 

complex domain as shown in Fig. 24 [9, 10], for the sake of intuition at each step a clarification 

will be given for each signal being real or complex. 
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Fig. 24: Modified Weaver Architecture in Complex Domain 

The non ideal LO signal in the complex representation can be modeled as: 

                                (2.9) 

Converting the sinusoidal of (2.9) to the exponential form and doing some mathematical 

simplifications it can be rewritten as: 

           
          

      (2.10) 

where K1 and K2 are two complex quantities defined as: 

 
   

       

 
 

(2.11) 
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(2.12) 

where at ideal conditions g=1 and    , so K1=1 & K2=0. 

A very important relation between K1 and K2 is obtained using (2.11) and (2.12) to be: 

        
  (2.13) 

A simple way to model the r(t) is to define its baseband equivalent signal z(t) for the RF signal 

consisting of the desired signal s(t) and image signal i(t) , as shown in Fig. 25 given that s(t) and 

i(t) are real physically existing signals with a symmetric frequency response while z(t) is a 

complex signal so it is frequency response might not be symmetric across the Y-Axis.  
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Fig. 25: Frequency response of the base band desired Signal, base band image signal, Non Symmetric Low 

Pass Equivalent signal for the RF signal  

 

So the RF input signal r(t) shown in Fig. 26 can be defined as: 

                                                (2.14) 

Noting that conjugating a signal in the time domain is equivalent to mirroring it in the frequency 

domain across the y-axis. Where Rrf(f) is symmetric across the Y-Axis because it is a real 

physically existing signal. 
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Fig. 26: Frequency Response of the RF signal r(t)  

Multiplying (2.14) by (2.10) and low pass filtering to remove the higher order frequencies results 

in the IF signal rIF(t) in terms of the desired and the image signals, as follows and shown in Fig. 

27: 

                  
     (2.15) 

RIF(f)

WIFWIF Frequency0

 

Fig. 27: Frequency Response of the IF Signal With IQI  

Again rIF(t) is a not a real signal because it is combining the I and the Q paths, so it is a 

complex signal with non symmetric frequency response. When K2=0, at no gain or phase 

imbalances, the IF signal rIF(t) becomes interference free. 

 Note that the term "interference free" does not mean that the IF signal does not contain 

the image signal, it only means the image signal is separable from the desired signal and did not 

leak on the desired signal yet. 

Digitizing the analog signal rIF(t) using the ADC, so we can now represent all the signals in n-

samples domain, doing the second frequency conversion to the baseband having the 

contaminated desired signal defined as: 

                
     (2.16) 

Where the first term is the scaled desired signal, while the second is the image interference as 

shown in Fig. 28, and similarly the image signal is corrupted by the leaked desired signal as: 

        
        

       (2.17) 

And so the IRR is defined as shown in (2.18) which is the same as (1.1): 

     
    

 

     
 (2.18) 
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Fig. 28: a) The Image signal corrupted by the desired signal b) The desired signal corrupted by the image 

signal  

After going through the mathematical representation of the secondary quadrature mixing 

including the IQI, in the next chapter we will review the most common IQI calibration and 

compensation techniques using the complex domain representation for its simplicity and 

intuition. 
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3. IQI Compensation Techniques 
  

 Historically layout techniques had been used to reduce the IQI such as increasing the 

transistor sizes and using specific aspect ratios for the resistors and the capacitors, these 

techniques add extra constrains on the circuit designs leading to non-optimum designs in terms 

of system specifications. On the other hand the IRR values that can be reached using such layout 

techniques become not sufficient for advanced communications standard, it is common to have 

1-5% gain mismatch and 1-5degree phase mismatch resulting in an IRR of 25-40 dB. In Low-IF 

down converters higher image to signal ratios are experienced by the receiver where the image 

signal might be an adjacent channel, that is why new methods have been proposed to cancel out 

or compensate for the IQI reaching much better IRR.  

 IQI calibration and compensation techniques can be classified in different ways. Based 

on the literature we will classify the IQI compensation methods to two major groups: IQI 

Calibration & IQI Compensation  methods as shown in Fig. 29. More details for the different 

categories will be introduced next. 

IQ Calibration & Compensation

IQI CompensationIQI Calibration

Non Adaptive

IQI Calibration

Adaptive 

IQI Calibration

Data Aided 

IQI Compensation

Blind 

IQI Compensation

Offline IQI 

Compensation

Online IQI 

Compensation  

Fig. 29: IQI Calibration and Compensation Classification 

3.1.  IQI Calibration 
 IQI calibration is the process of adjusting the gain and the phase of the analog front end 

mixer and local oscillator (LO) [26] either by using an external or an internal test signal at the 

image frequency. In the non adaptive IQI calibration a factory or a lab calibration is performed 

where a test tone at the image frequency is used as an input for the receiver, initially an analog 

tuning approach were followed where an auxiliary path were used  to generate the feedback 

signal that will be used to update the gain and phase adjusting blocks as shown in Fig. 30 [27], 

although it is a simple approach it required two more mixers adding area and cost. Then a digital 

tuning approach where proposed in [11] where no auxiliary paths are required instead the output 

of the receiver is used directly as the error signal for an LMS algorithm as shown in Fig. 31, in 

ideal conditions there will be no output from the receiver when the input is the image signal, but 

practically due to the existence of the IQI leaked image appears at the output of the down 

converter. The LMS algorithm updates the gain and phase knobs in the RF mixer & the local 
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oscillator to reduce the IQI. So after settling the error signal (output signal) will  converge to a 

certain mean square error (MSE) value depending on the algorithm accuracy. 

 

 

Fig. 30: Image reject receiver with phase calibration loop using auxiliary path 
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Fig. 31: Image reject receiver with IQI Calibration loops using LMS adaptation and an external test tone at 

the image frequency 

 To allow the IQI calibration to be adaptive and avoid lab or factory calibration, trials 

have been made to generate the image signal on-chip as shown in Fig. 32 [9, 28] instead of using 

a test signal, having a digital tuning algorithm to adjust the gain and phase in the analog domain. 

This approach allowed the calibration to be done whenever needed instead of being a one-time 

lab calibration, that is why it is an adaptive technique, but still it is an offline technique because 

it is not done during signal reception and it required an extra hardware to generate the image 

signal increasing the chip area and so the overall cost. Also these IQI calibration approaches 

might be suitable for narrow band solutions but not as a wide band solution because the 

calibration is done using a single test tone and so the calibration is done at a single frequency. 
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Fig. 32: Generating the image signal on chip to allow adaptive calibration 

  

IQI calibration techniques reviewed above are simple and straight forward consuming low power 

as calibration is done only once, being independent of the type of modulation, signal statistics, 

receiver architecture or the IF frequency, though, lab calibrations increase the production costs 

and testing time [28], and being not adaptive leads to performance sensitivity to temperature, 

aging and operating conditions variations such as the RF power level. Also using a single test 

tone in the calibration process is only suitable for narrow frequency bands standards where the 

mismatches can be assumed flat across the frequency band, so it is not suitable for multi standard 

designs or wide bandwidth standards. To avoid those issues IQI compensation approaches had 

been proposed as will be discussed next. 

3.2.  IQI Compensation 
In the IQI compensation techniques the gain and phase mismatches are not adjusted instead their 

effect are compensated for or cancelled, this can be done either offline during idle modes of the 

receiver or online during normal signal reception. 

3.2.1. Offline IQI Compensation 
To avoid the phase adjusting knobs which might be an issue in some frequency bands an 

approach was used in [23] where a test signal is used at the image frequency and a complex filter 

is used to do image rejection as shown in Fig. 33, so the output of the complex filter is used as 

the error signal to the LMS algorithm. But instead of adjusting the gain and phase knobs in the 

analog front end the LMS algorithm is used to tune a compensating block "C" shown in Fig. 34 

that is inserted in the signal path. To avoid any extra IQI from the complex filter or from the 

compensating block "C" and make use of the technology scaling, the complex filter and the 

compensating block "C" were implemented in the digital domain in [29]. Although this approach 

eliminated the need to have phase adjusting knobs, it still requires a test tone at the image 

frequency either generated internally or externally and so this method suffers from the same 

drawbacks of the IQI calibration. 
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Fig. 33: Low IF Receiver with complex filter, Adjusting IQI using Adjusting Block "C" [17] 

 

Fig. 34: Adaptive block for IQI Compensation in signal path [17] 

In order not to use a test signal at the image frequency another approach was proposed in [29], 

which exploits the relation between the I&Q signals in the presence of IQI. As shown in Fig. 35, 

when the gain mismatch exists the power in the I path is no more equal to the power in the Q 

path but they stay uncorrelated so the difference in the powers of the I path and the Q path can be 

used as an estimation or an error signal for the gain mismatch, but when phase mismatch exists 

the I and Q signals become correlated so there correlation can be used as an estimation or an 

error signal for the phase mismatch.  

