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Summary This study proposes the design and construction of a concrete 

spherical cap composed of uniformly-shaped precast doubly-curved 

panels based on spherical division techniques. A numerical 

structural analysis is conducted to study the failure behavior of the 

segmented structure and the capacity of the joints by using finite 

element modeling techniques to model the concrete material 

behavior, boundary conditions and intermediate joints of the precast 

panels. An experimental analysis is conducted to verify the capacity 

of the structure and the reliability of the modeling techniques, and to 

study the feasibility of the proposed panel prefabrication and 

assembly method. The results of this study demonstrate that the 

proposed precast system and connection design perform efficiently 

when compared to the monolithically-cast counterpart, particularly 

under uniform loading conditions. Additional insights on the 

properties and solution parameters of finite element modelling of 

concrete shell structures are presented based on the structural 

analysis of this work. The study concludes the ability of the 

proposed geometric design and construction method to enhance the 

prefabrication and construction efficiency with little effect on the 

structural capacity within the context of the selected geometry and 

conducted load tests, and recommends further parameters to study 

for design and construction optimization. 
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1. INTRODUCTION 

 

The dome is one of the most efficient and inherently stable structures by virtue of its 

spatial form and load-carrying mechanism. The dome, or spherical cap, is a doubly-

curved shell structure; a non-developable surface that is stronger and more stable than 

other singly curved shell structures. 

In addition to the stable form, shell structures, in general, carry applied loads by 

an efficient mechanism known as the membrane action, as opposed to the generally less 

efficient bending action in framed structures. The membrane action consists of in-plane 

normal and shear stresses only, which enables a shell with a small thickness to absorb 

very large loads with relatively low in-plane stress resultants. Consequently, shell 

structures have a high strength-to-weight ratio compared to other structural systems, and 

are able to cover large spans with very small thicknesses.  

In general, bending stresses may develop in some regions of structural shells to 

satisfy equilibrium requirements, but they are generally of local effect, and are limited to 

the vicinity of loads or deformation incompatibilities, thus leaving the shell behaving 

mostly as a pure membrane.  For dome structures, for instance, these effects are 

inevitable in the vicinity of the boundary, where, geometrically speaking, the dome 

diverges from the form of a complete sphere, or structurally speaking, from the clamped 

boundary condition assumed by the membrane theory. Hence, the dome requires a 

supporting structural member to absorb the large horizontal thrust at its boundary. The 

supporting member is commonly referred to as the dome ring. 

Reinforced concrete domes, in particular, are used to cover large-span halls and 

stadiums, liquid retaining structures, and containment structures where usually only a 

vertical support is available. Consequently, a reinforced concrete dome is almost always 

bounded by an edge ring beam to absorb the horizontal force and provide lateral support 

to the structure, which can be considered equivalent to a tie in frame structures [44]. As 

mentioned above, the presence of the ring beam at the boundary gives rise to a bending 
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field between the shell and the ring in order to satisfy deformation compatibility at the 

boundary. A conventional analysis of the dome behavior, thus, requires an analysis of the 

membrane effects and the bending effects, followed by a superposition of both to find the 

total shell forces. The analysis must consider the dome-ring interaction, the edge bending 

edge effects, and the straining actions on the ring beam resulting from the shell hoop and 

radial forces, and the resulting torsional moment on the ring, so that the structural 

members can be designed accordingly. 

However, unlike other structural systems, the design of shell structures is not 

mainly governed by material strength requirements for the calculated level of stresses in 

the shell, which is usually very low. Instead, a mostly governing criterion is the stability 

of the shell, more commonly referred to as the resistance to buckling failure. The 

buckling phenomenon refers to a form of instability of thin shells subjected to 

compressive forces. The reason why it is paramount for the design of thin-shells is that 

the loss of stability means that a small change in a system parameter (the load for 

example) results in a major change in the existing state of the system (large deformations) 

[44]. Consequently, buckling failures of thin-shells are usually sudden, catastrophic and 

accompanied by very large deflections, making the resistance to buckling one of the 

major factors in the design of the shell. A huge number of research studies were, 

consequently, devoted to studying the stability of shells, and understanding their 

behavior, modes of failure and failure limits in order to provide reliable design guidelines 

for engineers. Stability of the shell is highly dependent on its geometric parameters; the 

rise-to-span ratio and the radius-to-thickness ratio. This fact makes the thickness of the 

shell a paramount factor affecting the shell stability, and gives rise to a characteristic of 

the shell known as ‘imperfection sensitivity’. The imperfection sensitivity of shell 

structures infers that the buckling load of the shell is significantly reduced by the 

presence of initial geometric imperfections in the shell form including thickness 

variations and changes in the radius of curvature. 

As a direct consequence of this sensitivity, the construction method of the shell 

structure has become a major factor in the design process. This is because the shell 
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requires elaborate and highly accurate formwork, careful casting process and quality 

control, and very skilled labor to minimize the inevitable form imperfections as much as 

possible. 

The demanding nature of shell construction, and of particular concern here dome 

construction, has led to undermining the efficiency of the very strong structure, causing a 

recent decline in using domes, in general, and resorting to other structural systems. At the 

same time, it also led engineers to search for alternative construction methods that can 

increase the efficiency of the construction process including reusable formworks and 

prefabrication techniques, which aim to reduce the difficulties associated with the 

elaborate and labor-intensive construction of concrete shell structures. Of concern to this 

study, prefabrication techniques were applied to concrete shell structures in building 

complete shell segments or partial shell elements that are assembled to create the final 

membrane structures. These techniques, however, did not find as much popularity with 

shell structures as they did in skeletal structures due to the accompanying design and 

construction difficulties that were generally not given due research attention, as will be 

discussed in the literature review. The use of these techniques is reconsidered in this 

study while different design and construction methods are proposed for overcoming the 

associated disadvantages, and enhancing the overall structural and construction 

efficiency. 
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2. OBJECTIVE 

 

The objective of this study is to develop a precast concrete spherical cap structural system 

which eliminates the disadvantages associated with the construction of cast in-situ 

concrete shells while maintains the structural efficiency of the double-curvature shell 

structure. 

The motive for this work is the documented efficiency and popularity of precast 

construction in concrete skeletal structure, while at the same time, that type of 

construction was rarely applied to shell structures due to the introduced geometric 

difficulties that arise with dividing shells and obstruct the reusability of precasting molds, 

and the uncertainty of the structural behavior of segmented shells with the introduced 

intermediate joints. Consequently, this study aims to partially address the issues 

associated with segmental construction of concrete shells in a simple yet difficult to 

geometrically standardize structure; the dome. Accordingly, the scope of work is thus 

divided into four parts. 

The first part of this study addresses the geometric considerations of the structure 

and attempts to explore the different possible divisions of the dome, determine the 

optimum division for the present application, which is defined as the division that 

produces the least number of unique panels for the whole structure, and thus increases the 

efficiency of the prefabrication process through the reusability of molds. It is attempted to 

clarify the various relationships between the division type, and the number of panels, 

panel sizes and weights, so as to provide the engineer with helpful geometric 

relationships that can help determine the best geometry for each application. 

The second part attempts to study the structural behavior of the proposed 

segmented dome-ring structure using finite element modelling. Initially the structural 

behavior of the dome as cast monolithically is studied to provide a reference for 

comparison, and then the inter-panel joints are introduced to the model to study their 

effect on the stability behavior and overall capacity of the structure. The study initially 

used linear elastic modeling to verify the model and provide an estimate for the capacity 
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of the structure. Next, the modeling was extended to include large displacement, inelastic 

material properties, concrete cracking, various boundary and loading conditions, and 

various panel contact parameters to represent the effect of segmentation and the 

introduced joints to the structure. 

The third part of the study presents a construction plan for the proposed structural 

system, and investigates the behavior of the structure during construction. Different 

scaffolding configurations are explored for supporting the construction and a final 

temporary supporting plan and assembly sequence are presented. This was done in 

collaboration with a numerical analysis that considers the arising deflections in the panels 

under their temporary support conditions. The section aims to provide a feasible 

assembly sequence for the general application of the structural system, and also for the 

constructed scale model. 

The final part of this study is an experimental analysis on a 1:10 scale model of 

the structure. The main objective is to determine the ultimate load capacity and failure 

mode of the proposed segmented structure. Additionally, the experimental investigation 

also serves to provide insight on the feasibility of mold design and fabrication, the 

problems associated with the assembly of the structure’s panels, and the overall behavior 

of the structure during construction. Three different loading tests are performed on the 

structure, and the results are compared to those of the finite element analysis and 

analytical formulas provided in the surveyed literature. The problems that arose during 

each stage of the experimental analysis were documented for consideration, and proper 

recommendations to address those problems were made accordingly. 
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In the following chapter, the timeline of the development of concrete shell 

construction and analysis in the literature is presented. In the first section, the 

development of concrete shell construction is discussed starting from conventional in-situ 

concrete construction methods and through the different attempts by various engineers to 

optimize the construction and find more efficient techniques. The significance of one 

particularly relevant structure ‘the geodesic dome’ shall be discussed in relation to shell 

construction applications, and finally some of the prefabricated shells will be reviewed. 

Although a few project reports and research studies discussed the process of constructing 

the shell segmentally using prefabricated units, the idea did not seem to be extensively 

applied nor structurally analyzed to provide a sound and reliable basis for a standardized 

design of a segmental concrete shell that takes into account geometry optimization, 

structural stability and ease of construction. 

The second section of the chapter discusses the stability of shell structures, and 

particularly concrete spherical caps, in due depth. As mentioned above, the stability of 

shells is a paramount and mostly the major concern of shell design. The stability behavior 

of shells happens to be significantly affected by geometric form imperfections, geometric 

nonlinearity, material behavior, boundary conditions, among other factors. It is seen that 

that until today, research studies continue to seek proper definition of the properties of 

concrete spherical caps, and the effects of the concrete material and its associated 

nonlinearities on the short-term and long term capacity of these caps. It is also seen that 

virtually no studies were found on the stability behavior of segmental concrete domes, or 

the use of numerical models to simulate their behavior. Consequently, although the 

present study only deals with a specific geometry, it also serves to promote attention 

toward the possibilities of panelizing concrete domes, and experiment with different 

possible methods for the numerical modeling of segmented concrete shell structures.  
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3. LITERATURE REVIEW 

 

3.1. Modern History of Concrete Shell Construction 

3.1.1. The Concrete Shell Structure 

The era of reinforced concrete shell design started in 1920s.  According to a historical 

review of concrete shell development by Peerdeman [89], the completion of the Carl 

Zeiss Planetarium dome in Germany (1925) marks the beginning of modern large-span 

thin reinforced concrete shell structures, where engineers took advantage of the tensile 

capability of reinforcing steel to overcome concrete shell tension problems which 

previously posed limitations on shell thicknesses and spans. The Carl Zeiss Planetarium 

dome, shown in Fig. 1, is 60 mm thick and covers a span of 25 m and is bounded by a 

ring beam to absorb the horizontal thrust in the lower region of the dome [53]. The dome 

had a triangular steel grid in-place acting as both a framework and shell reinforcement 

that was then coated by shotcreting over the wooden formwork; a construction system 

that was later awarded a patent, Zeiss-Dywidag system [18]. After the success of Zeiss-

Dywidag system; the triangular steel grid system encased by concrete, it was used in the 

construction of many shell structures in Europe and the United States through the 1930s. 

 

Fig. 1: Carl Zeiss Planetrium (www.wikimedia.org) 

At that time, the steel grid system of Carl Zeiss began to take a life of its own by 

laying the foundation for the geodesic dome, fully developed and patented by 
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Buckminster Fuller. The development and significance of the geodesic dome shall be 

discussed in the following section. 

The trending of shell construction, though, can be traced to post world war II, 

where the low cost of labor, shortage of materials, and need for many new buildings 

provided a suitable atmosphere for the flourishing of shell construction [89]. 

Consequently, although shell construction was a “labor intensive” process, the material 

efficiency of the shell was a needed advantage that led to the popularity of shell 

structures throughout the world in the between 1950s and 1970s. 

A shift towards shell slenderness, free curved edges with no ring beams, and 

elegance of form was seen at that time, inspired by prominent shell engineers such as 

Felix Candela, who built over 300 shells in two decades [89]. Candela is responsible for 

the trending of the hyper parabolic shell form, referred to as the hypar shell, in the 1950s, 

with the most famous design being the Los Manantiales restaurant in 1958, which was 

later copied by many other engineers and has been studied for its structural efficiency 

even till today [22]. The famous structure (shown in Fig. 2) consists of four intersecting 

hypar shells of a 40 mm thickness and a span of 30 m [36]. The horizontal forces are 

absorbed by tension rods connecting the supports under the ground level [22]. Candela’s 

work, then, sponsored the rising of the value of concrete shell structures in architecture, 

with architects using shells for commercial construction purposes, rather than the 

previously industrial and military nature of shell construction. 

 

Fig. 2: Los Manantiales restaurant by Felix Candela (www.structurae.co.uk) 
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Along with free-form exploration, shell engineers started looking for ways to save 

construction time and costs, and eliminate the form and surface finish problems 

associated with the elaborate formwork of shell structures. A preliminary attempt was by 

the Italian engineer Pier Luigi Nervi in constructing airplane hangars between 1939 and 

1942 as large cylindrical shells with stiffening ribs over a maximum span of 50 m. The 

hangar design was based on a steel grid that was encased with cast-in-situ concrete. 

However, the problems associated with pouring concrete over wooden formwork and the 

subsequent form imperfections in the first set of hangars (1935- 1938) led Nervi to pursue 

a completely different construction approach for the second set (1939- 1942); 

prefabrication. The stiffening ribs were designed as lightweight lattice ribs made of 

prefabricated parts on-site that were assembled in a fast and efficient erection process, 

and cast-in-situ concrete was only used at maximum stress locations. At the joints 

between the precast elements, the steel was welded and high strength in-situ concrete was 

poured in the stitches [41]. 

Another later attempt by the same engineer was the use of ferrocement in the 

construction of double-curved shell roofs for the 1960 Olympic Games. Nervi used 

ferrocement (layers of steel meshes coated with cement mortar creating thin sheets) as 

prefabricated moulds for the shell construction, where the prefabricated ferrocement 

molds were assembled then filled with cast-in-situ concrete [41]. Prefabrication 

techniques were also used by French engineer Nicolas Esquillan who, beside the use of 

prefabricated elements, used reusable movable formwork for in-situ concrete casting of 

shell segments [89]. 

The need for such efficient construction methods was amplified in the late 1960s 

where the labor costs increased. According to Peerdeman [89], the curved formwork 

supported on steel framework of shells had become too expensive and time-consuming, 

compared to other structural systems. 

The use of standardized construction techniques and resuable formwork showed 

significant progress when Swiss engineer Heinz Isler developed the ‘bubble shell’ in the 

early 1950s, in collaboration with Bösiger Construction Company. The bubble shell is a 
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shell construction technique of standardized sizes and resuable formwork allowing for an 

efficient and economic construction process. The standardized bubble shell comprising a 

prestressed ring beam and four supports for transferring the vertical load was used mainly 

for industrial units. Isler constructed about 749 bubble shells between 1956 and 1985, and 

standard reusable formwork was developed for the construction, in collaboration with the 

Bösiger Construction Company, for shell spans mostly between 14X20 m and 25X25 m 

with thicknesses of 80-100 mm [34]. 

Beside the bubble shells, Isler is also famous for free-form shells, where he 

ditched edge beams and experimented with different free-forms, most prominently the 

structurally efficient inverted hanging membrane shells. Based on his experience with 

shell structures, Isler has written guidelines for engineers concerning stability of shell 

structures, and the design and construction factors that reduce the shell capacity, which 

will be discussed in the next section as part of the literature on stability of concrete shells. 

Shell construction, however, experienced a falling out in the 1970s when the 

construction of shells became too expensive compared to other structural systems with 

regard to the associated cost of labor and formwork, and also the associated difficulties in 

conducting proper analysis of the structural behavior of shells [89]. Consequently, 

according to Peerdeman [89], the large-scale usage of shells died out, and the only shells 

that were built were those with standardized cost-saving construction techniques and 

shell structures built for industrial purposes. 

One auspicious technique that arose to achieve fast and economical shell 

construction was the use of inflated membranes to act as formwork for the construction of 

reinforced concrete domes. The system was developed in the 1940s (a patent by Wallace 

Neff in 1942), but was extensively applied in the 1970s [89] when the Monolithic Dome 

concept was developed by Barry, Randy, and David South (patent in 1979). The 

monolithic dome was based on using an airform or a fabric form sprayed with a layer of 

polyurethane foam to provide form rigidity, support the placement of reinforcement and 

concrete, and provide insulation for the structure if needed, then steel rebar is attached to 

the form and concrete is sprayed. The method (shown in Fig.3) allows for a very fast 
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construction process and the airform can be deflated and reused multiple times. 

Consequently, the monolithic dome system has gained popularity, was used for 

construction of houses and commercial facilities, and is still in use today due to both the 

efficient construction and the structural strength of domes [2]. 

 

Fig. 3: The Monolithic Dome [2] 

Another construction technique was the segmental construction of shells where 

the shell was divided into elements that were efficiently assembled, eliminating the 

elaborate formwork and the demanding construction process. The grid shell, which was 

built of linear or curved triangular or quadrilateral elements and was made to behave as a 

shell membrane using internal tie rods, was developed in the 1960s by Frei Otto and was 

commonly built of steel and timber [89]. 

The next type of grid shell is the famous geodesic dome which was fully 

developed by Richard Buckminster Fuller and his collaborates, and laid the base for the 

technique of using spherical subdivision for panelizing dome structures. 
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3.1.2. The Geodesic Dome 

As mentioned above, one approach to facilitating dome construction, although not 

extensively applied to concrete systems, was the geodesic dome.  The geodesic dome can 

be defined as “a three-way grid of great circles” [90] or as defined by Fuller’s 1954 

patent “A framework of generally spherical form, in which the main structural elements 

form a substantially uniform overall pattern of great circle arcs intersecting in a three-

way grid” [90]. This grid is accomplished by “creating a spherical version of a planar 

polyhedron and subdividing its faces with a grid”. More literally, it is a spherical grid of 

triangles with unique division patterns. These division patterns vary greatly and some of 

them have incredibly important characteristics in terms of manufacturing and assemblage 

practicality. The first person to recognize the value of spherical polyhedral and 

subdivision grids to architectural construction is Buckminster Fuller, the inventor of the 

geodesic dome; and most subdivision techniques used today in many more fields than 

structural systems were developed in the late 1940s and 1950s by Fuller and his 

associates to build geodesic domes [90]. The importance of Fuller’s work lies in his 

highly creative results that still favored manufacturing techniques. 

Examples of early geodesic domes include the US pavilion, Expo ‘67 in Montreal 

(shown in Fig.4), Epcot center at Disney world in Orlando, and La Géode Theater in 

Paris. Geodesic domes were built in many sizes and diverse materials including wood, 

plastic sheets, metal sheets, foam panels, cardboard, plywood, bamboo, fiberglass and 

concrete. The concept of the geodesic dome, or uniform spherical subdivision in general, 

was extended to a lot of other fields than construction including astronomy, weather 

prediction, materials science, virology, computer architecture, and dimple patterns on 

golf balls. 
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Fig. 4: US pavilion, Expo ‘67 in Montreal (www.columbia.edu) 

The stability and rigidity of the geodesic structure is inherited from the original 

basic platonic solid of the design, most frequently an icosahedron, tetrahedron or 

octahedron (solids with equilateral triangular faces). The icosahedron, in particular, is the 

most used polyhedron for spherical subdivision [90] since it provides the highest number 

of identical regular triangular faces, which translates in construction applications to 

efficient prefabrication and reusing of molds. The search for the most optimum 

subdivision technique is, however, not as straightforward. Much experimentation was 

conducted by Fuller, his collaborates and his successors on finding optimum spherical 

subdivision techniques. In fact, whole books were written on the matter including 

Divided Spheres (latest publication in 2012) which explores mainly the different 

techniques of spherical subdivision and produces comparisons between their different 

characteristics that provide an industrial edge in various applications. Divided Spheres 

[90] is referenced in the methodology section of this study quite frequently, since it was 

used for selecting the optimum geometry for the dome in this study. Another significant 

work on the matter was Joseph D. Clinton report for NASA, 1971 [35] on the formulation 

of mathematical models for the subdivision of polyhedral and the structural applications 

of the resulting “spherical space frames”. 
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3.1.3. The segmental Precast Concrete Shell 

Although the research on the structural applications of spherical subdivision presented an 

auspicious for space frame structures, as seen in the development of lattice structures, 

particularly lattice domes built as space frames of steel members, it did not seem to find 

much application with concrete shell structures. 

As previously mentioned, prefabrication of shell elements started as early as the 

1940s in attempts of engineers to optimize the shell construction process, and later the 

prefabrication of small shell parts developed to a prefabrication of large shell segments 

such as the Stuttgart Federal Garden Fair shell in 1977, which is made of eight large 

prefabricated shell segments [89]. However, standardized prefabrication of shell concrete 

elements did not seem to have had much research support or application. The use of 

prefabrication techniques was being applied to skeletal concrete structures. In framed 

structures, the use of standardized precast concrete members highly increases the 

efficiency of construction. The prefabrication process allows both a high level of quality 

control of the precast panels, and a speedy erection process with no formwork, and 

minimum faslework. 

The application of precasting techniques to curved spatial structures is not as 

straightforward, though, especially with the dome whose structural efficiency arises from 

its complete form. Thus, dividing the dome into individual panels introduces some other 

construction difficulties and new structural loads to be taken into account in the analysis 

process. Another structural concern raised by the prefabrication technique is preserving 

the continuity of the final structure, i.e. achieving full transfer of the loads across the 

joints between the precast concrete panels. 

A third concern in panelizing dome construction is the cost of manufacturing the 

panels themselves. The efficiency of the precast construction is achieved through 

standardization of modules, meaning that the structure is divided into groups of identical 

parts that are fabricated using the same mold. The more standardized building parts are, 

the more times molds are used and the fabrication process is optimized. In dome 

structures, as mentioned in the previous section, this panelization process is not as simple 
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or direct as most skeletal structures. A large span dome is not readily divisible into 

groups of maneuverable parts with convenient weights and identical shapes. 

Consequently, using precasting techniques in constructing concrete domes requires more 

planning and analysis effort in order to optimize the manufacturing and assembly 

process, and preserve the strength and stability of the final structure. 

The first geodesic concrete dome is the Cinerama theatre, California in 1963, 

although about 2000 geodesic domes of different materials were built prior to that project 

[65]. The dome has a diameter of 41 m, a rise of 15.7 m and consists of 316 precast 

concrete hexagonal and pentagonal panels of 16 different sizes, requiring 35 different 

configurations for the panels’ steel reinforcement. The author noted the very high 

dimension precision required for the production of the panels, along with proper curing to 

minimize drying shrinkage. The dome was supported by a post-tensioned ring beam cast 

monolithically with the supporting wall of the structure. For the panels’ assembly, a 

wooden deck was placed at the ring beam level with steel scaffolding on top of the 

platform to support the placement of the panels, which weighed about 2.85 tons, using 

cranes [65]. 

Another segmented precast concrete dome with a different division pattern was 

featured in literature in 1969 [37]. The author described the construction process of a 45.7 

m diameter reinforced concrete dome from precast panels, with minimum formwork and 

equipment for erecting the structure. The dome division pattern was in both radial and 

circumferential directions giving six differently sized prefabricated units. The precast 

panels are connected by cast-In-place slots of concrete, and the ring beam was also made 

of 16 precast concrete segments tied together with cast-in-place concrete slots. The 

construction of the system was implemented using only steel falsework and no formwork. 

However, no design basis was provided and no stability analysis was carried out. 

A barrel vaulted roof, designed by Studio Nervi of Rome in collaboration with 

South African architect Colyn & Meiring, was reported in 1977 [1] to be constructed of 

892 light-weight reinforced concrete shell panels covering a span of about 85.3 X 85.3 m. 

The shell panels are equilateral triangles of 28 different unique sizes; the lengths of the 
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panels range between 3.5 and 4 meters, while the thickness ranges between 0.46 and 0.76 

m, resulting in a total panel weight between 1.5 to 6.5 tons [1]. The roof is supported on 

four arch beams transferring the loads to the supports, as shown in Fig.5 [1]. The report 

indicates that the construction of the shell panels was supported on 364 steel frame 

towers that were braced horizontally.  

 

Fig. 5: 1977 barrel vaulted roof of concrete triangular panels [1] 

 

In 1982, another segmental concrete shell design was implemented with no 

formwork, as well [74]. The shell had a square base plan, thus making it easier to divide 

the shell surface into substantially equal square precast concrete elements, as shown in 

Fig.6 [74]. The authors described the construction of the concrete shell using only one 

module, i.e. identical precast concrete elements. They noted, however, that the curvature 

angle of the dome elements increased as the elements got closer to the dome apex, yet 

they were able to overcome this non-consistency by allowing some variance in the width 

of the joints between the precast elements. These joints were later filled with cast-in-

place concrete. 
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Fig. 6: Panels of the segmented concrete 

shell reported by Kaplunovich and Meyer 

[74] 

Fig. 7: Stiffened precast concrete panel in [74] 

 

The precast concrete panel of the shell was stiffened by ribs along its edges and 

the two diagonals. The 30 mm thick top part was reinforced with welded wire fabric, 

while the ribs were reinforced with 20 mm steel bars, as shown in Fig.7 [74]. Two 

flanges were integrated onto two perpendicular edges of the element as shown in the 

figure. These flanges acted as resting beds for the neighboring elements to be supported 

on the already installed one. The design of the joints also required the protrusion of the 

reinforcing steel bars of each panel, and then the bars of adjacent panels were welded 

together before filling the joint with concrete as mentioned above. 

Kaplunovich and Meyer [74] proposed a construction process which used 

temporary falsework consisted of four corner ties, as shown in Fig.8 [74], for  stiffening 

the edge beams against temporary horizontal thrust forces that developed during the early 

stages of construction where the assembled elements resembled cantilevered arches [74]. 
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Fig. 8: Shell Plan showing corner ties and assembly of corner panels [74] 

The concrete precast elements were then placed starting from the corners where 

each unit rested directly onto the flange of a previously installed unit, supported 

completely by a cantilever bending action. After installing each unit, the reinforcing bars 

were tied to the bars of the previous unit, and then the joint is filled with cast-in-situ 

concrete. Consequently, the elements were supported by two actions: the cantilever 

bending of the elements and the arching action of each corner arch, until enough elements 

were assembled to connect the four corner arches allowing for the shell membrane action. 

The authors discussed in detail the deflections of the shell elements, particularly 

those induced during the construction stage when the assembled precast elements worked 

as cantilevers before enough elements are assembled to produce the dome action. They 

noted that the deflections of each element were different during each stage of the 

construction process, which also emphasized the need for comprehensive construction 

stage analysis. The authors used one of the scale models they developed to measure the 

deflections of the individual shell panel during the construction process and created 

histograms for the deflection patterns at each stage. Fig. 9 and Fig.10 [74] present an 

explanation of the deflection pattern vs. the assemblage history of the typical shell panel. 
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The authors, however, did not conduct a stability analysis of the shell, and 

indicated that such analysis, along with the appropriate analytical formulas, is needed for 

standardizing the design and construction procedure. 

In other later works, a trend of using segmented shell structures for low-cost and 

efficient small-scale housing was noted. Examples are the construction method proposed 

by Habib, 1993 [55] of a hyperbolic paraboloid shell roof built of ferrocement flat 

triangular panels, and the construction of geodesic domes made of polystyrene panels 

encased by a reinforced concrete layer [66]. 

Frank J. Heger [62] discussed the design of a precast concrete dome used for 

water and waste water tanks, regarding the resistance to buckling as the primary design 

parameter. The dome was constructed of differently sized precast elements combined 

with monolithic circumferential rings between each row of precast panels; these 

circumferential rings were considered to be the only source of effective circumferential 

stiffness. Heger dicussed the reduced buckling resistance of the precast dome, compared 

to its monolithic counterpart, due to the rotational flexibility of joints, and the absence of 

continuous reinforcement across the joints. This reduction in capacity was taken into 

account with a recommended correction factor. 

A few large-scale segmented shell structures were reported in the literature in the 

past few decades. The 1997 aircraft museum in Duxford consists of a singly curved 

Fig. 9: Deflection of a typical 

shell panel [74] Fig. 10: Deflection histogram of point a 

in Fig. 9 [74] 
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vaulted roof over a 90 m span, shown in Fig.11. The structure is segmented in a way that 

creates identically shaped and curved precast reinforced concrete elements, except for 

those at the edges of the structure which have various different shapes. The elements are 

designed in a stiffened T-shape with a 100 mm thick topping slab. After element 

assembly, a wet connection is created at the concrete stitches between the elements by 

placing steel reinforcement and in-situ concrete. The construction was supported by 

temporary scaffolding that held the elements in place until hardening of the concrete 

connections [39]. 

 

Fig. 11: Aircraft museum in Duxford (www.wikimedia.org) 

 

Another prefabricated shell project is the canopy shed system of Shawnessy light 

rail transit station, Canada, in 2003, although on a smaller scale. The canopy system, 

shown in Fig.12 [6] consists of only two segments prefabricated and connected through a 

bolted connection at the upper part of the shell, to a slightly curved base using reinforced 

ribs, and to a tie beam across the open base (see Fig.12 [6]). The segments are fabricated 

from fiber-reinforced ultra-high performance concrete allowing a very small thickness 

(minimum thickness = 20 mm). 3D models of the canopy molds were built and their 

deflections analyzed using finite element methods. The reusability of the molds was 

advantageous in this project since the shed system consisted of 24 canopies [39]. 
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Fig. 12: Schematic of one canopy of shed system of Shawnessy light rail transit 

station, Canada [6] 

 

Through the few studies and projects that include prefabrication of concrete shells it 

is possible to understand the associated problems with the analysis, design and 

construction, which allows for the consideration of these issues in the design of the 

structure of the present study. As mentioned in the beginning of this subsection, the 

application of prefabrication techniques to concrete shell structures is not as 

straightforward as it is with structures of skeletal forms. Based on the surveyed literature, 

the major issues to account for are summarized as follows:  

 Accurate estimations of the effects of the joints between the precast shell elements 

on the overall behavior of the structure are not readily available and are difficult 

to quantify [39], [74], although reported to affect both the deflection state and the 

stability behavior [62], [74]. Another connection related problem is the 

requirement of high precision elements to obtain strong connections that ensure 

the continuity and stability of the structure, while, at the same time, some 

adjustment may be needed during the assembly of the panels [39]. 
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 Reusability of molds is usually very limited since the shell panels usually have 

different forms and sizes [39]. The use of re-adjustable molds based on height-

adjustable pins that can create different shapes of curved elements was reported in 

the literature [52], [95], [96], [97], with detailed experimentation on the 

possibilities of these flexible molds, although not discussed here in detail. 

 Due to the variable natural of shell structures, each structure has differently 

shaped panels and optimum connection types, making it difficult to standardize 

the design and construction procedures [39]. 

The following section focuses in-depth on the timeline and recent development of 

stability analysis of spherical shell structures, and particularly concrete spherical caps. 

However, it is noted that almost no studies were available which provided stability 

analyses on segmental concrete spherical shells. This could be attributed to the fact that 

that type of construction never found much application due to the reasons mentioned 

above. However, this study believes that the proposed construction method, supported by 

a comprehensive structural analysis, may present an efficient, fast and economical 

alternative for the construction of concrete dome structures of relevant geometry. 

Therefore, the major part of this work is to study the development of the stability analysis 

of concrete spherical caps. 
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3.2. Stability Analysis of Concrete Shells 

3.2.1. Stability Theory of Shells 

Shell structures have much higher membrane stiffness than bending stiffness, allowing 

them to absorb very high membrane strain energy without excessively deforming. An 

instability failure of the shell occurs when, loaded in compression, the shell’s stored 

membrane energy is converted into an equivalent amount bending energy, requiring very 

large deflections [23]. Farshad [44] provided a simplified definition of buckling as “a 

special mode of instability of equilibrium which may occurs in deformable bodies 

subjected mostly to compressive loadings”. 

The two distinctive types of buckling are bifurcation buckling and nonlinear 

collapse. Bifurcation buckling is refers to a theoretical mode of buckling in which, upon 

reaching theoretical buckling load level, the shell deformations begin to grow in a new 

pattern or a secondary path that is different from the axisymmetric prebuckling load-

deflection path (primary path). If the post-bifurcation load-deflection curve has a negative 

slop, the new deformation grows unboundedly and failure occurs [23]. Bifurcation 

buckling load is based on the linear elastic theory of shells and is predicted by an 

eigenvalue analysis. Consequently, true bifurcation buckling for real imperfect structures 

does not exist. What it represents is a theoretical upper bound for the buckling of shells 

that was used for calculating convenient approximations of the failure load, and as a basis 

for modifications and comparisons of experimental results, in research attempts to 

account for the factors that cause the shell to fail before reaching its theoretical buckling 

limit. 

The other type of buckling is nonlinear collapse, (also known as limitation of 

equilibrium [44]) in which the stiffness of the structure changes over the loading history 

and is, consequently, based on geometrically nonlinear analysis. In nonlinear collapse, 

the structure initially deforms slowly as the load increases, and as it approaches the 

maximum load, the deformation rate increases i.e. the stiffness of the structure decreases 

gradually until it reaches the maximum load point where the stiffness is zero (known as 

neutral equilibrium). At that point, if the load is maintained, the structure experiences a 
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dramatic failure where the structure theoretically has a negative stiffness (negative slope 

of the load-deflection curve). In shell structures, this type of failure is commonly known 

as ‘snap-through’ [23] which, according to Bushnell [23], was derived from earlier 

experiments on shallow spherical caps and arches, where, upon reaching the neutral 

equilibrium point on the load-deflection path,  the structure snaps to a nonadjacent 

postbuckling configuration that resembles the original configuration but in an inverted 

form [23]. The development of nonlinear theoretical models since the 1940s marks the 

launch of the research phase that attempted at justifying the significant discrepancy 

between experimental analysis results on shell buckling and the values predicted by the 

theoretical models of the linear elastic theory. The geometric nonlinearity is, however, 

only one of many factors that are seen to significantly affect the failure load and mode of 

spherical caps. The following subsections attempt to review these factors as documented 

in the surveyed literature. 

In the Buckling of shells chapter of Thin Plates and Shells, Theory: Analysis and 

Applications [110] the elastic buckling of shells was illustrated using an ideal cylindrical 

shell under uniform axial loading. The perfect shell load deflection path is shown in 

Fig.13 [110]. 

 

Fig. 13: Load-deflection path of the perfect shell [110] 

According to the figure, the perfect shell (solid line) starts in a membrane state of 

stress with no deflections until it reaches point A, where no adjacent stable buckled 

configuration exists (AB branch has a negative slope). Thus, the structure “jumps” from 
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the stable prebuckled configuration through the unstable state (branch AB) to the new 

stable buckled configuration at F on branch BD. This transition represents what is 

referred to as ‘snap-through’ buckling. The analysis of that problem in general requires a 

geometrically nonlinear analysis [110], [54], unlike buckling of rods or plates where 

stable buckled configurations are found in the vicinity of the bifurcation point with no 

dramatic jumps. 

What makes the buckling of shells problem even more challenging is that real 

shells are inevitably imperfect, and the critical buckling load of the shells was found in 

most of the documented literature to be extremely insensitive to the geometric 

imperfections that present prebuckling deformations imposed on the shell. As shown in 

Fig.13 [110] in a dashed line, the load-deflection part of the imperfect cylindrical shell 

has a critical load A’ (where the snap-through jump occurs) that appears significantly 

lower than the critical load of the perfect shell A. 

Based on the previous analysis, three distinct values of the critical loads for thin 

shells are differentiated; the first is the upper load limit (represented by point A in the 

figure) obtained through linear differential equations; the second is the lower load limit 

(point B in the figure), representing the largest load at which the perfect shell is stable 

when considering large deflections, which requires solving the complicated geometrically 

nonlinear theory of shells problems. It is stated that all the available results for the lower 

critical load of the perfect shell are obtained using numerical models since it is 

impossible to obtain the exact analytical solution [110]. 

The third critical load limit is that of the imperfect shell (the buckling load of the 

real shell) which happens to occur somewhere between the upper and lower limits of the 

perfect shell, and is extremely sensitive to geometric imperfections and boundary 

conditions. This has been seen through the large scatter of the experimental analysis 

results of buckling loads of shells, and, as stated in [110], theoretical analysis of 

imperfect shells also imposes challenges because it is impossible to accurately account 

for all shell anticipated imperfections. Consequently, a large discrepancy has always been 

reported between the results of theory and experiments of buckling of shells [110]. 
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While solutions based on the geometrically nonlinear shell theory are stated to be 

too computationally demanding to apply for design purposes to calculate shell failure 

loads [110], the linear stability theory is not adequate for predicting the buckling behavior 

of shell structures. It is useful, however, in demonstrating the different factors that affect 

the buckling load and their interactions, when combined with corrections and coefficients 

that may be derived based on experimental analysis results to supplement the analytical 

relationship prescribed by the linear theory and provide valid design tools.  

Guran and Lebedev [54], on the other hand, state that precise experiments of 

buckling of spherical caps provide good agreement with theory, but significantly differ 

from actual critical load values in engineering practice in general. The authors agree on 

attributing these differences to inadequacy of mathematical models to describe the 

behavior of the real structure, because the critical load values are sensitive to shape 

imperfections, boundary conditions and production of the shell that may have significant 

effects on the material behavior. Research has, then, been concerned with answering the 

question of how to account for each possible imperfection in each shell in order to 

provide applicable numerical models for real systems. 

 A more integral analysis of the behavior of shells is noted in recent studies. Pan 

and Cui [87] presents a clear distinction of the failure modes of perfect spherical caps; a 

material failure resulting from stresses reaching the yield condition followed by a 

subsequent plastic collapse, and predicted by stress analyses, and an elastic  buckling 

leading to collapse, and predicted by stability analyses. The ultimate strength of the shell 

is defined as the minimum of the two. For a maximum yield stress σy of the shell 

material, the maximum allowable pressure is presented in Eq. (1) [87]: 

    
   

 
 

(1) 
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 Thus, py is compared with the classical elastic buckling load pcr to determine the 

failure mode of the perfect spherical shell. From that comparison, the authors formulated 

the condition that determines the buckling mode as presented in Eq. (2) [87]: 

 

 
 

√        
  

 
 

(2) 

 If that condition holds, then the classical buckling load is higher than the material 

failure load, indicating that the shell failure is a result of material yielding. Hence, an 

elastic-plastic buckling analysis is needed (usually for thick-walled spherical shells) [87].  
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3.2.2. Stability Analysis of Spherical Caps  

The previous section aimed to touch on the various issues concerning stability theories of 

thin-shell structures in general. The purpose of this section is to present a quick survey of 

research efforts and their development over the past few decades regarding simplifying 

the procedures and improving the reliability of the prediction of critical loads of spherical 

caps of various parameters. The section investigates the experimental analysis, and the 

consequently developed numerical models that aim to bridge the gap between theory and 

experiment, understand the behavior of spherical caps, and provide approximate methods 

to quantify the different factors affecting the capacity of spherical caps for design 

purposes. 

As previously mentioned, in stability analyses of spherical shells, and spherical 

caps in particular, experimental analysis results proved the existence of a large gap 

between theory and experiment. More seriously, some of the actual built structures with 

presumably sufficient strength safety margins have undergone unforeseeable failure due 

to this gap [86], [101]. Consequently, the research direction in the decades that followed 

was to understand the factors that cause the actual spherical cap to fail long before it 

reaches its calculated critical buckling pressure prescribed by the linear elastic theory of 

shells. The factors that were seen to be studied the most over the past eight decades are 

the geometric nonlinearity, boundary conditions, material nonlinearity, and geometric and 

loading imperfections.  

Studying the effect of the nonlinearity of the shell material, for instance, is a 

widely challenging topic that is only as advanced as the available material constitutive 

models for numerical analysis. Material nonlinearities, and specifically time-dependent 

properties, can significantly affect the capacity of thin shell structures. As for the material 

at hand, the more recent studies of concrete shells predominantly investigated the effects 

of creep, and the vulnerability of concrete shells of different geometric parameters to 

creep buckling. Miscounted for in earlier structures, concrete creep strains are shown in 

the literature to significantly reduce the long-term capacity of concrete shells. 
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In experimental studies of concrete shells, and shells in general, material effects 

are not studied in isolation due to the inevitable presence of geometric and loading 

imperfections. Quantifying the effect of imperfections on the shell capacity requires 

accurate quantification of these imperfections, their types, locations and amplitudes. In 

fact, most reported shell experimental tests have attributed the early failure of the shell 

model to the presence of geometric imperfections. These included accidental changes in 

shell thickness, variations in the radius of curvature and others. 

3.2.2.1. An Overview of the Buckling of Spherical Shells 

The buckling load of a complete spherical shell under uniform external pressure was first 

calculated in 1915 by Zoelly R. [121] based on the linear elastic theory (small deflections 

assumption), as (Eq. (3) [121]): 

     
  

 √       
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)
 

 

(3) 

Where E is the modulus of elasticity,   is Poisson’s ratio, R is the radius of the 

spherical shell, and h is the thickness of the shell. For a Poisson’s ratio of 0.2, the 

equation reduces to Eq. (4): 
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(4) 

The same value was calculated by Van der Neut in 1932 [107] for unsymmetric 

buckling. 

 Experimental buckling tests that followed showed very low bucking loads when 

compared to the classical value, and research investigations were conducted to explain 

discrepancies between theory and experiments. Since the elastic theory worked well for 

plates, the research has focused on determining the effects of curvature and spherical 

shape imperfections that cause the large reduction in buckling capacity. The gap between 



30 
   

the theory and experiment was also attributed to the geometric nonlinearity and initial 

imperfections. Consequently, researchers used the large deflection theory and developed 

various methods to account for initial imperfections of spherical shells. 