Signal_I

Signal_Q

f(g)*Signal_I+f(φ)*Signal_Q

f(g)*Signal_Q+f(φ)*Signal_I

Gain Mismatch

Gain Mismatch
Phase M

ismatch

Phase Mismatch

 
Fig. 35: Impact of the IQ mismatch on the Relation Between the I & Q Signals 

 This concept was used in [29, 30, 31] generating an estimation for the gain mismatch and 

another estimation for the phase mismatch as shown in Fig. 36, using these estimations to update 

a compensating block in the signal path which is represented in Fig. 37 .  

Similar approach was used for wider bandwidth applications [32] where the relation between the 

desired signal and the image is used instead of using the relation between the I-signal and the Q-
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signal. In such approach the image signal and the desired signal must be generated, where the 

correlation between them will be the error signal that will be used to compensate for the gain and 

phase mismatch, noting that the desired and image signal are two complex quantities and so the 

correlation between them will also be a complex quantity, and then the real part can be used to 

compensate for the gain imbalance and the imaginary part can be used to compensate for the 

phase imbalance. This approach were used in [33] as shown in Fig. 38 generating the image 

signal and the desired signal in the analog domain using two complex filters and using the LMS 

algorithm to update an analog compensating block in the signal path. Similar approach can be 

used the secondary quadrature receiver generating the image signal using two additional adders 

in modified weaver architectures.
 

 
X2

X2

+ LPFI

XQ LPF

I2-Q2

IQ

Gain Mismatch 
Estimation

Phase Mismatch 
Estimation

 
Fig. 36: The IQ Correlation Used as 

indication for phase mismatch, while the 

difference between the variances is used as 

indication for the gain mismatch [22] 

 

 
Fig. 37: Gain & Phase Mismatch Estimates are 

used as inputs for a Compensating block in the 

signal path 
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Fig. 38: IQ compensation generating the desired and image signal using two analog complex filters [25] 

 The compensation techniques introduced above eliminated the need to do lab calibration, 

reducing the production costs and allowed the calibration to be done when required. But it is not 

recommended to use such techniques on an online basis during continuous reception because the 

analog domain IQI compensating blocks introduced in the signal path might generate signal non 

linearity's on the received signal worsening the SNDR of the received signal, so this techniques 

will be suitable only for TDMA systems where the IQI compensation is executed at idle states 
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[30]. That is why online adaptive compensation techniques where introduced in the literature to 

be used on an online basis during signal reception as will be discussed in the next section. 

3.2.2. Online IQI Compensation  
 In the online IQI compensation methods the leaked image is cancelled in the digital 

domain without adapting the gain and phase of the front end [8, 10, 34]. Different approaches 

were used to implement the online calibration process as will be explained next. 

3.2.2.1. Single-Tap IQI Compensation Using LMS Algorithm 

(Interference Cancellation) 
  Interference cancellation is similar to the noise cancellation technique introduced in [12]. 

As shown in Fig. 39 The basic idea of the noise cancellation technique is to have a noise source 

"n1" correlated to the noise corrupting the signal "n0", and uncorrelated to the signal itself "s". So 

by subtracting a scaled version of n1  from the corrupted signal we can get a noise free version of 

the signal "z". 

Adaptive Filter

+
s(n)+n0(n)

n1(n)

Output (Z)

Error Signal

Reference Signal

Primary Input

Y

 
Fig. 39: Noise Cancellation Block Diagram 

 The Same technique is used in the single-tap IQI compensation technique using LMS 

proposed in [8], where a single-tap filter is used to cancel the image signal as shown in Fig. 40, 

assuming a frequency independent IQI without losing generality, the corrupted desired signal 

d(n) is the input signal to the algorithm. At low signal to interference ratio the reference signal 

v(n) is correlated to the image signal and uncorrelated to the desired signal. Note that this 

method depends on the statistical characteristics of the input and the reference signals, so it is a 

statistically based compensation (cancellation) method, that is why the choice of the IF 

frequency in such architectures is important because the IF frequency is preferred to be chosen 

so that the image signal is an adjacent channel to assure that it is totally uncorrelated from the 

desired signal. 

Adaptive Filter 

W(n)=wI(n)+jwQ(n)

+
d(n)=dI(n)+jdQ(n)

v(n)=vI(n)+jvQ(n)

y(n)=yI(n)+jyQ(n)

 

Fig. 40: Single-tap IQI Compensation using LMS Block Diagram 

  



 

39 
 

Based on Fig. 40 the output equation for the interference cancellation system is: 

                      (3.1) 

where d(n) and v(n) where derived from the modified weaver architecture in chapter 2 as [10]: 

                
     (3.2) 

        
        

       (3.3) 

where K1 and K2 were defined in (2.8) and (2.9). 

Using (2.8) & (2.9) in (3.1) we get: 

              
               

        (3.4) 

From (3.4) we can derive the output SIR (SIRout) as: 

         
          

      
          

      
 (3.5) 

Note that the output SIR is the difference (in dB) between the output signal after compensation 

and the output image (interferer). while the IRR is the ratio between the image signal gain to the 

desired signal gain, so the IRR is defined as: 

 
        

          
    

          
    

 --> Not function in SIRIN 

 

(3.6) 

So the relation between SIRout, SIRin and IRR can be defined as  [10, 36]: 

 
                              (3.7) 

 

Using zero forcing criteria to maximize SIR1Tap, the optimum solution for "W" will be: 

      
   

  
 

  
 

         

         
 (3.8) 

Note that the optimum filter coefficient was derived using the zero forcing criteria achieving an 

infinite IRR without worrying about noise enhancement because the mismatch exist after the 

noise addition in the LNA. 

Practically the IQI values are not known in order to derive the value of      
  . So the MMSE 

criteria were used in [8] to estimate the filter coefficient, this approach is optimal if the image 

power is much higher than the desired that updates the adaptive filter coefficient equation.  In 

chapter 4 mathematical details for the MMSE approach using the iterative LMS algorithm 

introduced in [8] will be represented and it is performance will be compared to a new proposed 

non-feedback based approach that depends on the method of moments to estimate the filter 

coefficient. 

 The IC compensation technique is simple and easy to be implemented, but the output SIR 

degrades as the input  SIR increases due to the signal leakage problem. So other approaches were 
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proposed where a better reference signal is generated to update the adaptive filter coefficient [37, 

8]. and to avoid the signal leakage problem as explained next. 

3.2.2.2. Symmetric Adaptive De-Correlation IQI Compensation 
 To avoid the signal leakage problem suffered by the IC method (also called adaptive de 

correlation) at moderate and high input SIR values, a solution proposed in [16, 32, 35, 38, 39] 

was to have a symmetric adaptive filter (2 filters) instead of the single filter used in the IC 

technique, using this symmetric adaptive filter to generate the image signal free from any desired 

signal as shown in Fig. 41. Then the optimum filter coefficients will be the filter coefficients that 

de-correlate the two outputs from each other. This technique is called SAD (adaptive de-

correlation) because it is based on separating the desired and the image signal instead of 

cancelling the image signal from the desired signal as was done in the single-tap IQI 

compensation technique. 

∑
d(n)

∑v(n) W1

W2

y(n)

u(n)

Symmetric Adaptive De-correlation

 
Fig. 41: Symmetric Adaptive De-correlation (SAD) Block Diagram[24] 

Where again the symmetric filter might be single tap to compensate for frequency independent 

mismatches [10, 32, 40, 41] or multi tap to compensate for frequency dependent mismatches 

[16]. 

For the frequency independent IQ mismatches the output signal equations will be as follows: 
                     (3.9) 

                     (3.10) 

Where the update equation for the filter coefficients will be as follows: 
                       

     (3.11) 

                       
     (3.12) 

 

From (3.11) & (3.12), we can observe that after settling y(n) will be a scaled version of the 

desired signal free from the image signal while u(n) will be a scaled version of the image signal 

free from the desired signal. And the cross correlation between y(n) and u(n) will be equal to 

zero unlike the single-tap IQI compensation using LMS technique where the cross correlation 

between the output signal and the reference signal is not equal to zero at steady state due to the 

signal leakage problem. 

To compensate for the scaling factor of the desired signal a solution were proposed in [28] to do 

post processing filtering for the output signal estimating the filter coefficient based on the W1 

and W2 . 