T. von Karman and H. S. Tsien, 1939 [113] used energy principles in deriving the 

lowest buckling load (equivalent to that defined as the lower bound in the previous 

section). The energy approach assumed that the minimum buckling load coincides with 

the position of minimum total potential energy on the load-deflection curve, if one 

existed [99]. The authors predicted a theoretical value of the lower bound of the buckling 

load as (Eq. (5) [113]): 

               (
 

 
)
 

 

(5) 

This value compared more favorably with experimental data at that point [67], 

[31], and it was recommended for design practice. Volmir, 1963 [112] calculated the 

geometrically nonlinear lower-bound buckling load for the elastic shell under external 

pressure, using the nonlinear stability theory, to be about 25% of the upper limit predicted 

by the linear stability theory (Eq. (6) [112]), a value that is even lower but close to that 

calculated by the authors in [113]: 

                         (
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(6) 

At that point, research studies focused on providing a relationship between the 

buckling load and a normalized geometrical parameter that depends on the rise-to-

thickness ratio of the shell and was found to govern the buckling of shallow spherical 

caps. The shell geometrical parameter is calculated by Bushnell [23] as (Eq. (7) [23]): 
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(7) 

where H is the shell rise, h is the thickness, and   is poisson’s ratio.  

Bushnell showed qualitatively that the prebuckling and buckling behavior of 

spherical caps depends on their shallowness (for the same thickness) by constructing the 

load-deflection curves for clamped spherical caps with different shallowness, shown in 

Fig.14 [23], governed by the shallowness parameter λ and corresponding to both linear 

(dashed) and nonlinear (solid) theory predictions. The circles on the linear load-deflection 

path represent the classical buckling pressure for the complete spherical shell. The figure 

shows the following: 

 For λ < 3.5, the nonlinear load-deflection path shows no loss of stability.  

 For 3.5< λ <6, axisymmetric snap-through buckling occurs. 

 For λ > 6, the bifurcation load is lower than the axisymmetric snap-through load. 

 For λ >7, prebuckling behavior closely follows that predicted by the linear theory, 

and the non-uniform prebuckling behavior occurs near the clamped edge, which 

causes buckling at about 80-90% of the classical buckling value of a complete 

spherical shell [23].  
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Fig. 14: load-deflection curves for clamped spherical caps with different shallowness 

parameters [23] 

 Marcinowski, 2007 [83] determined critical pressures and full equilibrium paths 

of shells for values of the shell parameter  between 3.5 and 12 using a finite element 

method approach that proved to be in good agreement with the qualitative descriptions of 

Bushnell [23] above and other previous studies [21], [114], [103]. Based on 

Marcinowski’s work, a shell with λ = 10 (close to that of the present study) has a lower 

limit point on the buckling equilibrium path (mostly used in other studies to represent 

critical buckling load) equal to 0.134 of the classical value of the linear elastic full 

spherical shell. 

Farshad [44] also presented an approximate relation that determines the buckling 

mode of a spherical cap, characterizing the buckling as either a global phenomenon that 

includes the whole shell or a snap-through buckling confined to a local region, depending 

on the shell thickness, radius and central angle. According to Farshad, the whole shell 

buckles up to a base radius         √      at which the shell buckling becomes a local 

phenomenon. 
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Other theoretical studies, such as those of B. Budiansky [21], Weinitschke [114], 

G. A. Thurston [103], Caseman [30], Archer [14]; Keller and Wolfe [75], continued the 

work aiming at deriving a relationship between the shell geometrical parameter λ and the 

buckling pressure. The results of Budiansky [21], Weinitschke [114], Thurston [103] and 

Caseman [30] are shown in Fig.15 constructed by Seaman [99] where the normalized 

buckling load (as a ratio of the classical linear buckling load) is plotted against the shell 

geometrical parameter. Although most of these studies are reported to have provided 

accurate predictions of axisymmetric buckling loads of perfect clamped spherical shells 

through various numerical methods, the results did not match the experimental results 

obtained during that period [49], [99]. 

 

 

 

Fig. 15: Comparison of theoretical buckling loads predicted by various authors, 

compiled in reference [99] 
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Examples of those experiments are the investigations by Tsien [106]; K. Kloppel 

and Jungbluth [77]; Kaplan and Fung [72]; Homewood, Brine, and Johnson [63]; 

Thurston [102]; Parmerter [88]; and Thurston and Penning [104] which resulted in 

significantly lower loads than the values predicted theoretically for various shell 

parameter values. The results of some of these experiments are shown in Fig.16 compiled 

by Seaman [99]. 

 

Fig. 16: Comparison of experimental buckling loads predicted by various authors, 

compiled in reference [99] 

A relatively large scatter is noticed in Fig.16 of different studies compared by 

seaman [99] among others, which Seaman attributed to the differences in shell material, 

testing apparatus and procedures and boundary conditions of each study, while Bushnell 

[23] attributed them mainly to the imperfection sensitivity of shells. Bushnell presents a 

plot of the surveyed studies versus the shell parameter in Fig.17 from Kaplan [73], which 

includes most of the studies compared in [99], in addition to more data points from 

another study by Bellinfante [17]. 
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Fig. 17: Comparison of buckling loads predicted by various authors, compiled in 

reference [73] 

For the purpose of this study, the spherical cap to be analyzed has a shallowness 

parameter slightly larger than 10 (equals 10.7). From the Fig. 16 [99] and Fig. 17 [73], 

the normalized external buckling pressure for structures with shallowness parameter 

between 10 and 15 appears to almost always fall between 10% and 40% of the classical 

buckling load. 

Seaman’s experimental work [99] was performed on plastic shells that buckled 

elastically and concluded that the buckling of spherical shells for a large range of the 

shell parameter λ between 3.5 and 25 occurred due to a geometric instability and not due 

to material yield or local effects for the elastic shell. However, the author also concluded 

that the minimum buckling load is related to the depth parameter (α) (which is half the 

central angle of the cap) rather than the shell parameter. The results of Seaman [99] 

(presented in Fig.18 [99]), provide the experimental buckling load versus the shell 

parameter which he calculated as (Eq. (8) [99]) 
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  √          
 √

 

 
      

(8) 

These results show similar values to previous investigations previewed in Fig. 17 

[73]; however, with a narrower scatter which the author attributed to the unchanged 

conditions of the test proving the reproducibility of buckling loads. Seaman’s 

experiments included both load controlled and displacement controlled tests. 

 

Fig. 18: Buckling loads predicted by Seaman [99] 

Later, a study by Huang [64] numerically derived a solution for unsymmetric 

buckling of shallow spherical caps based on the initiation of unsymmetric deflections in 

the form of circumferential waves. Huang’s model is reported to provide closer values to 

experimental results, with the difference attributed to geometric imperfections [32]. 

For design purposes, determination of the shell buckling loads is paramount 

because it mostly governs the thin shell capacity, while it is obvious that accounting for 

the initial imperfections and other effects in the design stage would be extremely difficult 

and unjustifiably expensive. According to the authors in [67], shell buckling 

investigations moved toward a trend that presents a “modification” to the linear theory. 

This approach works by calculating the buckling load using the classical linear elastic 
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equation of the perfect shell, then combining factors that account for the reduction in the 

buckling load resulting from imperfections and inelastic behavior [67]. The result is 

statistically derived design curves using a sufficiently large amount of experimental data, 

or conservative design recommendations involving empirical reduction factors (in case 

the problem lacks availability of sufficient test data to provide a statistical design load). 

Based on the latter approach, the author presents an empirical equation for the buckling 

of the spherical cap under external pressure problem (Eq. (9) [67]): 

      
    

  
 

(9) 

Where   is a coefficient calculated in Eq. (10.a) and (10. b) [67] 
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(10.a) 
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  = 0.3 

(10.b) 

These coefficients are recommended for high-quality manufactured shells. 

However, if less accurate manufacturing conditions are inevitable and imperfections are 

expected to be in the order of its thickness, the coefficient is reduced even further by 1.5-

2 times [67].  

 Gonçalves and Croll [49] suggested that Q
*
I, presented in Eq. (11) from [49] and 

calculated by the authors, be used as a capacity reduction factor in the design procedure 
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that takes into account boundary condition induced nonlinearity and geometric 

imperfections. 

 

  
  

    

  
 

(11) 

 Wunderlich and Albertin [117] presented a draft proposal for calculating the 

critical load of spherical caps for application in the Euro code. The design curves are 

based on the author’s study that included the effects of various boundary conditions, 

imperfection and material plasticity on the capacity of the spherical cap under uniform 

external pressure fabricated of steel or materials that exhibit similar behavior. Wunderlich 

proposed an elastic imperfection factor α, which represents a reduction factor for the 

capacity of the shell dependent on the imperfection amplitude determined by three quality 

classes that define the level of shell imperfections. The author also studied the interaction 

of the material plasticity with various boundary conditions and introduced a material 

reduction factor for the critical load limit [117]. 

In design codes, in general, the design of spherical caps follows the previously 

discussed trend of applying reduction factors to the classical theoretical value. These 

reduction factors are to account for the nonlinear behavior arising from boundary 

conditions, geometric imperfections and material nonlinearity. For concrete spherical 

caps, in particular, the paramount significance of the material properties highly supports 

following that approach, which allows designers to count for concrete plasticity, 

cracking, creep and other properties in an efficient manner using empirical relationships. 

Consequently, the development of these relationships is considered an integral part of the 

research on the capacity of concrete spherical caps and shall be reviewed in detail in a 

later section. The following subsections shall try to look at each field of the spherical cap 

stability analysis research individually to provide a general research background idea of 

each, before investigating them in the context of concrete spherical shells. 
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3.2.2.2. Imperfection sensitivity 

According to the authors in [54], the assumptions made while establishing simplified 2-D 

nonlinear models of shells oversee deviations that are present in the shape of the shell 

mid-surface, which is used for building the 2-D idealization, or in the thickness of the 

shell. Small deviations in these parameters can have a great effect on the value of critical 

loads. Another implication of the presence of shape imperfections is that they change the 

distribution of strain along the normal to the mid-surface utilized for the 2D idealization. 

Hence, these irregularities may introduce complicated stress distributions that cannot be 

properly modeled with 2D approximation models. These stress distribution and their 

possible adjacent material plasticity effects [54] can, thus, result in significant 

discrepancies between the theoretical approximate model and the real shell structure in 

practice [54]. 

Various forms of geometric imperfections were studied in the literature. W. L. 

Chen [33] investigated the effect of symmetric shape imperfections on the critical load 

(grooves at mid-height of the shell), and the author’s results suggested merely that a 

complex correlation exists between the geometric imperfections and buckling loads [99]. 

According to Seaman [99], the only conclusion about the effect of geometric 

imperfections on buckling loads by 1962 was that they are complex and difficult to 

accurately account for in both theoretical and experimental work [99]. Seaman attempted 

to categorize and quantify the present imperfections in thirty nine plastic shells that were 

buckled under unchanged conditions, but no clear relationship between the imperfections 

and the critical loads was established. 

 In 1963, Krenzke and Kiernan [81] performed tests on 200 spherical glass shells 

with different imperfections and derived Eq. (12) [81] for the buckling load based on 

their results: 

          (
 

  
)
 

 

(12) 
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Where    is a modified radius that suggested that the buckling load depends on the 

local curvature and the thickness of what is defined as the geometric imperfection 

region or the critical arc length Lc as shown in Fig.19 from reference [67], where Lc 

is calculated from Eq. (13) [67]: 

 

 

Lc = 2.42 h (Ri/h)
1/2 

(13) 

 

 

Fig. 19: Definition of the imperfection zone and critical arc length in reference [67] 

 In the more recent study in [87], a modification of Krenzke and Kiernan 1963’s 

formula was proposed [81]. The authors noted that the formula may be limited to the 

authors’ results since the imperfection sensitivity and required degree of reduction 

depends on t/R. They, thus, presented a modification of the equation in Eq. (14) [87]: 

          (
   
   
)
 

 

(14) 

Where Rcr is defined as the outer local radius in a critical arc of the local imperfection 

shown in Fig. 20 (taken from reference [87]), and tcr is the mean thickness at the local 

imperfection arc. 



41 
   

 

Fig. 20: A circular dent imperfection as defined in reference [87] 

A similar approach for quantification of the geometric imperfections was 

provided by the ACI committee 334 report [4] where the geometric imperfections are 

reported to cause a change in the principal radii of curvature of the shell surface. If the 

radius of curvature is larger (the shell is flatter), then membrane forces are greater and the 

critical buckling load is lower.  

Similarly, Zarghamee and Heger [119] stated that the buckling load is severely 

affected by imperfections characterized by a significant change of R/t over a large region. 

They claimed that buckling of a shell with imperfect regions is governed by the lowest 

buckling load of the imperfection region itself assumed to be clamped at the boundaries 

calculated from Eq. (15) and Eq. (16) [119].
 

Pcr = 0.7 Pcl 

(15) 

Pcl = 1.1 Et/Rimp 

(16) 

Where Rimp is the local radius of curvature over the imperfection region (Based on 

krenzke and Kiernan [80], and Et is the tangent modulus of elasticity 

This imperfect region was approximated to have a diameter of 4.3√(Rt) by 

Bushnell [26], [27], and 2.5√(Rt) by Krenzke and Kiernan [80]. 
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 Dulácska [42] presented a general graph that differentiates between the limits of 

buckling loads for the imperfect shell with an imperfection of amplitude wo (denoted as 

Pcr
lin

 and Pcr
u
, respectively). Fig. 21 [42] shows the comparison of the load-deflection 

paths of both shells for a radially pressured spherical shell, while Fig. 22 [42] presents a 

quantitative description of that reduction with the increase of the normalized imperfection 

amplitude (wo/t) for various shells and loadings. Dulácska presented an empirical 

equation for the calculation of the imperfection amplitude wo for concrete shells, as shall 

be discussed in the relevant part of this section. 

 

Fig. 21: Load-deflection path of elastic perfect and imperfect shells [42] 
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Fig. 22: Reduction of buckling load due to initial imperfections in various shells [42] 

 

Instead of calculating the buckling load of an approximated imperfection region, 

Scordelis [98] used the actual buckled geometry of the shell and imposed it as an initial 

imperfection on the shell in an unstressed state. Hence, the deformed shape obtained in a 

previous analysis, i.e. the first buckling mode of the shell, was used in a separate analysis 

in an unstressed state to represent the imperfect shell. The results showed a reduction of 

about 50% in the ultimate load capacity. 

 While all the surveyed studies agreed that the discrepancies between the 

theoretical predictions and experimental results are chiefly influenced by geometric 

imperfections, some researchers believed that the major value of elaborate nonlinear 

modeling of imperfections is just to improve our understanding of the nature of the 

problem, and these should be later used to develop simpler methods for accounting for 

the shell imperfections for design purposes [49]. This is due to the fact that analytical 

studies of imperfection sensitivity of shell buckling loads, such as those in references 

[21], [102] and [105], are restricted to limited imperfections shapes and did not provide 

adequate explanation of the scatter in the experimental results [49]. 

 Consequently, the approach of Gonçalves and Croll [49] was to adopt simpler 

approaches that provide bounds to the influence of geometric imperfections on buckling 
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loads of shells. The author explains that that approach is suggested to be of higher value 

for design purposes, since the shell imperfections are not pre-known in the design stage. 

 To accomplish so, the authors in [49] tested axisymmetric geometric 

imperfections in the form of the buckling modes. The effect of these imperfections on the 

buckling load of a shell of a geometric parameter of 10 (similar to that of the shell of this 

study) is shown in Fig. 23 [49]. The author noted that geometric imperfections in the 

form of the lowest buckling mode have the greatest effect on buckling pressure of the 

shell. 

 

Fig. 23: Load-central deflection curve for an imperfect shell with λ = 10 [49] 

 Accordingly, a lower bound factor for the buckling of a spherical cap irrespective 

of the level of imperfection, and after numerically incorporating the effects of geometric 

imperfections in the form of buckling modes and linear vibration modes, was provided in 

the previously stated Eq. (11) [49] (restated here): 

  
  

    

  
 

(11) 

 This value is shown to bound previous experimental work that was discussed 

above, as shown in Fig. 24 from [49] comparing data points of Kaplan [72], Thurston 

[104], Tillman [105] and Yamada [118] with the resulting values of Eq. (11) by the 

authors in [49]. 
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Fig. 24: Comparison of experimental buckling loads of various authors compiled by 

the author in [49] 

 Although the buckling loads are radically reduced using the approach in [49] with 

the increase of the geometric parameter (a buckling load of only 6% of the classical value 

for a spherical cap with a shell parameter approximately equal to 10), it is seen to be 

adopted by a few other researchers stating that it provides a way around the difficult-to-

quantify geometric imperfections, resulting in a truly lower bound for the buckling of 

shells. Budiansky and Fitch [20] also stated the viability of studying the post-buckling 

behavior to predict the buckling of the same structure when it has an initial geometric 

imperfection. Grigolyuk and Lopanitsyn [51] discussed the presence of drastic changes in 

the limit points on the postbuckling equilibrium paths and the variations of load-

deflection curves in general with small changes in a thickness parameter of the shell (h/R) 

studied in the range between 1/20 and 1/200. The study results suggest that these values 

may provide information about the critical loads of imperfect shells [51]. 

 The work of Khakina and Zhou [76] supports the claim that studying the 

postbuckling behavior may eliminate the effects of geometric imperfections altogether. 

The author noted that while initial buckling is highly sensitive to imperfections, the post-

buckling load is independent of initial imperfections, since curves for shells with 
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different imperfections tend to meet at the post-buckling load [76]. Thus, the author 

presented a modified buckling load that considers the rise-to-span ratio effect on 

reduction of the shell capacity based on an analytical study and a finite element 

simulation, where the post-buckling load is used as the limit load to ensure that the shell 

capacity is not overestimated. The derived buckling load is given in Eq. (17) [76]. 

    
            

    
 (
 

 
)
   

 

(17) 

Where L is the span, and H is the rise of the spherical cap 

 The calculated buckling loads in that study [76] for spherical caps with rise-to-

span ratios between 1/8 and 1/40 ranged between 14-27% of the classical buckling load. 

However, the formula was not stated to be limited to that range and was used in the study 

for values rise-to-span ratios as large as ¼. For the shell of the present study with a H/L 

ratio of about 1/5.9, the formula results in a buckling load of 58% of the classical 

buckling load value, which is seen to be relatively high compared to most experimental 

results in the surveyed literature. 

 

3.2.2.3. Boundary conditions 

Although not many studies have focused on quantifying the effects of the shell boundary 

on its buckling load, the boundary conditions were stated in almost all of the shell 

stability analysis literature as one of the major factors affecting the shell capacity. 

Some studies referred to the differences between the boundary conditions of the 

spherical cap analytical model (most of the time the shell is assumed to be clamped at the 

boundaries) and that of the real cap, which is probably a deformable ring. Idealized 

boundary conditions are used to calculate critical loads in mathematical models. Thus the 

inevitable differences between the real boundary and the idealized one, however small, 

may have a significant effect on the value of the critical loads [54]. This effect is 
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particularly significant in cases where buckling initiates near the edge due to a particular 

state of stresses at the region. 

Bushnell [23] discusses the bifurcation buckling of externally pressurized 

spherical caps with edge rings, and shows that the buckling mode varies depending on the 

size of the ring. Bushnell concludes, based on a survey of earlier experiments and 

theoretical results calculated using different versions of the specialized computer program 

B0S0R5 developed by Bushnell, that for shells with shallowness parameters between 9 

and 16 with all types of edge conditions (from free to clamped) edge buckling is the 

mode of buckling, which primarily occurs due to large circumferential compression near 

the edge where meridional bending is most significant [23]. The author also concludes 

that the buckling pressure is sensitive to the eccentricity of the edge ring, which, as 

Bushnell explains, is due to the effect of that eccentricity on the prebuckling 

circumferential compression near the edge [25].  

Other studies looked at the issue differently, considering the clamped spherical 

shell to be an imperfect boundary condition compared to that of the whole sphere. Thus, 

the nonlinearity near the shell edge and the reduction in the shell capacity were attributed 

to the clamped boundary. Huang [64] concluded that the critical load of clamped shells is 

lower than those with boundaries free to displace radially, since the latter conforms to the 

behavior dictated by the membrane theory. 

This observation is noted in Fig. 25 from [119] of the buckling loads of radially 

free, simply supported and clamped spherical shells, derived analytically for spherical 

caps. The figure shows a buckling load of the clamped shell is 80% of that of the shell 

free to displace radially. 
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Fig. 25: Comparison of theoretical buckling loads of spherical shells with various 

boundary conditions [119] 

That effect was labeled as a ‘loading imperfection’ by the authors in [49]. The 

reason is that the edge prevents the cap from having a state of uniform membrane 

compression like the complete spherical shell. Consequently, stress non-uniformity is 

produced in the vicinity of the boundary resulting in the nonlinear prebuckling behavior 

of spherical caps. Accordingly, the authors in [49] regarded the nonlinear models of 

clamped shells as imperfect forms of the classical bifurcation model. 

 The loading imperfection effect became clear when studied simultaneously with 

geometric imperfections of buckling mode shapes. The study in [49] found that in shells 

of various shell parameters where a negative geometric imperfection is almost equal to 

the inherent loading imperfection produced by the boundary, the shell closely follows the 

bifurcation model [49]. 

 However, as mentioned above, very few studies primarily investigated the effect 

of the shell edge on the buckling, and almost none were found to accurately quantify that 

effect. However, it is considered to be accounted for in the shell design within the 

reduction factors applied to the linear idealized buckling load, as it will be discussed 

shortly. 
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3.2.2.4. Material Behavior 

The behavior of the shell material is one of the main factors affecting the capacity of the 

shell. In a general discussion of the behavior of shell structures, it is observed that shells 

with elastic-plastic materials (and with relatively large thicknesses) exhibit a snap-

through buckling mostly after the shell material has started yielding, while thinner elastic 

shells may exhibit bifurcation before yielding of the shell material [117]. The material 

inelastic behavior may also be introduced by the presence of shape imperfections, as 

previously discussed, or result from residual stresses of shell production methods 

themselves. Although, as stated in [54], the current technologies do minimize these 

effects, the accompanying strains cannot be entirely eliminated from shell production 

processes, and are difficult to accurately determine or account for. 

As previously noted, earlier shell buckling experimental analyses were performed 

on thin elastic shells, which buckled elastically before reaching the material yield point. 

However, to account for the inelastic behavior that may result from the previously 

discussed effects, it was suggested to replace the elastic modulus of the shell material by 

the secant and tangent moduli of the material, along with another manufacturing 

reduction factor that was introduced to account for other residual stresses and 

workmanship [87]. This leads to Eq. (18) [87]: 

           √     (
   
   
)
 

 

(18) 

 It should be noted that the authors in [87] used the equation to calculate buckling 

pressures for titanium spheres under external pressure. 

The case is almost entirely different with concrete shells where a highly inelastic 

behavior is an inherent property of the shell material characterized by the nonlinear 

stress-strain relationship, difference in behavior and capacity in compression and tension 

states of stress, cracking, shrinkage, creep strains and other time-dependent effects. 

Consequently, in order to realistically study the behavior of the shell material at hand, an 
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entire section was dedicated to studying the failure of concrete shells, and particularly 

spherical caps. As it will be discussed, the bulk of concrete shell stability studies attempts 

to incorporate the effects of concrete inelastic behavior when determining the shell 

capacity, and provide empirical methods to account for that behavior in the design of 

concrete shell structures. 
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3.2.3. Stability Behavior of Concrete Spherical Caps 

The previous section presented a discussion of research efforts on quantitatively 

determining accurate predictions of the classical problem of spherical cap buckling. The 

surveyed studies discussed effects of the geometric nonlinear behavior, boundary 

conditions, and initial geometric imperfections. The effect of material nonlinearity was 

quickly touched upon, but was not discussed in detail. This is due to the fact that the 

concrete material has very distinctive behavior characterized by various nonlinearities 

that are different from most other materials. Consequently, the research studies on 

concrete shells have taken a different path of their own, as previously pointed out. This 

section attempts to review a few of the studies that consider issues concerned only with 

the behavior of the concrete shell. 

3.2.3.1. Overview of the Stability Analysis of Concrete Shells 

The research on concrete shells started with the trending of reinforced concrete 

construction as early as the 1940s and 1950s. The research aim was clear: to analytically 

simulate the behavior of the concrete material and, subsequently, provide reliable design 

guidelines for concrete shell construction, safe against buckling that was largely affected 

by the concrete nonlinearities. It should be noted, however, that this section may not 

represent the complete picture for concrete shell research. Rather, a quick survey of 

studies concerned with nonlinearities relevant to the present study. 

The problem of the applying data derived from elastic analysis to non-elastic 

materials was pointed out by Griggs [50] since theoretical solutions of shell behavior 

were based on assumptions of elasticity, and, up until 1971, nearly all model tests were 

done on models of ideally elastic materials that possess a linear stress-strain relationship, 

which fail to predict the behavior of concrete shells. In 2010, Chang et al. [32] restated 

the same issue with concrete shell buckling analysis, citing that very few studies were 

performed using concrete, which has a nonlinear stress-strain relationships, cracking, and 

time-dependent creep deformations and shrinkage [32]. 

Griggs [50] investigated the effect of concrete plasticity, tension cracking and 

creep. The author’s technique was to conduct the same experimental tests on shells of 

identical geometry but different materials; plastic and reinforced mortar, in order to 
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determine the differences in behavior from the elastic shells commonly used in 

experiments. Griggs’s experimental work showed that single curvature barrel mortar 

shells buckled at 50% of the buckling load of corresponding rigid PVC and Plexiglas 

shells. A numerical simulation showed that failure of mortar shells was preceded by 

longitudinal cracks in the shell surface. These cracks largely reduced the transverse 

stiffness of the shell and caused the early failure, explaining the discrepancy between the 

elastic and the mortar shells [50]. 

A similar study was performed on spherical caps where mortar shells exhibited 

asymmetric buckling failure with an “explosive” reversal of curvature and complete 

disintegration in the buckled zone, while Plexiglas shells buckled elastically. When 

compared to the classical value, Plexiglas shells buckled at about 60% of the classical 

buckling load, while mortar shells at 37% [50].  

Among the first attempts to remedy that discrepancy was the use of a modified 

modulus of elasticity, referred to as the tangent modulus, which represents the effective 

modulus of elasticity at the buckling membrane stress level. Griggs’s usage of the tangent 

modulus resulted in improving the agreement of the results, where buckling of mortar 

shells was at about 49% of the classical value (5/6 of the buckling load of Plexiglas 

shells) [50]. The author concluded that in concrete shells cracking may initiate the 

buckling failure. Thus, if elastic models are used, the tensile strains should be monitored 

and failure assumed to occur if they exceed the tensile strength of concrete. The author 

also recommended the use of a tangent modulus at the buckling stress level to properly 

account for the concrete nonlinearity and give a lower bound on the buckling load. 

Another experimental investigation of clamped reinforced mortar spherical caps 

in reference [82] with a shell parameter of 4.85 resulted in very similar predictions: the 

cap buckled at 40.2% of classical value using the initial modulus of elasticity, and 54.5% 

(C = 0.638) when using the tangent modulus at the buckling stress level, as presented in 

[32]. 

Another set of experiments was performed on unreinforced microconcrete 

shallow spherical caps by Vandepitte et al. in [109] following the research tradition of 

determining the buckling load of spherical caps in relation to the shell geometric 
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parameter, which allows for the comparison with previous experimental and analytical 

predictions. The buckling value provided in [109], however, seems to be generally higher 

than the analytical predictions of T. von Karman and H. S. Tsien [113], and Volmir 

[112]. The discrepancies of the results with the classical value were explained by the 

commonly discussed initial imperfections, boundary conditions and geometric 

nonlinearity, next to other factors specific to concrete only; these include the lack of 

material homogeneity and the possible inaccuracy of the value of Young’s modulus 

[109]. The buckling pressure of the spherical cap was given in Eq. 19 [109]: 

      (
 

 
)
 

 

(19) 

Where the mean value of C = 0.621 for spherical caps with prestressed rings (which 

represents 53% of pcr linear) and C = 0.539 for those with rings that aren’t 

prestressed (which represents 46% of the pcr linear) 

Isler [69] presented a report that discusses specific construction factors that affect 

the stability of concrete shells; namely quality of cast in-situ concrete, control of shell 

thickness, creep effects and cracks. Isler restated the variability of the quality of shell 

concrete due to workmanship, fabrication of formwork and other casting conditions of 

the mostly curved shell surface. The configuration of the shell mostly resulted in a lower 

quality concrete compared to slabs, for example [69], and a variable shell thickness 

which is hard to control in casting in-situ concrete. The author noted that the buckling 

load is very sensitive to changes in the thickness. These particular effects are relevant to 

the scope of this study since the proposed construction method shall significantly 

minimize problems associated with concrete quality and thickness uniformity as shall be 

discussed and verified experimentally later. 

Isler stated that the increased deformations caused by cracking directly affect the 

shell stability, which he interpreted as a reduction in the elastic modulus to less than 50% 

[69]. It should be noted though that no theoretical derivations were presented in Isler’s 
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report and it was directly based on his expertise on the subject. Isler also discussed a 

subject which was not clearly explained in other parts of the literature, and may have an 

effect on stability of concrete shells; namely the layering of reinforcement. Isler 

illustrated that using a double-layer of reinforcement reduces the bending deformations 

(the rotation angle is almost half of that when using one layer of reinforcement as shown 

in Fig. 26 [69], and these deformations are what may initiate instability [69]. 

 

Fig. 26: Effect of using two reinforcement layers on bending deflections of the shell 

[69] 

It is noted by Scordelis [98] that in 1950’s and 1960’s a lot of experimental work 

was conducted on buckling of spherical shells in order to improve the reliability of 

theoretical models. At that point, finite element (FE) analysis programs for thin shells 

were built on the assumption that shell is made of linear, homogenous and uncracked 

material [98]. In 1967, the first application of FE analysis to cracked reinforced concrete 

beams was conducted by Ngo and Scordelis. And then, according to Scordelis, the 1970’s 

and 1980’s witnessed development of computer programs for the nonlinear analysis of 

reinforced and prestressed concrete shells through studies conducted by many 

researchers, a list of whom is provided in Scordelis [98] and is summarized to study 

geometric nonlinearity, concrete material nonlinearity, cracking, creep, shrinkage and 

temperature effects, material constitutive models, failure theories and nonlinear 

numerical solution techniques, among other topics [98]. 
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According to Scordelis [98], in 1973, a research program of reinforced concrete 

shell structures at the University of California, Berkeley was initiated, stemming from the 

demand for larger shell spans, smaller thicknesses and complex shell geometries. The 

research focus was to develop analytical models to include the geometric nonlinearity, 

the material nonlinear and time-dependent behavior and edge beam effects, and various 

computer programs were written and developed for that purpose; the final one NASHL1 

(with contributions from the University of Barcelona, Roca) in 1988. Scordelis describes 

the analysis method and underlying assumptions and parameters of NASHL in [98]. 

A rather extensive research by Zarghamee and Heger [119] proposed a 

comprehensive design procedure for shallow concrete domes with R/t >= 500 and 

prestressed edge rings based on the available literature on dome stability and a computer 

analysis using BOSOR5 computer program for shell analysis developed by Bushnell. The 

design accounts for the effects of geometric imperfections (conceptually represented as 

spherical caps with different radii of curvature than the nominal radius of curvature of the 

shell), geometric nonlinearity, and material nonlinearity (plasticity, cracking and creep). 

The authors’ design procedure, based on earlier literature and proposed 

modifications for concrete shells, is based on the assumption that “the buckling of the 

shell is governed by the buckling strength of the imperfection least resistant to external 

pressure” [119]. That critical imperfection is defined as one with a significant change of 

radius of curvature (a difference of 40% at most) over a diameter of 2.5 √Rt (of the 

buckle size order of magnitude) and may reduce the buckling capacity to 50% [119]. 

Thus, the design procedure includes a strength reduction factor for imperfections βimp = 

0.5 if the previous imperfection geometry is satisfied, or βimp = (R/Rimp)
 2
 otherwise. 

That factor is combined with a capacity reduction factor ϕ = 0.7, and a reduction factor 

for creep, plasticity and cracking βc. The critical load is thus reduced to Eq. (20) [119] : 

  
                  (

 

 
)
 

 

(20) 
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Where the factored design load (both live and dead loads) on the shell are less than   
  

The details of the design procedure and calculation of the reduction factors are 

explained in [119]. The authors noted that although the analytical model did not include 

cracking, the effect of cracking was included by examining the prebuckling stresses and 

assuming the occurrence of failure when they exceed the concrete tensile strength. It 

should be noted that, according to the authors, the selected range of shallow thin domes 

(R/t >= 500) is based on the fact that for this radius-to-thickness range the shell tensile 

stresses and resulting cracks are not high enough to reduce the buckling load significantly 

as the dome approaches failure, i.e. the failure is initiated by buckling not material 

failure. This point is particularly of interest for this research because the structure in this 

research has a much higher R/t ratio than this limit (equal to 82.4), hence a material 

induced failure was predicted and the state of the stresses was monitored in both the 

numerical and experimental model. That relationship between buckling and concrete 

material plasticity was concluded by Zarghamee and Heger [119]. The authors state that 

the buckling nominal membrane stress is far below the concrete compressive strength, 

and that imperfections and creep increase the effective R/t ratio even further, thus causing 

more reduction in the buckling nominal stress. Consequently, concrete plasticity is not 

expected to reduce the buckling loads of thin spherical shells with R/t >500. At the same 

time, if R/t <500, material failure should be the concern and buckling is not expected to 

govern the design [119]. 

Dulácska [42] derived an equation for calculating the buckling load of reinforced 

concrete shells that includes geometric imperfections, quality of concrete and 

reinforcement ratio, concrete and steel plasticity, cracking and creep. Dulácska listed the 

material differences that arise when analyzing concrete shells from elastic ones and result 

in a lower critical load than that of the homogenous shell: plasticity of concrete and steel, 

creep of concrete under compression, cracking under tension, and reinforcement ratio, 

quality and position (especially after concrete cracks). Dulácska’s derivation begins with 

the “upper critical load” that represents a reduction of the classical linear buckling load 

by a factor ρ that depends on the magnitude of initial imperfections (see reference [42] 
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for details). In general, the initial imperfections were divided into accidental 

imperfections wo
’’
 and bending imperfections calculated by the bending theory of shells 

using linear elastic analysis wo
’
. Dulácska proposed Eq. (21) for calculating the accidental 

imperfections [42]: 

  
         

 

   
    

  
    
   

 [
 

    
] 

(21) 

Where a is a coefficient that accounts for the type of the erecting formwork (equal to 

1 for rigid forms and 6 for slipforms) 

 

The total value of the imperfections is then calculated in Eq. (22) [42] reflecting 

the low probability of the maximum values of both bending and accidental imperfections 

happening at the same location. 

    √   
                  

    

(22) 

Dulácska [42] then included the influence of concrete creep through an empirical 

modification of the concrete modulus of elasticity in the buckling load equation, 

combined with a reduction factor for cracking effects  , and a third factor    that 

accounts for the effects of plastic deformation, which results in Eq. (23) [42]: 

                   

(23) 

Where           is the critical load of the homogenous elastic shell (including the 

effects of concrete creep) 

The design procedure is then completed by inclusion of a unique safety factor also 

calculated by the author. 
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More recently, an experimental and theoretical investigation of the behavior of 

thin concrete spherical caps was reported at the University of South Wales, Australia 

[32]. The authors emphasized the necessity of studying the concrete spherical cap 

behavior and develop analytical models to account for geometric nonlinearity, initial 

imperfections and material nonlinearity due to creep and temperature effects. The authors 

referenced reports of modern concrete caps that collapsed during or after construction 

[86], [101]. 

Chang et al. [32] noted that all failure analyses of spherical caps under radial 

pressure are based on the occurrence of a snap-through buckling at the critical load while 

very little research has studied localized material failure that can occur during buckling of 

a concrete spherical cap due to nonlinear stress-strain relationships, and the combined 

bending and membrane stresses in the shell, and result in earlier failure than predicted by 

analytical models. Consequently, the authors developed an analytical model that extends 

a localized failure mode of concrete slabs to the local failures observed in concrete or 

mortar spherical caps in the literature; hence treating failure of concrete caps as a local 

phenomenon instead of a global elastic instability.  

The authors used their analytical model to calculate the failure load of spherical 

caps reported in the literature in references [109], [82], and compared it with the reported 

specimen experimental failure loads, resulting in a very good correlation with the 

literature results with a mean ratio between experimental failure load and the model 

obtained load (pt/pu) equal to 1.0 for the caps in [109] (23 with non-prestressed ring and 

11 with a prestressed ring) with coefficients of variance 12.0% and 9.1% respectively. A 

similar correlation was obtained with the mortar specimens of [82] (2 spherical caps) 

with a pt/pu ratio of 1.06 and a coefficient of variance of 3.0%. 

In 2011, the same authors conducted an experimental analysis [31] of the failure 

of shallow concrete dome with a larger scale than usual (a thickness of 30 mm and a base 

diameter of 3000 mm), where the concrete spherical cap, loaded by water pressure, failed 

at about 31% of the classic critical load (corresponding to C = 0.368). The authors noted 

that the maximum stresses at the failure zone were well below the concrete strength; thus, 

failure indicated a local unsymmetric buckling affected by geometric nonlinearity, 
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material nonlinearity, imperfections and bending effects near the edge. the results of the 

experiment was compared to a study using a FE model on the computer program 

ABAQUS where only geometric nonlinear behavior was considered, but not the inelastic 

concrete behavior nor geometric imperfections. Using the initial modulus of elasticity of 

concrete, the model results were very far from the experimental results, while after using 

the secant modulus of elasticity at the peak stress of the stress-strain curve, the results 

were very close as shown in Fig. 27 from [31]. However, the author note that the only 

indication of this similarity is that the secant modulus of elasticity can be used to provide 

a simplified estimate of the critical load of thin shallow concrete spherical caps. 

 

Fig. 27: Comparison of the load-central deflection of experimental and numerical 

results in [31] 

 

3.2.3.2. Effects of Creep on the Long Term Behavior of Concrete Shells 

The long-term capacity of concrete spherical caps under constant load is not included 

within the scope of this research. However, for the sake of completion, the effects of 

creep deformations and their effects on the capacity of concrete that were cited in the 

surveyed literature are included here. Consequently, it should be noted that the reported 

studies may not present the complete picture of the development of studying concrete 

creep, but rather serve to cite these effects when looking at the overall stability behavior 

of concrete shells. 

The effects of material creep on shallow spherical concrete shells were stated 

throughout literature in references [119], [108], [56], [57], [58]. In concrete structures in 
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general, creep affects behavior at the serviceability limit states (increases deformations). 

In thin-walled shallow concrete domes characterized by buckling failure, creep 

deformations are critical for safety. This is because creep causes reduction in dome height 

accompanied by an increase in compressive stresses, which, as reported by Hamed et al. 

[56], can cause localized damage, or creep buckling (loss of stability slowly over time) or 

crushing failure of concrete before buckling occurs. 

In order to account for creep, many earlier studies suggested using a modified 

modulus of elasticity that incorporates the reduction in the capacity of the shell. The ACI 

334 committee report [4] approximated creep effects on shell buckling as follows: 

Besides using a reduced value of E (by determining the tangent modulus of elasticity), E 

is divided by a multiplier (not less than 2) for long term deflections. 

Vandepitte et al. [109] replaced E in the buckling formula developed based on the 

study tests by a tangent modulus σ/Ԑt, where σ is the constant shell stress calculated by 

the membrane theory, and Ԑt, is the value of the total strain at failure. The authors’ work 

concluded that that formula, combined with the modified formula developed in the same 

research, predicts a correct buckling pressure under a constant load applied for a long 

duration. Vandepitte and Lagae’s experimental buckling tests of unreinforced 

microconcrete domes [108] showed significant reduction in buckling capacity under 

sustained loading (about 67% reduction in buckling load): While short-term loading 

resulted in a buckling load of 46% of classical buckling, the sustained load caused dome 

collapse under only 33% of its buckling pressure. 

Isler [69] explained the effect of creep on stability as an increased flattening of a 

shallow shell until the curvature is zero, which was referred to in the beginning of this 

chapter as the “neutral equilibrium” state. Based on the elastic theory, if the load is 

maintained, the shell will snap-through. However, for a concrete shell, Isler stated that 

the load is then resisted only by the bending stiffness in the buckling area. Isler stated that 

shell buckling is, thus, very sensitive to creep effects, and that sensitivity is amplified by 

the presence of initial geometric imperfections. 

Zarghamee and Heger [119] also stated that creep deformations cause continuous 

reduction of critical buckling load with time, and that the magnitude of creep strains is 
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dependent on concrete strength, volume-surface ratio (higher creep effects in thinner 

shells), duration of the load, age of the concrete at loading and average humidity during 

load application. The authors in [119] explained the imperfection-creep-cracking 

interaction mechanism as long-term creep deformations in the imperfect zone that 

constantly reduce the curvature and the critical buckling pressure. At the same time, these 

deformations increase the membrane and bending stresses thus resulting in tensile 

stresses near a region of a geometric imperfection, which may continue to grow and 

cause a loss of buckling resistance. 

However, the proposed design procedure in [119] was based on results by the 

program BOSOR, which used the rate-of-creep method for analysis of creep effects. This 

method was reported in [58] to possibly lead to inaccurate results for concrete shells 

because it assumes that the rate of creep approaches zero as time increases, thus, it may 

underestimate the effect of concrete creep where stresses gradually increase with time 

[58]. 