 So the IC method will be suitable for low SIRin, while SAD will be suitable for moderate 

and high SIRin [10] trading off extra complexity. So an efficient solution would be to switch 

between the IC technique and the SAD technique based on the input SIR value. 
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 The previously discussed methods, IC and SAD, where iterative (feedback based) 

solutions using LMS or RLS algorithms, iterative solutions are considered as a slowly 

converging techniques, that is why another approaches were proposed using the method of 

moments instead of using the iterative solutions as explained next.  

3.2.2.3. Non-Feedback Based Blind IQI Compensation (Dual-Tap 

Method) 
 Another approach based on reconstructing the desired signal from the observation signals 

d(n) and v(n) was introduced in [42, 43]. Using (3.2) and (3.3) the desired signal is expressed as: 

  
    
     

  
 

     
      

  
 
  

    

   
   

  
    
    

  (3.13) 

And so s(n) can be reconstructed using dual-tap filter as shown in Fig. 42 to weight d(n) and 

v(n). Where the optimum filter coefficients will be: 

   
   

 
   

     
      

  
 (3.14a) 

   
   

 
  

 

     
      

  
 (3.14b) 

 

The estimates  of W1 and W2 were obtained using the cross & auto correlation of d(n) & v(n) as 

shown in Fig. 42, where two moments are measured: 

                          (3.15a) 

                                  (3.15b) 

Where Ps and PI are defined as the desired signal power and the image power, respectively. Then 

using (3.15) and (2.13), K1 and K2 are estimated and so the filter coefficients W1 and W2.  
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Fig. 42: IQI Compensation Using Signal & Image Separation using 2-Tap Filters 

In [42] the estimated filter coefficients were obtained by estimating the IQI, in chapter 5 a 

simpler approach will be proposed estimating the filter coefficients in less mathematical steps, 

analyzing the mathematical derivation and the simulation results of this approach in more details, 

also a variation for this method will be introduced in which the input SIR will be estimated and 

used to optimize the number of symbols required to do the IQI compensation. 
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4. Single-tap IQI Compensation Method 
  

 In chapter 3 the interference cancellation method (single-tap IQI compensation method) 

using the LMS algorithm was reviewed briefly mentioning that this technique suffers from the 

signal leakage problem. In this chapter a new technique will be proposed to estimate the filter 

coefficient of the single-tap IQI compensation method using the method of moments instead of 

using the LMS algorithm, showing that the new proposed approach will enhance the settling time 

and achieves a constant convergence time across the input SIR range. Performance analysis will 

also be introduced to verify the simulation results. 

At first the single-tap IQI compensation method using the LMS algorithm proposed in [10] will 

be reviewed in more details, then the proposed method will be introduced. 

4.1.  Single-tap IQI Compensation Method Using LMS Algorithm 

In section 3.2.2 the optimum filter coefficient      
   for the single-tap IQI Compensation 

method shown in Fig. 43 was obtained using the zero forcing criteria, for practical application 

the IQI values are unknown then the optimum filter coefficient cannot be directly estimated, so it 

was proposed in [10] to use the MMSE criteria using the output signal y(n) defined in (4.1) as 

the error signal, minimizing the cost function            using steepest descend algorithms the 

Weiner filter solution is obtained  as given by Eqn. (4.2). 

                      (4.1) 

      
     

  
   

        

    
        

   
 (4.2) 

It can be observed that      
     reaches the optimum solution      

   when PI/Ps >>0. But for 

PI/Ps <<0,      
     deviates from optimality  due to the non purity of the reference signal (as it is 

not fully uncorrelated from the desired signal), this is called the signal leakage problem. 
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Fig. 43: Secondary Quadrature Mixing down converter with single-tap IQI Compensation Method 

 



 

43 
 

The metric used to evaluate the performance of the interference cancellation is the output signal 

to interference ratio (SIRout), so to derive the SIRout using      
    , substitute by (4.2) in (4.1) to 

get: 

 

       
     

      
  

            
    

        
   

 
 

   

      
  

            
    

        
   

 
 

   

 (4.3) 

Doing the internal multiplications and taking common denominator we get: 

 
       

     
         

          
          

         
    

         
          

          
         

    

 
    

   

    
   

 

(4.4) 

One of the mostly used methods to implement the steepest descend method is the LMS algorithm 

adding a new source of error which is the excess error added by the LMS iterative algorithm, 

LMS update equation is derived in Appendix A. The update the equation and the excess error are 

defined as: 

      
              

                  (4.5) 

              
          

       (4.6) 

                      
   (4.7) 

Now we will formulate the signal to interference ratio after using the LMS algorithm (       
   ), 

substituting by (4.6) in (4.1) to get: 

                
        

      
      

                 
        

      
      

         

 
           

  
           

    
        

   
      

      
        

      
  

           

    
        

   
      

      
        

(4.8) 

After taking common denominator (4.8) can be simplified to: 

 
      

         
      

  

    
        

   
     

      
        

         
      

  

    
        

   

     
      

        

(4.9) 

Defining: 

 
   

         
      

  

    
        

   
 (4.10a) 

 
   

         
      

  

    
        

   
 (4.10b) 

 

Substituting by (4.10) in (4.9) we get the        
     as shown below: 
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 (4.11) 

Then from (4.11)  we can define the        
    as: 

 
       

    
      

             
  

      
             

  
 (4.12) 

In the next section a non feedback based approach (non iterative approach) will be proposed to 

estimate the adaptive filter coefficient, then the feedback based (LMS) and the non feedback 

based approaches will be compared in section 4.3. 

4.2.  Single-tap IQI Compensation Method Using Method of Moments  

At low input SIR, we may approximate v(n) in (3.3) as follows: 

        
       (4.13) 

Where the ratio in (3.10) can be approximated, based on the method of moments, in terms of the 

statistics of d(n) and v(n) at low SIRin using (4.13) as follows:  

             

          
 

      

    
   

  
  

  
   (4.14) 

Hence, we may estimate the LHS of (4.14) using sample variance and covariance, and 

consequently obtain the desired filter coefficient    as follows: 

 
             

     
             

   

           
   

  
  

  
  

 
 (4.15) 

Where N is the number of time samples used to estimate the filter coefficient. The above 

operations are described in Fig. 44. The proposed single-tap method is computationally less 

complex than the dual-tap method proposed in [42] as shown in Table 1 and results in the same 

output SIR at low input SIR region as we will see in the simulations section. 

The exact expression of the ratio of expectations in (4.14) is given by:  

             

          
 

            
            

  

          

 
             

               

   
         

(4.16) 

In order to define the output SIR, we define the error in the estimated filter coefficient as: 

                      
       

         (4.17) 

Then using (4.1) the output SIR is defined as: 

 
                  

                    
      

   
 
 

                    
      

   
 
 

  
  

 (4.18) 

So by substituting from (4.17) into (4.18) as in [10], the output SIR can be expressed in terms 

of K1, K2, Ps PI and the mean squared error expressed as,                       , as: 
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 (4.19) 

Equation (4.19) will be used to evaluate the performance of the proposed method, but in the next 

subsection a closed form expression for the output SIR will be derived and compared to the 

simulation results. 
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Fig. 44: Single-tap IQI Compensation Using Method of Moments
 

Table 1: Complexity Analysis Comparing single-tap IQI compensation and dual-tap IQI compensation 

proposed in [42] 

Operation Proposed single-tap method [42] 

sin
-1

,sine & cosine -- 3 

Square root -- 1 

Complex division 2 1 

Real Division -- 1 

Real Multipliers 12 16 

Real Adders 9 11 

4.2.1. Single-tap IQI Compensation Method Performance Analysis 

We first substitute from (4.15) into (4.18) and do some simplifications without any 

approximations to get: 

 

               
    

 

    
 

   
  

  
   

  

  
  

 
 

 

 

   
    

      
 

  
   

  
  

  
   

  

  
  

 
 

 

 

  
  

 (4.20) 

Then defining the absolute estimation error and the quantity "A" as: 

 
  

  

  
  

             
   

           
   

 
  

  
   

  

  
  

 
 (4.21a) 

 
  

    
      

 

  
   

  (4.21b) 
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Substituting by (4.21) into (4.20) the ISR1Tap_acc is expressed as: 

 

 
               

    
 

    
 

       

         

  
  

 
    

 

    
 

       

                            

  
  

 

(4.22) 

 

So we need to get   in terms of K1, K2, Ps, Pi and N in order to get the closed form for the 

expectation of            . At first we define Ps, Pi and Rsi as: 

 
    

 

 
        