As previously discussed, the influence of concrete creep was also included by 

Dulácska [42] through an empirical modification of the concrete modulus of elasticity in 

the buckling load equation. The modified modulus is presented in Eq. (24) [42]. 

   
 

    
 

(24) 

Where    is the creep factor which depends on the thickness of the structure, concrete 

mix properties and environmental factors. 

Dulácska [42] presented an approximation for the creep factor in “normal 

circumstances” in Eq. (25) [42]: 

   
  

      
 

(25) 
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The problem with predicting creep effects lies in the fact that creep strains depend 

on the level of stresses, interaction with shrinkage and thermal strains, and aging of 

concrete [56], [57], [58]. The authors in [56] noted that there is very limited research on 

shrinkage and creep effects on concrete shell structures and shallow domes. The authors 

acknowledge the literature on creep buckling of shells of other materials than concrete 

using a “rate-of-creep” method which, as discussed, works well for non-aging materials 

with an almost linear creep behavior, but is not suitable when applied to concrete 

structures, particularly concrete domes where significant variations in internal stresses are 

caused by creep of concrete [56]. 

An analytical model was developed in [32] to study the effects of concrete creep 

and shrinkage on the geometric nonlinear behavior of concrete domes, without including 

material nonlinearity, cracking or geometric imperfections. A later study by the same 

authors [57] developed an analytical model which accounted for material nonlinearities, 

beside geometric nonlinearity, creep and shrinkage. An experimental study [57], [58] was 

conducted for validating the analytical model by the authors. The study included applying 

long-term constant pressures of 43.5% and 49% of the short term buckling pressure of the 

domes (derived experimentally from a short-term control specimen). The dome loaded 

with 43.5% of its instantaneous buckling load (reported in [58]) failed after 240 days 

indicating an even lower capacity with a failure pressure between 15% and 24% of the 

classical buckling load only. These results show the significant effects of creep on the 

capacity of the dome, and also show good agreement with the axisymmetric analytical 

model developed by the authors which predicted creep buckling after 260 days, as shown 

in Fig. 28 from reference [58], where the solid line represents the theoretical prediction 

while the dots represent the experimental deflections. 
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Fig. 28: Experimental and theoretical time variation of creep deflections at the 

center of the dome in [58] 

 

The authors also noted that the peak measured deflection in the dome was higher 

than that of the short-term loaded specimen, indicating that, under moderate long term 

loading, the structure loses its stability with relatively large deflections caused by creep 

and geometric nonlinearity. The measured strains at the time of failure, well below the 

strain capacity, also indicate the failure was a loss of stability rather than a material 

failure. 

3.2.3.3. Concrete Shell Design Guidelines  

As discussed in the previous section, the design of spherical caps adopts the approach of 

introducing reduction factors to the classical linear buckling value. This is also the 

dominant approach for the design of concrete spherical caps, where empirical design 

formulas based on reduction factors are presented as proposals by research studies, 

recommendations by relevant organizations and groups, and guidelines by relevant 

design codes. 

In the Design and Analysis of Shell Structures [44], Farshad states that thin 

concrete domes with large spans are highly susceptible to buckling failure that stability 

considerations are of the main design governing factors of concrete domes. Farshad 

presents an approximate formula claimed to be suitable for designing spherical concrete 

shells, since, as previously illustrated, experiments have revealed much lower buckling  
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loads than the theoretical values, which are attributed to their sensitivity to imperfections. 

Farshad stated that some building codes recommend reduction parameters for the 

theoretical value for the purposes of shell design that provide predictions between 0.05 

and 0.1 of the classical value. Accordingly, the presented buckling pressure formula that 

is recommended for design purposes of the spherical concrete shell is given in Eq. (26) in 

[44]: 

           (
 

 
)
 

 

(26) 

  Medwadowski [85] reports the Eq. (27) recommended by the ACI Committee 344 

report [5] (Design and Construction  of Circular Prestressed Concrete Structures) for the 

minimum thickness for spherical caps, taking into account the reduction in buckling load 

caused by geometric nonlinearity, creep effects, and imperfections. 

       
√      

    
 

(27) 

(with a minimum thickness of 76.2 mm for cast-in-situ concrete domes) 

The safety factor   is assumed to incorporate the effects of creep. (    for 

storage areas, and higher for public areas). The factor k depends on the rise-to-span ratio 

and the radius-to-thickness ratio (taken equal to 0.25 for rise-to-span ratios between 1/10 

and 1/6 and radius-to-thickness ratio less than 800). The equation was put in the standard 

buckling load formula in Eq. (28) by Medwadowski [85] using     and k = 0.25 

reproducing the same equation as Eq. (26) presented in [44]. 

              (
 

 
)
 

 

(28) 
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This value is only 4% of the classical linear buckling value (including the safety 

factor). 

Medwadowski [85] presented an overview of the guidelines of buckling design of 

concrete shells, particularly those presented by the International Association of Shell 

Structures (IASS) in 1979 [68] and subsequent modification proposals including those by 

the author.  Medwadowski [85] provided an equation for the buckling load based on the 

procedure of IASS [68], Kollár modification proposal in 1993 [78] and other suggested 

modifications by the author [85]. The procedure starts with calculating the classical 

buckling load then applying a reduction factor as presented in Eq. (29) from [85]: 

      
        

 
      

(    

This reduction is composed of: 

   : Imperfection sensitivity factor that is based on proposed modifications of 

earlier empirical equations referenced in Dulácska [42] and Kollár [78] 

   : Creep factor that is calculated based on a creep modulus of elasticity, in a 

similar manner to that of those presented in the previous subsection, to account for 

concrete creep effects. 

   : Cracking and reinforcement factor, which is equivalent to   in Dulácska’s 

equation [42], with subsequent modifications the author referenced in Kollár [78]. 

These factor depends on calculating the ratio n representing the ratio between the 

elastic modulus of steel and creep modulus of concrete (modified elastic modulus), 

and the reinforcement ratio µ = As/Ac. The value of nµ is then used to get the value 

of the factor Ψ from Fig. 29 (taken from reference [42]). The factor Ψ is then used in 

combination with the calculated imperfection amplitude to calculate the cracking and 

reinforcement factor. Medwadowski [85] believed, however, that the most 

conservative case, when considering buckling, is to consider the shell uncracked and 

unreinforced; i.e. use a value of Ψ = 1 and a corresponding    = 1. The author stated 
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that results using this factor correlated well with the earlier experimental test results 

of Vandepitte et al. [109]. 

 

 

Fig. 29: Values of reinforcement reduction factor for different reinforcement 

conditions of the concrete shell [42] 

 

   : Inelasticity of concrete factor: the value of the material nonlinearity reduction 

factor is based on empirical developments by Dulácska and Kollár [79]. The final 

form is presented by Medwadowski [85] in Eq. (30): 

    √

 

  (
  
    

)
  

(30) 

Where      is the ultimate load of the shell and    is the buckling load calculated so 

far using factors α1, α2, and α3. The paper provides empirical equations or 

recommended values for each of the factors, in order to calculate a reasonable value 
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of the buckling load of concrete shells that includes material nonlinearity, creep 

effects and sensitivity to imperfections. 

 γ: a safety factor based on an empirical equation suggested by the author [85] in 

Eq. (31) and (32): 

for              (conservatively, the buckling mode of failure governs) 

                       
  
 
  

(31) 

While for              (the material failure governs, so the shell is insensitive 

to imperfections) 

               

(32) 

Where      is the ultimate load of the shell based on material strength, and     is 

the buckling load  

 

3.2.3.4. Stability of Segmented Concrete Shells 

There is very limited research on the stability of segmental shells, specifically shells 

made of precast concrete segments. The authors in reference [119], previously discussed, 

stated in their buckling analysis of monolithic concrete shells that buckling of precast 

domes is affected by panel arrangements and connections between precast elements. 

Heger [62] proposed a correction factor of the buckling load of monolithic concrete 

domes to be used for determining the buckling resistance of a precast dome. That 

correction factor was based on the dimensions of the panels and the thickness of the 

monolithic ring between panel rows in his design. Heger also discussed other relevant 

design considerations for segmental precast construction; for instance, camber of the 

precast panels to counteract deflections that arise during the construction process, 
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providing precast joints with tensile capacity to increase buckling resistance, and 

prestressing of the ring beam to minimize edge bending effects and cracking, although no 

thorough analysis was conducted for quantifying these effects. 

Most of the cited precast concrete shells in the literature present specific projects 

that used scale models to predict the behavior of the precast structure [48], [74]. This is 

mainly due to the fact that there are many extra parameters that affect the behavior, such 

as the connections between the precast elements, the subsequent the load transfer 

concerns and the additional strains introduced to the system due to member deflections 

during each stage of the construction process. Consequently, for this type of segmental 

construction, the conventional shell analytical models may not be sufficient to predict the 

overall behavior of the structure, as reported by Kaplunovich and Meyer [74]. 

The same authors emphasized the need for viable analytical methods for the 

analysis and design of these segmental shells which take into consideration all the new 

variables added to the design equation. These methods should also be able to provide a 

comprehensive analysis at each stage of the construction. 

The conclusion is that the capacity of segmental precast concrete shells is affected 

by the same factors of the monolithic concrete domes, with the addition of other factors 

that come into the equation with the geometry of the segmental shell. As previously 

discussed, the geometric nonlinearity, boundary conditions, material nonlinearity and 

time-dependent effects are critical factors that dictate the shell’s buckling capacity. 

Geometric imperfections are also critical because of the inevitability of construction 

inaccuracies, the stated sensitivity of the shell buckling load to geometric imperfections, 

and the interaction of these imperfections with other effects such as creep.  

The major element added to segmental shells is the presence of joints between the 

precast panels. In general, the behavior of joint is the most important consideration in 

precast concrete structures [43]. Precast joints must be designed to properly transfer 

forces between structural members, and provide stability, continuity and robustness. The 

additional forces that are generated in the joints of precast structures due to relative 
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displacement and rotation between the elements should be taken into consideration in the 

design of precast connections. 

Precast structural joints can be compression, tension and/or moment joints, 

depending on the type of forces they transfer and the failure behavior of the structure. 

Although concrete shallow domes are mainly characterized by membrane compression 

forces, the presence of a bending field is inevitable, particularly near the shell edge. 

Consequently, the concrete dome precast joints should be designed as moment resisting 

joints. 

In general, tension joints are characterized by lapping of projecting reinforcement 

bars or loops through a full anchorage length, and the addition of transverse bars in the 

joint to resist the transverse component of the diagonal strut formed between the 

projecting bars. Moment-resisting connections are designed to ensure a ductile failure, 

i.e. the limiting strength of the connection shall not be governed by shear friction between 

the precast elements. The moment-resisting connection can be created using different 

methods that include grouting of projected reinforcement, bolting of steel sections or 

plates, threaded bars and couplers, or welding to steel sections or plates, which is known 

to provide a minimized joint length and immediate structural stability [43]. Placing steel 

ties continuously across the connections over the entire structure is also sometimes 

considered in order to provide structural continuity and prevent progressive collapse. 

Although a large number of research studies investigate the behavior of 

connections between concrete precast structural members in many different structures, 

almost none were found to deal with the presence of such connections in shell structures. 

Studies such as those by Vidjeapriya [111], Julander [70], Fleischman [45] ,[46], Zhang 

and Fleischman [120], Sullivan [100], Wells [115], Porter [91], Brackus [19] on different 

types of precast concrete structures provided a reference for incorporating the behavior 

and different parameters of the structural joints between precast concrete members into 

the numerical analysis using finite element models, and constructing these joints in 

experiment scale models. These studies, among others, were used as the basis for 

modeling the behavior of the connections between the concrete precast panels, bearing in 
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mind the differences in geometry and loading mechanisms. To avoid redundancy, these 

studies are, however, not discussed here in detail, since they do not particularly deal with 

concrete shell structures. Instead, they are referenced in the relevant sections of the 

methodology chapter of this study. 

Based on surveyed literature, it’s seen that the construction of concrete domes 

from precast elements can constitute a very competitive alternative that combines both 

the structural efficiency of the dome, and the prefabrication quality and fast construction 

advantages of the precast structures. It is also concluded that the application of a division 

pattern that produces the largest number of identical units provides the construction 

advantage of mold reusability and increase the overall design and construction 

competitiveness of the system. 

A final conclusion is that very few studies attempted to investigate the structural 

behavior of segmental shells, as differentiated from those cast monolithically, although 

the need for such analysis was stated by many authors. It is seen that this scarcity is due 

to the unpopularity of precast shell construction, mainly attributed to the introduced 

factors to that are difficult to account for in the analysis, as discussed previously. 

Consequently, the literature on concrete spherical cap buckling is used as a reference for 

comparison with the results of this study. At the same time, the literature on modeling of 

concrete precast joints is used as a reference for modelling the extra effects introduced to 

the shell structure through the joints. The purpose is to assess the structural integrity of 

the proposed segmental dome system, compare its capacity to that of the corresponding 

monolithically cast system, and incorporate the parameters of that comparison within the 

larger context of design and construction efficiency, in order to construct a conclusion 

about the overall efficiency of the proposed structure. 
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4. METHODOLOGY 

 

4.1. Geometric Design of the Dome Structure 

4.1.1. Creating the Design 

4.1.1.1. Selection of the polyhedral framework 

Based on the literature on spherical subdivision, particularly the properties of spherical 

polygons and the different ways of using them to create uniform subdivisions presented 

in Divided Spheres: Geodesics and the Orderly Subdivision of the Sphere [90], the 

icosahedron was selected to be the optimum framework for creating a subdivision pattern 

for the dome, since it has the largest number of uniform faces of all other polygons, and 

will, hence, almost always provide a more uniform subdivision compared to other 

frameworks. Fig. 30 shows both a planar and a spherical version of the icosahedron that 

was used as the base for creating the subdivision, and is later cut to produce the desired 

spherical caps in this research. These models were created using the CAD software 

SOLIDWORKS [38], which was also used later to create a solid model of the dome and 

the panel molds, as will be discussed later. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 30: A planar and a spherical icosahedron 
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The next step was determining the optimum subdivision scheme for the purpose 

of this research. The author in [90] presents three main subdivision “classes” and state 

that each class is more suited for particular applications, based on the characteristics of 

the patterns produced using each technique. In this research, the most important 

characteristic of the subdivision is the division uniformity, i.e. producing the least 

number of unique subdivisions on the sphere. For the dome analyzed in this research, this 

guarantees the most frequent use of the precasting molds, and thus, the most optimum 

prefabrication process. 

Eventually, class II (triacon) subdivision (as referred to in [90]) was selected for the 

design for that specific reason; the advantage of having the least number of unique panel 

sizes. As discussed by the author in [90], there are many different size variations of class 

II subdivision technique, which are called ‘division frequencies’. The division frequency 

is defined as the number of divisions on each edge of the base polyhedron (the 

icosahedron in this case) [90]. Different division frequencies produce different panel 

sizes and total number of panels. The resulting panels of the different division 

frequencies are presented and compared in a parametric study presented in the next 

chapter, while the selection of the most optimum for each different application shall be 

determined by the engineer based on the requirements of each specific project. 

 

4.1.1.2. Cutting the spherical cap 

The next step was the selection of the cutting plane for the sphere to create the desired 

spherical cap needed for the purpose of this analysis. The location of the cut (which 

determines the spherical cap central angle) was selected as the plane which will result in 

the least disruption of the spherical polygon’s geometry, and mostly match the 

icosahedron edges and subdivision lines, consequently preserving the uniformity of the 

panels. The base panels of the dome were further adjusted, as shall be discussed shortly, 

to produce the plane spherical base required for the dome applications. 

Two different spherical caps were cut out of the total subdivided sphere and are 

selected to be the spherical dome configurations used for the analysis. The two cuts 

produce two domes that differ significantly in depth. The first dome, shown in Fig. 31 
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before the division process, has a half central angle of about 63.435⁰, which represents 

five faces of a spherical icosahedron. 

 

 

 

 

 

 

 

 

 

 

The second dome, shown in Fig. 32, is 

considerably shallower and has a half central angle 

of about 37.38⁰. This cut, though, is not directly 

based on the icosahedron face edges, but rather on 

the spherical division lines. Both domes are later 

divided following the class II division procedure 

explained in reference [90]. 

The former dome (the deeper) is labeled as (DD), 

while the latter (the shallower) is referred to as 

(DS). It should be noted that the DS is analyzed 

thoroughly in the numerical analysis section of this 

research, and is also selected for the experimental 

analysis, while DD was investigated only in some 

preliminary numerical analyses.  

 

 

Fig. 31: Deep spherical cap 

Fig. 32: Shallow spherical cap 
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It should also be noted that the dome shapes shown in the figures here are the 

preliminary shapes cut directly from the spherical icosahedron, before adjustment of the 

dome base for design purposes. 

 

4.1.1.3. Dividing the dome 

The next step was the division of the dome. As explained in the literature review, the 

division technique of [90] is based on selecting a working unit of the dome which can be 

subdivided then replicated to create the whole structure, thus creating the largest number 

of uniform divisions. Even though the domes have different depths, they’re both based on 

a spherical icosahedron and shall both be divided using class II division, which is based 

on the diamond shaped working unit, as shown Fig. 33 (from reference [90]) which 

illustrates class II subdivision frequencies. ‘2v’ frequency corresponds to division the 

diamond work unit into two identical spherical triangles. An important note here is that 

when each of the two identical triangles is re-divided, 

the resulting right triangle is known as the least 

common denominator (LCD) (a quarter of the 

diamond unit). The LCD is a right-angle triangle 

which has two mirror versions that recreate the entire 

surface of the sphere. Dividing the sphere into LCDs 

is technically not one of class II division frequencies; 

however, it is used in this research as one of the 

possible subdivision patterns, as it produces the 

most uniform division, in general. As the diamond 

is divided more, frequencies 4v, 8v, 16v and 32v 

result as shown in the figure. 

It is noted that the number of unique panels based on this subdivision class for all 

division frequencies is the least among all other classes. This is desirable quality in terms 

of precast concrete construction because the repetitive use of prefabrication molds results 

in a more efficient and cheaper construction process. 

Fig. 33: Class II subdivision frequencies 

[90] 



75 
   

4.1.2. Geometric Design Optimization 

As mentioned earlier in this chapter, two dome configurations were selected for analysis 

based on the foregoing division class (SD and DD). The work done in this part of the 

section presents a parametric study of both domes that attempts to clarify and compare 

the design parameters for each dome configuration, division frequency, and span. 

The parameters considered in this study are the total number of panels for each 

division frequency, the number of unique panels, the average size of the panel, and the 

average panel weight for different shell thicknesses. The purpose is to present a visual 

representation that can be later further developed to help the designer select the 

configuration and division frequency most suitable for the specific design application and 

resources. 

For that purpose, an algorithm was developed using MATLAB [84] to generate 

the relevant geometric data. Initially, the code can be used to generate the panel sizes 

corresponding to the user input for the desired configuration (shallow or deep), division 

frequency (LCD, 4v or 8v), and the span to be covered, as prompted at the start of the 

program. At this stage, the output of the program is the corresponding total number of 

panels needed for the construction of the dome, and the absolute sizes of all the unique 

panels for the input division frequency and span. It should be noted that the sizes are 

expressed in units of area; the thickness is assumed to vary according to the engineer’s 

judgment and the design application. 

The same MATLAB code was used to generate graphical relationships between 

the following parameters for both the DS and DD configurations: 

 The total number of panels to be handled for each division frequency 

 The number of unique panels resulting from each division frequency 

 The average absolute panel size for each span (ranging between 10 and 50 meters) 

and each division frequency 
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 The absolute panel weights for each division frequency, constructed for spans 

between 10 and 50 m, and for a group of thicknesses ranging between span/70 to 

span/250 

The purpose of constructing these graphs would be to help the designer at the 

preliminary design stage to compare different size options, and determine the appropriate 

panel size and weight for their particular design application. The resulting graphical 

relationships are presented in the geometric results section of the next chapter. The 

developed MATLAB code is presented in Appendix A. 
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4.1.3. Construction of the Dome Model 

The next step was the selection of the specific dome parameters for the purpose of the 

numerical and experimental analysis of this research, and constructing a 3D CAD model 

for the dome. The initial selection of the dome parameters was based on the following 

factors: 

 Moderately large span for dome applications, judging based on the reviewed 

dome structures in the literature 

 Relatively large thickness that reduces the shell’s susceptibility to premature 

buckling, also judged from the previewed structures. The selection criteria for the 

thickness of the dome are presented in detail in the section 3 of this chapter 

(Design and Construction Plan). For now, it should be noted the selected initial 

thickness is considered of a conservative value, compared to those found in the 

literature. A governing factor in selecting the thickness was the convenience of 

casting the scale model, as detailed later in section 4 of this chapter (Experimental 

Analysis of the Dome). A smaller thickness would have been very difficult to 

achieve with the available resources in a 1:10 geometric scale. 

 The division frequency was selected based on convenience as well; an optimal 

division between requiring a least number of unique panel molds, and a 

reasonable panel size to be handled. 

The parameters of the selected dome for the numerical and experimental analysis 

are presented in table 1. 

Table 1: Selected shell parameters for the analysis 

Configuration Shallow dome (DS) (half central angle = 37.38) 

Span (m) 25 

Division frequency 4v 

Thickness (mm) 250 

 

 



78 
   

1 

4 

3 
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The CAD software SOLIDWORKS was used to 

construct 3D models of the dome panels. All panel models 

were created using only four points in the three coordinate 

axes space. These points define the vertices of all spherical 

triangles (panels) in a half-diamond work unit shown in 

Fig. 34 from reference [90], and the coordinates of which 

are also extracted from the appendices of [90]. 

SOLIDWORKS features were used to create 

separate solid models of each panel with the required 

thickness (an example is shown in Fig. 35). These panels 

were then assembled in a SOLIDWORKS assembly file 

creating a full 3D model of the dome, shown in Fig. 36. 

Thus, the dome model was constructed using 

repetitions of three different panels of two unique sizes only 

(two of the three panels are enantiomorphs (mirrors) of each 

other).  

 

 

 

 

 

 

 

 Fig. 34: Half-diamond work unit [90] 

Fig. 35: A panel 3D model 

Fig. 36: Full shell 3D model generated using SOLIDWORKS 
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The next design step was the modification of the shape of the base panels to 

generate the circular horizontal plane required for the dome and boundary beam design. 

The base panels were directly extended to complete the spherical shape of the dome and 

fit the edge of the ring beam. Fig. 37 shows the base panel shape before and after the 

adjustment, and the final model of the adjusted dome is shown in Fig. 38 

 

 

 

 

 

 

 

           

 

 

 

 

 

 

 

 

Fig. 37: Base panel before and after modification 

Fig. 38: Final model of the adjusted shell design 
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Another CAD model was created 

for the boundary beam, shown in Fig. 39. It 

is conventional for the boundary beam in 

dome construction to have a slanting edge 

that fits the edge of the dome (Fig. 40); in 

this research, the beam section was 

modified to both fit the panel edges and 

provide additional restraint for the panels, 

given that the panels and the beam are not 

to be cast monolithically (Fig. 41). 

 

 

 

 

 

 

 

 

 

 

 

Fig. 39: Ring beam model 

Fig. 41: 

Conventional dome 

ring beam 

Fig. 40: Adjusted dome 

ring beam design 
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The final model of the dome and the ring beam assembled together is shown in Fig. 42: 

 

The previous models were used for the following: 

 Extraction of the volume and mass properties of the scale model of the dome, the 

ring beam and the panels for the purpose of the experimental analysis material 

surveying. 

 The panel models were used for designing the fabrication molds used in the 

experimental analysis, as will be explained later in this chapter. 

The next section of this chapter presents a detailed numerical analysis of the 

prototype dome of the parameters listed in this section, while the following sections 

present structural design and construction plans for the prototype, and the experimental 

analysis procedure and parameters of the scale model. 

 

 

 

 

Fig. 42: Final model of the dome panel and ring beam assembly 
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4.2. Numerical Analysis of the Structure 

 

Several finite element models of the shallow dome configuration were built using the 

general purpose finite element software ANSYS [13], and utilizing different element 

types, material properties, loading conditions, boundary conditions, and connection 

properties. These models were loaded up to failure in order to determine the capacity and 

the failure behavior of the dome under the different conditions, and define the factors that 

most affect the structural behavior of the dome. 

 Most of the models in this study were initially loaded with uniform gravity loads, 

since it is the relevant loading conditions for the application of this structure. Other 

loading conditions were also investigated including the most commonly studied normal 

external pressure case, and a more critical concentrated crown load case. 

The structural analysis was accomplished on different stages to take into account 

the effect of each geometric, material or connection parameter on the global behavior of 

the structure. The analysis started with determining the linear elastic buckling using the 

eigenvalue buckling analysis on ANSYS to obtain an idea of the buckling capacity of the 

proposed geometry, and verify the appropriateness of the modeling parameters. The 

second stage of the analysis was modeling the effects of geometric nonlinearities on the 

buckling capacity of the elastic spherical shell; which was the subject of many previous 

works in the reviewed literature. The third stage of the analysis aimed to include the 

effects of concrete nonlinearities on the failure behavior of the structure. 

The following stage was modeling the effects of boundary conditions. Different 

boundary parameters were adopted in different models in an attempt to understand the 

effect of the boundary ring beam on the failure behavior of the structure. These 

parameters ranged from modeling a completely fixed boundary, to modeling of the ring 

beam as solid elements integrated into the FE model. A discussion of the effects of 

boundary modeling on convergence of the solution is included in this chapter. 

The following stage was to understand behavior of the intermediate joints 

introduced to the structure through the proposed segmented design and construction 

procedure. Different parameters for modeling the behavior of concrete stitches between 
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the precast panels were used in the analysis, based on approaches or results of other 

similar studies of precast connections in the literature. These different parameters are 

discussed in this chapter, while the results are compared to each other and to those of the 

experimental analysis in the next chapter. This part of the analysis is particularly valuable 

as it presents an application of precast connection modeling techniques to modeling 

segmented concrete shell structures, and the reliability of the selected variables is then 

evaluated based on the results of the experimental analysis of a scale model of the 

connected precast concrete panels of the dome. 

The failure of the dome was determined differently from one model to another. 

For linear elastic models, the failure (in this case the eigenvalue buckling) of the dome 

was determined by the program itself as a factor (multiplier) of the load applied to the 

structure. In the geometric nonlinear models using nonlinear shell elements, very large 

gravity loads were applied to the structure and the solution was run with the determined 

optimum number of load steps and equilibrium iterations until it convergence difficulties 

were faced and the solution terminated. At that point, a restart of the solution is issued 

while the nonlinear stabilization feature is activated in order to achieve convergence and 

verify the failure of the structure. The use of nonlinear stabilization is detailed shortly. 

For the combined geometric nonlinear and material nonlinear analyses using solid 

elements, large gravity loads were applied to the structure, and failure was determined 

when the solution stopped converging with the minimum possible load increment 

application, the displacement showed a rapid increase under very small loads, and the 

strains/stresses were verified to reach material limits. A convergence sensitivity study 

was also conducted in order to determine the optimum meshing, load stepping and 

solution parameters, and attempt to verify that the termination represents a real structural 

failure and not a numerical instability. 
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4.2.1. Linear Elastic Buckling Analysis 

The first stage of determining the stability limits of the structure was to conduct an 

eigenvalue buckling analysis using a FE model on ANSYS. At this stage, the models are 

built using shell element SHELL281.  SHELL281 is suitable for modeling thin to 

moderately thick shell structures. The element has eight nodes with 6 DOFs at each node 

(UX, UY, UZ, ROTX, ROTY and ROTZ). The quadrilateral shaped version of the 

element was used in this analysis. SHELL281 is shown in Fig. 43 [10]. 

 

Fig. 43: SHELL281 element on ANSYS [10] 

 

A shell section is defined as one layer of a 0.25 m thickness. The material 

properties were input as elastic isotropic properties of uncracked concrete with the 

modulus of elasticity = 22 GPa and Poisson’s ratio = 0.2. The density is used as 2500 

kg/m3 to represent the density of reinforced concrete. Different boundary conditions were 

applied: 

 The 6 DOFs restrained along the whole perimeter 

 Translational DOFs (UX, UY, UZ) restrained along the whole perimeter 

 A bounding ring beam was modeled using BEAM189 line element along the 

perimeter. The beam has the same material properties as the dome and is hinged at 8 

locations symmetrically around the perimeter. The beam section is input as 0.75 m width 
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and 1.5 m depth. Fig. 44 shows the elements for this model with the ESHAPE command 

which displays the model section dimensions. 

 

Fig. 44: Shell FE model using SHELL281 and BEAM189 elements 

At this stage of the analysis, the structure was loaded in two different ways: 

 Unit pressure load normal to the surface of the shell element. This loading condition, 

together with a completely fixed boundary, shall produce a very close buckling load to 

that predicted by the linear elastic stability theory for a complete spherical shell. 

 Vertical gravity load (gravitational acceleration = 9.81 m/s2). The buckling load in 

this case is a multiple of the structure’s weight. For the present structure, this loading 

condition represents the serviceability loads (dead and live loads). 

The followed solution procedure is ANSYS eigenvalue buckling which starts with 

a small displacement solution followed by an eigenvalue analysis and an expansion of the 

buckling mode. As previously mentioned, the failure of the structure was determined by 

the software as a factor/multiple of the applied loads. As discussed in the literature 

review, the linear elastic analysis procedure is generally suitable as a starting point for 

understanding the behavior pattern and order of magnitude of elastic buckling loads. 

Both dome configurations (previously referred to as the shallow dome 

configuration (SD) and the deep dome configuration (DD)) were modeled and loaded at 

this stage. Starting from the next stage, only the shallow dome, which was selected for 

the experimental analysis, is modeled and analyzed for failure.  
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4.2.2. Geometric Nonlinear Elastic Analysis 

The large displacement analysis was conducted using SHELL281 nonlinear layered shell. 

The shell section and linear isotropic material properties were defined as the previous 

analysis stage. Only the shallow dome SD was modeled at this stage with and without a 

boundary ring beam using BEAM189 nonlinear line element. 

The applied loads were large vertical gravity or normal pressure loads whose value was 

taken nearly the same value as the linear elastic buckling load. Due to geometric 

nonlinearity, the structure was expected to lose its stability before reaching the applied 

loads. 

ANSYS large displacement analysis procedure was used. The default nonlinear 

solution method in ANSYS is the Newton-Raphson method in which the load is applied 

incrementally in a number of substeps. In each substep, the difference between the 

applied loads and restoring forces (out-of-balance load vector) is determined to check for 

convergence. If convergence is not achieved, the process is repeated iteratively and a new 

solution are obtained until convergence is achieved based on the specified convergence 

criteria [12]. Other convergence enhancement techniques were used as well, such as 

bisection (activated by default), line search and automatic time stepping. Automatic time-

stepping allows the user to input an initial number of load substeps, and minimum and a 

maximum number of substeps that designate the maximum and minimum step size. The 

program starts applying load increments of the initial size, and then increases the step 

size until it reaches the maximum allowable size. However, if convergence difficulties 

were faced, the program will start bisecting the step size and iterating the solution until it 

convergence or the minimum allowable step size is reached. 

The Newton-Raphson method alone, however, faces convergence difficulties in nonlinear 

buckling analyses in which the structural collapses or snaps-though as the tangent 

stiffness matrix becomes singular. In such cases, ANSYS recommends either the use of 

nonlinear stabilization together with the Newton-Raphson method, or the other 

alternative method to Newton-Raphson; the arc-length method. Nonlinear stabilization 

was used in this analysis as shall be discussed shortly. 
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Throughout the analysis, the number of substeps (or the time increment size) has 

varied greatly from one model to another depending on the material properties, the value 

of the applied load, the boundary conditions and other modelling parameters. 

The number of equilibrium iterations was also variable between different runs. 

The initial number of iterations was input as the program’s default (15 equilibrium 

iterations per substep). In case the substep did not converge, the number of equilibrium 

iterations (together with the number of subtsteps) was increased and the solution 

restarted. During the analysis, increasing the number of equilibrium iterations over 200 

was seen to cease to enhance convergence. 

Failure of the structure at this stage of analysis was initially identified as the load 

increment at which the solution did not converge after reaching the minimum allowed 

step size. This failure was verified by using the nonlinear stabilization feature in ANSYS. 

Numerical stabilization is used to overcome convergence difficulties in unstable 

problems where small load increments result in large displacements. It is defined in the 

ANSYS structural analysis guide as “an artificial damper” that applies an artificial 

damping force to each node of the element which reduces the displacement at the node so 

numerical stabilization is achieved [12]. A ‘damping factor’ is used to calculate the 

stabilization force based on a user specified energy dissipation ratio or a directly input 

damping factor. ANSYS specifies the energy dissipation ratio to be between 0 and 1, with 

the larger energy dissipation ratio resulting in a larger stabilization force and, in turn, a 

stiffer response of the structure. In this research, different values of energy dissipation 

ratios were tried in order to determine the smallest possible value to achieve convergence 

while, at the same time, not result in excessive stiffness. An energy dissipation value of 

0.01 was determined to be the smallest value which achieved convergence of the 

solution. Although this value is relatively large, ANSYS structural analysis guide 

recommends using the larger values for global instabilities (as opposed to local 

instabilities) and for shell elements (as opposed to solid elements). 

Although nonlinear stabilization has achieved convergence of the solution and 

helped verify the point at which the structure loses its stability as discussed in the results, 

this method is unable to correctly track negative stiffness (the negative slope portion of 
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the load deflection curve), which would have been an issue had the post-buckling 

behavior of the elastic shell been significant in this research. However, since the analysis 

is only concerned with the failure point of the structure, the nonlinear stabilization 

provided satisfying results. 

The Newton-Raphson method (together with nonlinear stabilization where 

needed) has proven to be the most efficient throughout the entire analysis process. The 

other alternative, the arc-length method, was initially used a few times in some of the 

models in order to determine the most suitable method. The arc-length method has the 

advantage that it can circumvent global instability and track unloading (i.e. zero or 

negative load-deflection slope), and consequently, it is used to explore postbuckling 

behavior of structures. However, the arc-length method is not compatible with automatic 

time-stepping or line search. Instead, in order to accurately track the limit load, the 

reference arc-length radius and its minimum and maximum multipliers may have to be 

readjusted a few times. Consequently, the trial and error effort exerted in deciding the 

number of the load substeps (which determines the arc-length radius) and the arc-length 

range (minimum and maximum multipliers) with no significant improvement in the 

results has made it the less preferable option in this analysis. In such cases where the 

failure point is of significance, ANSYS suggests that the standard Newton-Raphson 

method with bisection may be more convenient to determine buckling load values [8]. 
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4.2.3. Modeling of Concrete Nonlinear Behavior 

The next step of the analysis was to include the effects of the concrete material behavior 

on the capacity and failure mode of the structure. Initially, the type of element used at this 

stage of the analysis is SOLID65 element for both the dome and the beam. SOLID65 is a 

solid element in the ANSYS library for 3D modeling of structures. The element is 

capable of cracking in tension and crushing in compression. It is also capable of plastic 

deformation and creep. Thus, it is able to model the behavior of the concrete material 

marked by a much lower strength in tension than compression. The element includes a 

rebar capability that is able to model the behavior of concrete reinforcement, which can 

be defined in three different orientations, is capable of tension and compression and is 

defined in this study to be smeared throughout the element. SOLID65 element has eight 

nodes with three DOFs at each node (UX, UY and UZ). SOLID65 element is shown in 

Fig. 45 [10]. 

 

Fig. 45: SOLID65 element in ANSYS [10] 

 

Using the rebar capability of SOLID65 assumes a perfect bond between the 

concrete and steel reinforcement. The real constant set for SOLID65 includes the volume 

ratio of the reinforcement which is defined as the rebar volume over the total volume of 

the element. In this analysis, the volume ratio of the reinforcement was used as 0.005 in 

the two directions of the shell. 
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The material properties of the SOLID65 elements are input as linear isotropic 

properties, concrete material properties and multilinear isotropic von-Mises rate-

independent plasticity. The isotropic properties are input as the previous section with 

elastic modulus of 22 GPa and poisson’s ratio of 0.2. for the concrete material properties, 

the failure surface is defined due to a multi-axial stress state based on five input strength 

parameters; the ultimate uniaxial tensile strength (ft), the ultimate uniaxial compressive 

strength (fc), the ultimate biaxial compressive strength (fcb), the ultimate compressive 

strength for a state of biaxial compression superimposed on hydrostatic stress state (f1), 

and the ultimate compressive strength for a state of uniaxial compression superimposed 

on hydrostatic stress state (f2) [9]. However, ANSYS theory reference [8] states that the 

failure surface can be specified by two parameters only (the ultimate tensile and 

compressive uniaxial strength) while the other three parameters default to those 

determined by Willam and Warnke’s constitutive model for the triaxial behavior of 

concrete [116] in Eq. (33), (34) and (35): 

fcb = 1.2 fc 

(33) 

f1 = 1.45 fc 

(34) 

f2 = 1.725 fc 

(35) 

In this research, the tensile strength of concrete was input as 10% of its 

compressive strength (equal to 2.5 MPa). The crushing capability, however, was disabled 

in most of the models. In the initial stages of the analysis, a few solutions were run with 

the concrete crushing enabled and a crushed stiffness factor of 0.001. At the beginning of 

the solution, ANSYS displayed a message clearly stating that using concrete crushing in a 

large displacement analysis may result in erroneous results, and the solution was found to 

terminate earlier than solutions where crushing was turned off. Crushing was suggested 

in most of the relevant literature ([71], [16], [70], [93]) to cause convergence difficulties 

and premature failure of the model. By disabling crushing, the concrete cracks whenever 
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a principle stress component exceeds the tensile strength, while the remaining parameters 

are suppressed [8]. 

Other parameters for the concrete material are the open and closed shear transfer 

coefficients which represent the conditions are the crack face and ranges between 0 and 1 

with 0 representing a smooth crack and a complete loss of shear transfer while 1 

represents a rough crack where no loss of shear transfer has occurred [8]. It was stated in 

some of the reviewed literature [71], [70] that convergence problems were encountered 

during the solution when the shear transfer coefficient value was less than 0.2. In this 

research, the values used are 0.2 and 0.7 for the open and closed cracks shear transfer, 

respectively. 

KEYOPT(7) for SOLID65 was set to 1, which includes tensile stress relaxation 

after cracking and is recommended by ANSYS and most of the relevant references [70], 

[93], [100] in order to achieve convergence. A tensile stress relaxation factor of 0.6 

(ANSYS default value) was used in the analysis. 

According to the concrete material model, the concrete behavior is assumed to be 

linear up to cracking/crushing. Thus, the concrete material properties were combined 

with plasticity models in order to model concrete plastic deformation. In most of the 

reviewed literature, the plasticity models used in combination with concrete are the 

multilinear kinematic hardening, multilinear isotropic hardening, and Drucker-Prager 

plasticity. In this research, the mulilinear isotropic hardening plasticity model was used. 

The typical concrete stress-strain curve (shown in Fig. 46 from reference [15]) is 

linear up to about 30% of the maximum compressive strength, followed by a nonlinear 

portion up to the peak compressive strength where the curve starts to descend into the 

softening region, and finally crushing occurs at the ultimate strain. In tension, the stress-

strain curve is approximately linear up to the maximum tensile strength point, after which 

the concrete cracks and the strength degrades gradually to zero [15]. 
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Fig. 46: Typical concrete stress-strain curve [15] 

 

The concrete compressive stress-strain curve is approximated in the analysis by 

Eq. (36) and (37) referenced in [40] and Eq. (38) referenced in [47]: 
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Where   and   are the stress and strain at any point, respectively,     is the maximum 

compressive stress, and    is the strain at the maximum compressive stress. 

 

Five data points were generated using these relations to compose the multilinear 

linear idealization of the concrete stress-strain curve in compression. The descending 

portion of the concrete curve after reaching the peak compressive strength is usually 
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idealized as a horizontal line, shown in Fig. 47 as the idealized curve in blue. In one study 

of the reviewed literature [93] the stress-strain curve assumed a total increase of 0.05 

MPa after reaching the peak compressive stress up to the ultimate strain (0.0035) and was 

reported to overcome possible convergence problems [93]. This relationship was used in 

this analysis and is shown in Fig. 47 as the adjusted curve in red (although both curves 

appear to be almost identical). 

 

 

Fig. 47: Idealized and adjusted concrete stress-strain curve 

 

The modeled steel reinforcement material properties are elastic-perfectly plastic 

using the bilinear isotropic hardening Von Mises plasticity material model. The linear 

isotropic properties are the modulus of elasticity which is equal to 210 GPa and poisson’s 

ratio equal to 0.3. The parameters of the bilinear isotropic hardening plasticity are the 

yield stress which is equal to 400 MPa and the tangent modulus of elasticity, which is 

assumed as 5% of the yield stress of steel in order to avoid convergence problems. 
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Solution Methods and Convergence Sensitivity 

The ANSYS default nonlinear solution method (the Newton-Raphson method) was used 

as in the previous part of the analysis with automatic time-stepping and the line search 

feature. However, in some of the models the line search method was turned off and, 

instead, the adaptive descent feature recommended for concrete nonlinearities was used. 

The line search method is a convergence-enhancement tool which multiplies the 

calculated displacement increment by a program-calculated scale factor between 0 and 1 

when a stiffening response is detected [8]. ANSYS recommends the line search method 

for force loaded structures when the solution displays an oscillatory convergence pattern. 

Adaptive descent is defined by ANSYS theory guide as a technique that switches 

to a “stiffer” matrix when convergence difficulties are faced and then switches back to 

the full tangent when the solution returns to a convergent pattern, which accelerates 

convergence. Plasticity and concrete element with tensile stress relaxation are some of 

the nonlinearities that make use of the adaptive descent technique. ANSYS structural 

analysis guide does not recommend activating both line search and adaptive descent 

simultaneously. When adaptive descent is on, the program uses the tangent stiffness 

matrix as long as the iterations remain stable. When divergence is detected, the program 

restarts the solution using a weighted combination of the secant and tangent stiffness 

matrices until a convergent pattern is resumed [8]. ANSYS states that adaptive descent 

usually enhances the program’s ability to achieve convergence for complicated nonlinear 

problems for the elements which support using that feature, which include SOLID65. 

In the beginning of the analysis early convergence difficulties were faced with the 

SOLID65 concrete element. This was initially tackled through increasing the maximum 

number of equilibrium iterations per substep and increasing the allowed convergence 

tolerance. The default convergence criterion in ANSYS was based on force convergence 

tolerance of 0.001. When convergence difficulties were encountered the convergence 

tolerance limit was increased to 0.005, and sometimes to 0.01 close to the failure load, 

which accelerated convergence of the solution, along with increasing the maximum 

number of equilibrium iterations. 
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At that stage, the failure load was defined at the point where the solution did not 

converge with the smallest possible substep size allowed in ANSYS, the determined 

optimum mesh size from initial mesh sensitivity studies, and a maximum number of 

equilibrium iterations equal to 1000 per substep. Preceding that point, ANSYS gave a 

few warning messages that one or more elements have become highly distorted, and then 

terminated the solution. In the next part of the analysis, a convergence sensitivity study 

was conducted in an attempt to verify that the solution termination represented true 

structural failure, as shall be discussed shortly. 
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4.2.4. Effects of boundary conditions 

As discussed in the first chapter, concrete domes are usually bound by stiffening 

members, most commonly boundary ring beams, to absorb the large horizontal thrust that 

results at the base of the dome. In most shell numerical analysis literature, the boundary 

is completely fixed (all degrees of freedom are restrained) or hinged (only translational 

degrees of freedom are restrained) as the focus is the shell behavior alone. These 

conditions assume that the ring beam is infinitely rigid. In conventional construction, 

though, the boundary is always a deformable body and its deformations in response to the 

shell forces have a large effect on the structure’s capacity. Boundary conditions were 

reported in literature to cause the discrepancy between the results of numerical and 

experimental analyses of spherical shells, besides other factors discussed previously. It is 

also one of the reasons why engineering practice tends to adopt large safety factors for 

concrete domes. 

This study attempted to model the boundary beam effect. In general, modeling the 

ring beam has proven to cause convergence difficulties and has resulted in lower limit 

loads than modeling a completely restrained perimeter, as expected. However, some 

modeling techniques have proven to be more efficient than others, and can be reasonably 

claimed to produce closer values to the actual failure load of the dome than analyses 

using the infinitely rigid boundary. 

The following methods were used in several attempts to model the effect of the boundary 

beam on the capacity of the concrete dome-ring structure: 

 An infinitely rigid boundary that prevents both translation and rotation at the base of 

the dome (UX, UY, UZ, ROTX, ROTY, ROTZ) was assigned. This technique has been 

applied to models of the dome using SHELL281 as reference case to which all other 

boundary cases were compared. 

 A hinged boundary that restrains translational degrees of freedom only (UX, UY, UZ) 

was assigned. This technique was applied to models of the dome using SHELL281 

elements and models using SOLID65 elements. 

 The ring beam was modeled with the line element BEAM189, in combination with 

SHELL281 for the dome. In some analysis the SHELL281 element was given linear 
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elastic material properties, while in others it was assigned multilinear isotropic hardening 

plasticity, and the layers feature of the element was used to provide a layer of steel 

reinforcement with elastic-perfectly plastic properties (with nearly the same volume ratio 

of SOLID65 total reinforcement in previous analyses) in order to include the material 

plasticity effect as well. The line ring beam was symmetrically hinged at eight locations 

around the perimeter of the dome. 

 The ring beam was modeled as SOLID65 elements in combination with SOLID65 

elements for the dome as well. At the connection between the dome and the beam, all 

degrees of freedom are coupled, meaning that the dome and the ring act continuously as 

one structure (as in the case of a monolithic dome with embedded steel reinforcement 

doweling from the beam section). Fig. 48 shows a picture of the meshed model of both 

the dome and the ring beam using SOLID65 elements. 

 

Fig. 48: Shell FE model using SOLID65 elements 

 

  The beam was initially hinged at eight line locations at its bottom surface that 

correspond to the point locations in the previous line element analysis. However, such 

restraining condition has proved to cause excessive stress concentrations and large 

element distortion at the restrained locations, which caused the analysis to terminate 

prematurely. In order to overcome the stress concentrations at the restrained nodes and 

element distortion, the size of the restrained zone was increased (more nodes were 
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restrained against translation at the assumed column locations). A plot of the base plane 

of the model is shown in Fig. 49. 

 

 

Fig. 49: Base of shell FE Model showing column restraining locations 

 

  In another model, the whole base of the beam was restrained against translation in 

the Y direction (vertical), while the assumed column locations were restrained against 

translation in X, Y and Z directions. In yet another run, the base of the beam was 

restrained against vertical displacement along the whole boundary, while only one 

column location was restrained against horizontal displacement to prevent rigid body 

motion. This way the beam is permitted to almost freely displace horizontally 

overcoming all stress concentrations at the various straining locations in previous models. 

The final model at this stage, however, which demonstrated the best performance was 

when the whole base of the ring beam was restrained against translation in X, Y, and Z, 

which allowed the beam section to rotate under the effect of the horizontal force and 

torsional moment, while the base of the beam is restrained against translation at all times. 
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Solution Parameters and Convergence Sensitivity 

As will be discussed in detail in the next chapter, the failure loads of the models that 

included the ring beam were a lot less than those with a restrained boundary. At this 

point, in order to verify that the failure of the models represents a true structural failure 

and not a merely a numerical instability, a convergence sensitivity study was conducted 

utilizing many different solution parameters and model properties. The purpose of the 

study was to experiment with all the solution settings and model properties recommended 

by ANSYS and in the literature for enhancing convergence. The optimal parameters were 

determined as those delaying loss of convergence until a large displacement is detected 

for small load increments, accompanied by exceeding the strain limits of the concrete 

material. It should be noted that, unlike shell element models, the nonlinear stabilization 

feature is not supported by SOLID65 concrete element. Thus, this investigation was 

necessary in order to verify the model results. 

  Based on the reviewed literature, the following material parameters were found to 

enhance convergence and were adopted in this study: 

o Including concrete tensile stress relaxation with a tensile crack factor of 0.6. 

o Crushing was disabled in most of the models. However, it was turned on in some 

of the models to investigate its effect on convergence with a crushed stiffness 

factor of 0.001. 

o Cracking was used in all the models. However, it was documented to cause early 

loss of convergence in some of the literature; thus, cracking was also disabled in 

some of the models in order to investigate that effect. 

o Using a steel tangent modulus of 5% of its yield stress (which equals 20 MPa). 

 

  In addition to the previous material properties, the following was performed in the 

convergence sensitivity study: 

o The first attempt at enhancing convergence was to increment the load more 

slowly. As discussed before, the automatic time-stepping feature was used in the 

analysis. The maximum number of substeps was used as 2,000,000,000 per load 

step. 
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o Another attempt at enhancing convergence was to refine the model mesh. 

Although it was difficult to locally refine meshes of the present models, several 

models of globally finer meshes were investigated. The process was repeated until 

refining the mesh no longer affected the results significantly. The selected mesh 

was used for the rest of the analysis. 

o As discussed before, the Newton-Raphson method was used in most of the 

analysis. In this part of the analysis, a few solutions were run using the alternative 

nonlinear solution method: the arc-length method. The arc-length method was 

used a few times with various number of substeps and minimum and maximum 

arc-length multipliers of 1e-20 and 20, respectively. 

o The adaptive descent feature recommended by ANSYS to enhance convergence 

for SOLID65 type nonlinearities was turned on in some of the models. This 

feature is used with the default Newton-Raphson method. However, it is not 

recommended with the line search feature, so line search was turned off in these 

solutions. 

  The performance of all the models in this part of the analysis was evaluated and 

the optimal solution parameters were used for the rest of the analysis models. 

 

 The next stage was building a more elaborate model of the dome-ring system utilizing 

ANSYS contact elements technology, whose use is discussed in detail in the following 

section. Utilizing contact technology, the connection between the dome and the ring 

beam is modeled as an initially bonded asymmetric flexible surface-to-surface contact 

using CONTA174 and TARE170 elements in the ANSYS. A debonding feature is 

combined with these elements with user-specified parameters. This allows for separation 

or sliding to occur between the contacting surfaces at the interface should the normal or 

tangential stresses exceed those specified by the user. Contact elements were used 

extensively in this research as the main method adopted for the simulation of the behavior 

of the joints between the precast elements in the proposed dome structure. At this point 

though, a contact condition was provided only at the boundary between the dome and the 

supporting ring beam. A coefficient of friction between the two surfaces was used equal 



101 
   

to 0.7. The maximum normal and tangential stresses for debonding were used initially as 

those of the steel (Tensile yield strength of steel, and shear strength of steel assumed as 

0.6 of its tensile strength, respectively) assuming that reinforcement bars extend across 

the joint and are in perfect bond with the concrete (no reinforcement slip). In other 

models, the maximum stress limits were input as the maximum tensile stress of the 

concrete and the shear strength of the concrete (assumed as 0.8 √fc, where fc is the 

concrete compressive strength). This case assumes a bond slip between the steel and 

concrete, or the absence of reinforcement across the joint. Consequently, only the cast-in-

situ concrete in the joint is acting to prevent separation at the joint. It should be noted that 

no specific contact material cohesion parameters were assigned. 
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4.2.5. Modeling failure of the concrete stitches between the dome panels 

Contact elements on ANSYS with or without debonding features were used to model the 

behavior of various types of precast concrete connections in most of the reviewed 

literature [111], [70], [45], [46], [120], [100], [115], [91], [19]. 

In this research, surface-to-surface contact element CONTA174 and target 

element TARGE170 define the interfaces between the dome panels and are enabled to 

model debonding of the two panels at the joint. The contact and target elements overlay 

the faces of 3D SOLID65 elements. A number of 30 symmetric contact pairs (i.e. each 

surface is designated as both a contact and target surface) is created on the interfaces 

between panels, and in some of the analysis models, at the interface between the 

boundary panels and the supporting ring beam 

According to ANSYS contact technology guide, symmetric contact is less 

efficient than asymmetric contact. It may be required to reduce penetration, or when the 

distinction between the contact and target elements is not clear, but it is more expensive 

in terms of CPU time. In this research, the use of symmetric contact was selected since 

the connection between the panels is expected to produce symmetric behavior, and the 

contacting elements were identical in terms of flexibility/rigidity and mesh density. 

However, it should be noted that ANSYS contact technology guide [11] states that, in 

such cases, the symmetric contact may not improve the results and, thus, will only be 

more expensive in terms of CPU time. Thus, at the contact between the dome and the 

boundary beam, both asymmetric and symmetric contact pairs were tried in order to 

judge the improvement in the solution (if any). In asymmetric contact, contact elements 

overlay the base of the lower dome panels, while target elements overlay the interfacing 

edge of the ring beam. 

There are many different parameters to set for ANSYS contact conditions. 

ANSYS contact technology guide [11] states that the default parameters are usually 

sufficient for most contact analyses. In this research, many of the contact parameters 

were set to their defaults, while other parameters were changed as deemed appropriate for 

the type of connection at hand, and based on similar analyses in the literature. 
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The type of contact in ANSYS varies depending on the type of problem through 

the use of KEYOPT(12). In this research, the contact is selected as ‘bonded initial 

contact’, which is a type of bonded contact where the surfaces are initially in contact. 

ANSYS guide [11] recommends the use of this type of contact, coupled with the 

debonding feature, to simulate debonding of the surfaces; an approach that was also 

adopted in most of the relevant literature. 

Hence, in this research failure of the stitch between the panels was modeled using 

ANSYS debonding feature through defining a cohesive zone material (CZM) model 

which defines a constitute relationship between normal and/or tangential pressure at the 

interface, and the corresponding separation across the joint. Debonding using the CZM 

follows a failure mechanism that gradually degrades the material elasticity between the 

contacting surfaces at the interface [29]. 

The cohesive zone material (CZM) has a bilinear behavior, and the constitutive 

relationships can be defined by separation/sliding distance or separation/sliding energy 

[29]. The CZM model allows three different modes of debonding; normal separation, 

tangential separation and a mixed mode of both normal and tangential separation [11]. In 

this research the mixed mode failure was used by defining the maximum separation and 

sliding distances, along with the maximum normal and tangential stresses at the interface. 

ANSYS states that after debonding occurs, standard contact behavior follows [11]. 

The input of the CZM includes six different inputs. These are: maximum normal 

contact stress (σmax), contact gap at the completion of bonding (ucn), maximum tangential 

stress (τmax), tangential slip at the completion of bonding (uct), artificial damping 

coefficient (η), and a flag for tangential slip under compressive normal contact stress (β) 

[9]. 

In this research a maximum separation and sliding values between 5 and 20 

millimeters was used in different models to investigate their effects on failure. Different 

input values for the normal and tangential stresses were also used in different models to 

represent different bonding cases between the concrete and reinforcing steel at the joint. 
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The value of the maximum stress was initially taken as the tensile strength of concrete 

(σmax = 2.5 MPa), as done in similar previous research involving debonding of precast 

concrete elements [91], [70], and the maximum tangential stress was input as the shear 

strength of the concrete, approximated as 0.8 √fc, where fc is the concrete compressive 

strength (τmax = 4 MPa). These values represent a case ignoring the steel reinforcement 

across the joint, and depending on the strength and cohesion of the concrete at the joint to 

hold the panels in place. However, as previously noted, no cohesion parameters were 

input in this study. In the second case of debonding the yield and shear strength of steel 

(approximated as 0.6 of the yield strength) were input as the limiting normal and 

tangential stresses for the CZM, respectively. This case is interpreted to assume a perfect 

bond with no slip between concrete and steel reinforcement across the joint, and 

consequently, may overestimate the capacity of the joint.  

The artificial damping coefficient of the CZM is used to overcome convergence 

problems that may arise due to modeling of debonding. The damping coefficient has units 

of time and is suggested to be less than the smallest time step size so that the maximum 

traction and separation are not exceeded in debonding calculations. In this research, 

although the time step size was always variable, an artificial damping coefficient value of 

0.0001 was selected to be appropriate for the analysis as it is maintains convergence, does 

not cause any excessive separation and is almost always smaller the time step size. 

Other key contact parameters for ANSYS contact pairs that were studied for their 

effects in this research are the contact algorithm, contact stiffness, and the allowable 

penetration. ANSYS offers several different contact algorithms. The contact algorithm 

used in most of the literature in precast concrete panel connections is the penalty method, 

which is also suggested by the ANSYS guide when modeling bonded contact [11]. The 

penalty method is a contact algorithm which uses a contact spring to define the 

relationship between the contacting surfaces. This relationship is defined by the spring 

stiffness (the contact stiffness) both normal stiffness (FKN) and tangential stiffness 

(FKT). Another algorithm that was used in some of the literature, and is the default 

method in ANSYS is the augmented Lagrangian method. According to ANSYS, this 
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method is an iterative series of penalty methods, usually leads to better conditioning, and 

is less sensitive to the magnitude of the contact stiffness; however, it may require more 

iterations than the penalty method [11]. 

In this analysis, both contact algorithms were used in different models. It was 

soon found that, in this analysis, the penalty method has caused excessive penetration 

between the model panels, when compared to models with the same parameters run using 

the augmented Lagrangian method. Consequently, the augmented Lagrangian method 

was used in the rest of the analysis. 

As mentioned above, both contact algorithms need a normal and tangential 

contact stiffness to define the relationship between the contacting surfaces. According to 

ANSYS, a high contact stiffness decreases the amount of contact penetration but at the 

same time can cause convergence difficulties. Thus, a few trials were attempted to 

determine the optimum contact stiffness that produces minimal penetration and maintains 

convergence. ANSYS provides a default value of the normal penalty stiffness that is 

affected by material properties, element size, and total number of degrees of freedom in 

the model [11]. However, ANSYS recommends checking the actual used contact stiffness 

value during postprocessor via element tables in order to verify that the value is 

appropriate for the analysis. ANSYS also provides the option of defining a normal 

contact stiffness factor using the real constant FKN, which means defining the actual 

normal stiffness as a factor of the internally calculated contact stiffness.  

Values used for FKN for analysis of precast joints varied significantly in the 

literature depending on the type and conditions of the connection and the expected 

behavior based on experimental test results. ANSYS guide suggests that FKN usually 

ranges between 0.01 and 1 [11]. Some authors used the 0.01 factor recommended by 

ANSYS [115], [19], while others used lower values to reflect the weaker contact stiffness 

encountered during experimental tests (a value of 0.0011 was used in reference [70] in 

some of the models in order to simulate the low contact stiffness encountered in 

experimental testing between the concrete and grout and the observed failure at that 

boundary, and a value of 0.0036 was used in [91]). 
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In this research, different contact stiffness factors were used in different models as 

part of a contact sensitivity analysis. A starting factor for FKN was 0.5 (half the ANSYS 

calculated contact normal stiffness). Then, a much lower value of 0.01 was used to 

simulate a weaker bond at the interface, and a third minimum value of 0.001 was used in 

some of the models in order to determine the effect of very low contact stiffness on the 

global behavior of the structure. KEYOPT (10) was set equal to 2, which allows the 

program to update the contact stiffness automatically. As for the tangential stiffness, 

ANSYS automatically defines a value that is proportional to the user-input friction 

coefficient and the normal stiffness. The value of the tangential contact stiffness was not 

changed in this analysis. 

The penetration tolerance factor (FTOLN) in ANSYS is used in conjunction with 

the augmented Lagrangian method to limit the resulting contact penetration. ANSYS 

guide states that the penetration tolerance can be defined as a factor (is usually less than 

0.2) or as an absolute penetration value. The default value for FTOLN is 0.1 and the 

penetration tolerance is calculated based on the depth of the underlying model elements, 

which is defined as the average depth of the contact elements in each pair. In this 

research, values for FTOLN were varied between 0.0001 and 0.1, as part of the contact 

sensitivity study, in order to determine the effect of the penetration value on convergence. 

Finally, for the coefficient of friction of the contact pairs, a value of 0.7 was used 

in the model, which was reported in some the relevant literature, although a higher value 

(equal to 1.0) was used in other studies based on the relevant recommendations of the 

ACI 318 [3] for friction for concrete placed against hardened concrete. 
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The following models were created for the simulation of the final segmented structure: 

 The first set of models included modeling the final segmented dome panels with 

contact conditions between all the panels resulting in 30 symmetric contact pairs (60 

contact pairs in total). At this stage, the boundary conditions of the dome were modeled 

as restraining of translation in the X, Y and Z directions of the base of the panels at the 

foot of the dome. The model is shown in Fig. 50. 

 

Fig. 50: FE segmented shell model with contact elements between the shell panels 

As previously explained, different contact parameters were tried in different runs in order 

to determine the most suitable set of parameters for the analysis. Table 2 summarizes the 

different values used for different contact parameters: 

 

Table 2: ANSYS contact parameters 

Range for contact stiffness factor 0.001 – 0.5 

Range for penetration tolerance factor 0.0001 – 0.1 

Contact algorithm Augmented lagrangian method 

Pure penalty method 

Friction coefficient 0.7 

Contact type Bonded- initial contact 

Debonding feature yes 



108 
   

Maximum contact normal stress (MPa) 2.5 

Range for maximum separation at the 

completion of debonding (m) 

0.005 - 0.02 

Maximum contact tangential stress 

(MPa) 

4 

Range for maximum sliding at the 

completion of debonding (m) 

0.005 - 0.02 

Damping coefficient 0.0001 

Slip under compression yes 

 

 The second set of models involved modeling the boundary beam as part of the dome-

ring structure using the solid element SOLID65, and with material parameters similar to 

those discussed in the previous section. 

  In this model, 10 pairs of asymmetric contact pairs were added to the existing 60 

contact pairs to create contact conditions between the base panels of the dome and the 

boundary beam. In these new contact pairs, the beam areas at the interface were overlaid 

with target elements, while the base panels contact areas were overlaid with contact 

elements. The contact parameters used at the stage are the same as those listed in table 2. 

Fig. 51 shows the geometry of the model, Fig. 52 shows the final meshed model, and Fig. 

53 shows all the contact pairs created in this part of the analysis with a translucent model 

context. 
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Fig. 51: Geometry of the final FE segmented shell model 

 

Fig. 52: Final meshed FE segmented shell model 

 

Fig. 53: Contact pairs in final FE segmented shell model 
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  This set of models is considered to be the final form of the structure attempting to 

simulate all geometry, material and boundary conditions. Consequently, a lot of different 

material, contact and solution parameters were tried in different runs of this model. The 

solution parameters were guided by the results achieved through the convergence 

analysis described previously. 

 Another set of models was built to simulate a different loading condition, namely a 

concentrated vertical load at the dome crown. This loading condition was selected since it 

represents one of the most critical loading conditions of a spherical shell structure, since 

it does not produce a uniform stress distribution and usually leads to high local stress 

concentrations that may accelerate the failure of the shell. The purpose of constructing 

these models was to determine the failure load of the spherical cap under a concentrated 

crown load, and compare the results of the numerical model to those of the experimental 

test performed in the same manner (as explained in section 4). The concentrated load 

model is shown in Fig. 54. 

 

Fig. 54: Concentrated load FE model 

 The concentrated load models aimed to closely follow the experimental analysis 

loading conditions. Consequently, the loading was applied to a circular steel plate of a 

diameter of 4 m and thickness 3 cm centered at the shell crown. These parameters are 

selected such that the weight per unit area of the numerical model and physical scale 

model are almost identical, so as not to introduce any extra stress concentrations in the 
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numerical model. The load was applied as a uniform pressure on the steel plate (as shown 

in Fig. 55), and, accordingly, the final load was determined as the total load on the steel 

plate area.  

 

Fig. 55: Uniform pressure load applied to Steel plate at the dome crown 

 The circular steel plate was created using SHELL181 element on ANSYS. 

SHELL181 is a nonlinear shell element very similar to SHELL281, except that it is a 4-

node element, since it is used in contact with the surface of 8-node solid SOLID65 

element. The plate was assigned the same steel material properties. 

  A contact pair was created between the steel plate and the dome panels at the 

crown. The contact pair was assigned a rather large stiffness and penetration tolerance 

(factor of 1 and 0.1 respectively) since the contact conditions at the loading location are 

generally not of interest. The sole purpose for the contact pair is to assure fast 

convergence and transfer of the load to the dome. 

  Beside the segmented dome models, another reference model of a monolithic 

dome loaded with a concentrated load in the same manner was also built, in order to 

provide a frame of reference, and give a clear numerical insight into the difference in the 

behavior between the segmented and monolithic domes under that specific loading 

condition. 
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 Since most of the literature on spherical cap buckling used uniform external radial 

pressure, a similar loading method was necessary for constructing a proper comparison 

with the calculated values using the documented formulas in the surveyed literature for 

spherical caps with the same geometrical parameter as that of this study. 

  Consequently, the same set of models previously created with the segmented 

spherical cap with and without a ring beam were loaded with a radial pressure load only 

(no inertia load was applied). The load was applied as a uniform normal pressure on the 

surface of the dome elements in the finite element model with values close to those 

predicted by Zoelly’s classical buckling load formula [121]. 

 Another reference set of monolithic domes loaded in the same manner (with and 

without a ring beam) were also created for comparison. Although this loading pattern was 

applied extensively in the literature and many formulas are provided to predict its value 

as a fraction of the classical linear buckling load, almost none of the literature studies 

documented a finite element analysis using a cracked concrete element. Instead, as 

previously discussed, most of them provided empirical values of a reduction factor for the 

effect of cracking; these values were sometimes based on experimental analyses or 

monitoring of the tensile stress levels in the numerical model. Consequently, it was of 

interest to explore the reduction in the spherical cap’s capacity when a smeared crack 

concrete element is used, and investigate the reliability of the documented empirical 

factors. 

 Finally, a full (and much more expensive in terms of CPU time) model of the spherical 

cap, the ring beam and the supporting columns was built. This model was created in an 

attempt to deduce results as close to the actual behavior of the structure as possible, and 

eliminate the boundary conditions related problems. 

Tables 29 – 35 in appendix B present a summary of all the ANSYS models 

explained in this section and a description of the model parameters with a designated 

code for each model. The FE model codes shall be used in the next chapters to refer to 

their corresponding models. 
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4.3. Design and Construction Plan 

The construction procedure of reinforced concrete shells is usually one of the controlling 

factors of the structural design of the shell [44]. As previously discussed in the literature 

review, the hectic construction process associated with concrete domes, including 

extensive formwork, skilled labor and intricate quality control, is one of the reasons for 

the decline of using concrete domes for covering large spans despite their efficiency in 

carrying the loads. The value of the proposed structural system is, thus, contingent upon 

the efficiency with which it is constructed. Detailing the assembly of the dome panels 

during each stage of the construction until the full shell membrane action takes place is a 

critical part of this research. Consequently, this section explains the proposed design and 

construction plan for the segmented dome structure. 

This section starts with a conventional preliminary concrete dimensions and 

reinforcement design for the dome-ring structural system, a design that is used later as 

guidance for developing the parameters of the scale model of the dome at the 

experimental analysis stage. The second part of this section presents the suggested 

construction method of the segmented dome structure. The final part represents a 

simplified analysis of the behavior of the structure during construction which attempts to 

take the construction-induced deflections into account during the design stage. 
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4.3.1. Structural Design of the Prototype Dome-Ring System 

Preliminary design of the dome-ring dimensions and reinforcement was guided by 

different design guides that include ‘Concrete Shell Structures - Practice and 

Commentary’ report by ACI Committee 334 [4], and the design of reinforced concrete 

shells chapter of ‘Design and Analysis of Shell Structures’ by M. Farshad [44] and 

‘Design and Construction of Concrete Shell Roofs’ by Ramaswamy [94]. 

Beside the factors explained in the previous section concerning the geometry of 

the structure and specific to this research, the thickness of the shell structure, in general, 

is determined by a number of factors, only one of which is the ability to resist service 

loads. The usually more significant concern, particularly for relatively thin shells, is the 

resistance to buckling, as discussed in the literature review. Another important factor for 

the selection of the reinforced concrete shell thickness is the construction requirements. 

For the considered span of 25 m, the dome thickness is selected to have a 

relatively large value of 250 mm, which is mostly larger than the thickness range found in 

the literature. There are a few reasons that governed that selection; one of which is to 

account for the possible reduction in the capacity of the dome due to the presence of a 

large number of connections between the precast panels of the dome which are likely to 

create weak points in the structure. Another reason is to account of the new construction-

induced loads that the structure shall be subjected to. A final factor in the selection, for 

the purpose of this research, was the feasibility of reproducing the thickness in a 1:10 

scale model of the dome with the available resources, as explained in the previous 

section. 

Table 3 lists the geometric and material parameters for the design of the dome, and the 

nomenclature is shown in Fig. 56. 

Table 3: Geometric and material parameters of the shell prototype 

Material Parameters 

Concrete average cube compressive strength (Fcu) (MPa) 25 

Steel yield strength (Fy) (MPa) 400 

Concrete density (kg/m3) 2500 
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Spherical Shell Parameters 

Radius R (m) 20.59 

Half the central angle (φ) (degrees) 37.38 

Rise (a) (m) 4.23 

span (2r) (m) 25 

Surface area of the shell (2 π R a) (m2) 547.04 

Shell thickness (mm) 250 

Ring Beam Parameters 

Width (B) (mm) 1000 

Height (H) (mm) 1500 

 

 

Fig. 56: Shell geometry nomenclature 

 

Table 4 presents the design forces obtained for the structure [44] based on the 

linear elastic theory of shells. The design forces are calculated based on an ultimate 

design load of 1.5 of the dome’s dead weight plus an assumed live load of 1 kN/m2. The 

table includes the forces and approximate moments for both the shell and the boundary 

ring beam. 
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Table 4: Design forces for the shell prototype 

Forces due to dead load 

 

Dead load per unit of surface (g) (kN/m2) 6.13 

Total load due to dead weight (kN) 3354.04 

Meridional force (Nφ) (kN/m) (at crown) -63.12 

Hoop force (Nϴ) (kN/m) (at crown) -63.12 

Meridional force (Nφ) (kN/m) (at foot) -70.35 

Hoop force (Nϴ) (kN/m) (at foot) -29.98 

Horizontal force H (kN/m) (at foot) -55.90 

Forces due to live load 

 

Live load per unit of surface (g) (kN/m2) 1.00 

Total load due to live load (kN) 490.87 

Meridional force (Nφ) (kN/m) (constant) -10.30 

Hoop force (Nϴ) (kN/m) (at crown) -10.30 

Meridional force (Nφ) (kN/m) (constant) -10.30 

Hoop force (Nϴ) (kN/m) (at foot) -2.71 

Horizontal force H (kN/m) (at foot) -8.18 

Total ultimate forces (design forces) 

 

Dome Forces 

Maximum Meridional force (Nφ) (kN/m) (compression) -120.96 

Maximum Hoop Force (Nϴ) (compression) -110.13 

Minimum Hoop Force (Nϴ) (Compression) -49.03 

Horizontal force H (kN/m) (at foot) -96.12 

Maximum negative bending moment (at foot) (kN.m/m)* 7.65 

Maximum positive bending moment (kN.m/m)* 1.02 

Ring beam forces 

Total ultimate vertical Load 5767.37 

Horizontal force H (kN/m) 96.12 

Axial Force (Tension) (kN) 1201.55 

Vertical force V (kN/m) 73.43 

Beam own weight (kN/m) 41.39 

Total vertical force on ring beam per meter (kN/m) 114.82 

Maximum shear force (kN) 563.61 

Maximum bending moment at mid-span (+) (kN.m) 473.44 

Maximum bending moment over C.L. of column (-) (kN.m) 935.60 

Maximum Torsional moment (kN.m) 67.63 

Angle between axis of column and section of maximum torsional 9⁰  33' 
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moment 

Total Vertical Load (kN) 9017.81 

Load on each supporting column (no. of columns = 8) (kN) 1127.23 

*Shell bending moments were approximated using reference [94] 

Based on the previous design forces, the dome and ring beam reinforcement was 

designed, as summarized in table 5. The membrane compressive stresses are well below 

the allowable limits for the concrete (maximum compressive stress = 0.48 MPa). 

Consequently, no designed reinforcement for the shell is required. The provided shell 

reinforcement is for controlling of concrete shrinkage with the volume ratios complying 

with the ACI recommendations. 

Table 5: Reinforcement design for the prototype shell-ring structure 

Structural Element Type of Reinforcement Reinforcement Rebar 

Shell Reinforcement Hoop and Meridional 

Reinforcement 

Top and bottom reinforcement is 

provided. Each consists of 5ϕ8 per meter 

in two directions. Alternatively, and 

preferably for the reinforcement of the 

panels of this dome, the same steel area is 

provided using commercially available 

welded wire reinforcement. 

Bending reinforcement Covered by the upper and lower 

membrane reinforcement 

Ring beam 

reinforcement 

Bottom Reinforcement 7Φ25 

Top reinforcement 7Φ25 

Stirrups Φ10 @ 20 cm 

Longitudinal torsion 

rebar** 

8Φ12 

**The torsion longitudinal reinforcement shall be distributed uniformly along the section 

perimeter (spacing is less than 300 mm in compliance with the Egyptian code design 

requirements). 
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4.3.2. Design of the Structural Connections 

The panel intermediate joints are designed as moment-resisting connections. Fig. 57 

illustrates the detailed design of the connection and the reinforcement across the joints. In 

the figure, the hatched part represents the grout or cast-in-situ concrete after the assembly 

of the panels. 

The construction of the joint can be summarized as follows: A recess that is 50 

cm wide and 10 cm deep is created along all the edges of each panel during casting of the 

panels (or prefabrication of the molds). Thus, the panel thickness is reduced at that recess 

to 15 cm, and the total width of the joint is 100 cm (consisting of 50 cm at the edge of 

each panel of the two interfacing panels at the joint). In the upper 10 cm of the joint, the 

steel meshes or rebar of the interfacing panels are tied together with a splice length of the 

entire joint width (100 cm in the prototype). The upper 10 cm of the joint are 

subsequently cast or grouted to the full nominal cap thickness. 

 

Fig. 57: Design of the panel-panel intermediate joint 

 

The joint between the base panels and the ring beam is designed in a similar 

manner, using the modified design of the ring beam previously discussed at the beginning 

of this chapter. As Fig. 58 shows, a moment-resisting joint is created by tying of the steel 

reinforcement of the base panels, and the specially placed ring beam dowels. This is 

followed by grouting/casting of the upper parts of the panel edge and the ring beam, 

denoted by the hatched zone in the figure. In this research, stitches were created in the 
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beam by casting the beam on multiple stages, as will be discussed in detail in the 

experimental analysis section of this chapter, thus allowing casting of the parts in contact 

with the panels simultaneously with casting of the panel joints. 

 

Fig. 58: Design of the panel-ring beam joint 
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4.3.3. Construction Plan for the Prototype Dome-Ring System 

In this section, the logic of the proposed construction sequence is presented, along with 

the proposed methods for providing temporary support for the construction. A supporting 

numerical analysis for the structural behavior during construction is also described. It 

should be noted the same construction procedure was also followed as closely as possible 

in the experimental analysis of this research, with some inevitable discrepancies that shall 

be stated where relevant. 

The construction logic aims to provide temporary support for the panels until 

initiation of the shell membrane action. Different options for supporting these panels 

during construction were investigated through the available literature, commercially 

available systems, and numerical modeling of the behavior of the panels. The 

construction procedure was divided into three distinctive stages: 

Stage 1: This stage includes assembling row A panels (referred to as the base panels) 

followed by grouting of the joints between the base panels and the ring beam, and 

between the base panels themselves. A schematic drawing of the structure at the end of 

stage 1 is shown in Fig. 57. 

 

 

 

 

 

 

  

Fig. 59: Structure after construction stage 1 
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Stage 2: This stage includes assembly of row B panels, which are placed between row A 

panels, followed by grouting of the joints between row A and row B panels. Fig. 58 

shows the structure by the end of 

stage 2. 

 

 

 

 

 

 

Stage 3: This stage includes assembling 

row C panels (referred to as the crown 

panels) followed by grouting the joints 

between row C and row B panels, and 

between row C panels themselves. By the 

end of this stage, the erection of the dome 

is complete, and the full membrane action 

takes effect, and the temporary supports 

can be removed (after hardening of the in-

situ joints). The structure at the end of the 

final stage is shown in Fig. 59. Fig. 60 

summarizes the proposed logic for the construction procedure of the dome-ring system 

supported on columns, while the detailed method used in the experimental analysis is 

illustrated in section 4 of this chapter. 

Fig. 60: Structure after construction stage 2 

Fig. 61: Structure after construction stage 3 
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Fig. 62: Proposed construction logic 
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4.3.4. Numerical Analysis of the Structural Behavior during Construction 

After establishing the most suitable element types, material properties, contact conditions 

and solution control parameters for the structure at hand, as detailed in the previous 

section, the following analysis was conducted in order to quantifiably look at the 

behavior of the partial structure under anticipated construction-imposed loads. As 

previously discussed, the proposed structure shall be constructed by prefabricated 

concrete panels assembled on-site with as minimal scaffolding as possible. In this part of 

the analysis, it is attempted to understand the behavior of the structure under the 

constraints of the proposed supporting method and determine the minimum required 

supports. 

Typically, the analysis at this stage requires several models of the partial structure 

at the different designated stages of construction. However, for the structural system at 

hand, the geometric efficiency of the system is accompanied by large reduction in the 

effort needed to understand the behavior of the structure during construction. Since the 

structure is composed of only two unique sizes of panels arranged in a pattern that is 

repetitively symmetric around the central axis, it is only necessary to analyze the 

behavior of each unique panel, as long as all the identical panels shall be supported in the 

same manner. 

During construction, the behavior of the structure is controlled by a different 

mechanism than the default membrane action of the full shell structure; namely bending 

of the panels supported on scaffolding props. The analysis, thus, reduces to determining 

the minimum supports and most optimum support locations that will prevent rigid body 

motion and minimize the deflections along the unsupported lengths of the two unique 

panels. For that purpose, the following finite element models were built on ANSYS: 

 A model of panel A only (the base panel) was created using the same geometric and 

material properties of the dome. The boundary conditions were defined to represent the 

supporting scaffolding prop heads that are planned to support the assembly of panel A 

during the construction, which were intuitively selected at the panel edge corners, while 

the base of the panel was restrained along the whole edge, reflecting that the whole base 
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is resting on the ring beam. Fig. 61 shows the FE model created for analysis of panel A. 

The main purpose of the model was to investigate the overall panel bending deflections 

under its own weight and the applied support restraints. 

 

Fig. 63: FE model for the analysis of Panel A behavior during construction 

 A similar model was created for panel B and C (identical panels) that are planned to 

be supported in the same manner during assembly. Although panel B is significantly 

smaller than panel A (panel’s volume is 26% less than that of panel A), panel B has 

larger unsupported edge length (the largest unsupported edge length of panel B is 16% 

larger than that of panel A). Consequently, it was necessary to conduct an analysis for 

panel B, in order to make sure no excessive deflections arise along the panel’s largest 

edge. The properties of the FE models of the individual panels are restated in table 6. 

 

Table 6: Model properties for the analysis of the structure under construction loads 

Type of analysis Large displacement static analysis 

Loading Gravity load (g = 9.81 m/s2) 

Boundary conditions Variable 

Element SOLID65 concrete element 

Material properties Material properties for the concrete: elastic isotropic, nonlinear nonmetal 

concrete plasticity, isotropic work hardening plasticity Material properties 

for steel reinforcement: elastic isotropic, isotropic work hardening plasticity. 

Contact conditions Variable (friction type contact or bonded initial contact) 

Solution method Newton-Raphson method with line search and bisection features 
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4.4. Experimental Analysis 

 

This section presents the planning, fabrication, construction and load testing of a scale 

model of the segmented precast concrete spherical cap proposed in this study. The section 

is divided into the following parts: 

 

(1) Model Design 

Section dimensions, and material and reinforcement design for the scale model 

(2) Mold Design and Fabrication 

Design of the molds and formwork for casting different parts of the structure 

(3)  Casting 

Casting process of the supporting structure and the dome panels 

(4) Construction 

Construction sequence and assembly of the dome panels 

(5)  Testing 

Experimental setup, instrumentation and testing procedure of the dome-ring structure up 

to failure 
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4.4.1. Model Design 

4.4.1.1. Model Description and Concrete Dimensions 

The model is a 1/10-scale reinforced concrete direct model. In order to fulfil the 

similitude requirements of a true model, characterized by identical strains in the 

prototype and the model, the model material is concrete designed to be representative of 

the mechanical properties of the prototype concrete. The stress scale (Sσ) is 1:1 to 

produce the same stresses and strains of the prototype, although some size effects are to 

be expected as shall be explained shortly. 

 

The scale model of the shell consists of 20 panels that have two different unique 

sizes, and are 25 mm thick each. Around the perimeter, each panel has a 50-mm wide, 

10-mm deep recess. This recess creates a 10-mm deep, 100-mm wide joint at the 

interface between each two panels in the shell structure. The panel reinforcement is 

extended, overlapped and tied together across the joint that is then grouted in place. 

A supporting structure for the shell is constructed to reproduce the boundary 

conditions of the prototype shell as closely as possible. A boundary ring beam (100 x 150 

mm) is designed to stiffen the shell ends and provide sufficient constraining. The ring 

beam section is designed to hold the ends of the shell base panels with extending 

reinforcement of both the beam and the panel, in order to strengthen the connection that 

shall later be grouted in place. 

Eight columns were constructed along the beam perimeter to provide reasonable 

spans for the beam and allow for the beam deformation expected in the prototype, and 

seen to clearly affect the shell failure load in the numerical analysis. 

The columns design, though, was not detailed as part of the prototype planning. 

The only concern is to properly simulate the boundary conditions and allow the beam 

deformation. Consequently, no failure (buckling of the column) should take place in the 

test. The columns were designed as short columns, with a height that allows for the ease 

of instrumentation of the lower surface of the shell (selected as 80 cm). A steel 

scaffolding bracing system was constructed to restrain the lateral movement of the 

columns during the test and ensure stability of the supporting structure. 
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Table 7 summarizes the geometric properties of the shell, the boundary beam and 

the columns of the scale model, with the nomenclature illustrated in Fig. 62. 

Table 7: Geometric properties of the shell scale model 

Radius of curvature R (cm) 206 

Half the central angle (φ) (degrees) 37.38 

Rise (a) (cm) 42 

span (2r) (cm) 250 

Surface area of the shell (2 π R a) (cm
2
) 54700 

Number of columns 8 

Column height (cm) 80 

Shell thickness (mm) 25 

Ring beam width (B) (mm) 100 

Ring beam depth (H) (mm) 150 

Column dimension (square column) (mm) 150 

 

 

 

 

 

 

 

Fig. 64: Shell and ring beam model nomenclature 
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4.4.1.2. Concrete Material Design 

Different material design guides from ‘Structural Modeling and Experimental 

Techniques’ [59] were used as a reference for selecting the model concrete mix 

proportions. The following points were determined as the design basis for the model 

concrete: 

 Ensuring mechanical properties that are representative of the prototype concrete. 

The judging property in this research is the compressive strength of standard 

concrete cubes of 15 X 15 X 15 cm. no tensile strength tests were conducted. 

 The largest possible aggregate size was always used in the model in order to 

minimize the relatively high tensile strength of model concretes, as concluded in 

the various previous physical modeling studies [59]. 