 

   

     
 

 
        
 

   

 (4.23a) 

 
   
  

 

 
         

 

   

 (4.23b) 

Substituting by (4.23) and (4.15) into (4.21a) and simplifying the absolute error "Δ" can be 

expressed as :  

 
  

     
      

              
  

  
      

         
         

    
    

      
   

 (4.24) 

 Now two approximations will be used to simplify (4.24): 

1- At sufficient "N"          ,            

2- Knowing that     
 >>     . Then                 can be simplified to: 

 
  

     
      

             
  

  
      

        
    

 (4.25a) 

 
     

     
      

        

  
      

        
    

 (4.25b) 

 
        

     
      

        
   

      
       

  
 
  

    
      

        
    

 
 (4.25c) 

where the variance of    
 , assuming the usage of interleaver at the transmitter that breaks up 

any memory between the transmitted symbols, is given by [44] : 

 
      

  
 
  

    
 

 (4.26) 

So using (4.25) and (4.26) back into (4.22) we get the expectation of             in terms of 

K1, K2, Ps, PI and N. In the simulations section next the derived closed form for the output SIR 

defined by (4.22), will be compared to the actual simulation results defined by (4.19), proving 

the validity and accuracy of our analysis and simulations.  
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4.3.  Simulation Results  
Without lose of generality QPSK modulation scheme with symbol rate sampling is used, using 

100 iterations to estimate the ensemble mean square error. The mismatches used in the 

simulations are (1-g=1.02, phi=2 degree's) & (2- g=1.1, phi=10 degree's). In general ADC de-

sensitization will occur at low input SIR [30] due to the high image power compared to the 

desired signal power, but in our model we assume ideal sampling. 

At first the response of the single-tap IQI compensation method using the LMS algorithm across 

time is shown in Fig. 45 & Fig. 46 , showing that the settling time is not constant across the input 

SIR range having longer settling time for lower input SIR values. By comparing that to the 

response of the proposed single-tap IQI compensation method using the method of moment 

across time shown in Fig. 47 & Fig. 48, it can be observed that the method of moment guarantee 

the same settling time for different input SIR values, and the settling is much less than the LMS 

algorithm as shown in Fig. 49. 

 
Fig. 45: single-tap IQI compensation method using LMS, Output SIR across Time, g=1.02, phi=2

0
, 

SNR=35dB 

 
Fig. 46: single-tap IQI compensation method using LMS, Output SIR across Time, g=1.1, phi=10

0
, 

SNR=35dB 
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Fig. 47: single-tap IQI compensation method using Method of Moment, Output SIR across Time, g=1.02, 

phi=2
0
, SNR=35dB 

 
Fig. 48: single-tap IQI compensation method using Method of Moment, Output SIR across Time, g=1.1, 

phi=10
0
, SNR=35dB 

 
Fig. 49: SIRout across time (n) for the single-tap method using LMS and the proposed single-tap method using 

Method of Moments, SIRin=-40dB, SNR=35dB, g=1.02 and phi=2
0
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After comparing the settling time of the two methods, the steady state output SIR can be studied 

by plotting the output SIR across the input SIR at steady state for both methods as shown in Fig. 

50, as can be observed the closed form solution expressed by (4.22) showed very good match to 

the simulation results verifying our model and hand analysis. It can be concluded from this 

comparison that the proposed single-tap IQI compensation using method of moments achieves 

higher output SIR and/or less settling time compared to the single-tap IQI compensation using 

the LMS algorithm. Where both are suffering from the signal leakage problem leading to 

degraded output SIR values at moderate and high input SIR range, and the degradation increases 

as the values of the IQI increase. 

 
Fig. 50: SIRout across SIRin at N=10

4
, SNR=35dB, g=1.02 and phi=2

0
. 

 
 

Although the single-tap IQI compensation using method of moments showed better performance 

in terms of steady state output SIR and/or less settling time, the LMS method tracks the time 

varying IQI in a better way as shown in Fig. 51 where the gain and phase mismatches were 

changed gradually from g=1.02 to g=1.03 and from phi=2
0
 to phi=2.5

0
 starting from N=5000 to 

N=6000. It can be observed that the LMS algorithm returned to the steady state output SIR faster 

than the method of moment approach because the method of moment is affected by the memory 

influence measuring the received signal statistical expectations or second order moments, unlike 

the LMS algorithm which is iterative and works on sample by sample basis. To enhance the 

response of the method of moment it is better to dump the filter coefficient and restart the 

computations if a change in the IQI were sensed.  And the rate of change of the IQI can be 

determined by monitoring the rate of change of the filter coefficients, or alternatively the filter 

coefficient can be re-calculated at each reception mode to avoid the memory effect. 

Finally the effect of the additive noise on the performance of the single-tap IQI compensation 

methods was tested as shown in Fig. 52 plotting the output SIR across SNR, it can be observed 

that at the region of interest for the input SIR both approaches are insensitive to the additive 
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noise and so the output SIR value stays approximately the same across the different SNR values, 

the reason for that is having the noise as a part of the desired signal without affecting the 

statistical characteristics of the desired signal. To quantize the benefit from the IQI compensation 

we can see in Fig. 53 how the BER is enhanced comparing the uncompensated situation (d(n)) to 

the compensated output signal (y(n)) where approximately constant BER can be observed 

because the output SIR is constant across SNR as was shown in Fig. 52, highlighting that the 

plotted BER include the errors during the settling of the algorithm (before reaching the targeted 

output SIR) and so it is considered as a pessimistic performance compared to the real 

performance that will be achieved after the targeted output SIR is reached. 

 
Fig. 51: Output SIR across Time(n) at input SIR=-30dB and SNR=35dB, varying gain mismatch linearly 

from g=1.02 to g=1.03 and phase mismatch from g=2
0
 to g=2.5

0
 starting at n=5000 till n=6000. 

 

 
Fig. 52: Output SIR across SNR at different values of input SIR, g=1.02, phi=2

0
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Fig. 53: BER across SNR for the single-tap IQI compensation technique, g=1.02, phi=2 degree's, input SIR=-

40dB 

The single-tap IQI compensation method proposed is suitable for the low range of the input SIR, 

at moderate and high input SIR the output SIR degrades due to the signal leakage problem and 

the effect of the signal leakage as the values of the IQI increases. That is why in the next chapter 

two methods will be proposed that suit the moderate and high input SIR regions using a dual-tap 

IQI compensation technique instead of the single-tap method used before without requiring the 

front end blocks to support any calibration knobs, also we will propose a methodology that can 

be used to switch between both techniques, i.e. single-tap and dual-tap, for the best compromise 

between performance and complexity. 
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5. Dual-Tap IQI Compensation Method 
 

The single-tap IQI compensation described before was suitable for the low input SIR range, 

and it is performance degrades at moderate and high input SIR ranges due to desired signal 

leakage onto the reference signal, that is why some methods of compensation were proposed in 

the literature such as the non iterative source separation in [42]  and the iterative symmetric 

adaptive de correlation in [16] achieving better performance at moderate and high input SIR 

regions using a dual-tap filter instead of a single-tap filter paying off an extra complexity. In this 

chapter a variant will be introduced to the method proposed in [42] in which an estimate for the 

input SIR will be obtained and used to optimize the number of symbols for the compensation 

achieving the same performance with less computational complexity, also another variant will be 

introduced for the method used in [16]  in which an updating equation will be saved leading to 

less complex solution using an extra two taps to avoid the need for post processing filter. 

5.1.  Non Feedback Dual-Tap IQI Compensation Using Method of Moments  

5.1.1.  Mathematical Model 
The baseband received signal for the secondary quadrature receiver architecture was given in  

(3.2) and (3.3) and repeated below for our reference as: 

                
     (5.1) 

        
        

       (5.2) 

 

So the purpose of the compensation technique is to re generate the desired signal s(n) from d(n) 

and v(n). By Re-writing (5.1) and (5.2) in a matrix form and processing (5.3) to get the desired 

signal in terms of the observation signals d(n) and v(n) as given in (5.5), it's clear that two filter 

coefficients are needed to rescale the observation signals d(n) and v(n) as shown in Fig. 54 and 

so reconstruct the desired signal s(n). 

 
 
    

    
   

    

  
   

   
    

     
  (5.3) 

 
 
    
     

  
 

             
 
  

    

   
   

  
    
    

  (5.4) 
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              (5.6) 
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∑
d(n)

v(n)

W1

y(n)

X

X

W2

Method Of Moments

*

*

 

Fig. 54: Dual-Tap IQI Compensation Method 

And so based on Fig. 54 the output equation for the proposed blind IQI compensation technique 

will be: 

        
        

      (5.7) 

Comparing (5.7) to (5.5) the optimum filters coefficients are: 

 
   

   
 

     
      

  
 (5.8) 

 
   

  

     
      

  
 (5.9) 

Knowing that K1 & K2 are related as: 

        
  (5.10) 

So it is enough to estimate K1 and K2 in order to estimate for W1 and W2. In our proposed 

method, the input SIR will be additionally estimated and used to optimize for the block size 

required to guarantee a minimum SIRout across the whole range of the SIRin. These three 

estimates will be obtained by measuring various second order moments about the observation 

signals d(n) and v(n), and solving the resulting non-linear simultaneous equations. 

Two approaches will be introduced in this work. In the first, we measure the three moments in 

the LHS of the following equations and solve them together with (5.10) for the unknown 

quantities K1, K2, PI, and Ps: 

                
        

    (5.11a) 

                
        

    (5.11b) 

                          (5.11c) 

After solving the set of equations (5.11) using (5.10) as shown in Appendix B, the estimates of 

K1, K2 can be written in closed form as: 

 
       

                

                                        
 (5.12a) 

 
       

       

 
 (5.12b) 
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Where "X" is defined as: 

 
           

  
                     

                                        
 (5.13) 

And the input SIR can be obtained by substituting from (5.12) into (5.11a) and (5.11b) to get 

Ps and PI as follows: 

 
   

    
                

           

     
         

   
 (5.14a) 

 
   

               
   

    
 

 (5.14b) 

The second approach requires an extra moment, which is used in [31]: 

                                  (5.15) 

This approach allows us to decouple the equations and solve first for K1 and K2 using (5.15) 

and (5.11c), then substitute back in (25.a) and (25.b) to obtain Ps and PI. In [42] the IQI 

mismatches (g and φ) were estimated first then the filter coefficients were estimated, here we 

derive for K1 and K2 directly without estimating  g and φ and so saving an unnecessary 

computational overhead, by solving (5.15) with (5.11c) we get: 

 
     

            

          
 (5.16) 

Equating the imaginary parts of (5.16) and using (5.10) we get the imaginary part of K1 as: 

              
            

          
  

(5.17) 

Doing the same for the real parts we get the real part of K1 as: 

          

               
       

            
          

  

 
 

(5.18) 

 

For both approaches the running accumulators were used as shown in Fig. 55 and Fig. 56 to 

estimate the required moments, so the accuracy of the estimated filter coefficients W1_est and 

W2_est is a function of the block size "N" used in the running accumulators to compute those 

expectations, the performance analysis of the dual-tap IQI compensation were introduced in [44], 

and here we introduce an equivalent way to express the output SIR in terms of the mean square 

error of the estimated filter coefficients. The mean square error as the difference between the 

estimated filter coefficient and the optimum filter coefficient can be defined as: 

           
            

    
   

 

             
,               

   (5.19a) 

           
            

    
  

             
,               

   (5.19b) 

In order to quantify the performance of the proposed blind compensation technique an 

expression for the output SIR in terms of K1, K2, Ps, PI & the mean square errors for the filter 

coefficients is derived. Substituting by d(n) and v(n) from Eqn. (5.3) into Eqn. (5.7) we get: 
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(5.20) 

Substituting by (5.19) into  (5.20) we get: 

             
       

   
             

   
         

           (5.21) 

So the output SIR can be defined from (5.21) as: 

 
                   

         
       

   
         

     
   

         
         

 
       

         
          

    
            

        
 

(5.22) 

Which will be used in the next section to evaluate the performance of the proposed method, as 

expected at ideal conditions where mse1=mse2=0, the E[SIRout] will be infinite. 
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Fig. 55: Dual-Tap IQI Compensation using method of moments, first approach measuring three moments 
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Fig. 56: Dual-Tap IQI Compensation using method of moments, second approach measuring four moments 
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5.1.2. Simulation Results 
The simulation conditions used in this section is similar to the simulation conditions used in 

section4.3. At first the steady state performance where examined by plotting the output SIR 

against the input SIR (at N=1e4) in Fig. 57 & Fig. 58 showing that a minimum output SIR is 

guaranteed across the input SIR range, and unlike the single-tap IQI compensation method the 

output SIR is enhanced at high input SIR as expected. Then the output SIR is plotted against the 

block size "N" as shown in Fig. 59 showing that settling time is less than the single-Tap IQI 

compensation method using the LMS algorithm, and that the output SIR is enhanced as long as 

"N" increases. In practical scenarios, a minimum output SIR is required beyond which 

insignificant sensitivity improvement is gained. Hence, if the input SIR is estimated, the block 

size can be optimized to satisfy the output SIR requirement. In Fig. 60, the input SIR was 

estimated using (5.14) showing that a pretty good estimate is achieved using only 10 samples for 

various input SIR values. Using this estimate for the input SIR, the optimum block size is plotted 

in Fig. 61 against the input SIR to achieve an output SIR of 40 dB. This shows that a huge gain 

can be obtained by decreasing the block size from N=10
4
 by up to two orders of magnitude 

according to the estimate of the input SIR.  

In order to monitor the effect of the additive noise on the dual-tap IQI compensation using 

method of moments, the steady state output SIR is plotted against the SNR in Fig. 62, showing 

that the additive noise starts to affect the performance at SNR approximately below SNR of 15 

dB. That is why when plotting the BER across the SNR in Fig. 63 a nearly constant value is 

observed across the SNR till SNR of 15 dB then it started to degrade because of the degraded 

output SIR, again these BER curves include the samples during settling before reaching the 

targeted output SIR that is why it is considered pessimistic, while the constellation of the QPSK 

is plotted in Fig. 64 showing that the compensated signal enhances the output SNR of the signal 

compared to the uncompensated signal. 

 
Fig. 57: 2-Tap Method Using Method of Moment, Output SIR across input SIR, g=1.02, phi=2

0
, SNR=35dB 
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Fig. 58: 2-Tap Method Using Method of Moment, Output SIR across input SIR, g=1.1, phi=10

0
, SNR=35dB 

 
Fig. 59: Dual-tap IQI compensation using method of moments, Output SIR across Time Iterations (N), 

g=1.02, phi=2
0
, SNR=35dB 
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Fig. 60: SIRin estimation against the block size (N) at SNR=35dB using a single realization, g=1.02 and phi=2

0
 

 
Fig. 61: The Block Size (N) required to reach SIRout=40dB across SIRin for the proposed dual-tap IQI 

Compensation Using Method of Moments. 

 
Fig. 62: Output SIR across SNR for the dual-tap IQI compensation using method of moments 
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Fig. 63: BER across SNR for the dual-tap IQI compensation technique, g=1.02, phi=2 degree's, input SIR=-

40dB 

 

Fig. 64: Signal constellation for the compensated signal y(n) and the uncompensated signal d(n), g=1.02, 

phi=2 degree's, input SIR=-20dB 
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5.2.  Feedback Based Dual-Tap IQI Compensation Using LMS Algorithm 

5.2.1. Mathematical Model 
The symmetric adaptive de-correlation (SAD) introduced in [16] and [45] is based on generating 

a clean reference signal u(n) free from any desired signal using another filter W2 as shown in  

Fig. 65, where the output equations and the updating equations for such SAD method are as 

follows [16]: 

                  (5.23a) 

                  (5.23b) 

                       
     (5.24a) 

                       
     (5.24b) 

 

∑
d(n)

∑v(n) W1

W2

y(n)

u(n)

Symmetric Adaptive De-correlation

 

Fig. 65: Symmetric Adaptive De-correlation 

Comparing (5.24a) to (5.24b) we can observe two main differences: 

1- The updating factors µ1 and µ2 are different 

2- The cross correlations in (3) and (4) are related as :                           

This means that if we assumed that µ1= µ2= µ and that W1(1)= W2(1)=0, then the two updating 

equations can be simplified into one updating equation, estimating the other filter coefficient as: 

                           (5.25a) 

           
       (5.25b) 

Also the steady state output of the symmetric adaptive de-correlation technique proposed in [45] 

is a scaled version of the desired signal s(n), that is why in [28] and [45] an equalization filter 

was proposed as shown in Fig. 66, where the Wequ were defined as: 

 
     

 

      

 (5.26) 
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Fig. 66: Symmetric Adaptive De-correlation With Equalizing Filter 

A discussion about the equalizing filter being realizable had been introduced in [45] highlighting 

that for this filter to be realizable a necessary and sufficient condition is to have W1(n).W2(n) not 

to be equal to 1 in every iterations step in order to guarantee that the equalizing filter is 

realizable, to avoid this limitation we propose the usage of two additional multipliers as shown in 