 Early strength is an important requirement for the time constraints of this research 

and reuse of molds. Consequently, water reducing concrete admixtures and other 

additives were used in the mix. 

Table 8 presents the mix proportions for one cubic meter of the concrete used for the 

supporting structure (columns and ring beam): 

 

Table 8: Concrete mix design for the supporting structure (1 m3) 

Concrete Mix Design 

w/c ratio 0.39 

Cement (kg) 384 

Coarse aggregates (kg) (maximum nominal 

aggregate size <10 mm) 

1242 

Fine aggregates (kg) 670 

High range water reducing agent (Liters) (~ 

1.5% by weight of binder) 

7 

Silica fume (kg) 16 

 

A series of standard concrete cubes were cast for the purpose of determining the 

3-day, 7-day and 14-day compressive strength of the concrete using the ASTM standard 



129 
   

concrete compressive strength test (testing apparatus shown in Fig. 63). Table 9 presents 

the individual results of compressive strength tests on the support system concrete cubes. 

Table 9: Compression test results (supporting structure concrete mix) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The 3-day mean compressive strength of the mix = 18.4 MPa while the 7-day 

mean compressive strength = 24.1 MPa, and the 14-day mean compressive strength is 

equal to 30.8 MPa, with a 20% difference from the planned compressive strength for the 

prototype, which was accepted for the purpose of this study.  

 

The same concrete mix was attempted for casting the dome panels with the 

difference of using larger quantities of smaller size aggregates (100% passing sieve size 

9.5 mm and 50% passing sieve size 4.75 mm). The small aggregate size was needed 

because of the small panel thickness (2.5 cm) and the small spacing of the reinforcing 

wire meshes, as will be explained later in the reinforcement design. The mix resulted in a 

slightly higher 7-day mean compressive strength (3-day strength = 20.5 MPa and 7-day 

Concrete 

Age 

Cube 

maximum 

compression 

force (kN) 

Mean 

Compressive 

strength 

(MPa) 

3 days 

452.8 

18.4 

448 

471.5 

348.9 

406.2 

362.9 

7 days 

479.3 

24.1 

556.9 

571.2 

526.6 

539.9 

584.9 

14 days 

739.2 

30.8 691.6 

648 

Fig. 65: Concrete compression test 

apparatus 



130 
   

strength = 25.9 MPa), which was advantageous in this case since an early strength gain 

was required for the panels. Table 10 presents the maximum compressive cube forces 

obtained in standard compressive tests: 

 

Table 10: Compression test results (Initial panels concrete mix) 

Concrete 

Age 

Cube 

maximum 

compression 

force (kN) 

Mean 

compressive 

strength 

(MPa) 

3 days 

441.1 

20.5 464.4 

478.5 

7 days 

519.7 

25.9 639.9 

589.1 

 

However, two trial panels were cast to test the quality of the mix and resulted in 

an unsatisfactory quality of panels as shown in Fig. 64. This was attributed to the still 

relatively large proportion of the larger coarse aggregates. The mix was adjusted by 

increasing the portion of well-graded aggregates passing sieve 4.75 mm, increasing the 

ratio of fine aggregates in the mix, and also reducing the w/c ratio to provide an even 

earlier strength gain. The early-strength requirement was more crucial in the panels for 

the following reasons: 

 The panels were removed from the molds after 1-day so that the molds can be 

reused for casting the next set of panels 

 For time constraints, assembly of the panels was started 3 days after casting of the 

last set of panels. 
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Fig. 66: Panel cast using initial concrete mix 

 

Table 11 presents the proportions for the new concrete mix designed for casting of the 

panels: 

 

Table 11: Final concrete mix design for the shell panels (1 m3) 

Concrete Mix Proportions 

w/c ratio 0.35 

Cement (kg) 384 

Coarse aggregates (kg) (maximum nominal 

aggregate size <10 mm) 

1111 

Fine aggregates (kg) 763 

High range water reducing agent (Liters) (~ 

2% by weight of binder) 

9.84 

Silica fume (kg) 16 

 

Nine initial cubes were cast separately, and then more cubes were cast from the 

same batches used for casting the panels, in parallel with casting of the panels, as a way 

to monitor the quality of the mix and ensure homogeneity. It was noted, however, that 

that technique has resulted in a larger variance of cube strengths due to the slightly 

differing mixing, casting and curing conditions of each batch. The mean 3-day 

compressive strength of the concrete cubes = 21.3 MPa and the 7-day strength = 23.1 
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MPa, and the 14-day strength = 28.0 MPa, which is only 12% higher than the planned 

prototype compressive strength of 25 MPa. Table 12 presents the individual cube results. 

The resulting strength was deemed as acceptable and the mix was used for casting the 

shell panels. 

 

Table 12: Compression test results (final shell panels concrete mix) 

Concrete 

Age 

Cube maximum 

compression 

force (kN) 

Mean 

compressive 

strength 

(MPa) 

3 days 

470 

21.3 

435.8 

411.7 

564 

522 

453.5 

494.4 

7 days 

583.9 

23.1 

491.8 

570.9 

425.1 

563.4 

494.7 

495.7 

498.9 

556.9 

14 days 

527.9 

28.0 661.7 

698.7 

 

As previously mentioned, many concrete physical modeling studies referenced in 

reference [59] have documented differences between prototype and model concretes due 

to size effects. It was recommended, accordingly, that small standard concrete 

compression test specimen be used for smaller scale model sizes, generally consistent 

with the scale of the model. In particular, according to reference [59], ACI Committee 
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444 (1979) recommended using 50x100 mm cylinders as a standard for model concrete 

mixes [61]. Although in this research the results of standard test cubes were used in the 

design, nine 5x5x5 cm cubes were cast in order to test the claimed size effects. However, 

it was found that the smaller cube sizes did not produce larger compressive strengths. On 

the contrary, a lower compressive strength was witnessed using the 5 cm cubes. 

However, that was thought to be related to quality of the cubes. This is explained by the 

fact that after removing of the cubes from the molds, many of them were noted to have 

geometrical defects. Initially 18 cubes were cast, and then 9 cubes were considered 

damaged, while the other 9 were tested producing a significantly lower mean 

compressive strength than their peers of the 15X15X15 cm cubes (26% difference 

between the 14-day compressive strengths of both cube sizes). Table 13 presents the 

maximum compression forces and compressive strengths of the 5X5X5 cm cubes. 

 

Table 13: Compression test results (5 cm cubes) 

Concrete 

Age 

Cube 

maximum 

compression 

force (kN) 

Mean 

compressive 

strength 

(MPa) 

3 days 

23.6 

10.3 28.1 

25.6 

7 days 

51.2 

18.2 47.7 

37.7 

14 days 

55.9 

20.8 48.4 

51.9 
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4.4.1.3. Reinforcement Design 

The governing factor for designing the model reinforcement 

was the availability of rebar and wire sizes. It is known to be 

rare to find the correct number and size of model bars and 

usually slightly different sizes have to be used. A correctly 

scaled model force can, however, be produced considering both 

the reinforcement area and yield strength [60]. 

A standard tensile test was performed on the steel wires 

used for the shell reinforcement (testing apparatus shown in 

Fig. 65). Fig. 66 shows the load-elongation graphs of three 

different specimens. Each specimen consists of one wire of 1 

mm diameter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 67: Tension test 

apparatus 

Fig. 68: Load-elongation curves for steel wires used to reinforce the 

shell panels 
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From figure 66, the yield tensile force is 83 N, 86N, and 88 N for specimens 1,2 

and 3 respectively. This results in a mean tensile yield stress of 109.1 MPa, while the 

prototype reinforcement is planned as 280 MPa. Table 14 presents the scaling of the 

model shell reinforcement to produce a correctly scale model force. 

 

Table 14: Comparison between prototype and scale model shell reinforcement 

 

Asteel scale = 502.7/11 = 45.7 ~ (6.8)
2
 

Force scale = 140756/1200.1 = 117.3 = (10.8)
2
 ~ SσSa 

 

The model wire tensile yield stress is found to be far less than that of the planned 

prototype reinforcement. Consequently, the reinforcement area was increased to correct 

for that difference resulting in a (6.8)
2
 reinforcement area scale, in order to produce an 

approximately properly scaled model tensile force of (10.8)
2
. 

The following should be noted regarding the model shell reinforcement: 

 Although the prototype shell reinforcement is planned as upper and lower layers 

of steel meshes, the two layers in the model panel were placed in the same 

location almost in the middle of the panel thickness. This distortion was necessary 

due to the difficulty of accurately placing an upper and lower layer because of the 

small panel thickness (2.5 cm). 

 Commercially available wire reinforcement bars rarely have the desired yield 

strength or ductility without proper heat treatment. In this research, as shown in 

Specimen Reinforcement 

Type 

No. of rft bars As Fy As*Fy 

Shell 

Prototype 

Commercially available 

deformed bars 

Two layers of 

5φ8/ 1000 mm 

502.7 mm2/1000 

mm 

280 140756 

Sell 

Model 

Commercially available 

steel welded wire mesh 

of 1-mm bars and 15-

mm spacing 

Two layers of 

welded mesh (~7 

bars per layer/ 

100 mm) 

11 mm2/ 100 mm 109.1 1200.1 
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the wire reinforcement tension tests, the wires lack a sharp yield point and have 

limited ductility. However, they were not deformed or annealed to match the 

stress-strain curves of the prototype reinforcing bars. Therefore, although the 

model tensile force is adjusted to be within acceptable limits, the bond strength of 

the wire-concrete interface is expected to be significantly lower than the 

prototype. 

 The largest possible splice length of the shell wire mesh reinforcement is used. As 

will be shown in the design of the panel, each had an edge long joint of 5 cm 

width and 1 cm depth. The wire mesh of each panel was extended across the 

joints for 5 cm outside the perimeter of the panel, thus creating a 10 cm 

reinforcement overlap length at each of the 30 joints across the shell surface. 

 

Scaling of the shell reinforcement was made convenient by the fact that the wire 

diameter is almost of the required order of magnitude for a 1/10 scale of the prototype 

reinforcement. However, that was not the case with the boundary beams and columns 

where slightly larger bars are used in the prototype (16 mm, 18 mm, 20 mm or 25 mm in 

diameter), but no wires were available to reproduce this size in the model. Consequently, 

a larger size bars were used (6 mm in diameter) and the overall beam and column steel 

area had to be adjusted accordingly. 

A standard normal tensile test was performed on three different specimens of the 

model beam and column reinforcement. From Fig. 67 of the load vs. deflection of the 

three tested specimens, the yield tensile forces for specimens 1, 2 and 3 are 8800 N, 8750 

N, and 7700 N respectively. These forces result in a mean yield stress of 297.7 MPa. 

Given the lower yield stress of the model bars than the planned prototype reinforcement, 

the same approach was followed with the ring beam longitudinal reinforcement (main 

reinforcement and torsional longitudinal reinforcement); the reinforcement area in the 

model was increased to compensate for the low yield stress of the available bars resulting 

in a (9.6)
2
 force scale. Table 15 presents a comparison of the longitudinal steel area and 

reinforcement force in both the model and prototype. 
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Table 15: Comparison between prototype and scale model ring beam reinforcement 

Specimen Reinforcement 

Type 

Longitudinal Reinforcement  As 

(mm
2
) 

Fy 

(MPa) 

As*Fy 

Beam 

prototype 

Commercially 

available 

deformed bars 

Bottom reinforcement 7Φ25 

Upper reinforcement 7Φ25 

Torsional longitudinal reinforcement 

8Φ12 

7777 400 3110805 

Beam 

model 

Commercially 

available 

smooth bars 

Bottom reinforcement 2Φ6 

Top reinforcement 2Φ6 

113.1 297.7 33669.1 

Fig. 69: Load-elongation curves for steel bars used to reinforce ring beam and columns 
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Asteel scale = 7777/113.1 = 68.8 ~ (8.3)
2
 

Force scale = 3110805/33669.1 = 92.4 = (9.6)
2
 ~ SσSa 

 

As for the beam stirrups, in the prototype beam no stirrups were needed and so 

minimum stirrups were provided as 5Φ10/m. In the model, a stirrup spacing of 15 cm 

was provided using the available bars as 6 mm and single stirrups. 

The column reinforcement was not a part of the prototype design specifications as 

planned in the previous section. As previously explained, the main purpose of 

constructing the columns in the scale model was to reproduce the boundary conditions of 

the prototype as closely as possible, and allow 

deformation of the ring beam that is prominent in 

controlling the failure behavior of the shell. Thus, eight 

columns are provided around the perimeter of the beam 

and designed as short columns. Fig. 68 shows the ring 

beam and column stirrups using Φ6 bars. 

Table 16 presents calculations of all the 

straining actions of the model shell, beam and columns, similar to those conducted for the 

prototype, while table 17 presents a summary of the reinforcement of each structural 

member, as explained earlier in the model material scaling process. The straining actions 

are calculated based on an ultimate design load of 1.5 times the dead weight of the dome 

and 1.5 times a live load of 1 kN/m
2
. 

 

Table 16: Model shell and ring beam forces 

Forces due to dead load 

Dead load per unit of surface (g) (kN/m2) 0.61 

Total load due to dead weight (kN) 3.35 

  

Meridional force (Nφ) (kN/m) (at crown) -0.63 

Hoop force (Nϴ) (kN/m) (at crown) -0.63 

  

Fig. 70: Column (left) and ring 

beam (right) stirrups 
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Meridional force (Nφ) (kN/m) (at foot) -0.70 

Hoop force (Nϴ) (kN/m) (at foot) -0.30 

Horizontal force H (kN/m) (at foot) -0.56 

Forces due to live load 

Live load per unit of surface (g) (kN/m2) 1.00 

Total load due to live load (kN) 4.91 

  

Meridional force (Nφ) (kN/m) (constant) -1.03 

Hoop force (Nϴ) (kN/m) (at crown) -1.03 

  

Meridional force (Nφ) (kN/m) (constant) -1.03 

Hoop force (Nϴ) (kN/m) (at foot) -0.27 

Horizontal force H (kN/m) (at foot) -0.82 

Total ultimate forces 

1. Shell Forces 

Maximum Meridional force (Nφ) (kN/m) (compression) -2.60 

Maximum Hoop Force (Nϴ) (compression) -2.49 

Minimum Hoop Force (Nϴ) (Compression) -0.86 

Horizontal force H (kN/m) (at foot) -2.07 

Maximum negative bending moment (at foot) (kN.m/m)* 0.0155 

Maximum positive bending moment (kN.m/m)* 0.0021 

2. Ring beam forces 

Total ultimate vertical Load (kN) 12.39 

Horizontal force H (kN/m) 2.07 

Vertical force V (kN/m) 1.58 

Beam own weight (kN/m) 0.41 

Total vertical force on ring beam per meter (kN/m) 1.99 

Axial Force (Tension) (kN) 2.58 

Maximum shear force (kN) 0.98 

Maximum bending moment at mid-span (+) (kN.m) 0.08 
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Maximum bending moment over C.L. of column (-) (kN.m) 0.16 

Maximum Torsional moment (kN.m) 0.01 

Angle between axis of column and section of maximum 

torsional moment 

9⁰  33' 

3. Forces on the support columns  

Total Vertical Load (kN) 15.64 

Load on each supporting column (no. of columns = 8) (kN) 1.96 

Load on each supporting column including its own weight(kN) 2.05 

* bending moment values were based on approximations provided by [94] 

 

Table 17: Summary of the 1/10 scale model reinforcement 

Structural Element Type of Reinforcement Reinforcement Rebar 

Shell Reinforcement Hoop and Meridional 

Reinforcement 

Two layers of welded wire 

meshes with 1-mm wire 

diameter and 15 mm spacing 

Bending reinforcement Covered by the upper and 

lower membrane 

reinforcement 

Ring beam 

reinforcement 

Bottom Reinforcement 2ϕ6 

Top reinforcement 2ϕ6 

Stirrups ϕ6 @ 15 cm 

Column Reinforcement Axial Reinforcement 4ϕ6 

Ties ϕ6 @ 10 cm 
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4.4.2. Mold Design and Fabrication 

The design and fabrication of the panel molds was one of the most time-consuming and 

sensitive to quality control tasks of the experimental analysis for the following reasons: 

 The panels are initially part of a sphere i.e. they possess a doubly curved form, 

which is much more difficult to produce than most other forms. The doubly 

curved form is almost impossible to produce without help of an elaborate 3D 

model and an equally elaborate smart machining operation to break the complex 

3D model into points in the three dimensional coordinate space. 

 The structure’s geometry is designed to enable reusing of each mold several times 

during the construction in order to save fabrication costs. This desired quality, 

however, dictates that panel mold material be durable. It also means that any 

measurement mistakes in the molds, however small, would echo in several parts 

of the shell and their effects would be consequently amplified. 

 The availability of resources (in this case the fabrication machine, its performance 

and capacity) was also one of the controlling factors that limited the options for 

the mold material, the number of produced molds, and the required time for the 

production of each individual mold. 

 

4.4.2.1. Mold Design 

3D models of the panel molds were created using SOLIDWORKS. A total of three mold 

designs were built. As discussed in the geometric design of the dome, the whole structure 

requires 20 panels in two unique sizes only. This is divided to 10 identical panels and two 

sets of 5 panels of the same size but that are mirrors of each other, in terms of the 

direction of curvature. Thus, the required number of molds to build is three. The three 

different molds are shown in Fig. 69. 
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Fig. 71: Mold 3D designs generated using SOLIDWORKS 
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Ideally, each mold requires two pieces (a positive and a negative piece) to 

accurately produce the shell panels’ upper face and lower face curvature. However, the 

fabrication time constraints allowed for fabricating the mold beds only, thus accurately 

producing the shell outer surface curvature, while that of the lower surface was produced 

and monitored during the casting process using the manual equipment available in the 

lab, as shall be explained shortly. 

4.4.2.2. Mold Fabrication 

As previously mentioned, the selected material for 

fabricating the molds was mostly dictated by the available 

fabrication method. In the present research, a computerized 

numerical control (CNC) router machine was used for the 

fabrication process, shown in Fig. 70. The machine mainly 

operated on wood and foam type materials with cutting tools 

of 8 cm length and 6 mm diameter. 

It was decided that foam blocks are the most suitable 

for the application at hand. The following presents a 

summary of the fabrication sequence for each mold: 

 Blocks of specific sizes of high density foam (36 kg/m3) were custom cut based 

on the mold design models 

 The CNC router machine parameters were set. The cutting and other operation 

parameters were input using the mold 3D model, and then the machining 

operation code was posted and imported into the machine software. Usually, 

pieces of similar cutting requirements are built on two stages: a roughening stage 

that removes as much volume as possible with a low cut finish quality, then a 

finishing stage where the surface is smoothed to the desired shape. However, 

because of the limited time on the machine, only a roughening operation was 

performed for each mold (see Fig. 71 for mold with rough cutting). Later, the 

molds were sandpapered manually to produce the desired smooth surface finish. 

Fig. 72: Mold fabrication using CNC 

router machine 
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 The next step was starting of the machining 

operation. Each operation took, on average, about 

50 hours to produce the rough mold shape cut. 

 The mold surface was manually treated with 

sandpaper to produce the desired final smooth 

surface. 

 The mold dimensions were checked and adjusted 

if needed (by lining the mold sides with 0.5 cm-

thick pieces). The adjustment was necessary because some discrepancy between 

the model size of the mold and the produced mold were found in some cases. The 

reason for that discrepancy could be the sandpapering process that produced 

slightly larger mold dimensions than the required size (about 0.5-1 cm 

difference). 

 Several pieces of foam of 1-cm depth and 5-cm width were fixed to the mold bed 

(corresponding to the upper surface of the panel) along the perimeter of each 

mold, in order to produce the required dimensions for the joints to be grouted in 

place along the panel edges, as shown in Fig. 72. 

   

Fig. 74: Lining of the molds to create panel joints 

 

Even though only three molds were needed, four molds were fabricated to reduce 

the panel casting time in this research. Fabrication of the four molds was completed in 

about 15 days. 

Fig. 73: Mold shape generated through a 

rough cutting machine operation 
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4.4.3. Casting 

4.4.3.1. Casting of the Supporting Structure 

The supporting structure, consisting of the ring beam and columns, was cast using 

traditional wooden formwork used in conventional construction. The formwork 

construction is summarized as follows: 

 A supporting frame was built, on which a platform was constructed to the 

required column height (clear distance of 80 cm) (Fig. 73). 

 The platform was used to mark the locations of the columns, create openings for 

the columns, and support the column forms, as shown in Fig. 74. 

 

 

 

 

 

 

 

 

 

 

 The column reinforcement cages were then placed through the platform with 

dowels extending through the entire beam depth (Fig. 75). 

 

Fig. 77: Placement of column reinforcement cages 

Fig. 75: Supporting frame for casting of 

the columns and ring beam 
Fig. 76: Column locations in the 

supporting platform 
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 The beam circular outer and inner forms were then fixed to the platform and the 

beam main reinforcement bars and stirrup were placed. (Fig. 76) 

 

Fig. 78: Placement of ring beam reinforcement 

 

 Additional dowels were provided at the same 

stirrup spacing and tied to the beam stirrups 

(Fig. 77). (These dowels later were bent and 

overlapped with the shell reinforcement at the 

interface between the base panels and the ring 

beam before grouting of the joint.)  

 Additional 4 steel hooks were also tied to the 

beam reinforcement in four locations around the 

beam perimeter. These were provided for lifting the structure using the overhead 

crane. 

Building the supporting structure formwork was completed in about 8 hours by 4 

construction workers. 

 

In the prototype, the columns shall be supported on appropriately designed 

footings. However, in this study only the columns were cast. In the test setup section, 

supporting of the columns in order to simulate the prototype boundary conditions will be 

discussed. 

Fig. 79: Ring beam dowels 
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Casting of the beams and columns was performed simultaneously in order to create a 

fully monolithic connection between the beam and the supporting columns. The casting 

sequence is summarized as follows: 

 The concrete mix proportions were prepared and mixed in several batches of 

about 0.08 m
3
 each. The total needed concrete volume for the beam and the eight 

columns was about 0.3 m
3
. 

 The casting process started with casting of 

one column, while simultaneously using a 

vibrator to ensure filling of the whole 

column height, as shown in Fig. 78. 

 The second step was casting of the ring 

beam section (1/8 of the ring beam) over the 

already filled column until the next column.  

 Then the process is repeated for the rest of 

the columns and beam sections, thus 

allowing quality control of the columns during at each step, and ensuring a 

monolithic connection between the ring beam and columns. 

 As previously mentioned, the connection between the ring beam and the base 

shell panels was designed to provide continuity, given that the base part of the 

shell is where all the tensile stresses initiate and, in the numerical analysis of this 

research, where a contact gap initiates (between one of the base panels and the 

ring beam). Thus, the connection was designed to avoid creating a weak point at 

that location. It has been explained that the design of the ring beam was modified, 

accordingly, by ‘embedding’ the base panel inside the beam (see Fig. 40 reshown 

here). 

Fig. 80: Casting of columns 
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Fig. 40: Adjusted ring beam design 

  

This connection was constructed by casting the ring beam on three stages shown in Fig. 

80: 

 13 cm of the 15 cm beam height were cast with the 

supporting structure at this stage of the construction 

(shown in Fig. 79 and part A in Fig. 80) 

 The top 2-cm of the ring beam in front of the panel 

(part B in Fig. 80) were cast after assembly of the 

panels together with the inter-panel joint grouting in 

the next stage of construction. 

 The top 2-cm of the ring beam behind the panel (part 

C in Fig. 80) were grouted during the very final 

stage of construction after removal of all formwork, 

since it was not accessible otherwise. 

Fig. 81: Casting of part A of 

the ring beam 
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Fig. 82: Three stages of casting of ring beam 

 

After casting of the columns and 13-cm of the ring beam height, this stage of 

construction was completed. Casting of the supporting structure was completed in about 

four hours. The upper surface of the ring beam (only exposed surface) was kept moist for 

about 7 days before any other construction activities took place. 

4.4.3.2. Casting of the Shell Panels 

The casting plan required 5 days to produce the shell’s 20 panels in the four fabricated 

molds. The following presents a summary of the casting process: 

 Wire meshes were cut to the required panel shape. 

Each mesh extended 5 cm outside the perimeter of 

the panel as an overlap length across the inter-

panel joint (shown in Fig. 81). For the purpose of 

fitting the wire mesh into the mold, the extra 5-cm 

mesh length was temporarily bent up during 

casting of the panel, then straightened again when Fig. 83: Wire mesh used to 

reinforce shell panels 
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the panels were removed out of the molds and prepared for the assembly process. 

 The molds, made of high density foam, were painted with a layer of oil, in order 

to provide insulation and prevent absorption of the concrete water by the foam. 

 The wire meshes were placed in the molds. As previously discussed, two layers of 

wire mesh were installed into each mold resting on the joint foam-spacers 

(discussed in the fabrication process), hence maintaining the reinforcement layers 

approximately mid height of the panels (shown in Fig. 82). 

 

 

 

 

 

 

 

 

 

 

 The wire mesh bent edges were insulted with polyethylene sheets so as to prevent 

concrete from passing beyond the steel mesh. This problem is illustrated in Fig. 

83 of the first batch of panels where the reinforcement was not insulated. The 

panel boundaries extend after the reinforcement, hence making it impossible for 

the wire to be straightened back and extended across the inter-panel joints. The 

panels were recast using the polyethylene sheet insulation (Fig. 84). 

 

 

 

 

 

 

Fig. 84: Placement of wire mesh reinforcement into panel molds 
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 Concrete mix proportions were prepared. On average, about 0.03 m3 of concrete 

were casted per batch. That includes casting of the four panels and two cubes. 

These cubes were tested for 3-day and 7-day compressive strength, as a way to 

test the uniformity of the mix quality for each set of panels. 

 

Fig. 85: Panels cast without reinforcement insulation 

Fig. 86: Panels cast with reinforcement insulation 
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 Concrete materials were mixed and the four panels were cast. Extra care were 

given to the following: 

o Having a workable concrete mix that easily passes through the 1.5-cm by 

1.5 cm mesh squares of the reinforcement. 

o Maintaining workability only exactly as needed and not having a very 

light and watery mix. This was important because the panel double-

curvature was produced and maintained manually. Watery mixes proved 

to be incoherent causing their water to abandon the concrete and gather in 

the middle (the low curvature) part of the panel (shown in Fig. 85). 

 

Fig. 87: Departure of water to the low curvature part of the panels 

 

o As mentioned above, the panel double-

curvature was ensured manually (Fig. 

86). This was performed by closely 

smoothing the panel edges to take the 

edges curvature, and then the middle part 

was slightly lowered. 2.5-cm thick foam 

pieces were placed around the center of 

the panel to guide the surface smoothing 

to a properly curved lower panel surface. 

 

Fig. 88: Surface finishing of shell panels 
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o Right after casting each panel, 2.5-cm foam pieces were used to measure 

the height at different random locations around the panel to make sure the 

surface has a uniform thickness. 

 The panels were unmolded after one day and placed into the curing room for 7 

days. The molds were reused for casting the next set of panels. the panels were 

always kept moist in the laboratory before starting the assembly process. 

4.4.4. Construction 

As previously mentioned, the assembly process was planned to simulate the prototype 

suggested construction method as closely as possible. Some deviations were necessary, 

though, as will be explained where relevant. These deviations were mainly due to some 

quality problems in the production of the panels and other formwork. In the final chapter 

of this study, a few recommendations are listed to overcome these problems in future 

implementations of this system. The following is a summary of the steps taken to erect, 

assemble and finish the shell system: 

4.4.4.1. Scaffolding Design 

Prior to the assembly process, a simplified scaffolding system was designed with the help 

of 3D design software SOLIDWORKS. The scaffolding system consisted of props 

located at each panel corner location (where the vertices of the panels meet) with girders 

tying the props together. The SW model defined a. the locations of each prop, and b. the 

required height of each prop to reproduce the proper panel location and orientation. Fig. 

87 shows the simulation in 1D line elements. 

A simulation of the assembly process was 

performed on SW using an assembly type file. 

This was done in order to ensure the accuracy 

of the dimensions, panel locations, prop 

heights, and connectivity with the boundary 

beam. It should be noted that any dimensional 

error that would lead to a physical inaccuracy 

is caught by SOLIDWORKS relations 

Fig. 89: Scaffolding simulation model 
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manager and the problem is reported by the program for adjustment. Fig. 88 illustrates 

the assembly stages previously explained in the construction plan section, and the main 

model construction stages are summarized in the chart of Fig. 89. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 90: Assembly sequence of scale model simulated using SOLIDWORKS assembly 
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Fig. 91: Construction stages of scale model 

 

4.4.4.2. Construction of Scaffolding 

The model assembly started with setting out the origin and main orthogonal axes for the 

shell’s circular base. Those were used to define the coordinates of the points that 

determine the locations of the props (panel corners). A framework consisting of vertical 

props (shown in Fig. 90) and horizontal girders tying the props was then built using the 

available wooden props (same as those used for creating the columns and beam 

formwork and used in low-key conventional construction). 

  

 

 

Numerous problems were faced during building of the scaffolding, mainly 

because the low quality and associated inaccuracies of manual scaffolding systems. It 

should be noted that while that system was more economical and convenient for the 

laboratory experiment conditions, more elaborate versions of commercially available 

Construction 
of scaffolding 

system 

Preparation 
of panels 

Assembly 
of panels 

Preparation of 
joint 

reinforcement 

Grouting of 
the inter-

panel joints 

Demounting of 
formwork and 

scaffolding 

Finishing 
and 

repair 
works 

Fig. 92: Construction of scaffolding props 
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girders and props with customized heights are recommended for the assembly of the 

prototype structure. 

 The panels were prepared for assembly by removing of the polyethylene 

insulation sheet used to protect the reinforcement mesh, and re-straightening the 

edges of the mesh along the perimeter of each panel, in preparation for joining 

with other panels 

 The panels were then assembled on three stages, as previously explained in the 

construction plan section: row A panels, row B panels and row C panels. Fig. 91 

illustrates the assembly sequence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 93: Assembly sequence of scale model 
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As illustrated in the design of panels and mold fabrication, a 10-mm deep, 100-

mm wide recess exists along the interface between each two panels (50-mm recess in 

each panel). This means that 15 mm of the panel edge height is to be placed directly 

against the edges of other panels, while the top 10 mm are to be grouted later to provide a 

continuous connection. 

However, during the assembly process some unplanned for intermediate spaces 

were found between the panels, as shown in the assembly sequence pictures (Fig. 91). 

These were in the range of 1 cm and as high as 4 cm in some instance. These spaces were 

traced back to have been caused by the following: 

During casting of the panels, the bent wire meshes along the edges of each panel did not 

closely follow the edge. The bending and sheet covering of the steel wires, thus, left a 

space of about 0.5-2 cm at the edge that was, as a result, trimmed of the panel dimension 

resulting in smaller size panels. The error was covered up during the casting because of 

the insulation sheets used for the reinforcement that defined the edges of the panels based 

on the limits of the bent wire mesh (see Fig. 92), and was only clearly visible during the 

assembly. A few recommendations are later presented in order to overcome that problem 

in the prototype structure and in future similar model studies. 

 

Fig. 95: Dimension discrepancy due to bent 

reinforcement curvature 

  

 

In this study, the problem was overcome using 3 mm-thick plywood sheets of 

enough width to cover the discontinuity between the panels (shown in Fig. 93). These 

Fig. 94: Plywood sheet placed in between 

panels to overcome dimension 

discrepancies 
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sheets were extended between the props wherever needed providing a bed for casting the 

discontinuity in place together with the planned 10-mm deep joint at the interface.  

Each assembly stage then proceeded with fixing the props to the horizontal 

girders on the platform and an initial assembly of the panels. This was followed up by 

extending customized widths of plywood sheets between the prop heads where needed, or 

an adjustment of the location of the props, if needed. The same process was repeated for 

each stage until all of the 20 panels were in place. During the assembly, extra care was 

given to ensuring as uniform a joint width between all the panels as much as possible, 

and performing any necessary location adjustments to achieve that. The mean width of all 

the joints was about 110 mm (instead of the planned 100 mm). 

 The joint reinforcement was then prepared. That included two different tasks: 

o Tying of four wire meshes (two from each panels) 

extending across the joint at the interface using 

tying wires. The overlapping length is equal to 

100 mm (almost equal to the joint width). In some 

instances, it was difficult to completely straighten 

the wire mesh and nails were used to fix it to the 

underlying plywood sheet as a means to eliminate 

the mesh bending (as shown in Fig. 94). In all the 

joints, however, the joint grouting was 

intentionally increased in thickness over that of 

the surrounding panels in order to ensure 

sufficient cover over the wires. The same 

technique may be needed for the prototype 

structure as well. 

 

 

 

 

Fig. 96: Straightening of wire 

mesh reinforcement 
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o The beam dowels (see subsection 4.4.3) were bent and placed inside the 

joint between the base panels and the ring beam to ensure continuity of the 

connection. The overlapping reinforcement length is 100 mm between the 

panel reinforcement wire mesh and the beam dowels (see Fig. 95). 

 

 

 

 

 

 

 

 

 

 The next step was grouting of all the joints. Grouting was done using available 

non-shrinkage cement-based grout. The process is divided into two different 

tasks: 

o Casting of the top 2-cm of the ring beam (shown in Fig. 96) which embeds 

the base panels into the beam section (see subsection 4.4.3). As previously 

explained, casting of that part was performed together with casting of the 

inter-panel joints as an attempt to provide the joint with better resistance to 

initiation of separation at that location and, consequently, failure. 

However, it should be noted that 

another weak point may have been 

created by applying that technique; 

the contact between the two parts 

of the beam (the upper 2-cm and 

the lower 13 cm) which was 

monitored during the load test. 

Fig. 97: Bending of beam dowels into intermediate joints with base panels 

Fig. 98: Casting of top 2 cm of the ring 

beam (Part B) 
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o Grouting of the joints between the shell panels (30 joints in total) (Fig. 

97). During the grouting process, the amount of water added to the grout 

powder was kept to a minimum (the minimum recommended by the 

commercial brand’s technical brochure) which was 3 litres/ 25 kg. The 

water was added on multiple stages, the grout mixed and the flowability of 

the grout monitored. Addition of more water was ceased once the grout 

reached a paste consistency, rather than a flowable consistency. The 

requirement for that specific consistency stems from the geometry of the 

curved shell where, if the grout mix is extra flowable, it will slide down 

the curved surface and settle at the bottom part of the joint length. 

Casting of the lower panel joints was completed first and, after one day, casting of 

the rest of the joints was done. The reason for that was also to provide a boundary of 

hardened grout as a base for the upper joints (of row B and C panels), thus also helping to 

partially restrain the grout from departing through the lower joints. 

 

 

 

 

 

 

 

 

 

 Fig. 99: Grouting of inter-panel joints 
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 Three days after casting the joints, the beam and column formwork were 

demounted, simultaneously removing the panels scaffolding system that was only 

fixed to the beam formwork platform, as shown in Fig. 98. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 100: Demounting of all formwork and scaffolding 
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 Two days were then dedicated to finishing and repairing of the structure, which 

included the following: 

o Grouting of the final part of the ring beam (part C; top 2 cm behind the 

panels and only accessible after removal of all formwork) thus completing 

the connection between the beam and the base panels, and embedding the 

base panels into the beam (see Fig. 99). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o Repairing of column honeycombing using the same non-shrinkage 

cement-based grout. Two columns were diagnosed with honeycombing, 

with one severely compromised (shown in Fig. 100). The grout was used 

to provide a high-strength and fast repair for the compromised columns. 

 

 

 

Fig. 101: Grouting of the final part of the ring beam (Part C) 
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o All eight columns were plastered with cement mortar in order to provide a 

smooth surface finish, as shown in Fig. 101. 

 

Fig. 103: Plastering of all model columns 

 

 

 

Fig. 102: Honeycombing found in two of the model columns 
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o As previously explained, the beam was cast on three different stages for 

connection purposes. After removal of all formwork, a crack was observed 

between the upper (2 cm) and lower (13 cm) portion of the beam. At this 

stage, the crack was repaired using cement mortar (see Fig. 102). It was 

anticipated that that part may originate a weak point as the torsional 

moment resultant onto beam increases, and it was, thus, monitored closely 

during the test. 

 

 

 

 

 

 

 

 

 

 

  

Fig. 104: Ring beam joint cracks 
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o A concrete cutter was used to trim extra hardened grout observed on the 

lower surface of the shell (Fig. 103) between the panels, in order to ensure 

as uniform a thickness as possible for the entire shell. 

 

 

 

 

 

 

 

 

The finished structure is shown in Fig. 104, prior to testing preparations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Fig. 105: Superfluous hardened grout on the lower surface of the shell 

Fig. 106: Finished shell model 
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4.4.5. Testing 

In this study, the load test of the shell structure is an inelastic, static, ultimate strength 

test. The inelasticity refers to the nonlinearity of the concrete material preserved by using 

the same material in both model and prototype structure with a stress scale of 1: 1. This 

requirement is paramount for the accuracy of an ultimate strength loading test of 

reinforced concrete structures [59]. The static characteristic refers to the static type of 

loading i.e. applied very slowly to the structure during the test, as opposed to dynamic 

load tests. Finally, the major purpose of the test is to determine the failure load (ultimate 

strength) and failure mode of the structure. 

4.4.5.1. Test Setup 

After completion of the construction, the model was prepared for the load test as 

explained in the following steps: 

4.4.5.1.1. Model surface preparation 

The main parts of the structure to be monitored were painted with a white plastic paint; 

that includes the upper and lower surface of the shell, and all sides of the boundary ring 

beam. The purpose of this procedure is to highlight any hair cracks that initiate during the 

test so that they are both visible and catchable on a recording medium. 

4.4.5.1.2. Construction of bracing system 

A bracing system was designed, manufactured and installed for the purpose of adjusting 

the boundary conditions of the structure to closely simulate those of the prototype. 

As explained in the previous sections, the ring beam supporting the shell is subjected to a 

horizontal thrust that must be met with a sufficient horizontal reaction at the base of the 

structure. In the prototype structure, the column footing shall be designed to withstand 

the horizontal force and prevent any displacement at the column base (a fixed boundary 

condition). However, in the model no foundation system is constructed and, hence, a 

bracing system that withstands the horizontal forces was a must, if similitude conditions 

were to be maintained between the model and the prototype. A set of 8 deformed steel 

bars of grade 360 and 12 mm diameter, and set of 8 steel angles were used to 

manufacture a belt to tie the structure’s column s. Manufacturing of the system proceeded 

as follows: 
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 The steel bars were cut to a length of 2.8 m (slightly larger than the shell diameter 

measured between the ends of each two interfacing columns) 

 At the mechanical engineering workshop, each bar was threaded for a length of 

7.5 cm on each end, and each steel angle was drilled to create two holes of 10 mm 

diameter at a distance slightly larger than the column dimension. 

 Each set of two bars were fixed to the sides of each two interfacing columns using 

two steel angles, thus creating tension struts at the column bases which produce 

sufficient reaction force to the anticipated horizontal thrust and prevent 

displacement of the column bases (see Fig. 105). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 107: Model column bracing system 
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4.4.5.1.3. Instrumentation 

In this study, only the deflections and the strains were measured, and in as many 

locations as the lab facilities made possible. It should be kept in mind that the main 

purpose of the study was the identification of the failure load and failure mode of the 

shell, rather than an elaborate determination of the stress/strain distributions across the 

surface of the shell, which would require a larger number of strain gage channels than 

available, and perhaps a different distribution map of the gages. 

 Strain gages 

Fig. 106 presents a distribution map of the strain gages used to record the strains 

developed on the lower surface of the shell during the test. 13 strain gages of the one-

element type and of a length of 60 mm were used. The strain gage locations shown in 

Fig. 106 were based on the following: 

o Strain gages 1- 6 were placed to determine both meridional and 

circumferential strains along half a meridian of the shell 

o Strain gages 7-10 were placed in a repeated location symmetrically across 

the whole cap surface in order to investigate the symmetry of strains 

around the whole surface. 

o Strain gage 11 was placed near an observed imperfection in the scale 

model, which consisted of a panel with a slightly smaller thickness along 

one edge than the adjacent panel. This has resulted in a visible change in 

the radius of curvature of the shell at that location and a misaligned 

connection that is identified as an imperfection which may trigger failure. 

o Strain gages 12 and 13 were placed on two locations normal to each other 

on the ring beam in order to measure the strains in two perpendicular 

directions. 

The different locations of strain gages are shown with color codes in Fig. 106 and 

illustrated in the figure legend, while Fig. 107 shows some of the strain gages on the 

actual structure. 



169 
   

 

Fig. 108: Strain gage locations map 

 

 

 

 

 

 

 

 

 Fig. 109: Strain gages placed on the shell model 
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 Linear variable differential transformers (LVDTs) 

It was of interest to measure the displacement at multiple locations of the shell, 

specifically for comparison against the finite element 

model data. The following LVDTs locations were selected 

based on the maximum displacement locations recorded 

through the results of the finite element analysis: 

o 1V at the crown of the shell; being the 

location of maximum vertical displacement 

in all FE models of ideal shells (Fig. 108). 

o 1H and 2H are two perpendicular locations 

at the top part of the ring beam where 

maximum horizontal displacement is expected (Fig. 109). 

 

 

 

 

 

 

 

 

 

LVDT locations are also shown in Fig. 106. Finally, two cameras were set up at 

different locations to video record the entire test. These recordings were later processed 

and utilized for interpretation of the shell behavior and failure mode, as shall be discussed 

in the results chapter. 