Fig. 67 to weight the observation signals d(n) and v(n) and so reconstruct the desired signal 

without the need to do post processing. Knowing that the filter coefficients are related from(5.4): 

      
         

          (5.27) 
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Fig. 67: Proposed dual-tap IQI compensation with output signal rescaling 

So we will need only one updating equation to re construct the signal without using any post 

processing, and the output and updating equations will be as follows: 

                    (5.28a) 

                    (5.28b) 

                           (5.28a) 

Using (11) to get the rest of the filter coefficients as follows: 

           
       (5.29a) 

             
       (5.29b) 

                   (5.29a) 
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5.2.2. Simulation Results 
To evaluate the performance analysis of the proposed dual-tap IQI compensation using the LMS 

algorithm the steady state output SIR is plotted against the input SIR in  Fig. 68 and compared to 

the performance of [16], showing that approximately the same output SIR is achieved saving an 

updating equation and the equalization filter, and as expected the output SIR is enhanced at 

moderate and high input SIR avoiding the signal leakage problem. Then the output SIR is plotted 

against the time iterations "n" in Fig. 69. Again the same conclusion can be reached here when 

comparing the iterative dual-tap IQI compensation using LMS and the dual-tap IQI 

compensation using method of moments, as shown in Fig. 70 the method of moment converges 

faster to higher output SIR values, but it responds slower than the LMS iterative method toward 

time varying IQI. 

So the choice of the used IQI compensation technique depends on the application and on the 

communication standard, if the IQI is time varying unexpectedly then the iterative solutions will 

be more adequate, but if it is slowly varying or constant or it is time varying but in a way that can 

be expected, e.g. at different gain settings or reception mode, then the non iterative method of 

moments solutions will guarantee better steady state performance and convergence times. 

The techniques proposed above were blind techniques but in some communication standards 

signal pilots (training sequence) are available which allows the usage of data aided (non-blind) 

techniques to compensate for the IQI, in the next chapter a new method will be proposed which 

exploit signal pilots inherited within the desired signal to estimate the filter coefficients of the 

dual-Tap filter method and so compensate for the IQI. 

 

Fig. 68: Output SIR across Input SIR for the SAD in [11] and the its variant proposed in this work, g=1.02, 

phi=2 degree's, N=1e4 
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Fig. 69: Proposed dual-tap IQI compensation Using LMS Algorithm, Output SIR across Time Iterations (n), 

g=1.02, phi=2
0
, SNR=35dB 

 

Fig. 70: Output SIR across Time(n) at input SIR=10dB, varying the gain mismatch at n=3000 from g=1.02 to 

g=1.05 then linearly from g=1.05 to g=1.1 till n=4000, and increasing phase mismatch linearly from g=2
0
 to 3

0
  

starting at n=3000 till n=4000. 

 

Fig. 71: Output SIR across SNR at different values of input SIR, g=1.02, phi=2
0  
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6. Data Aided IQI Compensation 
 

Instead of the blind (non data aided) compensation methods introduced before, data aided 

compensation methods can be used if the communication standard allows the usage of a 

preamble sequences or pilot training sequence, but in the low-IF receivers no information about 

the timing or the data of the image signal pilot signals are available, that is why in this section we 

propose a data aided compensation algorithm that exploits known preamble sequence or pilot 

signals within the desired signal not within the image signal to estimate and compensate for the 

IQI. Three approaches will be introduced here, in the first approach AWGN of slow fading 

channel is assumed exploiting a known sequence (preamble) to generate an orthogonal nulling 

vector or an orthogonal nulling matrix to this known sequence using this vector or matrix to 

estimate and compensate for the IQI. In the second and third proposed methods fading channels 

are considered, in the second method a pilot signal consisting of two symbols is used to solve for 

the IQI and for the channel fading. While in the third approach the firth approach is extended to 

be suitable for fading channels as well compensating for the IQI achieving better performance 

compared to the second approach because of the noise averaging inherited in the least squares 

estimate method. 

6.1.  Data Aided IQI Compensation Using Preamble Sequence  
In this section a known sequence of the desired signal s(n) is used to estimate and compensate 

for the IQI.  

6.1.1. Vector-Nulling IQI Compensation Method 

6.1.1.1. Mathematical Model 
Assuming that the transmitter is sending a training signal s(n) of length (L) which is already 

known to the receiver. Representing the baseband signal d(n) and v(n) which are the outputs 

from the digital mixers as follows: 

 
 
         

           
 

             
     

  
    

  
   

   
                   

           
  (6.1) 

where      is the complex fading coefficient and        where    and    denote the sampling 

time and channel coherence time, respectively.  Now, taking the transpose of   as follows: 

 
               

    
 

    
   (6.2) 

Where                          and                           , then multiplying the 

matrix     by the vector    where   is chosen to be orthogonal to   , i.e.       . Hence, 
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(6.3) 

 

 

A possible candidate for e
H
 that will be used in the proposed model is: 

 
              

      
 

  
   

 (6.4) 

At ideal conditions (no additive noise) (6.3) can simplified to: 

                  
          (6.5) 

And so      
  can be estimated as follows: 

 
   

  
 

  
  
  

  

  
 (6.6) 

Knowing that        
  and substituting by it in (6.6) we get estimates for K1 & K2 as 

follows: 

 
      

 

   
 
 
,    

 

   
 

 
(6.7) 

So using (6.7) to estimate K1 and K2 the filter coefficients for the dual-Tap method W1 & W2 can 

be estimated and used to do the IQI compensation.  

6.1.1.2. Simulation Results 
The performance of the vector-nulling method is monitored by plotting the output SIR across the 

known sequence length (L) as shown in Fig. 72, showing that the achieved output SIR saturates 

after a definite known sequence "L". The reason for this behavior is that whatever the length "L" 

only one equation is used in (6.6) to estimate for the IQI and so no noise averaging is performed. 

So in the next section a modification for this method will be performed that generate (L-1) 

equation and solve for them using the least squares estimate performing noise averaging and so 

benefiting from increasing the length of the known sequence. 
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Fig. 72: Output SIR across the known sequence length "L", at SNR=35dB, g=1.02, phi=2 degree's 

6.1.2. Matrix-Nulling IQI Compensation Method 
To make use of the longer sequence length, a modification is introduced in this section to the 

vector-nulling method, in which an orthogonal matrix is generated from the known sequence 

instead of the orthogonal vector and so the least squared estimates can be used, we introduced 

the noise terms in the analysis of the vector-nulling method to highlight the effect of the additive 

noise, this effect will stay the same in the rest of the methods and so the noise terms will be 

omitted for clarity without losing or generality. 

6.1.2.1. Mathematical Model 
Assuming that we have the same known sequence as the vector-nulling method, since sL is a 

vector of dimension "L" then "L-1" vector can be generated which are linearly independent from 

sL, these vectors will be generated and used to construct the matrix P, the left null projection 

matrix of sL, and so multiplying the matrix     by the P matrix of size (L-1,L) will satisfy the 

following condition i.e.                      . Hence, 

 
        

                  
    

 

    
          

    
 

    
  

         
     

     
  

  
     

   
       

   
       

  
(6.8) 

And so using (6.8) using the ratio of expectations the estimate of  
  

  
  

 
 can be obtained as: 

 

   
  

  
   

        
      

   

      
      

   

 (6.9) 

 

Knowing that        
  and substituting by it in (6.9) we get estimates for K1 & K2 as 

follows: 
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(6.10) 

Where the null projection matrix "P" is generated as: 

 
    

    

    
 

 
(6.11) 

Although (6.10) generate an (LXL) matrix, only (L-1) raw can be used as linearly independent 

vector for the vector "s". 

So using (6.10) to estimate K1 & K2 the filter coefficients for the dual-tap method, W1 & W2, can 

be estimated based on (5.8) & (5.9). 

6.1.2.2. Simulation Results 
The performance of the proposed method is examined by plotting the output SIR across the pilot 

length "L" for different input SIR values. As shown in Fig. 73, as the length of the pilot vector 

increases the output SIR is enhanced proportionally, achieving higher output SIR values 

compared to the blind method using dual-tap IQI compensation using method of moments 

proposed before. The output SIR at N=100 is plotted against the input SIR in Fig. 74 showing 

that the proposed IQI compensation method guarantee a constant output SIR across the whole 

range of the input SIR. Then the effect of the additive noise is plotted in Fig. 75 by plotting the 

output SIR across the SNR for N=100, showing that the output SIR is decreasing approximately 

linearly with the decreasing SNR. Comparing the constellation diagram of the compensated 

signal y(n) to the uncompensated signal d(n) we can see the huge enhancement in Fig. 76. In 

order to realize the advantage of using the data aided method if the appropriate pilots or known 

sequence were available Fig. 77 shows a comparison between the data aided method and the 

blind method at input SIR of -40dB showing that the data aided method outperform the blond 

method by approximately 35 dB, so this proves that at high SNR the data aided method will 

perform much better than the blind methods. 

In the vector-nulling method and the matrix-nulling method slow fading conditions were 

assumed, in the next two sections we will propose two methods that are suitable to fast fading 

conditions as well. 
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Fig. 73: Output SIR across pilot length (L), SNR=35dB, g=1.02, phi=2 degree's 

 

Fig. 74: Output SIR across Input SIR for different SNR values, g=1.02, phi=2 degree's 

 

Fig. 75: Output SIR across the SNR for input SIR=-20dB, g=1.02, phi=2 degree's 
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Fig. 76: Signal constellation for the compensated signal y(n) and the uncompensated signal d(n), g=1.02, 

phi=2 degree's, input SIR=-20dB, SNR=35dB 

 

Fig. 77: Output SIR across the block size "N" for the blind IQI compensation using method of moments, and 

across the pilot size "N" for the data aided matrix-nulling method 

6.2.  Data Aided IQI Compensation Using Pilot  Symbols  

6.2.1. IQI Compensation Using Pairs of Symbols as Pilot Signals 

6.2.1.1. Mathematical Model 

In this approach we assume that we have a pilot signal consisting of two known symbols, 

including channel fading which is for practical cases will be the same for the two adjacent 

symbols, considering this situation we will have the observation signals d(n) and v(n) as follows: 

                  
     (6.12a) 

        
          

       (6.12b) 

                  
     (6.13a) 
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       (6.13b) 

        
  (6.14) 

So we have 5 complex equations in 5 complex unknowns: K1, K2, i(1), i(2) & α1. Theoretically 

these sets of equations are solvable, but practically in order to get an analytical solution for this 

set of equations an assumption was made that the pilot symbols are identical, i.e. s(1)=s(2) 

detailed solution is presented in Appendix C. 

So after some mathematical steps, removed here for clarity, K1 and α was solved to be: 

 
  

  
 

   
         
         

 
 

(6.13a) 

 

   
     

  
     

    
 

            
    

 

    
  

 (6.13b) 

So as given by (6.13a) the filter coefficients are estimated by solving using the observation 

signals d(n) and v(n) for two consecutive symbols. In order to reduce the effect of the additive 

noise and so enhance the estimated output SIR, this operation is repeated over “N” number of 

pilots and then the estimated K1 are obtained by averaging the N outcomes: 

 
      

      
 

   
           
           

 

   

   

 (6.14) 

 

6.2.1.2. Simulation Results 
At first the performance of the proposed method is examined with slow fading conditions, 

plotting the output SIR across the number of pilots “N”, as shown in Fig. 78 as the number of 

pilots increase the output SIR is enhanced proportionally. Then a Rayleigh fading channel is 

used assuming a sampling frequency of 400 KHz with different maximum Doppler frequencies 

and the output SIR is plotted against the number of pilots in Fig. 79 and Fig. 80 showing that the 

Rayleigh fading channel has minimal effect on the proposed IQI compensation method. Finally 

the effect of the additive noise is examined in Fig. 81 by plotting the steady state output SIR 

across the SNR at N=100, showing that the output SIR is decreasing approximately linearly with 

the decreasing SNR. 

Solving the equations simultaneously and solving for K1 might not be the best solution in terms 

of noise averaging, that is why in the next section another approach is proposed in which a 

matrix is generated based on the preamble sequence or the pilot signals and used to null the 

desired signal pilot signal and then using the ratio of expectations K1 and K2 are estimated 

reaching better performance due to the inherit noise cancellation. 
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Fig. 78: Output SIR across number of Pilots “N” , g=1.02, phi=2 degree’s, SNR=35dB with slow fading 

conditions 

 

Fig. 79: Output SIR across number of Pilots “N” , g=1.02, phi=2 degree’s, input SIR=-40dB, SNR=35dB with 

Rayleigh Fading 
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Fig. 80: Output SIR across number of Pilots “N” , g=1.02, phi=2 degree’s, input SIR=-20dB, SNR=35dB with 

Rayleigh Fading 

 

Fig. 81: Output SIR across SNR , g=1.02, phi=2 degree’s, input SIR=-20dB and N=100 

6.2.2.  Data Aided IQI Compensation Using  Full Pilot Design 

6.2.2.1. Mathematical Model 
In this approach we assume that we have (N/L) pilot signals each one is of length (L), where the 

channel fading is assumed to be constant along the L symbols, but not the same across the 

different pilot signals. Using these (N/L) pilot signals a matrix orthogonal to the desired signal 

s(n) is generated and used to estimate the IQI as explained in more details next. 

 
   

         

           
 
   

  
    

  
   

  
   

 
                

 

           

 
   

 (6.15) 

 Where     and      are of length L, then an N/L matrix will be generated each of length L 

such that each one is chosen to be orthogonal to    
 satisfying the condition: 
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  . (6.16) 

A possible candidate for e
H
 that will be used in the proposed model is: 

 
              

      
 

  
   

 (6.17) 

Then these N/L array are used to generate the diagonal matrix E as follows: 

 

    
 
  

  

  
   

   
  

      
 

 

 
 
  

 (6.18) 

Then by multiplying (6.15) and (6.18) we get: 

 

    
 
  

         

  
   

   
  

      
 

 

 
 
  

 

          
  

         
      

 

   

 
    

 

    
  

   

 (6.19) 

From (6.19) and after doing the first multiplication for the RHS we get: 

 

    
 
  

         

   
     

  
     

       

 

 
 
  

 
    

 

    
  

   

  

  
     
 

    
       

      
   (6.20) 

Defining the matrix “X” as: 

 

   

  
   

 
    

 

  
     

 
      

  (6.21) 

we can reformulate (6.21) to be: 

 

    
 
  

         

  
   

 
    

 

  
     

 
      

  
  

  
     

  

  
    

 
 
  

        
 
  

 (6.22) 

And similar to the vector-nulling method from (6.22) the estimate of  
  

  
  

 
 can be obtained as: 

 

   
  

  
   

        
      

   

      
      

   

 (6.23) 

Using the known relation between K1 and K2 with (6.23) we get estimates for K1 and K2 and so 

the estimate for the dual-tap IQI compensation filter coefficients, as: 

 
       

 

   
 
 

,      

   
 (6.19) 

An enhancement can be done of this extended method in which (L-1) orthogonal vector are 

generated for the each pilot signal and used to estimate K1 and K2 instead of the single 
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orthogonal vector generated in our proposed model (e
T
). For L=2 the proposed method and the 

proposed enhancement will be the same because (L-1=1). 

It is worth mentioning that the data aided method depends on the pilot signals, and so it is 

assumed that the location of the pilot signals is acquired, i.e. synchronization had occurred. In 

practical situations to perform synchronization moderate output SIR is required (0dB-20dB). 

Hence to overcome this problem blind IQI compensation or non data aided IQI calibration may 

be conducted first to obtain satisfactory output SIR for synchronization. Then the proposed data 

aided IQI compensation method can be used to enhance the output SIR based on the targeted 

value. Alternatively, joint IQI compensation and carrier frequency offset (CFO) synchronization 

tevhniques may be applied that use the pilot signals to jointly track CFO and IQI [46]. 

Although the data aided method had been driven and implemented for a single transmitter and 

receiver, it can be extended to higher number of transmitters and receivers (frequency selective 

channels), which will be left as a future work. 

6.2.2.2. Simulation Results 
The performance of the proposed method is examined with Rayleigh fading channel conditions 

using a sampling frequency of 400 KHz with different maximum Doppler frequencies, the output 

SIR is plotted against the number of pilots in Fig. 82 and Fig. 83 showing that the Rayleigh 

fading channel has minimal effect on the proposed IQI compensation method, and that as the 

number of the pilots “N/L” increases the output SIR increases proportionally as well because of 

the noise averaging achieved in (6.18) using ratio of expectations, reaching better performance 

compared to the dual-tap IQI compensation using method of moments. Also the output SIR 

across the input SIR in Fig. 84 showing that similar to the vector-nulling method a constant 

output SIR is satisfied across the input SIR range. Finally the effect of the additive noise is 

examined in Fig. 85 by plotting the steady state output SIR across the SNR at N=100, showing 

that the output SIR is decreasing approximately linearly with the decreasing SNR. 