4.4.5.2. Loading 

All the tests in this study were performed using slowly applied loads. Initially, the 

planned loading was gravity distributed load on the upper surface of the shell. However, 

as it will be shown in the results chapter, the test was terminated after reaching the 

maximum load with no signs of failure or significant strains. That allowed performing 

Fig. 110: Vertical LVDT (1V) 

Fig. 111: Horizontal LVDTs measuring the displacement of the ring beam 
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more tests on the same specimen with more critical loading conditions until failure was 

achieved. The three different types of loading are: 

 Test 1: Axisymmetric uniformly distributed gravity load on the upper surface of 

the shell 

 Test 2: Unsymmetrical uniformly distributed gravity load on one half of the 

surface of the shell 

 Test 3: Vertical point load at the crown of the shell 

The following subsections illustrate the procedure for each test. 

 

4.4.5.2.1. Test 1: Axisymmetric uniformly distributed gravity loading test 

The load type in this test is static uniform vertical load. This type of load was selected 

since the study’s interest is to determine the capacity of the shell as a multiple (factor) of 

its weight. The loading system consisted of sand bags of calibrated weights applied 

incrementally and uniformly to the shell upper surface. This loading method was selected 

for the following reasons: 

 It readily provides a vertical load when applied to the surface of the shell, thus 

solving the load direction problem 

 It makes it possible to apply many bags to cover the entire surface and provide as 

close to a uniform distribution of the load on the shell surface as possible, without 

manufacturing of complex loading systems that may be difficult to produce with 

the available lab facilities. 

 The availability of the loading material. 

 

The drawback of the selected manual loading system is that it dictates manual 

recording of strain and displacement readings. Given that the load is not connected to a 

load cell that directly measures the load value so it can be paired with the corresponding 

recorded strain gage readings, the process had to proceed manually. This was performed 

by applying the load both uniformly and on increments referred to as loading steps. After 

application of the designated load of each loading step, the strain gage and LVDTs 
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readings were recorded and associated with that specific loading point. The process was 

then repeated for the next load steps. 

  The loading was designed to reproduce a uniform load distribution with 16 sand 

bags with axisymmetric distribution over the upper surface of the shell. Each sand bag is 

calibrated at 20 kg in weight, resulting in a total of 0.35 tons for each loading point, 

which is almost equal to the weight of the model (~0.37 tons). 

  The loads were applied slowly in order to minimize any dynamic effects. 

Although the each load step was planned as 16 bags of 20 kg (0.35 tons), during each 

loading step the strain and displacement readings were taken twice; once after placement 

of 10 bags, then a second reading at the end of the load step, after placing of the 16 bags. 

Fig. 110 illustrates the loading of test 1. 

 

 

 

Fig. 112: Axisymmetric loading of test 1 
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4.4.5.2.2. Test 2: Unsymmetrical uniformly distributed gravity loading test 

The second loading condition was created during the unloading of test 1 loads. The 

unsymmetrical distributed load was produced by unloading only one half of the shell 

surface (shown in Fig. 111), resulting in a load value that is the same as the maximum 

load per unit area applied in the previous test, however on only one half of the structure.  

 

 

 

 

 

 

 

 

 

 

 

4.4.5.2.3. Test 3: Vertical point load at the crown of the shell 

The third load test consisted of a vertical concentrated load at the crown of the shell, 

which is considered one of the most critical loading conditions for spherical shells. 

Although this loading test was not what the shell was initially planned to undergo, it was 

performed for the following reasons: 

 Since the shell survived the maximum load applied in test 1, the capacity of 

the shell was not identified. Thus, a test that presents more critical loading had 

to be performed to achieve failure and, thus, quantify the structure’s capacity. 

 After reaching the maximum prepared load in test 1, no more loading was 

physically feasible. This was due to sliding of the sand bags, especially those 

on the curved sides of the shell. Therefore, a new loading method had to be 

introduced to increase the loads. 

Fig. 113: Unsymmetrical loading of test 2 
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 This loading method offered a convenient way of applying higher loads that 

were easily measured using the available load cell, thus guaranteeing 

achieving of failure. The capacity of the laboratory load cell is 60 tons. 

In preparation for the test, the structure was transported using the lab overhead 

crane to the loading location, which is under a steel frame to which the load cell is 

attached. The following steps summarize loading process of test 3: 

 After transporting of the structure under the lab steel frame, the columns 

bracing system was reinstalled. 

 The location of the lab steel frame girder was adjusted to the required 

elevation and the load cell was fixed directly above the crown of the shell. 

 A steel plate (40X40X4 cm) was placed under the load cell on top of the 

shell crown, and a sand bag of about the same surface area was placed 

under the steel plate (shown in Fig. 112), in order to avoid punching of the 

shell and guarantee the transfer of the load to the rest of the shell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 114: Loading setup for test 3 
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 The same strain gage and LVDT locations were maintained, and they were 

reconnected to the computer and checked for signal transfer. 

 A loading period of 1000 seconds was designated in order to ensure slow 

load application rate. 

 The structure, strain readings and LVDT readings were monitored during 

the loading procedure. The test was terminated at the onset of failure 

initiation marked by an observed large displacement and accompanying 

large cracks. 

The results of the loading test are presented and discussed in the next section. 
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5. RESULTS AND DISCUSSION 

 

This chapter discusses the results of the numerical and experiment analysis of this study. 

The first section presents the results of a parametric geometric analysis of the structure, 

which follows from the selected geometry and aims to graphically clarify certain 

relationships between the division pattern and frequency of the structure, and relevant 

construction considerations. The second section presents the results of the structural 

analysis of the spherical cap proposed system. The section discusses the results of 

different modeling parameters, material properties, boundary and loading conditions of 

the numerical analysis, and the correlation with the results of the experimental analysis 

and relevant studies in the literature. The final section presents the results related to the 

construction process of the structure, including both prefabrication and erection, relevant 

to the prototype and/or the scale model of the structure. 
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5.1. Geometric Analysis 

 

This part of the analysis has focused on the geometric parameters of the proposed 

structure and clarifying different relationships between geometric division of the 

structure, size and weight of panels to be handled, and the span of the structure. As 

previously discussed, a MATLAB code was created for the purpose of determining the 

size and number of panels to be handled which correspond to the user’s input span, 

division frequency and dome configuration (DS/DD). The same code was then modified 

to graph relationships between these parameters which can be of help to show quick 

estimates of different parameters controlling the design and construction efficiency of the 

structure. 

As previously explained, the division frequency in spherical division refers to the 

number of divisions of each spherical polygon’s edge. In this study, the division 

frequencies considered to be appropriate for the structure are referred to as 8v and 4v as 

explained in the methodology. The other division pattern, which is technically not a 

division frequency and is also considered in this analysis, is referred to as ‘LCD’, which 

is the name of the triangle resulting from that pattern (the Least Common Denominator), 

as explained in reference [90]. Each of these division pattern result in a different number 

of divisions, i.e. a different number of panels to be handled for the construction. In 

addition, every single division frequency results in a different number of panels for the 

shallower dome (DS) and the deeper dome (DD). Discussing the complete geometric 

parameters and class II division technique for each of these divisions is seen to be out of 

the context of this study and can be found in detail in reference [90]. However, the 

important factors that may directly affect the efficiency of the construction process are 

outlined here. 
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5.1.1. Division Properties 

Table 18 presents the number of unique panels which result from each division 

frequency. The number of unique panels is helpful in determining the number of molds 

that need to be fabricated for precasting the structure’s panels (although it should be 

noted that some of the same size panels are right hand- and left hand- versions of each 

other and may require two different molds. The reusability of each mold can be 

determined then from table 19 which presents the total number of panels to be fabricated 

and handled for the construction, for each division frequency and each structural 

configuration. 

Table 18: Number of unique panels for each division frequency 

Division Frequency 8v 4v LCD 2v 

Number of Unique Panels 4 2 1 1 

 

Table 19: Total number of panels for each division frequency 

Division Frequency 8v 4v LCD 2v 

Number of 

Panels  

DS 80 20 10 5 

DD 240 60 30 15 

 

As table 18 shows, the 2v division presents the advantage of only one division 

size, which means that only one mold is reused 5 times for the fabrication of DS panels, 

and 15 times for DD panels. However, this advantage also means that it produces the 

least number of panels, and consequently, largest panel size. The large panel size can 

pose challenges on the construction if the span is relatively large. Hence, 2v division may 

only be appropriate for very small spans. The detailed relationships between the span, the 

panel size and weight are presented shortly. 

The LCD division also presents the advantage of only one panel size for the entire 

structure and is only half the size of that of 2v division (resulting in 10 and 30 panels for 

DS and DD), which gives this division more application for larger span than 2v. 
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However, it should be noted that the LCD-divided structure is composed of one triangle 

size but has a right-hand and left-hand version. This means, for conventional molding 

techniques, that each structure requires the fabrication of two molds. 

As the division frequency increases, more unique panels are produced requiring 

more molds. At the same time, a larger division frequency means a larger number of 

smaller size panels to be handled for the construction. The suitability of each division 

frequency to a particular application shall entirely depend on the structural span and the 

thickness selected for the panels as discussed in the next subsections. 
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5.1.2. Panel Properties 

Fig. 113 and Fig. 114 present the average panel sizes (frequencies 8v and 4v produce 

different but very similar unique panel sizes) for spans between 10 and 50 m for DS and 

DD, respectively. Each figure includes three different plots for 8v, 4v and LCD divisions, 

and clearly shows the large increase in the panel size (expressed in area units) as the span 

increases for each division frequency, particularly for lower divisions LCD and 4v. 

 

Fig. 115: Average panel area vs. span for shallow dome (DS) 

 

 

Fig. 116: Average panel area vs. span for deep dome (DD) 
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Of more practical convenience, Fig. 115, Fig. 116 and Fig. 117 were constructed 

for the same group of spans between 10 and 50 vs. the weight of the average panel 

(expressed in tons), as this mostly poses the governing factor for the size of the precast 

elements to be handled in precast concrete structures. The plot was created for dome 

thicknesses between span/80 and span/260, and the weights were determined based on 

normal-weight concrete of density equal to 2500 kg/m3. Fig. 115, Fig. 116 and Fig. 117 

present the relationships for divisions LCD, 4v and 8v, respectively. 

 

 

Fig. 117: Panel weight vs. span for LCD division 
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Fig. 118: Panel weight vs. span for 4v division frequency 

 

 

Fig. 119: Panel weight vs. span for 8v division frequency 
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As shown in Fig. 115, for LCD division the panel weight reaches unrealistically 

high values for large spans, and even for very small panel thicknesses. Consequently, this 

division pattern may be suitable for smaller spans up to 20 m only. Division frequency 

4v, in Fig. 116, allows for slightly larger spans and thickness ranges than LCD, but is also 

seen to reach unrealistically large weights for larger spans. The 8v division, while it 

produces the largest number of unique panels, appears to be favorable when considering 

the construction process, and seems to be the only suited division frequency for large 

spans; however, for spans approaching 50 m, it is seen that thicknesses as small as 

span/260 reaches about 12 tons. 

For the present study, the prototype structure is selected to have a span of 25 m, 

and a relatively large thickness of 25 cm (span/100), and is constructed using a 4v 

division frequency. These parameters result in a relatively large panel weight of about 15 

tons. Division frequency 4v was selected to be suitable for the construction since it only 

produces two different panel sizes (and requires three different molds). A relatively large 

thickness was used in order to be on the conservative side for structural analysis 

purposes, however, smaller thicknesses and, thus, weights may be applicable. 

It should be noted that the produced plots and span recommendations in this 

section only consider the construction efficiency with no regard for the structural 

behavior. In the next sections, the structural behavior of the selected prototype is 

analyzed in detail. A future recommendation may be to apply the same analysis to 

structures of larger spans and smaller thicknesses, in order to further validate the 

previously produced plots and integrate the structural capacity with the design of the 

geometric parameters.  
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5.2. Structural Analysis 

 

This section presents the results of the numerical and experimental analysis of the 

structural behavior of the proposed structural system under various loading conditions 

and modeling parameters. As explained in the methodology section of this study, using 

finite element modeling, the structure is first investigated in its monolithic form with no 

divisions using different solution parameters, material properties and boundary 

conditions. The purpose of that initial stage is to determine the adequacy of the 

constructed finite element model, given that finite element modeling of concrete spherical 

caps is very scarce in the literature. The resulting values are, thus, compared to those of 

other experimental or analytical studies using spherical caps possessing the same 

geometric parameter, and made of concrete or other materials. 

At the same time, the built models with the different parameters are compared to 

each other to present the general patterns of how the behavior of concrete spherical caps 

is affected by the different solution parameters, material properties and boundary 

conditions, particularly using the general purpose finite element program ANSYS. This 

section also presents the results of integrating the effects of constructing the structure 

using precast panels in the FE model, through the use of contact elements in the ANSYS 

program. The sensitivity of contact conditions is also explored through a parametric study 

whose results are presented in the same section. 

Finally, the results of the ultimate load test performed on a 1:10 scale model of 

the proposed prototype structure are presented. The analysis attempts to draw conclusions 

about the behavior of the segmented structure and the effect of introducing the in-situ 

stitches, and compare them to the corresponding FE models with the same loading 

conditions. 
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5.2.1. Failure Loads of Gravity Loaded Models 

Table 20 presents the failure loads of the benchmark models of the gravity-loaded 

structure. The table refers to each model using the model codes previously discussed in 

the methodology chapter and summarized in Appendix B with their detailed properties. 

In table 20, only the main relevant model parameters are highlighted. As previously 

discussed, the models in this part of the analysis are loaded with large gravitational 

acceleration, and the failure load is then calculated as a portion of the applied gravity load 

as force per unit area of the shell surface. The fifth column of table 20 presents a 

normalized value of the failure load as a multiple of the shell weight. The sixth column 

presents another normalized value of the failure load as a ratio of the failure load 

predicted by the linear elastic finite element analysis. 

Table 20: Failure loads of gravity loaded FE models 

Gravity Loading 

Model 

Code 

Analysis type Boundary Failure 

Load 

(N/m2) 

Failure load 

(multiple of 

weight) 

Ratio of 

Linear Elastic 

Failure Load 

MDS01 Linear Elastic Clamped 3.9E+06 663.7 1.00 

MDS07 Nonlinear Elastic Ring beam 2.9E+06 470.4 0.71 

MDS09 Nonlinear Inelastic clamped 6.2E+05 102.9 0.16 

MDS16 Nonlinear Inelastic Ring beam 3.4E+05 55.4 0.08 

MDS17 Small 

displacement 

inelastic – concrete 

crushing enabled 

Ring beam 2.1E+05 34.0 0.05 

MDS19 Nonlinear Inelastic Ring beam - with 

contact elements 

3.1E+05 51.6 0.08 

SDS03 Nonlinear Inelastic Clamped 5.8E+05 102.8 0.15 

SDS17 Nonlinear Inelastic Ring beam – with 

contact elements 

– debonding with 

concrete 

properties 

2.5E+05 44.5 0.07 

SDS19 Nonlinear Inelastic Ring beam – with 

contact elements - 

debonding with 

steel properties 

2.6E+05 46.6 0.07 
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SDS20 Nonlinear Inelastic 

- concrete cracking 

disabled 

Ring beam – with 

contact elements 

debonding with 

concrete 

properties 

5.9E+05 102.2 0.15 

 

 

Table 20 shows that a large reduction of the spherical cap capacity from the value 

predicted by the linear elastic analysis after considering the effects of different 

nonlinearities associated with the structural behavior of the proposed system. It is shown, 

as expected, that as a result of a linear elastic analysis, the structure fails by a loss of 

stability at the very high value of 663.7 times its own weight under gravity loading. This 

high value is expected due to the relatively large thickness of the shell, purposefully 

selected to conservatively account for the anticipated capacity reduction due to the 

introduced in-situ joints between the structure’s panels, and a few other reasons 

previously discussed in this paper. Fig. 118 shows the first eigenvalue buckling mode of 

the clamped structure (MDS01) as an non-axisymmetric buckling which initiates near the 

crown, with the contours representing the value of the total displacement sum at each 

node. 

 

Fig. 120: Total displacement of MDS01 

  

  



187 
   

When the geometric nonlinearity is included in the analysis, along with changing 

the clamped boundary to a line ring beam hinged at 8 locations around the perimeter, and 

using the same elastic isotropic material properties, the structure fails at a load value of 

about 71% of the linear elastic failure load value, which, in theory, is consistent with the 

capacity reduction of shells loaded by normal pressure. At that point, the structure also 

fails by losing its stability. After using the stabilization command on ANSYS to track the 

post-failure behavior, it is seen that the structure completely reverses its form exhibiting a 

classic snap-through buckling mode of failure as seen in Fig. 119 of MDS07. Fig. 119 

shows a maximum central vertical displacement value of 8.8 m; slightly larger than twice 

the shell height (equal to 4.23 m). 

 

The elastic instability load-deflection path of MDS07 is illustrated in Fig. 120 

which presents the normalized load (multiples of weight) vs the central deflection of the 

spherical cap. The initial linear part presents the typical initial behavior of spherical caps 

under uniform loads, then at a load value of 470.4 times the cap weight, the structure 

exhibited a loss of stability at which the load deflection path shows an increase of 

displacement with no load increase (unstable path). Finally, after the cap completely 

snaps through, the structure exhibits a stable behavior again with a linear load-

displacement relationship. It should be noted though that, while nonlinear stabilization on 

Fig. 121: Snap-through buckling of MDS07 
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ANSYS is able achieve convergence for an unstable structural behavior, it cannot exactly 

track the load-deflection path where the structure has come to have a negative stiffness 

(unstable increase of the displacement accompanied by a reduction in the load). 

Consequently, the use of nonlinear stabilization serves to only confirm the initiation of a 

structural instability, but is not reliable for judging the postbuckling load-deflection path. 

 

Fig. 122: Load-deflection path of MDS07 

 

 Drastic reduction of the structure’s capacity to only 16% of the linear elastic 

failure load was observed when SHELL281 element with linear elastic material 

properties is replaced by SOLID65 concrete solid element which possesses linear 

isotropic properties, nonlinear isotropic rate-independent elasticity and concrete material 

properties. The analysis shows, however, that the structure did not fail by a loss of 

stability, but rather by a material failure. Fig. 121 shows a comparison between the load-

deflection path of MDS07 and MDS09 where both show an almost identical load path till 

failure of MDS09 at 102.9 times the weight of the structure. The linear load displacement 

path of MDS09 in the figure illustrates that failure has occurred at a very low 

displacement. 
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Fig. 123: Comparison between the load-deflections paths of MDS07 and MDS09 

 

An approximate value of the load at which the concrete reaches its crushing stress 

is calculated using the membrane theory. As shown in the design methodology, for the 

present spherical cap parameters, the largest compression membrane force is the 

meridional force at the foot of the cap and is calculated using Eq. (39) [94] as follows: 

       
 

      
  

(39) 

Where g is the weight per unit area of the shell surface 

Substituting for the meridional force with the resulting membrane stresses ( 

      ) and for the weight per unit area, the following formula results: 
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For the parameters of the present shell (R = 20.59 m and ɸ = 37.38 at the foot), this 

reduces to: 

               

Where   is in N/m2 while   is in N/m3 

For an average concrete unit weight of 2400 kg/m3, the concrete material reaches 

its crushing stress (assumed to be 90% fc and equals 22.5 MPa) at a gravitational 

acceleration of 83.3 g. If the compressive strength (equal to 25 MPa) is considered as the 

crushing stress, as is the case in the finite element model, the structure fails at 92.6 g, or 

92.6 times the structure’s weight, which is close to but slightly less than (about 90% of) 

the gravity load at which the solution stops converging in the FE model of MDS09 (102.9 

times the weight of the shell). 

The value of stress that follows from Eq. (39) is important given that most of the 

models in this study are loaded with vertical gravity dead loads. It was used throughout 

the analysis as a general means to determine where failure has occurred in relation to the 

maximum concrete compressive stresses, since a material failure was expected. However, 

the following should be noted: 

 Due to the different behavior of concrete under tension and compression, a 

material-initiated failure in the concrete shell may be not governed by the 

compressive strength of concrete, but rather by the much lower tensile strength 

resulting in cracks that gradually reduce the capacity of the section to zero. In 

spherical caps, that effect is mostly dominant in the region adjacent to the edge 

ring, where a bending field is generated between the shell foot and the ring beam. 

Consequently, that effect may be reasonably anticipated to affect the capacity of 

the structure. The calculated value herein is consequently only used as a measure 

for the reasonability of the failure loads for models where a loss of stability was 

not observed, and particularly for models where the concrete cracking was 

disabled, and clamped models where no deformable body (ring beam) was 

provided at the boundary. 
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 fc is the ultimate compressive strength of concrete under a uniaxial stress state. In 

the general multi-axial concrete stress state in the model, failure governed by a 

failure envelope for multi-axial stress states, which defaults to Willam and 

Warnke’s constitutive model for the triaxial behavior of concrete [116]. In 

compression, given that concrete crushing is disabled, failure of the concrete 

material is judged by observing the value of von Mises equivalent stress reaching 

the maximum stress value that was input through the multilinear stress-strain 

curve for the rate-independent plasticity. The von Mises equivalent stress is 

calculated in Eq. (40) in reference [8]: 

   (
 

 
 [        

         
         

 ])

 
 
 

(40) 

Where σ1, σ2, and σ3 are the principal stresses of the material  

As previously discussed in the methodology, enabling concrete crushing results in 

an even lower load at which the solution stops converging, and is usually 

attributed to local stress concentrations in the FE model, rather than an actual 

failure. In tension, on the other hand, the concrete failure is governed by the 

Willam and Warnke failure envelope, as pointed out, in which concrete cracks 

when any of the three principal stresses exceeds the tensile strength of the 

concrete [8].  

As Fig. 122 shows, the value of von Mises equivalent stresses of model MDS09 

are shown to be maximum near the edges, with the maximum stresses at 25 MPa; equal 

to the maximum stress of the concrete stress-strain curve. It is also seen that, at the failure 

load, the maximum total displacement of the structure is relatively small (about 4.4 cm as 

shown in Fig. 123) supporting the observation that failure has occurred due to a material 

failure rather the a loss of stability accompanied by significantly large displacements, as 

that of the elastic model. 

The arc-length method was tried for solving the same model. As discussed in the 

methodology chapter. The arc-length method is designated by ANSYS to be able to track 
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post-instability paths of structures where a zero or negative stiffness obstructs 

convergence of the solution. This method was used for the MDS09 model as another 

check to verify that termination of the solution was not due to a loss of stability. 

However, when the solution using the arc-length method stopped converging at the same 

failure load value as previously obtained using the default Newton-Raphson method. 

 

Fig. 124: Equivalent von Mises stresses of MDS09 

 

 

Fig. 125: Total displacement of MDS09 

In the clamped structure MDS09, very low tensile stresses were observed in the 

model. The case is significantly different when the ring beam is modeled as the boundary 
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for the structure.  For model MDS16, for example, the failure load of the ring beam 

bounded model is reduced to half of that of the clamped concrete model (8% of the linear 

elastic failure load and 55.4 times the weight of the shell). The nodal displacement of 

MDS16 shows a larger maximum displacement, with a maximum central displacement 

value of about 7.6 cm (almost twice that of MDS09) as shown in Fig. 124 which presents 

a plot of the vertical displacement. 

 

Fig. 126: Vertical displacement of MDS16 

 

Fig. 125 of model MDS16 at the load where the solution terminated shows 

extensive cracking at the region between the cap and the bounding ring beam. While the 

final stresses at the cracked region appear to be very low, relatively high stresses are 

observed immediately adjacent to it, as shown in the von Mises equivalent stresses plot in 

Fig. 126, where the stresses at the cracked region appear to be as low as 0.7 MPa, while 

the adjacent von Mises stresses have reached the maximum stress value of 25 MPa. 
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Fig. 127: Cracking of MDS16 

 

Fig. 128: Equivalent von Mises stresses of MDS16 

 

The displacement pattern exhibits a consistent pattern with that of von Mises 

stresses; Fig. 124 shows that the large vertical central vertical displacement in the 

negative y direction is not localized at the crown, but rather the large displacement zone 

is observed to occur immediately adjacent to the ring-cap intermediate region followed 

by an inflection point and an increasing positive displacement in the positive y direction 

with a maximum of 1.8 cm at the cap-ring transition. Consequently, it is seen that the 

high stresses region in Fig. 126 coincides with the start of the large central deflection. 

This pattern shows to be consistent, in principle, with Bushnell [23] who he concluded 

that buckling of (relatively deep) ring-bounded spherical caps is an edge phenomenon. 
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Fig. 127 presents a comparison between the central vertical displacement between 

MDS09 and MDS16 which reveals that failure of MDS09 occurs suddenly after an 

almost linear load-deflection path, while the path of MDS16 is initially linear, then the 

structure is seen to exhibit an increasing displacement for smaller load steps, and closely 

approaches a neutral equilibrium position at the failure load. Consequently, it can be seen 

that while the presence of the ring beam results in significant tensile stresses, the 

structure also approaches an unstable equilibrium at the failure load, which could suggest 

that the edge-induced stresses result in an early loss of stability of the structure. 

 

 

Fig. 129: Comparison between the load-deflection paths of MDS16 and MDS09 

 

A significant lateral displacement is also observed at the shell-ring intermediate 

region, as shown in Fig. 128, where the horizontal z direction (UZ) has a maximum value 

of 4.6 cm. 
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Fig. 130: Lateral displacement of MDS16 

It should be noted though that local high stresses are observed at the bottom of the 

ring beam. These stresses are not representative of those anticipated in the real structure 

and are mainly due to the restraining of the lower surface of the beam. consequently, as 

previously discussed in the methodology chapter, a boundary sensitivity study was 

conducted using different boundary conditions to the ring beam so as to eliminate the 

effects of local stress concentrations on the convergence of the solution, while aspiring to 

model the conditions as close to the real structure as possible.   
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Boundary Sensitivity Study 

The different boundary cases are outlined in table 21 with the corresponding load levels 

at which the solution has lost convergence and terminated. In most of these models, a 

very early loss of convergence was observed due to high stress concentrations resulting 

from restraining limited regions of the lower edge of the ring beam.  

Table 21: Boundary sensitivity models 

Model 

Code 

Analysis 

Type 

Boundary Failure 

Load 

(N/m2) 

Failure 

load 

(multiple 

of weight) 

Ratio of 

Linear 

Elastic 

Failure 

Load 

MDS11 Nonlinear 

Inelastic 

Ring beam is restrained 

against UX, UY, UZ at 8 

locations (4 nodes at each 

location) 

4.7E+04 7.8 0.01 

MDS12 Nonlinear 

Inelastic 

Ring beam restrained 

against UX, UY, UZ at 8 

column locations of  

750X1000 mm column (20 

nodes at each location) 

7.3E+04 12.1 0.02 

MDS13 Nonlinear 

Inelastic 

Ring beam restrained 

against UX, UY, UZ at 8 

column locations of 

750X1000 mm column (20 

nodes at each location) 

while the rest of the beam 

lower edge is restrained 

against UY only. 

9.6E+04 15.9 0.02 

MDS14 Nonlinear 

Inelastic 

Beam lower edge is 

restrained against UY, while 

one column location is 

restrained in UX, UY, UZ 

7.1E+04 11.7 0.02 

MDS10 
Nonlinear 

Inelastic 

Beam is BEAM189 line 

element restrained against 

UX, UY, UZ at 8 locations 

2.9E+05 45.6 0.07 

MDS16 Nonlinear 

Inelastic 

Beam lower edge is 

completely restrained in 

UX, UY, UZ 

3.4E+05 55.4 0.08 
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Fig. 129 shows the very high stress concentration observed at the restrained 

locations of the beam lower edge in MDS11 resulting in an early loss of convergence at a 

value of 1% of linear elastic failure load (about 7.8 times the weight of the cap), while the 

rest of the structure exhibits much lower stresses.  

 

Fig. 131: Equivalent von Mises stresses of MDS11 

 

Although increasing the size of the restrained region has helped with extending 

convergence, it also shows a much lower failure load of less than 2% of the linear elastic 

failure load, and similar stress and cracking concentrations as shown in Fig. 130 and Fig. 

131 of MDS12. Fig. 131 shows a close-up of the von Mises stresses at the restrained 

locations which have reached the maximum value of 25 MPa. 
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Fig. 132: Cracking of MDS12 

 

 

Fig. 133: Equivalent von Mises stresses of MDS12 

 

Another boundary condition, seen in model MDS13 and has resulted in a slightly 

larger failure value than MDS12, is when the whole boundary was restrained against UY 

beside restraining the column locations against UX, UY, UZ, but the value was still very 

low. A different boundary was applied in MDS14 by restraining the whole lower 

boundary against UY, while only one column location was restrained against UX, UY, 

UZ. This case was implemented in order to explore the effect of allowing the beam edge 

to expand laterally while preventing rigid body motion by hinging the beam at one 

location only. While this case may allow a theoretically closer boundary to the ring beam 
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restrained by deformable columns that may drift laterally, numerically it has resulted in 

severe convergence difficulties during the entire solution, not just closer to the failure 

value. These difficulties are explained by the large displacement that results from each 

load step because the structure is almost free to displace laterally. Consequently, a very 

small load step was needed for achieving convergence, and eventually, as the load 

increased, the minimum load step allowed by ANSYS was not sufficient to achieve 

convergence and the solution terminated even though the highest von Mises stresses have 

a maximum value of 18 MPa only (at the restrained region) as shown in Fig. 132. Fig. 

133 shows the total displacement of the model nodes to be larger than any of the ring 

beam bounded models yet, with a maximum total displacement of 11.4 cm at most of the 

shell surface and the most free-to-displace-laterally side of the ring beam. 

 

Fig. 134: Equivalent von Mises stresses of MDS13 
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Fig. 135: Total displacement of MDS13 

 

Another much more expensive model (whose results are not reported here), in 

which the columns were modeled at their exact locations and sizes corresponding to those 

of the prototype, was built. In that model, the ring beam is thus restrained in the proper 

way closely following the real beam boundary conditions with a deformable body built of 

reinforced concrete SOLID65 elements, and is fixed at the base. However, a very small 

load step and a huge number of equilibrium iterations were needed for the solution 

convergence in that particular model. Initial examining of the model unconverged load 

substeps has revealed, as expected, that the faced convergence difficulties were due to the 

cracking in the tension zones of the ring beam (the lower parts of the mid span). That 

observation is coupled with the fact that most reinforced concrete beam analyses seen in 

the literature have modeled the steel reinforcement in the tension region separately and in 

due detail to overcome these effects (mostly using LINK8 elements with steel material 

properties). Consequently, it was decided that the possible enhanced accuracy of the 

solution with regard to the behavior of the shell structure when modeling the full 

structure is extremely exceeded by the significant increase of the size of the model and 

the time elapsed during the solution, given that most of the convergence difficulties were 

caused by cracking of the lower ring beam regions under tension. 
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The undermined value of modeling the full real life boundary of shell structures 

may also be supported by the fact that most of the analytical studies in the surveyed 

literature have considered the shell edge to be clamped. Some of the numerical studies 

considered to boundary to be hinged or free to displace radially [119]; however, they did 

not resort to modeling the ring beam in the numerical model. In studies where the effect 

of the boundary was of interest, experimental modeling of a scale model of the structure 

was used and the boundary tailored to properly follow the prototype boundary conditions. 

A similar approach was consequently followed in this study where the finite 

element models of the structure hereafter included only the shell and the ring beam with a 

completely restrained lower boundary; thus providing a more proper simulation of the 

stresses at the intermediate region between the shell and supporting deformable body than 

that of the clamped edge, while avoiding wasting resources on the resulting stresses in the 

ring beam itself. At the same time, the efficiency of this modeling approach is compared 

with the experimental analysis of the scale model which models the structure in its 

entirety; shell, ring beam and columns restrained at the base, as shall be discussed 

shortly. 

The effect of modeling the ring beam at the boundary was quantitatively assessed 

in the finite element analysis through using the nonlinear elastic model with shell 

elements for the cap and beam line elements for the ring beam (MDS07). Another 

attempt to include the effects of the boundary coupled with material plasticity was 

MDS10 where the spherical cap was modeled using SHELL281 elements and the beam 

using BEAM189 line elements, as those of the elastic analysis. However, SHELL281 

elements were composed of three layers of concrete-steel- concrete to represent a middle 

layer of the reinforcement. The concrete layers of the shell were assigned a von Mises 

multilinear isotropic hardening plasticity stress-strain curve, identical to that used in the 

concrete models, and the steel layer was also assigned the same bilinear isotropic 

hardening plasticity of the steel reinforcement in the solid elements model. The use of 

nonlinear line elements of the beam has largely reduced the effect of stress concentrations 

at beam restraining locations (8 hinged locations around the perimeter), resulting in a 
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much higher failure load of 7% of the linear elastic clamped shell failure load, which is 

very close to the results of MDS16 where the lower beam edge is completely restrained 

(about 8% of the liner elastic clamped shell failure load). 

Consequently, MDS10 is seen to provide some confidence in the ability of the 

solid elements modelling approach with the lower edge of the ring beam fully restrained 

to approximate the load level at which the stresses reach their maxima and the solution 

stops converging. However, the modeling approach of MDS10 was not used in the rest of 

the analysis since the use of solid elements was essential in order to model the behavior at 

the interface between the cap panels, represented in the FE model as the interfacing areas 

of the panel solid elements. The use of ‘areas’ as the contacting surfaces in a contact 

analysis is highly desirable for achieving convergence and almost exclusively 

implemented in all the surveyed relevant literature. 

The use of MDS10 was, however, helpful in providing an approximation of the 

stresses in the ring beam that is not possible to deduce from the models where the whole 

ring beam boundary is restrained. Fig. 134 shows the deflection of MDS10 (scaled by 20) 

which clearly shows the deflections of the ring beam at the failure. It’s worth 

remembering here that the beam is modeled as a line element; however, the beam section 

is viewed in its actual input dimensions using the ESHAPE command on ANSYS. Fig. 

135 shows the von Mises equivalent stresses in the beam which are shown to the reach 

the maximum value of 25 MPa at mid spans and over the supports (in both tension and 

compression regions). These stresses are possible to see in MDS10 since no concrete 

properties (cracking in particular) can be assigned to the line element. 
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Fig. 136: Deflection shape of MDS10 

 

 

Fig. 137: Equivalent von Mises stresses of MDS10 ring beam 

 

Before moving on to modeling the effects of the segmentation of the structure 

using contact elements on ANSYS, the effect of concrete crushing on the capacity of the 

structure was worth exploring, although not implemented in the rest of the analysis. 

When concrete crushing is activated in the model by inserting a value for the crushing 

stress (input as 25 MPa in the analysis), ANSYS displays a warning message at the 

beginning of the analysis reporting that inaccurate results may be reported when concrete 

crushing and a large displacement analysis are used. Hence, a linear (small displacement) 

analysis was used in the concrete crushing model; thus limiting the effects of nonlinearity 
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to material plasticity, cracking and crushing. The model (MDS17) showed earlier loss of 

convergence than MDS16, which has exactly the same model properties other than the 

ability of concrete to crush in compression. The loss of convergence occurred at 5% of 

the linear elastic failure load (34 times the weight of the shell), which represents 61% of 

the failure load of MDS16. Examining von Mises stresses of MDS17, shown in Fig. 136, 

displays the overall low stresses in the whole structure, while very high local stresses 

arise immediately adjacent to the lower restrained boundary with the largest value at 24.4 

MPa at the last converged load substep. In that case, it is seen that the local large stress 

concentrations at the restrained nodes do not represent a real failure of the structure. 

 

Fig. 138: Equivalent von Mises stresses of MDS17 

 

The analysis then moved to assessing the difference in the behavior of the 

spherical cap model when it is composed of individual panels with contact elements at 

the interface between these panels, and between the base panels and the ring beam. The 

first step of that analysis was assessing the behavior when contact conditions are 

provided between the spherical cap, as a whole, and the ring beam. In MDS19 where that 

approach was implemented, the loss of convergence was observed at a lower value than 

MDS16 where the same properties are used, with the exception of coupling the cap base 

and the ring beam DOFs at the interface. The failure of MDS19 is observed to occur at 

about 93% of failure in MDS16 (51.6 times the weight of the shell) with a very close 
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load-deflection path as seen in Fig. 137, suggesting some capacity reduction due to the 

presence of contact conditions between the shell and the ring beam with the maximum 

normal tracking stress for debonding equal to 2.5 MPa (chosen to represent the concrete 

tensile capacity as previously discussed in the methodology). 

 

Fig. 139: Comparison between the load-deflection paths of MDS16 and MDS19 

 

In principle, at the maximum normal stress the debonding process follows a linear 

function that ends with the completion of debonding at a maximum normal separation 

value selected between 0.5 and 2 cm in this study (1 cm in MDS19). However, it should 

be noted that in MDS19, and all the models in this study, the bonding with adjacent 

structural members provides the only boundary condition to each of the contacting 

members. Consequently, a complete debonding of the contacting surfaces will directly 

result in a large rigid body motion that cannot be tracked with the solution methods of the 

present model. Hence, only the initiation of debonding and partial normal separation 

values approaching those of the complete debonding value can be tracked. In MDS19, for 

instance, Fig. 138 shows the contact gap development at the cap-ring beam interface with 

a maximum value of 0.53 cm. It may be suggested that the initiation of contact debonding 

is what obstructed the convergence of the solution, suggesting a failure at the cap-ring 

joint. However, von Mises equivalent stresses, as shown in Fig. 139, also show reaching 
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the maximum stress value of 25 MPa at a similar location to that of MDS16, with the 

same displacement pattern and inflection point across the meridian, as illustrated in Fig. 

140. 

 

Fig. 140: Contact gap in MDS19 

 

Fig. 141: Equivalent von Mises stresses of MDS19 
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Fig. 142: Vertical displacement across the meridian of MDS19 

 

The maximum stress region is, however, smaller than that of MDS16, which 

could suggest that the initiation of debonding at the cap-ring interface caused the stresses 

to drop at the immediately adjacent regions. That observation may also be supported by 

observing the stress state ratio plot from ANSYS, which represents the ratio of the actual 

stresses to the maximum stresses of the model, and is shown in Fig. 141. Fig. 141 shows 

a stress state ratio between 93% and 104% of the whole structure with the exception of 

the cap-ring intermediate region where the stress state ratio has dropped to as low as 

6.5%. 

 

Fig. 143: Stress-state ratio of MDS19 

 

-60.00

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

10.00

20.00

0 5 10 15

V
e

rt
ic

al
 D

is
p

la
ce

m
e

n
t 

(m
m

) 

Distance along meridian (m) 

MDS19



209 
   

The following model SDS03, which explores the effect of segmenting the whole 

structure into individual panels supported by a bonded contact at the interface, shows an 

interesting observation. The model, clamped at the boundary with no ring beam, showed 

a failure load at exactly the same load value of the clamped model MDS09 in which the 

cap is modeled monolithically with no contact. This observation is consistent with the 

analytical description of the shallow clamped spherical cap where compressive stresses 

are dominant over the structure; consequently, the contact surface, which debonds at a 

tension of 2.5 MPa, has no effect on the behavior of the structure in that case.  

Although the segmented model SDS03 shows a very similar displacement pattern 

to that of the monolithic cap MDS09, the central deflection is about 20% higher than that 

of MDS09, as shown in Fig. 142, and the von Mises stress pattern is significantly 

different.  

 

Fig. 144: Total displacement of SDS03 

 

As Fig. 143 of SDS03 von Mises stresses shows, the stresses are largest around 

the crown (25 MPa), then they reduce gradually toward the foot to about 19 MPa. This 

pattern is different from the previously discussed MDS09 where von Mises stresses were 

largest at the foot. This change in the stress distribution could reasonably be attributed to 

the contact at the panels interface: Since the cap edge is clamped and the structure is 

mainly under membrane compression, the compression forces result in contact 
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penetration between the panels (which is mainly a numerical concern in the context of the 

analysis). Additionally, since the lower edge is supported and cannot displace, the largest 

penetration, accompanied by large contact stresses to reduce the penetration and achieve 

convergence, occurs at the crown where the corners of the least supported panels meet, 

which could explain the large crown stresses seen in Fig. 143, along with the large crown 

displacement (deflection shape shown in Fig. 144). This observation may be supported by 

examining the unconverged load step in which a large penetration and material 

disintegration is observed around the crown of the cap (Fig. 145). Another observation 

that supports this conclusion is the relatively high stress concentrations seen at each 

contact corner location in the model when compared to the rest of the panel body, as seen 

in Fig. 143. 

 

Fig. 145: Equivalent von Mises stresses of SDS03 

 

  

Fig. 146: Deformed shape of SDS03 



211 
   

 

Fig. 147: Unconverged load substep of SDS03 

 

As seen from the failure load value, though, these effects resulted in no change in 

the capacity of the clamped structure. The case is different when a ring beam is provided 

at the boundary as the case of SDS17 where the failure load is observed to be about 80% 

of that of the monolithic cap bounded by a ring beam in MDS16. This value corresponds 

to 44.5 the weight of the shell which is 7% of the linear elastic buckling load value. 

Fig. 146 of the load-deflection path of SDS17 and MDS16 shows that both 

models initially follow the same almost linear path. However, SDS17 completely loses 

convergence at the load level where MDS16 starts exhibiting increasing displacement for 

small loads (approaching a zero stiffness), which caused the small reduction in the failure 

load. This might be attributed to contact related convergence difficulties that accompany 

the structure’s sudden large displacements. 
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Fig. 148: Comparison between the load-deflection path of MDS16 and SDS17 

 

For that reason, SDS17 is seen to not display any large displacement or large 

stresses at the last unconverged load substep, but rather, local stress concentrations and 

cracking around the interface between the base panels and the ring beam as shown in Fig. 

147 of the cracks and Fig. 148 of von Mises strains. 