 

Fig. 82: Output SIR across number of Pilots “N/L” , g=1.02, phi=2 degree’s, input SIR=-20dB, SNR=35dB 

with Rayleigh Fading, L=2 
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Fig. 83: Output SIR across number of Pilots “N/L” , g=1.02, phi=2 degree’s, input SIR=20dB, SNR=35dB 

with Rayleigh Fading, L=2 

 

Fig. 84: Output SIR across input SIR for different SNR values, g=1.02, phi=2 degree’s 

 

Fig. 85: Output SIR across SNR , g=1.02, phi=2 degree’s, input SIR=-20dB and N=100  
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7. Conclusion 
 

This work represented a review for the basic receiver architectures followed by a 

summary for the mostly used image reject receivers, explaining the IQ mismatch problem and its 

effect on the image rejection ratio, then a more detailed review where introduced for the IQ 

mismatch calibration and compensation techniques. After doing a comparison between the 

different IQ imbalance compensation techniques a mathematical formulations was performed for 

the single-tap IQI compensation method using LMS algorithm introduced in the literature and a 

new implementation was proposed for the single-tap IQI compensation using the non feedback 

based method of moments approach and compared to the LMS approach introduced in the 

literature, showing that the proposed approach achieves better output SIR and/or better 

convergence time while the LMS algorithm implementation responds better to the time varying 

IQI. The signal leakage problem suffered by the single-tap IQI compensation was discussed and 

another approach was proposed to compensate for the IQI using dual-tap filter in order to avoid 

the signal leakage problem enhancing the output SIR at moderate and high input SIR values. At 

first a dual-tap IQI compensation technique was proposed using the method of moments, in this 

method the input SIR is estimated and used to optimize for the number of samples required to 

perform the IQI compensation showing a huge saving across the input SIR range, another use for 

this estimated input SIR is to select between the single-tap and the dual-tap IQI compensation 

methods based on the input SIR and so optimizing between performance and complexity. After 

that a dual-tap IQI compensation method is proposed using LMS algorithm proposing a 

simplification on the method already introduced in the literature, simulation results shows that 

the performance is not affected achieving a less complex solution. The two dual-tap IQI 

compensation methods were compared showing that the non feedback based (non iterative) 

approach achieves higher output SIR and/or better convergence time but the iterative approach 

responds faster to the time varying IQI values.  

After proposing those new methods for blind IQI compensation, a new data aided technique was 

proposed exploiting pilot training sequence within the desired signal, the first approach is 

exploiting a preamble pilot signal being suitable for slow fading across the preamble size, while 

the second approach is more general exploiting pilot signals being suitable for fast fading as 

well, simulation results showed that the performance of the second approach was not affected by 

the Rayleigh fading model. At high SNR values the proposed data aided IQI compensation 

technique achieved output SIR that is higher than the dual-tap blind IQI compensation method 

and at much less convergence time. 
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Appendix A (Derivation of LMS Update Equation) 
 

The least mean square algorithm is used to adjust the weights of an adaptive filter (W) 

minimizing the mean square of the error signal (y), where the error signal is simply the 

difference between the input signal (d) and the reference signal (v) multiplied by the filter 

coefficient (W) that need to be adapted as was shown in Fig. 40, so the error can be expressed as: 

                  (A.1) 

In the LMS algorithm an approximation is done, compared to the minimum mean square error 

(MMSE), is to minimize the instantaneous squared y(n) signal instead of the mean squared y(n) 

signal, this is done because practically it is hard to implement the MMSE, so there is a 

compromise between the simplicity of the algorithm and the performance, in most of the cases 

the performance of the LMS algorithm is satisfactory and that is why it is the mostly used 

algorithm in the adaptive techniques. 

Applying that to (A.1): 

            

  
                            (A.2) 

 

So the filter coefficient will be updated based on this gradient coefficient (A.2) using the steepest 

descend algorithm as follows: 

 
              

      

  
                              

                  

(A.3) 

Equation (A.3) shows that the filter coefficient is updated by multiplying the error signal by the 

input signal, that is why to use LMS the input signal  y(n) and the error signal v(n) must be at the 

same frequency (dc or other frequency) that is why in [27] two extra mixers where added. 

The previous analysis shows that the LMS is a suboptimal solution for the MSE steepest 

descend, and the excess error added due to the usage of the LMS algorithm depends on the 

update coefficient rate (µ) having a tradeoff between the achievable steady state excess error and 

the settling time. 

Proving that        
  using equation (5.17) and (5.18) we can derive the relation between 

W1 and W2, at first K1 & K2 will be redefined as: 

 
   

                  

 
 (A.4) 

 
   

                  

 
 (A.5) 

 

so     
  and     

  can be defined as: 
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 (A.6) 

 
    

  
                              

 
 

             

 
 (A.7) 

So the denominator of (5.17) & (5.18) can be defined as: 

     
      

          (A.8) 

So using equation(B.4), (B.5), (B.6) & (B.7) in equation (5.17) & (5.18) we get: 

 
             

 

        
 

 

 
   

      

 
 (A.9) 

 
             

 

        
 

 

 
   

      

 
 (A.10) 

From (A.9) and (A.10) we can notice that the imaginary parts of    &    are equal, while there 

is a constant difference between the real parts equal to one, this can be summarized as: 

                      (A.11) 

So only W1 need to be obtained iteratively and W2 can be obtained using (A.11), and so the 

updating equation for this modified IC technique will be: 

                          (A.12) 

                                         (A.13) 
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Appendix B (Solution of Non Linear Simultaneous Equations for Blind 

IQI Compensation) 
 

K1 and K2 are two complex quantities while Ps and PI are two real quantities so we have 

effectively 6 real unknowns, in the same time we have (5.11a) and (5.11b) as two real equations 

and we have (5.11c) and (2.13) as two complex equations, so effectively we have 6 real 

unknowns in 6 real equations and that is why they are solvable. To solve for K1, K2, Ps and PI 

using (5.11) and (2.13) we start by using (2.13) to get the magnitude squared of K2 as: 

     
                

  (B.1) 

   

Substituting by (2.13) and (B.1) in (5.11) we get: 

                        
                 (B.2) 

                        
                 (B.3) 

                      
          (B.4) 

 

Adding (B.2) to (B.4) and (B.3) to (B.4): 

                                       (B.5) 
                                       (B.6) 

 

In order to decouple K1 from (Ps+PI) we first solve for (Ps+PI) as: 

                     (B.7) 

 

Then K1 can be solved using (B.5) and (B.7): 

 
         

       

           
 (B.8) 

 

Using (B.8) into (B.2) and (B.3) to get the real part of K1 as: 

                      
                

                     
   

(B.9) 

 

By solving quadratic equation (B.9) the real part of K1 is solved as: 

 
       

       

 
 (B.10) 
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where: 

              
 

 
                     

                                       
 

(B.11) 

So now we estimated K1, Ps and PI can be estimated by substituting from (B.8) and (B.10) into 

(B.2) and (B.3) as: 

 
   

    
                

           

     
         

   
 (B.12) 

 
   

               
   

    
 

 (B.13) 
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Appendix C (Solution of Non Linear Simultaneous Equations for Data 

Aided IQI Compensation Using Pair of Pilot Signals) 
 

In order to solve for the 5 complex unknowns using the 5 complex equations defined as 

(6.12), (6.13) and (6.14), we start by substituting from (6.14) into (6.12) and (6.13): 

                    
        (C.1a) 

                     
       (C.1b) 

                    
        (C.2a) 

                     
       (C.2b) 

At first we will omit i(1) from (C.1a) and (C.1b) to get : 

 
                    

  
             

    
   (C.3) 

Similarly i(2) will be omitted from (C.2a) and (C.2b) to get: 

 
                    

  
             

    
   (C.4) 

And so (C.3) and (C.4) are two complex equations in two complex unknowns K1 and   . 

Solving these two equations analytically is very complicated, so in order to simplify it to reach a closed 

form solution an assumption will be made that the pilot signal s(1) and s(2) are equal, in that case (C.3) 

and (C.4) can be solved as: 

 
                      

  
 

    
             (C.5) 

Then (C.5) is used to solve for K1 and so for K2 using (6.14) as: 

 
  

  
 

   
         
         

 
 

(C.6) 

So as K1 is available now it can be used into (C.3) or (C.4) to obtain the channel fading 

coefficient as: 

 

   
     

  
     

    
 

            
    

 

    
  

 (C.7) 
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