 

Fig. 149: Cracking of SDS17 
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Fig. 150: Equivalent von Mises strains of SDS17 

 

This observation suggests that the loss of convergence was initiated by large 

tensile stresses at the cap-ring interface that resulted in large tracking stresses at the 

contact interface at that location. This conclusion is supported by examining the stresses 

across the surface of the cap in Fig. 149, which did not exceed a value of 10 MPa except 

at some locations adjacent to cap-ring intermediate region. Examining the Newton-

Raphson residual forces, which are the result of a nonlinear diagnostic tool on ANSYS 

which shows the element locations where a large residual force is located leading to the 

loss of convergence, it is seen that the large residual is also found at a location near the 

cap-ring intermediate region, suggesting an initiation of failure at that location (see Fig. 

150). 
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Fig. 151: Equivalent von Mises stresses of SDS17 

 

 

Fig. 152: Newton-Raphson residual forces of SDS17 

 

Consequently, it was of interest to this analysis to verify the effect of modeling 

the ring beam and the introduced tensile region at the cap-ring interface on the behavior 

of the segmented structure. SDS20 was built for that purpose retaining all the parameters 

of SDS17 while disabling concrete cracking. The model results were to reflect on how 

the low concrete tensile capacity affects the failure load, particularly at the cap-ring 

intermediate region since the whole cap is otherwise under compression. As shown in 

table 20 , SDS20 showed a failure load that is almost identical to the clamped-boundary 

models, both monolithic and segmented (MDS09 and SDS03), which supports the results 

of the previous models and suggests that the early failure is caused by concrete cracking 
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at the cap-ring intermediate region. The even earlier loss of convergence in models with 

contact conditions between the cap and the ring (SDS17 failed at 80% of MDS16) 

suggests that the contact conditions may have accelerated that failure. 

It is observed, however, that while the failure load value is the same, the load 

deflection path of SDS20 is visibly different. As shown in Fig. 151 and previously 

discussed, MDS09 displacement is almost linear up to sudden failure. On the other hand, 

in SDS20, the first part of the path is initially linear with a larger stiffness (slower rate of 

displacement) than MDS09. As the load approaches the failure load, though, the stiffness 

of the structure is seen to gradually decrease, and large displacements are observed before 

the structure fails. 

 

Fig. 153: Comparison between the load deflection paths of SDS20 and MDS09 

 

Adding SDS17 and MDS08 to the comparison further clarifies the interaction of 

concrete cracking and the presence of the ring beam on the structure’s failure. As shown 

in Fig. 152, the presence of concrete cracking in all models in the figure (MDS09, 

MDS16, SDS17) results in a reduced structural stiffness. This reduction is very 

significant in ring beam-bounded models (MDS16, SDS17) where the tensile cap-ring 

intermediate region plays an important role in reducing the capacity. 
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Fig. 154: Load deflection paths of SDS20, MDS09, MDS16 and SDS17 

 

Finally, as previously noted, SDS17 is noted in the figure to lose convergence 

earlier than the identical but monolithic MDS16, raising the concern of an earlier failure 

due to segmentation of the structure. 

In order to answer the question of whether the traction force at the contact is 

responsible the loss of convergence, larger debonding stress values are provided in 

SDS19. In particular, the steel limits for tensile and shear stresses are used as the limit for 

debonding, thus loosely simulating the action of connecting the panels with steel bars 

which have a normal yield stress of 400 MPa (represented by the maximum normal stress 

for debonding) and shear stress capacity of 240 MPa (represented by the maximum 

tangential stress for debonding). This change results in an increase of the failure load by 

only 5% over that of SDS17, although the overall displacement rate is slightly larger (as 

shown in Fig. 153). 
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Fig. 155: Comparison between the load-deflection paths of SDS19 and SDS17 

 

It’s worth noting that the failure load value of SDS19 is still 84% of the failure 

value of the monolithic cap of MDS16, which suggests that the low tensile capacity of the 

connection is not solely responsible for the reduction in the load value at which 

convergence is lost and the solution is terminated. Other factors may, therefore, include 

the contact parameters themselves, particularly the contact stiffness and contact 

penetration tolerance. A contact sensitivity study was conducted to explore the effects of 

the major contact parameters on the convergence of the solution, and determine the 

optimum range for the values of these parameters. 
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Contact Sensitivity Study 

The most important parameters in the contact analysis on ANSYS, as discussed in the 

methodology, are the contact stiffness and the contact penetration tolerance. These two 

parameters are controlled by two ANSYS constant values which are the contact stiffness 

factor FKN and the contact penetration tolerance factor FLON. These values were thus 

adjusted within the ranges discussed in the literature and recommended by ANSYS in 

order to observe their effects on the behavior of the structure. The aim is to provide the 

smallest contact stiffness needed for achieving convergence which is, at the same time, 

large enough to reduce the contact penetration to an acceptable level. Tables 22 and 23 

summarize the different models used toward that end. Table 22 presents the different 

contact stiffness values used for the same penetration tolerance values for both the 

clamped and the ring beam bounded models. Columns 4, 5, 6 and 7 present the 

corresponding failure load values of each model and the maxima of the contact stiffness 

value itself, which is extracted through the element table results on ANSYS. 

Table 22: Effect of contact stiffness factor FKN on the failure load 

Gravity Loading - Clamped Models 

FLON Model 

Code 

Contact 

Stiffness 

factor 

(FKN) 

Failure 

Load 

(N/m2) 

Failure load 

(multiple of 

weight) 

Max 

FKN 

Min FKN 

0.001 SDS05 0.001 2.6E+05 46.8 2.25E+08 -2.36E+07 

SDS07 0.01 6.2E+05 110.2 1.13E+09 -2.96E+07 

SDS01 0.5 6.5E+05 115.0 2.25E+09 -2.88E+07 

0.01 SDS08 0.001 3.0E+05 53.7 2.25E+08 -2.36E+07 

SDS10 0.005 6.4E+05 113.2 1.13E+09 -2.96E+07 

Gravity Loading - Boundary Ring Beam Models 

FLON Model 

Code 

Contact 

Stiffness 

factor 

(FKN) 

Failure 

Load 

(N/m2) 

Failure load 

(multiple of 

weight) 

Max 

FKN 

Min FKN 

0.001 SDS12 0.005 2.3E+05 40.7 1.13E+09 -2.05E+07 

SDS17 0.01 2.5E+05 44.5 2.25E+09 -2.32E+07 

SDS15 0.5 2.6E+05 46.3 1.13E+11 -2.48E+07 
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Table 23: Effect of penetration tolerance factor FLON on the failure load 

Gravity Loading – Clamped Models 

FKN 
Model 

Code 

Contact 

Penetration factor 

(FLON) 

Failure 

Load 

(N/m2) 

Failure load 

(multiple of 

weight) 

0.001 
SDS05 0.001 2.6E+05 46.8 

SDS08 0.01 3.0E+05 53.7 

0.01 
SDS07 0.001 6.2E+05 110.2 

SDS02 0.1 6.0E+05 107.0 

Gravity Loading – Boundary Ring Beam Models 

FKN 
Model 

Code 

Contact 

Penetration factor 

(FLON) 

Failure 

Load 

(N/m2) 

Failure load 

(multiple of 

weight) 

0.01 

SDS16 0.0001 1.1E+05 19.3 

SDS17 0.001 2.5E+05 44.5 

SDS14 0.01 2.4E+05 43.0 

 

Table 22 values show that for the clamped boundary models and an FLON value 

of 0.001, Increasing the value of FKN 10 times from 0.001 to 0.01 results in increasing 

the failure load to 2.4 times its value, while at the same time an increase of 50 times of 

FKN to 0.5 does not result in any significant change in the failure load value (a 4% 

increase only). These results suggest that a value of 0.5 FKN is too high and 

consequently unneeded in the analysis, while a value of 0.001 is too low and has resulted 

in early convergence loss. A similar result is observed for an FLON value of 0.01, where 

increasing FKN to 5 times its value from 0.001 to 0.005 has a resulted in an increase of 

the failure load to twice its value. The observation that an FKN value of 0.001 is too low 

is also supported by experimenting with different FLON values for the same FKN, as 

shown in table 23. In the clamped models of table 23, it is shown that an increase of 10 

times of FLON from 0.001 to 0.01 for an FKN value of 0.001 has resulted in only 15% 

increase in the failure load value. On the other hand, for a higher FKN value equal to 

0.01, an increase of 100 times of FLON value has, in fact, resulted in a slight reduction in 

the failure load value, which suggests that using a high penetration tolerance value may 

result in an early loss of convergence. 
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A suggested range of FKN then was between 0.005 and 0.05, while FLON was to 

be kept lower than 0.1. These ranges were tried in different runs of the ring beam-

bounded models; however, the results were different than those of the clamped models. 

As seen in table 22, for a FLON value of 0.001, increasing FKN twice from 0.005 to 0.01 

has resulted in an increase of 9% only in the failure load, and even when FKN was 

increased to 0.5; an unusually high value, no significant increase was noticed in the 

failure load. Based on that observation, a value of 0.01 for FKN was mostly used in the 

rest of the analysis. It’s also worth noting that using a value of 0.05 does not result in a 

failure load increase, but helps to accelerate convergence, so it was also used in some of 

the contact analysis models. 

A convenient range is also suggested for FLON through the contact sensitivity 

analysis. As shown in table 23, a value of 0.0001 is too low and results in a much earlier 

loss of convergence than a value 0.001. At the same time, a value of 0.01 is not seen to 

enhance convergence. Consequently, values between 0.001 and 0.005 for FLON were 

used for the rest of the analysis. 
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Experimental Analysis Results 

The results of tests 1 and 2 of the experimental analysis serve only to generally evaluate 

the integrity of the structure under uniform gravity loads and investigate whether a 

significant capacity reduction could be caused by the presence of joints and observed 

imperfections on the surface of the shell. As previously discussed in the methodology, the 

structure was loaded by calibrated sand bags uniformly across the entire surface of the 

shell on multiple load steps, originally planned to continue up to failure. However, the 

test had to be terminated since loading of the cap became very inefficient as more sand 

bags were added in each load step. The final applied uniform gravity load on the shell 

surface presented a pressure of 6.31 kN/m
2
, and the corresponding central displacement 

of the crown measured by the LVDT was almost zero during the entire test. Small lateral 

displacement was recorded by the horizontal LVDTs with the maximum at about 0.6 mm 

(corresponding to 6 mm in the prototype), and generally all the recorded strains were 

insignificant. 

The second test was performed during unloading of the first test sand bags by 

only unloading one half of the cap, as previously discussed in the methodology. The 

purpose was to observe the stresses of the segmented cap and behavior of the joints under 

loads which induce non-uniform stresses. At that point, very small strains and 

displacements were recorded as well. Consequently, the cap was fully unloaded and the 

third concentrated load test was performed up to failure of the structure, as shall be 

discussed shortly. 
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5.2.2. Failure Loads of Normal pressure models 

The purpose of this part of the analysis was to establish a comparison between the 

obtained failure loads using the numerical modeling techniques of this study and the 

corresponding results throughout the literature. Normal pressure loading of spherical caps 

represents the bulk of the research work on spherical shells in the literature. 

Consequently, even though the loading condition is different from that performed in the 

experimental analysis of this study, a benchmark analysis where the results of the finite 

element models were compared to the values documented in the literature and the closed-

form solution was necessary. According the Eq. (3) by Zoelly [121], the linear elastic 

buckling load is calculated as: 

     
  

 √       
 (
 

 
)
 

 

(3) 

This value, as discussed in the literature review, is regarded as an upper limit 

value and a reference for comparison between failure load results obtained analytically or 

experimentally, which are usually a fraction of this value. 

For the parameters of the present spherical cap, the upper critical load value under 

normal pressure is calculated to be 3.8 MPa. This value is used in the following 

subsections as a reference for comparing the different values obtained for models loaded 

with normal pressure. The ratio of the failure load to the upper critical buckling load also 

presents a normalized value for the buckling of spherical caps used in all the relevant 

literature for comparing the results of different studies, therefore that ratio is also used for 

comparison against the literature data. 

Based on Eq. (1) in reference [87], the maximum allowable pressure on the shell 

when considering the material limits is presented as: 

    
   

 
 

(1) 
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For a concrete crushing stress of 25 MPa, and assuming that no tensile effects are 

present in the shell, the maximum allowed pressure for the shell of the present study is 

equal to about 0.61 MPa, which is only about 16% of the pressure leading to instability 

(based on the linear elastic buckling formula by Zoelly [121]). Consequently, a material 

failure is expected for the shell of this study. Given that the cap is bounded by a ring-

beam which introduces a bending field at the cap-ring intermediate region, the low tensile 

capacity of the concrete is expected to reduce the structure’s capacity even further. 

Consequently, after establishing the failure load results of the elastic shell and comparing 

them to the values documented in the literature, the effects of concrete plasticity and 

cracking, and the joints between the panels of the segmented structure are investigated. 

Table 24 presents the buckling values of spherical caps, obtained from previous 

research, with the same geometric parameter as the cap of this study. As previously 

discussed in the literature review, most of the research work between the 1940s and 

1970s aimed to establish a relationship between the failure load of spherical caps and the 

geometric parameter λ, which was found to be calculated in most of the literature as Eq. 

(7) [23], which results in a value of 10.74 for the shell of this study. The following should 

be noted about table 24: 

 Although the failure load values in the table correspond to almost the same 

geometric parameter of the shell in this study, most of the surveyed studies have 

conducted their work on relatively thinner shells than the structure of this study. 

Consequently, even though the shell geometric parameter is the same, the failure 

loads of the shell in this study should be expected to generally exhibit less 

sensitivity to form imperfections which are established to radically reduce the 

shell capacity, and lead to sudden instability failures. 

 The failure loads in table 24 do not represent a comprehensive overview of all the 

surveyed studies in the literature, but rather, the reported values merely include 

the results of studies and recommended guidelines that are either relevant to the 

present work, or are presented as a generalized formula for the failure of spherical 

caps. 
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 The values presented in the table 24 are derived either analytically or 

experimentally, or are empirical guiding formulas presented for design purposes. 

For the experimental values in particular, the values were obtained from graphs 

presented by the authors, or compiled and quoted in other studies by different 

authors. Consequently, the values extracted from the graphs are prone to slight 

variations due to subjective interpretation of the results. Conservatively, it can be 

established that experimental results summarized in table 24 are for shells of 

geometric parameters between 10 and 11. 

 As previously discussed in the literature, most spherical caps stability 

experimental work was performed on elastic shells, while very few experiments 

were performed on mortar or concrete shells. Consequently, most of the values in 

the table are derived based on experiments on shells which failed by buckling 

elastically. The table indicates which experiments or design equations are 

particular to concrete shells. 

Table 24: Buckling load values of spherical caps in the surveyed literature 

Source 
Derivation 

Method 

Normalized 

Buckling 

Load (P/Pcr) 

Zoelly (1915) [121] Theoretical 1.00 

T. von Karman and H. S. Tsien (1939) [113] Theoretical 0.31 

Kaplan and Fung (1954) [72] Experimental 0.35 

B. Budiansky (1959) [21] Theoretical 0.82 

Homewood, Brine, and Johnson (1961) [63] Experimental 0.18 

Seaman (1962) [99] Experimental 0.50 

Seaman (1962) [99] Experimental 0.30 

Volmir (1963) [112] Theoretical 0.26 

ACI 344 (1970) [5]- concrete shells Empirical 0.04 

Vandepitte, Rathe and Weymeis (1979) [109] - 

concrete shells 
Experimental 0.46 

Gonçalves (1992) [49] Theoretical 0.06 

Farshad (1992) [44] - concrete shells Empirical 0.04 

Ventsel and Krauthammer (2001) [110] Empirical 0.25 

Marcinowski (2007) [83] Theoretical 0.13 
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Khakina and Zhou (2011) [76] Theoretical 0.58 

 

The table reestablishes the large scatter of shell buckling values stated widely in 

the literature. Based on the data provided in the table, a mean value of 0.307 of the 

classical buckling load is found for the shell, based solely on the value of the geometric 

parameter. The standard deviation of the data is 0.215, with 64.3% of the data within one 

standard deviation from the mean. 

The lowest values found in the table are the empirical equations presented as 

design guidelines for concrete shells in [44] and [5]. Consequently, they present, by 

definition, a conservative value for design purposes. When these two values are excluded, 

the mean rises to 0.355 with a slightly smaller standard deviation of 0.206, where 66.7% 

of the data lie within one standard deviation. 

An interesting observation is that when the experimentally and numerically 

derived data are compared, very close mean values are found (0.362 for analytically 

derived values and 0.357 for experimentally obtained values). This may be due to the fact 

that most of surveyed analytical studies were focused on deriving formulas that can 

predict buckling loads which match those of experimental analyses, and most of them, in 

fact, have shown compatibility with one or more sets of data by the author or other 

authors of similar studies. 

Another observation is that the scatter of the tabulated experimental results 

appears to much smaller than usually documented in various studies on shells of different 

geometric parameters (the standard deviation of the experimental values is 0.114). This 

observation could suggest that shells with relatively large geometric parameters (λ = 

10.74 for the table data) may be less sensitive to imperfections when compared to shells 

of smaller geometric parameters. 

Within the five experimental values presented in the table, only one value was 

obtained by experiments conducted on concrete shells [109] with a buckling load value of 
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about 0.46 of the classical buckling load. Two other values in the table refer to concrete 

spherical caps; these values present empirical formulas recommended for the design of 

concrete domes in [44] and [5]. Both values give failure loads of about only 0.04 of the 

classical buckling load, and are lower than any other values found in the surveyed 

literature. 

Table 25 presents a summary of the failure load values of the spherical cap of this 

study obtained using finite element models on ANSYS and various modeling parameters. 

The main analysis parameters are stated in the table, while the detailed parameters can be 

found in tables 29 – 35 in appendix B of this paper. Column 5 of table 25 presents a 

normalized value for the failure load as a ratio of the linear elastic buckling load value. 

Table 25: Failure load values of normal pressure loaded models 

Normal Pressure Loading 

Model 

Code 

Analysis type Boundary Failure 

Load 

(N/m2) 

Failure load 

(ratio of classic 

buckling load) 

MDS24 Nonlinear Elastic Clamped 3.2E+06 0.83 

MDS26 Nonlinear Inelastic Clamped 6.0E+05 0.16 

MDS23 Nonlinear Inelastic ring beam 3.2E+05 0.08 

SDS23 Nonlinear Inelastic clamped 5.8E+05 0.15 

SDS22 Nonlinear Inelastic ring beam 2.8E+05 0.07 

 

Table 25 shows that the nonlinear elastic buckling load of the shell, when 

modeled using SHELL281 and clamped boundary conditions is 83% of the linear elastic 

buckling load. This value is almost the same as that calculated analytically by Budiansky 

[21] for nonlinear elastic buckling. The postbuckling shape was tracked using nonlinear 

stabilization on ANSYS, showing, in Fig. 154, a snap-though buckling where the cap is 

deflected into an inverted form and the maximum vertical displacement is equal to 8.2 m 

(almost twice as the cap’s height). 
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Fig. 156: Snap-through buckling of MDS24 

 

Fig. 155 shows the load central deflection path for MDS24, which shows a linear 

relationship typical of the perfect spherical shell up until buckling occurs where the 

structure undergoes a large displacement for very small load steps until it is inverted and 

then it starts carrying loads again, as seen in the very last part of the path. It should be 

noted, as previously mentioned, that the postbuckled load deflection path produced using 

nonlinear stabilization on ANSYS is not necessarily accurate, since nonlinear 

stabilization is stated to not be able to track negative stiffness portions of the curve. 

However, only the load at which buckling starts is of significance in this study. 
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Fig. 157: Load-deflection path of MDS24 

 

When the shell is modeled using concrete elements with plasticity and cracking 

properties (MDS26), the failure load drops to only 16% of the Pcr. This value is seen to be 

exactly the same as the maximum allowable pressure provided by Eq. (1) and considering 

the material limits only, which clearly supports the material failure assumption. A 

comparison between the load deflection paths of MDS26 and MDS24 (Fig. 156) shows 

that the structure fails long before it’s nonlinear elastic buckling load and with very small 

displacements, further supporting the initial prediction of a material induced failure. 
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Fig. 158: Load-deflection paths of MDS24 and MDS26 

 

Fig. 157 shows that most of the cap shows von Mises stresses approaching the 

maximum allowed value (between 23 and 25 MPa). The stress-state ratio plot in Fig. 158 

clarifies that the maximum stresses are found, not at the crown, but rather at the 

intermediate region between the clamped boundary and the crown zone. 

 

Fig. 159: Equivalent von Mises stresses of MDS26 
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Fig. 160: Stress-state ratio of MDS26 

 

The vertical displacement pattern of MDS26 is consistent with the stress 

distribution where the maximum displacement appears to not be at the crown, but rather 

at the intermediate region between the crown zone and the clamped boundary, as shown 

in Fig. 159. 

 

Fig. 161: Vertical displacement of MDS26 

 

The reduction in capacity pattern of the normal pressure loaded models was 

previously seen in gravity loaded models, and seems to be accompanied by the same 
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displacement patterns. The ring beam-bounded cap of MDS23 shows a reduction in the 

failure load to half of MDS26 (8% of Pcr). Fig. 160 presents a comparison of the load 

deflection paths of MDS26 and MDS23 that shows the lower stiffness of MDS23 which 

is seen to quickly approach zero toward the failure load value with an even larger 

deflection than MDS26. 

 

Fig. 162: Load-deflection paths of MDS23 and MDS26 

 

The stress state ratio in Fig. 161 shows that most of the cap has a stress ratio 

between 0.92 and 1.1, which means that the stresses in most of the cap have reached or 

are approaching the material failure stresses. The exception is the tensile region between 

the ring beam and the cap which displays stress ratios between 0.06 and 0.63, which is 

consistent with the expected cracking at that region. 
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Fig. 163: Stress-state ratio of MDS23 

When the cap was modeled segmentedly using panels in contact, similar patterns and 

failure loads are observed; however, slightly lower than those of the caps modeled 

monolithically, with clamped boundary model SDS23 failure load at 97% of MDS26 

(15% of Pcr) and SDS22 at 88% of MDS23 (7% of Pcr). 

The load-deflection paths of SDS23 and SDS22 are compared to those of MDS26 

and MDS23, respectively, as shown in Fig. 162 and Fig. 163. The figures show similar 

load-deflection paths with a generally stiffer response in the monolithic models. The 

presence of contact between the panels has resulted in some discontinuities in the path as 

clearly seen in SDS23. 

 

Fig. 164: Comparison between the load-deflection paths of MDS26 and SDS23 
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Fig. 165: Comparison between the load-deflection paths of MDS23 and SDS22 

The distributions of von Mises stresses and stress-state ratios of SDS23 appears to 

be very similar to those of MDS26 with the exception of some asymmetric local stress 

concentrations at some contact locations as seen in Fig. 164 and Fig. 165. The earlier loss 

of convergence of SDS23 could be attributed to the very high stress-state ratios seen in 

the cap elements immediately adjacent to the contact elements of the base panels as seen 

in Fig. 165. 

 

Fig. 166: Equivalent von Mises stresses of SDS23 

 

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.00 20.00 40.00 60.00

N
o

rm
al

iz
e

d
 L

o
ad

 (P
/P

cr
) 

Central Deflection (mm) 

MDS23

SDS22



234 
   

 

Fig. 167: Stress-state ratio of SDS23 

 

Similar local stress concentrations near some contact locations are also observed 

in ring beam-bounded model SDS22, as shown in Fig. 166 of the von Mises plot. 

However, the largest stresses are only at 23 MPa, which could indicate that loss of 

convergence might not have been caused by a material instability. In this case, the failure 

could have been initiated by a debonding of contact, as seen in the contact status plot in 

Fig. 167, which shows the contact condition as ‘near contact’ with the largest contact gap 

at the contact between the base panels and the ring beam, as shown in Fig. 168, and equal 

to 5.3 mm (completion of contact debonding occurs at a gap of 5 mm). As previously 

mentioned, the panels are only supported by bonded contact with adjacent panels; 

consequently, complete debonding will result in a large rigid body motion that is 

expected to cause a loss of convergence. 
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Fig. 168: Equivalent von Mises stresses of SDS22 

 

 

Fig. 169: Contact status of SDS22 
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Fig. 170: Development of contact gap of SDS22 

Based on the results of the previous models, it is seen the large drop in the 

capacity of concrete spherical caps, when modeled with material plasticity and concrete 

cracking, is found to be consistent with the recommended empirical formulas for the 

design of concrete caps, particularly those by Farshad [44] and ACI 344 committee report 

[5], which provide values that are about 4% of the linear elastic buckling load. The 

failure loads of the spherical cap of this study under normal pressure were found to be 

equal to 8% and 7% of the linear elastic buckling load for monolithic and segmented 

caps, respectively. It should be kept in mind, though, that the very low design values 

provided in the formulas are considered to take into account the anticipated capacity 

reduction caused by geometric imperfections. That effect was not considered in the 

models of the present study. However, it is anticipated that relatively small geometric 

imperfections (of thickness and radius of curvature variations) may not contribute to a 

significant capacity reduction since the failure of the cap was caused by either a material 

failure or a connection debonding failure. The relatively large thickness of the shell in 

this study suggests that, under uniform loading conditions, a material failure mode 

precedes an imperfection-induced loss of stability.  

  



237 
   

5.2.3. Failure of concentrated load models 

In this part of the analysis, the behavior of the structure under a concentrated point load at 

the crown is studied through a finite element model, and compared to the results of the 

experimental analysis performed on a 1:10 scale model of the full prototype structure 

consisting of the spherical cap panels, the ring beam and the supporting columns. 

Table 26 presents the results of the FE models where the cap was loaded by a 

concentrated load at the crown. As previously mentioned, the loading in the finite 

element models was applied as a uniform pressure over a steel plate modeled by 

SHELL181 at the crown, in order to closely follow the loading of the experimental model 

and avoid early loss of convergence due to the high stress concentration at the loading 

point. The actual failure load values of the monolithic cap model MDS25 and segmented 

cap model SDS25 are shown in column 4 of the table in Newtons. 

Table 26: Failure loads of models loaded with concentrated loads 

Concentrated Loading 

Model Code Analysis type Boundary Failure Load (N) 

MDS25 Nonlinear Inelastic ring beam 6.06E+06 

SDS25 Nonlinear Inelastic ring beam 4.16E+06 

 

As the results of MDS25 and SDS25 show, there is a significant reduction of the 

structural capacity due to the segmentation of the cap under the concentrated loading 

condition. The results show that the segmented cap of SDS25 failed at about 69% of the 

failure load of the monolithic cap of MDS25. 

This reduction can be explained by the fact that the concentrated loading at the 

crown results in non-uniform stress distributions across the surface of the shell. While the 

monolithic shell deflects as one unit under the concentrated load reducing the effect of 

local stress concentrations to some extent, the effect appears to be escalated in the 

segmented cap where the panels are not fully acting together in the model. This effect can 

be seen in Fig. 169 of SDS25 where the central panels appear to be deflecting in isolation 
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under the concentrated load, while the rest of the shell appears to be unaffected (the 

displacement is scaled by 20 for clarity). 

 

Fig. 171: Deflection of the central panels of SDS25 

 

This conclusion can also be supported by the mostly insignificant capacity 

reduction due to segmentation in models loaded uniformly, whether by normal pressure 

or global gravitational acceleration. 

The deflection of MDS25 shows what resembles a snap-through of the central 

region around the loaded area accompanied by a significant upward vertical displacement 

of the immediately adjacent region (the red region in Fig. 170). The load displacement 

path in Fig. 171 shows, however, that the inverted central region represents a stable 

equilibrium position as indicated by the load carrying capacity apparent in the last portion 

of the load-deflection path in Fig. 171. 
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Fig. 172: Vertical displacement of MDS25 

The loss of convergence of MDS25, thus, appears to not have been caused by 

large displacement, but rather by the stresses at the central region at the crown reaching 

the maximum stresses, which is shown in Fig. 172 of the stress-state ratios. It’s worth 

noting that the failure of MDS25 was accompanied by an extensive cracking around the 

entire surface of the shell as seen in Fig. 173. 

 

Fig. 173: Comparison between the load-deflection paths of MDS25 and SDS25 
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Fig. 174: Stress-state ratio of MDS25 

 

Fig. 175: Cracking of MDS25 

 

On the other hand, the load-deflection path of SDS25 shows a linear pattern until 

the failure load point where a zero stiffness response is observed, indicating a large 

displacement at no increase of the load. This observation supports the previous 

observation of the central panels working in isolation in resisting the load. The straight 

line portion of the load-deflection curve indicates the large displacement of the central 

panels of SDS25 which are only supported by the contact with the adjacent panels. 

Accordingly, large local strains are seen at these contact locations as shown in the von 

Mises equivalent strains plot in Fig. 174. 
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Fig. 176: Equivalent von Mises strains of SDS25 

 

The stress state ratios of SDS25 (Fig. 175) also show a central region of about the 

same size as MDS25 to have reached the maximum stresses. In addition, some 

asymmetric stress concentrations are seen at the elements around the contact region 

between the central panels and the rest of the cap. 

 

Fig. 177: Stress-state ratio of SDS25 
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Experimental Analysis Results 

As previously discussed, test 3 of the experimental analysis was an ultimate load test 

which included applying a compressive concentrated load at the crown measured by a 

load cell up to failure of the cap. The loading was distributed on a central region at the 

crown of about the same area as the steel plate area in the finite element model. This was 

accomplished by placing a sand bag topped by a 3 cm thick steel plate on which the load 

is applied. The test was terminated after a large displacement and large cracks were 

observed on the surface of the cap. 

The failure mode of the experimental model was observed to be generally 

consistent with the failure of the FE model SDS25. At the failure load, the central cap 

panels showed a large displacement under no further load increase, leading to sudden 

slight flattening of the shell crown region, which can be seen in Fig. 176. This flattening 

was accompanied by large cracks at the boundary of the flattened region and other 

meridional cracks that extend to the ring beam. Most of the large cracks appear to have 

occurred between the edge of the panel and the grout of the joint adjacent to the panel, as 

seen in Fig. 177 and Fig. 178. 

 

Fig. 178: Flattening of the central region of the experimental model 
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Fig. 179: Cracks at the interface of the panel and the grout at the joint 

 

 

Fig. 180: Meridional cracks at the intermediate joints 

 

The cracking pattern of the cap appears to be generally consistent with the stress 

concentrations seen in the FE model. As mentioned above, the largest cracks are seen at 

two locations; the joints adjacent to the central panels between the panel edges and the 

grout, and meridional cracks which extend from the corners of the central panels, through 

the joint between the two adjacent base panels, as seen in Fig. 179 and Fig. 180. It is, 

however, seen that the FE model shows extensive cracking across the entire surface of 

the shell (see Fig. 181). This clearly indicates that the panel-grout interface is the weakest 

point of the structure since the panels themselves appear to be mostly unaffected. 
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Fig. 181: Cracking pattern of the experimental model 

 

 

Fig. 182: Central crack of the experimental model 

 

 

Fig. 183: Cracking of the FE model SDS25 
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Some asymmetric cracks are observed at locations of geometric imperfections. 

For example, while the large hoop crack around the central panels is mostly at the panel-

grout interface, a large transverse crack is observed across the surface of the panel itself, 

as seen in Fig. 182. This particular panel is one which was designated to have the 

smallest average thickness of the cap panels. It was discussed in the methodology chapter 

to have led to extra flattening of that part of the cap and was expected to constitute a 

weak point of the shell surface that shall be monitored during the test.  

 

Fig. 184: Cracks in the imperfect panel 

Another weak point is in the boundary ring beam which had shown some 

honeycombing after removing the formwork, and was treated with mortar. At the 

structural failure, one of the meridional joint cracks is seen to have extended though the 

ring beam, at the location where honeycombing was previously observed, right at the face 

of the column as seen in Fig. 183. 

 

 

 

 

 

 

Fig. 185: Transverse crack in the ring beam 
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In general, though, most of the cracks are seen to have extended through the entire 

thickness of the intermediate joints and can be clearly seen on the lower surface of the 

cap, as noted in Fig. 184. 

 

 

 

Fig. 186: Structural cracks on the lower surface of the cap 

Table 27 presents a comparison between the failure load of the experimental 

model and the corresponding FE model in Newtons. The table shows that the 

experimental failure load is 77% of the failure load of the FE model. A comparison 

between the load-central deflection paths of both models, seen in Fig. 185, shows that the 

experimental model exhibits a lower stiffness than that of the numerical model 

throughout the entire loading process. The kinks observed in the load deflection path of 

the experimental model are due to the presence of the sand bag directly under the applied 

load which, as the load increased, was compacted resulting in the jumps seen in the 

figure. At a load of about 77% of the failure load of the numerical model, the 

experimental model undergoes a similar large displacement under almost no load 

increase, represented by the horizontal part of the load-deflection path. Subsequently, 

while the FE model fails at that stage due to the material reaching the maximum stresses 

causing convergence difficulties, the experimental model undergoes an unbounded 

displacement at the crown, as seen in the negative stiffness part of the path, before 

unloading of the structure. 
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Table 27: Comparison between the failure load of the experimental model and FE 

model (SDS25) 

Model 

 

Failure Load 

(N) 

FE Model (SDS25) 4.16E+06 

Experimental (Scaled) 3.21E+06 

 

 

Fig. 187: Load-deflection paths of the experimental model and FE model SDS25 

 

The lower stiffness of the physical model, when compared to the FE model, could 

be attributed, in part, to the differences in the boundary conditions between the 

experimental and numerical model. As previously discussed, in the numerical model, the 

lower nodes of the ring beam are completely restrained against translation in the x, y and 

z directions. In the physical model, however, the ring beam is supported on eight columns 

that are braced at the base. Consequently, the fact that the ring beam is supported by 

deformable bodies that allow the beam to expand radially has resulted in larger lateral 

displacements at the foot of the cap, as seen in Fig. 186, thus increasing the overall 

downward vertical displacement. This could suggest that the idealized boundary in the 

numerical model overestimates the capacity of the structure. 

0.00E+00

5.00E+05

1.00E+06

1.50E+06

2.00E+06

2.50E+06

3.00E+06

3.50E+06

4.00E+06

4.50E+06

-100.00 0.00 100.00 200.00 300.00 400.00

Lo
ad

 (N
) 

Central Deflection (mm) 

SDS25

Experimental



248 
   

 

Fig. 188: Lateral displacement of the experimental model and FE model SDS25 

 

Another possible indication of the lower failure load of the experimental model 

could be that the capacity of the joints between the panels is overestimated in the 

numerical model when modeled using contact elements. In particular, the contact 

stiffness factor or debonding stresses at the contact may need to have lower values in 

order to properly reflect the actual capacity of the joint. This conclusion may be 

supported by the distribution of the stresses at failure in the FE model (see Fig. 174) 

where no significant discontinuities are observed at the meridional joints between the 

base panels where most of the large cracks in the physical model are observed. 

Finally, the failure of the experimental model is seen to exhibit an almost 

symmetric behavior with the largest cracks seen at the same joint locations around the 

entire surface of the cap, rather than asymmetric deflections initiated at imperfect 

geometry locations. This observation suggests that the failure load of the shell, which has 

a relatively large thickness, may not be significantly affected by geometric imperfections. 

The only significant form effects are those caused by the inherit discontinuities in the 

structure introduced by the joints between the precast shell panels. These joints seem to 

only significantly affect the structural capacity when the structure is loaded non-
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uniformly leading to non-uniform stress distributions that give rise to localized large 

stress concentrations at the weaker points of the structure, which are, in the case of the 

physical model, the panel-grout interface at the joints. 
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5.3. Construction analysis 

 

This section presents particularly relevant results regarding the prefabrication and 

assembly of the proposed structural system. The section discusses the resulting quality of 

the model precast panels produced in the experimental analysis process, and previously 

touched upon in the methodology chapter of this paper. Furthermore, the results of the 

finite element analysis of the behavior of the structure during construction is discussed in 

order to present a general idea of the construction induced loads and anticipated 

deflections using the proposed construction method. 

5.3.1. Panel Properties 

The most important parameters of the prefabrication process are the panel thickness, 

curvature and size. Deviations in the curvature of the lower surface of the panel were 

expected to occur in the prefabrication of the experimental model due to the fact that no 

positive mold piece was used to control the lower surface curvature, but rather, it was 

only controlled manually using concrete surface smoothing tools, and spacers inserted 

during casting to ensure a uniform thickness. After demolding of all the panels, the 

uniformity of the panels’ thickness was measured and the average panel thickness was 

calculated. 

Based on 20 thickness measurements (from the 20 panels), the average thickness 

of the panels was found to be 2.61 cm with a standard deviation of 0.29 cm, where 55% 

of the panel thicknesses (based on the measurements population) lie within one standard 

deviation from the mean, and 95% lie within two standard deviations. The calculated 

average thickness is 1.1 mm different from the planned thickness of 2.5 cm, with an 

acceptable scatter of the data, particularly considering that the economical molding and 

casting methods used for the panel prefabrication are generally expected to produce low 

quality specimens. 

Other thickness measurements of the panels were taken in order to determine the 

thickness uniformity of each individual panel. This was performed by taking a sample of 

10 measurements (in addition to the previously measured thickness) at different locations 
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along the edge of the panels which had the largest and smallest recorded thickness in the 

previously recorded measurements. The measurements taken for the largest thickness 

panel, measured to be 3.24 cm, and the smallest thickness panel, measured to be 2.09 cm, 

are shown in table 28. 

Table 28: Sample of the thicknesses of largest- and smallest-thickness panels 

Thicknesses of 

largest thickness 

panel 

Thicknesses of 

smallest thickness 

panel 

2.090 1.750 

2.655 2.420 

2.900 2.005 

1.828 2.235 

2.080 2.750 

2.460 3.055 

3.400 2.180 

2.740 1.965 

2.280 2.360 

2.670 2.635 

3.240 2.090 

 

From the data in the table, the average thickness of the largest-thickness panel is 

found to be equal to 2.58 cm with a standard deviation of 0.47 cm, and that of the 

smallest-thickness panel is calculated as 2.31 cm with standard deviation of 0.36 cm. 

Although the most extreme average thicknesses appear to only differ from the planned 

thickness by a maximum of about 2 mm, the standard deviation of the thickness 

measurements within the panel itself is seen to be quite high, which indicates a 

significantly varying thickness along the edges of individual panels, and suggests the 

need for better quality control over the prefabrication process. 

Another problem that was faced due to the inaccurate panel fabrication, which 

was referred to in the methodology chapter, is the size of the panels. As previously 

explained, during the assembly process, the size of the panels was founded to be smaller 

the planned size which resulted in unplanned-for gaps between the cap panels. These 
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gaps were traced back to have been caused by the bent steel meshes and their insulation 

sheets along the edges of each panel, which have resulted in a reduction, significant in 

some instances, of the size of the panel in the order of 0.5 -2 cm. Although these gaps 

were easily overcome in the physical mode by using plywood sheets to fill the gaps, they 

are unacceptable in the prototype structure since they can constitute weak points and 

result in significant form imperfections at the joints. Consequently, accurate panel sizes 

with very low manufacturing tolerances are essential for the efficiency of the proposed 

structure.  

 

5.3.2. Construction Loads Analysis 

As previously discussed in the methodology chapter, the construction process utilizes a 

scaffolding framework for supporting the panels during the assembly. More specifically, 

vertical props are provided at the locations of panel corners and to the specific heights of 

these corners dictated by the spherical cap’s geometry. These props are supported by 

girders, all resting on a working platform. The details of the assembly process, which was 

mostly followed for the assembly of the physical model’s panels as well, were discussed 

in the methodology. The two concerns for the construction induced loads analysis were 

preventing rigid body motion and limiting the bending deflections of the panels. 

Typically, for a construction loads analysis, the partial structure would be 

analyzed for each different construction stage. However, the symmetry of the structure of 

this study, and the selected symmetric supporting conditions for the panels reduces the 

problem to analyzing only two panels. The FE models of these individual panels, referred 

to as P1 and P2, provide estimates for the mid-edge deflection of each panel, in order to 

determine whether extra temporary supports will be needed during the construction. 

The analysis of the base panel P1, represents row A panels with the largest overall 

size, was performed using the same element, material and geometric properties of all 

previous FE models, with the two free corners and the lower boundary restrained against 

vertical translation, representing the restraining provided by the vertical props and the 

boundary ring beam. The lower boundary of the panel was also restrained against 
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horizontal displacement in order to ensure numerical stability of the model. However, a 

more elaborate boundary with contact friction between the base of the panel and the ring 

beam may provide a better simulation of the real life boundary of the panel during 

construction. This modeling alternative is discussed in the recommendations chapter. 

Fig. 187 shows the total displacement plot of P1, which shows a maximum total 

displacement of about 3 mm around the upper corner of the panel. The largest component 

of this displacement is horizontal, due to the fact that the panel, at that location, is only 

supported against vertical displacement. The horizontal displacement, however, may be 

restrained during the construction through the prop heads at the upper corner, which can 

be designed to provide some lateral restraining. When the horizontal displacement is 

prevented at the upper corner, the maximum deflection drops to about 1 mm, around the 

mid-span of the panel’s unsupported length, which is 0.01% of the unsupported span, as 

shown in Fig. 188. 

 

 

Fig. 189: Total deflection of panel P1 
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Fig. 190: Total deflection of panel P1 with horizontal restraining at the upper corner 

 

Panel P2 model represents an analysis of row B and C panels during the 

construction. The 10 structural panels of this type are all supported at the corner locations 

by the vertical props. In model P2, the three corners were restrained against vertical 

translation, and additionally, the lower two corners were restrained against horizontal 

displacement. Although P2 panel is smaller than P1 panel in the overall size, as 

previously discussed, it has the largest unsupported length, and is supported only at the 

three corners, which has resulted in a significantly larger bending deflection, as seen in 

Fig. 189 which shows a maximum total displacement of about 2.3 cm, toward the upper 

panel corner. The vertical component of this displacement is the largest component, as 

seen in Fig. 190 of the vertical displacement, where the maximum vertical displacement 

at the same location is 2.2 cm, which is 0.3% of the unsupported span. For relatively 

large spans, this may suggest the need for extra temporary supports mid the unsupported 

edge of panel P2. 
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Fig. 191: Total deflection of panel P2 

 

 

Fig. 192: Vertical deflection of panel P2 

 

As previously discussed, temporary horizontal restraining of the panels may be 

provided using the heads of the vertical props. During the experimental analysis of this 

study, only vertical supports were provided for the temporary supporting of the panels 

under their own weight during assembly, before the joints were grouted. However, a 

larger scale, or maybe a full scale, model of the individual panels may be needed to 

properly simulate the effects of the construction-induced loads, provide an accurate 

estimate of the expected panel deflections, and determine whether more temporary 

scaffolding is needed to avoid excessive deflections during the construction. 
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6. CONCLUSIONS 

 

In this study, a segmental precast concrete spherical cap-ring beam structural system is 

proposed. In the beginning of the study, the structure’s geometry is optimized with the 

purpose of optimizing the efficiency of the prefabrication and construction process. The 

second part of the study investigates the structural behavior using both numerical and 

experimental modeling techniques where the effects of segmenting the structure into 

panels on the capacity and failure mode of the structure are investigated. The behavior of 

the structure during construction was also investigated with a proposed assembly 

sequence, finite element models of the partial structure and application of the proposed 

method for the construction of the physical model. The efficiency of the proposed 

construction method, both prefabrication and assembly, is an inherit quality of precast 

concrete construction on account of the higher quality produced using prefabrication 

techniques and eliminating the need for elaborate formwork on-site. This study adopts a 

geometry and connection design that adds to the efficiency of prefabrication through 

maximum reusability of molds and minimum different panel sizes, and conducts a 

structural analysis which demonstrates that the structural capacity of the dome does not 

exhibit a significant reduction due to segmentation, particularly under uniform loading 

conditions. The conclusions to follow were made through the present study regarding the 

geometry, structural behavior and construction of the proposed structural system. 
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6.1. Geometric Design 

It is concluded that the available literature on spherical subdivision techniques, however 

limited, presents feasible opportunities for application in precast concrete spherical cap 

construction. Considering the fact that uniform panel sizes pose the largest obstacle for 

the application of precast techniques for concrete shell construction, the discussed 

geometries in this study are seen as prospects for modularization and widespread 

application of efficient precasting of concrete domes through the spherical division 

techniques which provide the least number of unique panels, and consequently require 

the least number of molds and allow for maximum reusability. 

It is concluded that, using the data generated by the MATLAB code developed in this 

study and from the construction point of view, the structural system and its variations 

may only be applicable for a specific range of spans, after which the panels become too 

heavy to handle during construction. Further validation of the applicability of the design 

to that specific span range requires an integration of the structural behavior of each 

particular thickness-to-span ratio, as recommended in the next chapter. 
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6.2. Structural Behavior 

Under uniform loading conditions, the spherical cap of this study does not seem to 

exhibit a significant reduction in the capacity when composed of panels connected by 

joints with debonding capabilities. However, under loads which create non-uniform stress 

distributions, local stress concentrations are seen to arise at the inter-panel joints, in both 

the experimental and numerical models, possibly accelerating the structural failure and 

leading to a reduction in the spherical cap’s overall capacity. As anticipated, the 

intermediate joints between the panels represent the weakest points of the structure, 

specifically at the interface of the panel edge and the grout or cast-in-situ concrete at the 

joint. This has to be taken into consideration when determining the appropriate shell 

thickness and calculating the capacity of the structure for design purposes. 

It is also concluded that the use of a moment-resisting connection is appropriate for the 

joints in the proposed design, for both the panel intermediate joints and the joints 

between the base panels and the ring beam. While the panels’ intermediate joints are, 

under uniform loading conditions, expected to have compressive stresses and, thus, act 

efficiently with a small effect on the structure’s continuity, the case is different for the 

base panel-ring beam joint where tensile stresses inevitably arise, and dictate the presence 

a tensile joint. It is also seen in the experimental test that, at failure, while a large sudden 

displacement was observed at the crown and multiple cracks were observed at the joints 

on both the top and bottom surfaces, the panels did not completely detach. This is 

attributed to the tied steel reinforcement across the joints which result in a ductile joint. 

The ductility of the joint is mostly significant in controlling the failure process so that the 

shell stays as one unit at the onset of failure, with no sudden detachment and collapse of 

panels due to the cracks at the joint. 
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6.3. Finite Element Modelling:  

Modeling of idealized boundary conditions of spherical caps in finite element models 

may lead to an overestimation of the load-carrying capacity of the structure, and in some 

instances, it is seen to significantly alter the overall stress distribution and the failure 

mode of the structure. For the particular results of this study, it is seen that inclusion of 

the actual boundary in the FE model could result in a better correlation with the 

experimental results and more proper prediction of the structural capacity. However, it is 

also concluded that such models require extensive modeling resources and may not 

always be feasible or justifiable. Ultimately, though, it is concluded that modeling of the 

boundary ring beam in the FE model is essential for concrete spherical caps. The 

presence of the ring beam in most of the models was shown to cut the failure load in half, 

which eventually provided a closer estimate to the failure load of the physical model. 

The parameters of the contact pairs at the joints have a significant effect on the failure 

load of the structure in the FE model. In particular, improper values of the contact 

stiffness factor and the penetration tolerance factor could lead to an earlier loss of 

convergence leading to an early termination of the solution that does not represent an 

actual structural failure. Although there are common values for these parameters that 

were seen in the surveyed literature to be used in joints of precast concrete structural 

members, a contact sensitivity analysis should be performed for each different structural 

application in order to determine the most optimum contact parameters for the particular 

structure to be studied. 

For the models of this study, while the use of ANSYS bonded contact elements combined 

with a debonding feature was determined to be suitable for simulating the behavior of the 

joints, the particular contact parameters and debonding stress limits used in this study 

may be partially responsible for the overestimation of the failure load of the structure 

when compared to the results of the experimental model. Another limitation is the linear 

debonding of the cohesive zone material which could be replaced by a more elaborate 

nonlinear debonding pattern to simulate the behavior of the joint grout. 
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6.4. Prefabrication and Construction 

The most important parameters to control for proper prefabrication of the structure panels 

are the panel thickness, curvature and edge lengths, which are inherently defined by the 

shape of the mold. However, while small deviations in the panel thickness and curvature 

may be acceptable, the edge length has to be manufactured with an extremely high 

accuracy and very low tolerance. This is due to the fact that the panel edges have to be 

perfectly aligned in order to create a closed joint bed for the in-situ casting/grouting of 

the intermediate joint. Based on the experimental analysis of this study, it is seen that 

failing to produce accurate panel edge lengths certainly compromises the efficiency of the 

construction. 

The proposed construction procedure of this study, which adopts the use of temporary 

vertical scaffolding with customized heights to support the panel corners, is shown to be 

suitable for relatively smaller spans where bending deflections of the unsupported panel 

lengths are considered insignificant. However, extra temporary supports may be needed 

mid the unsupported panel lengths wherever the deflections are judged to be 

unacceptably large for the particular design application. 
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7. RECOMMENDATIONS 

 

In this chapter, further research required for the validation of particular parts of this study 

is outlined. The suggestions include points relevant to the geometry, structural behavior 

and/or construction of the proposed structure. Particular recommendations for the 

duplication of the experimental analysis part of the study are also presented, with a focus 

on the problems faced during the prefabrication and assembly phases of the analysis. 

 The first part of this research included a geometrical parametric study where the 

different sizes, division frequencies, and configurations of the proposed structure are 

investigated. However, the structural analysis was performed on only one instance of 

that structure, using one thickness, span, and division frequency. It is recommended 

for future research to explore the differences in capacity for different ranges of these 

parameters, since they may have a significant effect on the structural capacity. A 

series of models should be built with different radius-to-thickness ratios, spans, and 

division frequencies in order to gain insight onto the relationship between the stability 

of the structure and the number of prefabricated panels used in the construction. 

Eventually, the optimum span range and thickness range for the proposed structure 

should be determined based on the analysis. 

 As briefly mentioned in the results chapter, although the discussed geometric division 

patterns produce a minimal number of unique sized panels, sometimes these panels 

are mirrors of one another, which means that while the size is the same, two versions 

of the shape exist with a different curvature direction. Consequently, using 

conventional molds, these panels require two molds each; for the right-hand and left-

hand side shapes. An alternative to conventional molding techniques that may be 

suitable for prefabricating the panels is the use of flexible panel molds which produce 

double-curvature panel shapes using adjustable props which define the points of the 

doubly-curved surface. Hence, this flexible mold may be adjusted to create different 

curvature profile, and in this case mold the same shape with two different curvature 

directions. The development and use of flexible molds are discussed in [52], [95], 
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[96] and [97], and is seen as a possible opportunity for optimizing the prefabrication 

of the structural panels in this study. 

 The created numerical code for calculating the panel sizes and number of panels for 

the user selected geometry serves only to provide a quick preliminary estimate. The 

code needs further development in order to provide detailed information about the 

panel parameters and other geometric data relevant to the construction process. It 

should also be noted that the code was mainly based on the division coordinates 

provided in reference [90]. For a more generalized code, the process of the division 

technique of the sphere should be integrated within the code. 

 In the construction analysis part of this research, the partial structure was analyzed 

through the use of individual panels with idealized boundary conditions. However, a 

more elaborate representation of the partial structure and its temporary boundary 

conditions may be needed for a deeper understanding of the behavior of the panels 

under temporary construction loads and other accidental loads that may be expected 

during construction. These models need to closely simulate the partial restraining of 

the curved base panels through friction with the ring beam and other vertical supports 

of the scaffolding, in order to ensure stability of the temporarily supported panels 

under the expected loads which might have significant horizontal components. 

 A transient analysis of the structure should be performed in order to determine the 

structural behavior and failure behavior under extreme loading conditions, such as 

earthquake loads. The purpose is to verify the stability of the structure and the 

capacity and joints under dynamic loads, and the ductility of the joints, in case of 

failure. 

 Modeling of the intermediate joints between the panels may be conducted using 

different methods in order to find the modeling method which most simulates the 

behavior of the precast joints in concrete shell structures. In this study, ANSYS 

contact elements were used to simulate the joint with a debonding cohesive zone 

material model which allows partial panel detaching at the joints. Other methods were 

seen in different parts of the literature in the simulation of the behavior of different 

joints between concrete structural members. One of the common modeling techniques 
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that is seen to be worth investigating for the proposed structure was found in a 

collaborate research project between the university of Arizona, Lehigh University, 

and the university of California, San Diego titled “Development of A Seismic Design 

Methodology for Floor Diaphragms” where the behavior of different connections 

between precast concrete diaphragm panels was studied, and force-displacement 

backbone curves were developed [45], [46]. According to that study, finite element 

models of the joints between the precast panels used both contact elements and 

nonlinear springs. The spring elements were intended to fully capture the nonlinear 

behavior of the reinforcement and the surrounding concrete across the joint, and the 

spring properties were obtained from the results of previous experimental tests in the 

same research study. 

Although the test conditions and most specimens are significantly different from the 

model in this study, one of the connections between the diaphragm panels was based 

on only reinforcement bars across the joint without mechanical connectors, and the 

specimen was subjected to in plane tensile force, shear force and combined tensile-

shear. That particular case is seen to be similar to the model at hand and suggests that 

the use of nonlinear spring elements with force-displacement curves may be applied 

to the structural system of this study. One concern, however, may be the large 

modeling effort due to the large number of springs that needs to be modeled at the 

joints. 

 If the modeling technique of this study is to be applied, a recommendation would be 

to experiment with different debonding material behaviors and stress values, since the 

debonding pattern and stresses used in this study may have been responsible for 

overestimation of the spherical cap capacity when compared to the physical model 

results. The modeling of a more elaborate debonding behavior, along with elaborate 

boundary conditions, is anticipated to improve the correlation between the FE and 

experimental model results. 
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 The following recommendations are made for the future duplication of the 

experimental analysis of this study: 

o In order to avoid the size discrepancy seen in the panels of the experimental 

analysis, higher quality molds should be manufactured using more-suited 

materials. A steel mold fabricated with a low manufacturing tolerance is 

recommended for ensuring an accurate panel size. 

o In any case, proper concrete filling of the whole mold must be checked. If that 

seems to be obstructed with the bent steel meshes extending at the edges of the 

panels and their insulation sheets, as it was seen in this experiment, the steel 

meshes or insulation sheets may be hammered to the sides of the mold in order to 

make sure the concrete flow is not obstructed. 

o A positive mold piece should be manufactured for each mold in order to ensure 

accurate and uniform panel thickness and proper curvature. 

o In this study, conventional wooden props were used for creating the scaffolding 

frame for supporting the construction, and have required extra falsework to 

properly support the planned temporary props. As a recommendation for the 

assembly process, more elaborate forms of commercially available scaffolding 

should be considered in order to avoid the use of extra props and ensure the 

stability of the scaffolding system. 

o The size effects of modeling the concrete material should be studied, particularly 

for experimental models of relatively small scales. These effects were not studied 

here in due detail, and may result in discrepancies between the strength, 

particularly the tensile strength, of the prototype and model concrete, as discussed 

in reference [61]. 

o In some instances, the use of sand bags for ultimate load testing of the concrete 

shell physical model may not present an efficient loading method, particularly if 

the shell structure has a relatively large thickness and is anticipated to withstand 

large loads. A more efficient gravity loading method should be considered, such 

as whiffle-tree systems which simulate uniform gravity loads through links which 
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produce an even load distribution onto multiple points across the surface of the 

structure. 

While this study presents a proposal of the geometry, structural analysis and construction 

procedure of the segmented precast spherical cap, much research is still needed to create 

more uniform designs and structural configuration varieties, develop more efficient 

construction methods, and determine more suited modeling techniques to best simulate 

the structural behavior under different loading conditions. 
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APPENDIX A: MATLAB CODE FOR CALCULATING THE GEOMETRUC 

PARAMETERS OF THE STRUCTURE 

 

The attached MATLAB code calculates the number of panels, the side lengths of the 

triangular panels and the average panel area for each selected spherical cap configuration, 

span and division frequency 

GeomGen 

%Calculates the average area of the panels for the selected geometry 
%calculates the number of panels required for the selected geometry 
function PanelArea=GeomGen(span,depth,freq) 
format short 
span=input('Span of the dome= '); 
depth=input('Depth of the dome (s/d)= ','s'); 
freq=input('Frequency of division (8v,4v.LCD,2v)= ','s'); 
Coord =[0.52573149 0.4013448 0.4013448 0.27326675 0.26803508 0.13726462 

0.13238474 0 0 0.52573149 0.26803508 0.26803508 0 0 0.52573149 0 0 

0.52573149 0 0; 0 -0.0997286 0.0997286 0 0.19473891 0.0997286 

0.28122769 0.19473891 0.35682236 0 -0.19473891 0.19473891 0 0.35682236 

0 0 0.35682236 0 -0.35682236 0.35682236; 0.85065057 0.9104815 0.9104815 

0.9619383 0.9435221 0.98550121 0.95046582 0.98085511 0.93417226 

0.85065057 0.9435221 0.9435221 1 0.93417226 0.85065057 1 0.93417226 

0.85065057 0.93417226 0.93417226]; 

  
if strcmp(freq,'8v') 
    m=1; 
    n=7; 
    weights=[8;12;8;4]; 
    panelperdia=32; 
    elseif strcmp(freq,'4v') 
        m=10; 
        n=12; 
        weights=[4;4]; 
        panelperdia=8; 
        elseif strcmp(freq,'LCD') 
            m=15; 
            n=15; 
            weights=1; 
            panelperdia=4; 
            elseif strcmp(freq,'2v') 
                m=15; 
                n=15; 
                weights=1; 
                panelperdia=2; 
else 
    m=0; 
    n=0; 
    weights=0; 
end 
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counter=0;   
    for i=m:2:n 
    a=acos(((((Coord(1,i+1)-Coord(1,i))^2+(Coord(2,i+1)-Coord(2,i))^2+ 

(Coord(3,i+1)-Coord(3,i))^2)/2)-1)/-1); 
    b=acos(((((Coord(1,i+2)-Coord(1,i+1))^2+(Coord(2,i+2)-

Coord(2,i+1))^2+ (Coord(3,i+2)-Coord(3,i+1))^2)/2)-1)/-1); 
    c=acos(((((Coord(1,i+2)-Coord(1,i))^2+(Coord(2,i+2)-Coord(2,i))^2+ 

(Coord(3,i+2)-Coord(3,i))^2)/2)-1)/-1); 
    E=4*atan(sqrt(tan((a+b+c)/4)*tan((b+c-a)/4)*tan((a+c-

b)/4)*tan((a+b-c)/4))); 

     
    counter= counter+1; 
    sidea(counter)=a; 
    sideb(counter)=b; 
    sidec(counter)=c; 
    ExcessVec(counter)=E; 
    end 

     
MeanExcess=(ExcessVec*weights)/sum(weights); 

     
shallowangle=37.37738; 
deepangle=63.43495; 

  

if strcmp(depth,'s') 
    Rad=span/(2*sin(shallowangle*pi/180)); 
    diaperdome=2.5; 
elseif strcmp(depth,'d') 
        Rad=span/(2*sin(deepangle*pi/180)); 
        diaperdome=7.5; 
else 
    Rad=0; 
    diaperdome=0; 
end 

  
disp('The arc lengths of triangles are: '); 
m=size(sidea,2); 
for i=1:m 
    disp(['triangle' num2str(i) '  ' 'a=' num2str(sidea(1,i)*Rad) ' b=' 

num2str(sideb(1,i)*Rad) ' c=' num2str(sidec(1,i)*Rad)]); 
end 

  
PanelArea= MeanExcess*Rad^2; 
disp(['The average area of the triangular panel= ' 

num2str(PanelArea)]); 

  

Numberofpanels=panelperdia*diaperdome; 
disp(['The number of panels for the dome= ' num2str(Numberofpanels)]); 
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APPENDIX B: LABELS AND CORRESPONDING PROPERTIES OF ANSYS MODELS 

 

 

Table 29: Linear Elastic Analysis Models 

FE Model 

Code 

Type of 

Analysis 

Loading Boundary Conditions Element and Material Properties Contact 

Conditions 

Solution Method 

MDD01 Linear 

elastic 

analysis 

Vertical gravity 

load (g= 9.81 

m/s2) 

All DOFs are restrained 

(UX, UY, UZ, ROTX, 

ROTY, ROTZ) 

Model was created using 

SHELL281 elements and linear 

elastic material properties 

No contact ANSYS Eigenvalue 

buckling analysis 

method 

MDD02 Linear 

elastic 

analysis 

Vertical gravity 

load (g= 9.81 

m/s2) 

Translational DOFs are 

restrained (UX, UY, 

UZ) 

Model was created using 

SHELL281 elements and linear 

elastic material properties 

No contact ANSYS Eigenvalue 

buckling analysis 

method 

MDD03 Linear 

elastic 

analysis 

Vertical gravity 

load (g= 9.81 

m/s2) 

A 500X1500 mm 

boundary ring beam 

hinged at 8 locations 

around the perimeter of 

the structure 

Model was created using 

SHELL281 and BEAM189 

elements, and linear elastic material 

properties 

No contact ANSYS Eigenvalue 

buckling analysis 

method 

MDD04 Linear 

elastic 

analysis 

Vertical gravity 

load (g= 9.81 

m/s2) 

No ring beam was used. 

The dome was hinged 

at 8 locations around 

the perimeter 

Model was created using 

SHELL281 elements and linear 

elastic material properties 

No contact ANSYS Eigenvalue 

buckling analysis 

method 
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MDD05 Linear 

elastic 

analysis 

Normal pressure 

= 1 N/m2 

All DOFs are restrained 

(UX, UY, UZ, ROTX, 

ROTY, ROTZ) 

Model was created using 

SHELL281 elements and linear 

elastic material properties 

No contact ANSYS Eigenvalue 

buckling analysis 

method 

MDS01 Linear 

elastic 

analysis 

Vertical gravity 

load (g= 9.81 

m/s2) 

All DOFs are restrained 

(UX, UY, UZ, ROTX, 

ROTY, ROTZ) 

Model was created using 

SHELL281 elements and linear 

elastic material properties 

No contact ANSYS Eigenvalue 

buckling analysis 

method 

MDS02 Linear 

elastic 

analysis 

Vertical gravity 

load (g= 9.81 

m/s2) 

Translational DOFs are 

restrained (UX, UY, 

UZ) 

Model was created using 

SHELL281 elements and linear 

elastic material properties 

No contact ANSYS Eigenvalue 

buckling analysis 

method 

MDS03 Linear 

elastic 

analysis 

Vertical gravity 

load (g= 9.81 

m/s2) 

A 500X1500 mm 

boundary ring beam 

hinged at 8 locations 

around the perimeter of 

the structure 

Model was created using 

SHELL281 and BEAM189 

elements, and linear elastic material 

properties 

No contact ANSYS Eigenvalue 

buckling analysis 

method 

MDS04 Linear 

elastic 

analysis 

Vertical gravity 

load (g= 9.81 

m/s2) 

No ring beam was used. 

The dome was hinged 

at 8 locations around 

the perimeter 

Model was created using 

SHELL281 elements and linear 

elastic material properties 

No contact ANSYS Eigenvalue 

buckling analysis 

method 

MDS05 Linear 

elastic 

analysis 

Normal pressure 

= 1 N/m2 

All DOFs are restrained 

(UX, UY, UZ, ROTX, 

ROTY, ROTZ) 

Model was created using 

SHELL281 elements and linear 

elastic material properties 

No contact ANSYS Eigenvalue 

buckling analysis 

method 
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Table 30: Nonlinear Elastic Analysis Models 

FE Model 

Code 

Type of 

Analysis 

Loading Boundary 

Conditions 

Element and Material 

Properties 

Contact 

Conditions 

Solution Method 

MDS06 Nonlinear 

static 

analysis 

Vertical gravity 

load (g= 6500 

m/s2) 

A 500X1500 mm 

boundary ring beam 

hinged at 8 locations 

around the perimeter 

of the structure 

Model was created using 

SHELL281 and BEAM189 

elements, and linear elastic 

material properties 

No contact Newton-Raphson method with 

Line search and bisection 

features. Nonlinear stabilization 

was used to track the final 

buckling shape of the structure 

MDS07 Nonlinear 

static 

analysis 

Vertical gravity 

load (g= 6500 

m/s2) 

A 750X1500 mm 

boundary ring beam 

hinged at 8 locations 

around the perimeter 

of the structure 

Model was created using 

SHELL281 and BEAM189 

elements, and linear elastic 

material properties 

No contact Newton-Raphson method with 

Line search and bisection 

features. Nonlinear stabilization 

was used to track the final 

buckling shape of the structure 
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Table 31: Nonlinear Inelastic Analysis Models (Monolithic Dome) 

FE 

Model 

Code 

Type of 

Analysis 

Loading Boundary 

Conditions 

Element and Material Properties Contact Conditions Solution 

method 

MDS08 Large 

displacem

ent static 

analysis 

Vertical 

gravity 

load(g=10

00 m/s2) 

Translationa

l DOFs are 

restrained 

(UX, UY, 

UZ) 

Model was created using SOLID65 

elements. Material properties for the 

concrete are: elastic isotropic, nonlinear 

nonmetal concrete plasticity, isotropic 

work hardening plasticity Material 

properties for steel reinforcement: elastic 

isotropic, isotropic work hardening 

plasticity 

No contact Newton-

Raphson 

method with 

Line search 

and bisection 

features 

MDS09 Large 

displacem

ent static 

analysis 

Vertical 

gravity 

load(g=11

00 m/s2) 

Translationa

l DOFs are 

restrained 

(UX, UY, 

UZ) 

Model was created using SOLID65 

elements. Material properties for the 

concrete are: elastic isotropic, nonlinear 

nonmetal concrete plasticity, isotropic 

work hardening plasticity Material 

properties for steel reinforcement: elastic 

isotropic, isotropic work hardening 

plasticity 

No contact Newton-

Raphson 

method with 

Line search 

and bisection 

features 
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MDS10 Large 

displacem

ent static 

analysis 

Vertical 

gravity 

load(g=50

0 m/s2) 

A 750X1500 

mm 

boundary 

ring beam 

hinged at 8 

locations 

around the 

perimeter of 

the structure 

Model was created using nonlinear 

layered SHELL281 and BEAM189 

elements, and nonlinear isotropic 

hardening plasticity (concrete and steel 

plasticity) 

No contact Newton-

Raphson 

method with 

Line search 

and bisection 

features 

MDS11 Large 

displacem

ent static 

analysis 

Vertical 

gravity 

load(g=10

0 m/s2) 

A 750X1500 

mm 

boundary 

ring beam 

hinged at 8 

locations 

around the 

perimeter of 

the structure 

Model was created using SOLID65 

elements. Material properties for the 

concrete are: elastic isotropic, nonlinear 

nonmetal concrete plasticity, isotropic 

work hardening plasticity Material 

properties for steel reinforcement: elastic 

isotropic, isotropic work hardening 

plasticity 

No contact Newton-

Raphson 

method with 

Line search 

and bisection 

features 

MDS12 Large 

displacem

ent static 

analysis 

Vertical 

gravity 

load(g=20

0 m/s2) 

750X1500 

ring beam 

hinged at 

column 

locations (4 

by 5 nodes) 

Model was created using SOLID65 

elements. Material properties for the 

concrete are: elastic isotropic, nonlinear 

nonmetal concrete plasticity, isotropic 

work hardening plasticity Material 

properties for steel reinforcement: elastic 

No contact Newton-

Raphson 

method with 

Line search 

and bisection 

features 
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at each 

location 

isotropic, isotropic work hardening 

plasticity 

MDS13 Large 

displacem

ent static 

analysis 

Vertical 

gravity 

load(g=20

0 m/s2) 

8 locations 

hinged 

750X1500 

ring beam, 

restrained 

UY for the 

whole 

boundary 

Model was created using SOLID65 

elements. Material properties for the 

concrete are: elastic isotropic, nonlinear 

nonmetal concrete plasticity, isotropic 

work hardening plasticity Material 

properties for steel reinforcement: elastic 

isotropic, isotropic work hardening 

plasticity 

No contact Newton-

Raphson 

method with 

Line search 

and bisection 

features 

MDS14 Large 

displacem

ent static 

analysis 

Vertical 

gravity 

load(g=20

0 m/s2) 

restrained 

UY for the 

whole 

boundary, 

one column 

location 

restrained in 

UX, UY, 

UZ 

Model was created using SOLID65 

elements. Material properties for the 

concrete are: elastic isotropic, nonlinear 

nonmetal concrete plasticity, isotropic 

work hardening plasticity Material 

properties for steel reinforcement: elastic 

isotropic, isotropic work hardening 

plasticity 

No contact Newton-

Raphson 

method with 

Line search 

and bisection 

features 

MDS15 Large 

displacem

ent static 

analysis 

Vertical 

gravity 

load(g=20

0 m/s2) 

restrained 

UY for the 

whole 

boundary, 

one column 

Model was created using SOLID65 

elements. Material properties for the 

concrete are: elastic isotropic, nonlinear 

nonmetal concrete plasticity, isotropic 

work hardening plasticity Material 

No contact Newton-

Raphson 

method with 

adaptive 

descent and 
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location 

restrained in 

UX, UY, 

UZ 

properties for steel reinforcement: elastic 

isotropic, isotropic work hardening 

plasticity 

pressure load 

stiffness 

MDS16 Large 

displacem

ent static 

analysis 

Vertical 

gravity 

load(g=80

0 m/s2) 

whole beam 

lower 

boundary is 

restrained in 

UX UY UZ 

Model was created using SOLID65 

elements. Material properties for the 

concrete are: elastic isotropic, nonlinear 

nonmetal concrete plasticity, isotropic 

work hardening plasticity Material 

properties for steel reinforcement: elastic 

isotropic, isotropic work hardening 

plasticity 

No contact Newton-

Raphson 

method with 

adaptive 

descent and 

pressure load 

stiffness 

MDS17 Small 

displacem

ent static 

analysis 

Vertical 

gravity 

load(g=80

0 m/s2) 

whole beam 

lower 

boundary is 

restrained in 

UX UY UZ 

Model was created using SOLID65 

elements. Material properties for the 

concrete are: elastic isotropic, nonlinear 

nonmetal concrete plasticity, isotropic 

work hardening plasticity Material 

properties for steel reinforcement: elastic 

isotropic, isotropic work hardening 

plasticity. crushing of the concrete is 

enabled 

No contact Newton 

Raphson 

method with 

adaptive 

descent 

MDS18 Large 

displacem

ent static 

Vertical 

gravity 

load(g=80

whole beam 

lower 

boundary is 

Model was created using SOLID65 

elements. Material properties for the 

concrete are: elastic isotropic, nonlinear 

No contact Newton-

Raphson 

method with 
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analysis 0 m/s2) restrained in 

UX UY UZ 

nonmetal concrete plasticity, isotropic 

work hardening plasticity Material 

properties for steel reinforcement: elastic 

isotropic, isotropic work hardening 

plasticity 

Line search 

and bisection 

features. 

pressure load 

stiffness is 

included 

MDS19 Large 

displacem

ent static 

analysis 

Vertical 

gravity 

load(g=80

0 m/s2) 

whole beam 

lower 

boundary is 

restrained in 

UX UY UZ 

Model was created using SOLID65 

elements. Material properties for the 

concrete are: elastic isotropic, nonlinear 

nonmetal concrete plasticity, isotropic 

work hardening plasticity Material 

properties for steel reinforcement: elastic 

isotropic, isotropic work hardening 

plasticity. 

Asymmetric contact between 

boundary beam and dome. 

Bonded (initial) contact with 

FKN = 0.01, pene tolerance = 

0.001, contact algorithm is the 

augmented lagrangian, maximum 

friction stress = 4 MPa. 

Mixed-mode debonding with a 

CZM material model, maximum 

normal stress = 2.5 MPa, 

maximum tangential stress = 4 

MPa. separation and sliding at 

completion of debonding = 0.005, 

damping coefficient = 0.0001 

Newton-

Raphson 

method with 

Line search 

and bisection 

features. 

pressure load 

stiffness is 

included 

MDS20 Large 

displacem

ent static 

analysis 

Vertical 

gravity 

load(g=80

0 m/s2) 

whole beam 

lower 

boundary is 

restrained in 

Model was created using SOLID65 

elements. Material properties for the 

concrete are: elastic isotropic, nonlinear 

nonmetal concrete plasticity, isotropic 

Asymmetric contact between 

boundary beam and dome. 

Bonded (initial) contact with 

FKN = 0.01, pene tolerance = 

Newton-

Raphson 

method with 

adaptive 
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UX UY UZ- 

CONTACT 

ELEMENT

S between 

beam and 

dome 

work hardening plasticity Material 

properties for steel reinforcement: elastic 

isotropic, isotropic work hardening 

plasticity. 

0.001, contact algorithm is the 

augmented lagrangian, maximum 

friction stress = 4 MPa. 

Mixed-mode debonding with a 

CZM material model, maximum 

normal stress = 2.5 MPa, 

maximum tangential stress = 4 

MPa, separation and sliding at 

completion of debonding = 0.005, 

damping coefficient = 0.0001 

descent 

MDS21 Large 

displacem

ent static 

analysis 

Vertical 

gravity 

load 

(g=700 

m/s2) 

whole beam 

lower 

boundary is 

restrained in 

UX UY UZ- 

CONTACT 

ELEMENT

S between 

beam and 

dome 

Model was created using SOLID65 

elements. Material properties for the 

concrete are: elastic isotropic, nonlinear 

nonmetal concrete plasticity, isotropic 

work hardening plasticity Material 

properties for steel reinforcement: elastic 

isotropic, isotropic work hardening 

plasticity. 

Asymmetric contact between 

boundary beam and dome. 

Bonded (initial) contact with 

FKN = 0.001, pene tolerance = 

0.01, contact algorithm is 

augmented lagrangian, maximum 

friction stress = 4 MPa 

Mixed-mode debonding with a 

CZM material model, maximum 

normal stress = 2.5 MPa, 

maximum tangential stress = 4 

MPa. separation and sliding at 

completion of debonding = 0.005, 

damping coefficient = 0.0001, 

Newton-

Raphson 

method with 

Line search 

and bisection 

features 
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slip under compression is 

allowed. 

MDS22 Large 

displacem

ent static 

analysis 

Vertical 

gravity 

load(g=60

0 m/s2) 

whole beam 

lower 

boundary is 

restrained in 

UX UY UZ 

An extra refined mesh was employed. 

Model was created using SOLID65 

elements. Material properties for the 

concrete are: elastic isotropic, nonlinear 

nonmetal concrete plasticity, isotropic 

work hardening plasticity Material 

properties for steel reinforcement: elastic 

isotropic, isotropic work hardening 

plasticity 

No contact Newton-

Raphson 

method with 

Line search 

and bisection 

features 

 

Table 32: Nonlinear Inelastic Analysis Models (Segmented Dome) 

FE Model 

Code 

Type of 

Analysis 

Loading Boundary 

Conditions 

Element and Material Properties Contact Conditions Solution 

Method 

SDS01 Large 

displace

ment 

static 

analysis 

Vertical 

gravity load 

(g= 1100 

m/s2) 

Translational 

DOFs are 

restrained 

(UX, UY, UZ) 

Model was created using 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity Material properties for 

steel reinforcement: elastic 

Symmetric contact between dome 

panels. Bonded (initial) contact with 

FKN = 0.5, pene tolerance = 0.001, 

contact algorithm is the augmented 

lagrangian, maximum friction stress = 

4 MPa 

Mixed-mode debonding with a CZM 

material model, maximum normal 

Newton-

Raphson 

method with 

Line search 

and 

bisection 

features 
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isotropic, isotropic work 

hardening plasticity.  

stress = 2.5 MPa, maximum tangential 

stress = 4 MPa, separation and sliding 

at completion of debonding = 0.01, 

damping coefficient = 0.0001 

SDS02 Large 

displace

ment 

static 

analysis 

Vertical 

gravity load 

(g= 1100 

m/s2) 

Translational 

DOFs are 

restrained 

(UX, UY, UZ) 

Model was created using 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity Material properties for 

steel reinforcement: elastic 

isotropic, isotropic work 

hardening plasticity.  

Symmetric contact between dome 

panels. Bonded (initial) contact with 

FKN = 0.01, pene tolerance = 0.1, 

contact algorithm is the augmented 

lagrangian, maximum friction stress = 

4 MPa 

Mixed-mode debonding with a CZM 

material model, maximum normal 

stress = 2.5 MPa, maximum tangential 

stress = 4 MPa, separation and sliding 

at completion of debonding = 0.01, 

damping coefficient = 0.0001 

Newton-

Raphson 

method with 

Line search 

and 

bisection 

features 

SDS03 Large 

displace

ment 

static 

analysis 

Vertical 

gravity load 

(g= 1100 

m/s2) 

Translational 

DOFs are 

restrained 

(UX, UY, UZ) 

Model was created using 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity Material properties for 

Symmetric contact between dome 

panels. Bonded (initial) contact with 

FKN = 0.01, contact algorithm is the 

penalty method, maximum friction 

stress = 4 MPa. 

Mixed-mode debonding with a CZM 

material model, maximum normal 

Newton-

Raphson 

method with 

Line search 

and 

bisection 

features 
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steel reinforcement: elastic 

isotropic, isotropic work 

hardening plasticity. 

stress = 2.5 MPa, maximum tangential 

stress = 4 MPa, separation and sliding 

at completion of debonding = 0.01, 

damping coefficient = 0.0001 

SDS04 Large 

displace

ment 

static 

analysis 

Vertical 

gravity load 

(g= 1100 

m/s2) 

Translational 

DOFs are 

restrained 

(UX, UY, UZ) 

Model was created using 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity Material properties for 

steel reinforcement: elastic 

isotropic, isotropic work 

hardening plasticity. 

Symmetric contact between dome 

panels. Bonded (initial) contact with 

FKN = 0.01, pene tolerance = 0.001, 

contact algorithm is the augmented 

lagrangian method, maximum friction 

stress = 4 MPa. Mixed-mode 

debonding with a CZM material 

model, maximum normal stress = 2.5 

MPa, maximum tangential stress = 4 

MPa. separation and sliding at 

completion of debonding = 0.01, 

damping coefficient = 0.0001 

Newton-

Raphson 

method with 

Line search 

and 

bisection 

features 

SDS05 Large 

displace

ment 

static 

analysis 

Vertical 

gravity load 

(g= 1100 

m/s2) 

Translational 

DOFs are 

restrained 

(UX, UY, UZ) 

Model was created using 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity Material properties for 

Symmetric contact between dome 

panels. Bonded (initial) contact with 

FKN = 0.001, pene tolerance = 0.001, 

contact algorithm is the augmented 

lagrangian method, maximum friction 

stress = 4 MPa. Mixed-mode 

debonding with a CZM material 

Newton-

Raphson 

method with 

Line search 

and 

bisection 

features 
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steel reinforcement: elastic 

isotropic, isotropic work 

hardening plasticity. 

model, maximum normal stress = 2.5 

MPa, maximum tangential stress = 4 

MPa, separation and sliding at 

completion of debonding = 0.01, 

damping coefficient = 0.0001 

SDS06 Large 

displace

ment 

static 

analysis 

Vertical 

gravity load 

(g= 1100 

m/s2) 

Translational 

DOFs are 

restrained 

(UX, UY, UZ) 

Model was created using 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity Material properties for 

steel reinforcement: elastic 

isotropic, isotropic work 

hardening plasticity. 

Symmetric contact between dome 

panels. Bonded (initial) contact with 

FKN = 0.001, contact algorithm is the 

penalty method, maximum friction 

stress = 4 MPa 

Mixed-mode debonding with a CZM 

material model, maximum normal 

stress = 2.5 MPa, maximum tangential 

stress = 4 MPa, separation and sliding 

at completion of debonding = 0.01, 

damping coefficient = 0.0001 

Newton-

Raphson 

method with 

Line search 

and 

bisection 

features 

SDS07 Large 

displace

ment 

static 

analysis 

Vertical 

gravity load 

(g= 1100 

m/s2) 

Translational 

DOFs are 

restrained 

(UX, UY, UZ) 

Model was created using 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity Material properties for 

steel reinforcement: elastic 

Symmetric contact between dome 

panels. Bonded (initial) contact with 

FKN = 0.01, contact algorithm is the 

penalty method, maximum friction 

stress = 4 MPa 

Mixed-mode debonding with a CZM 

material model, maximum normal 

stress = 2.5 MPa, maximum tangential 

Newton-

Raphson 

method with 

Line search 

and 

bisection 

features 
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isotropic, isotropic work 

hardening plasticity. CZM with 

normal stress = 2.5 MPa 

andtangential = 4 MPa, max 

separation/sliding = 0.01, 

damping coefficient =0.0001, 

FKN = 0.01 (PENE 

TOLERANCE = 0.001) 

algorithm: augmented lagrangian, 

slip under compression is 

permitted 

stress = 4 MPa, separation and sliding 

at completion of debonding = 0.01, 

damping coefficient = 0.0001 

SDS08 Large 

displace

ment 

static 

analysis 

Vertical 

gravity load 

(g= 1100 

m/s2) 

Translational 

DOFs are 

restrained 

(UX, UY, UZ) 

Model was created using 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity Material properties for 

steel reinforcement: elastic 

isotropic, isotropic work 

hardening plasticity. 

Symmetric contact between dome 

panels. Bonded (initial) contact with 

FKN = 0.001, pene tolerance = 0.01, 

the contact algorithm is the augmented 

lagrangian, maximum friction stress = 

4 MPa 

Mixed-mode debonding with a CZM 

material model, maximum normal 

stress = 2.5 MPa, maximum tangential 

stress = 4 MPa, separation and sliding 

at completion of debonding = 0.01, 

damping coefficient = 0.0001 

Newton-

Raphson 

method with 

Line search 

and 

bisection 

features 

SDS09 Large Vertical Translational Model was created using Symmetric contact between dome Newton-
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displace

ment 

static 

analysis 

gravity load 

(g= 1100 

m/s2) 

DOFs are 

restrained 

(UX, UY, UZ) 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity Material properties for 

steel reinforcement: elastic 

isotropic, isotropic work 

hardening plasticity. 

panels. Bonded (initial) contact with 

FKN = 0.001, pene tolerance = 0.01, 

contact algorithm is the augmented 

lagrangian, maximum friction stress = 

4 MPa 

Mixed-mode debonding with a CZM 

material model, maximum normal 

stress = 2.5 MPa, maximum tangential 

stress = 4 MPa, separation and sliding 

at completion of debonding = 0.01, 

damping coefficient = 0.0001, slip 

under compression is allowed 

Raphson 

method with 

Line search 

and 

bisection 

features 

SDS10 Large 

displace

ment 

static 

analysis 

Vertical 

gravity load 

(g= 1100 

m/s2) 

Translational 

DOFs are 

restrained 

(UX, UY, UZ) 

Model was created using 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity Material properties for 

steel reinforcement: elastic 

isotropic, isotropic work 

hardening plasticity. 

Symmetric contact between dome 

panels. Bonded (initial) contact with 

FKN = 0.005, pene tolerance = 0.01, 

contact algorithm is the augmented 

lagrangian, maximum friction stress = 

4 MPa 

Mixed-mode debonding with a CZM 

material model, maximum normal 

stress = 2.5 MPa, maximum tangential 

stress = 4 MPa, separation and sliding 

at completion of debonding = 0.01, 

damping coefficient = 0.0001 

Newton-

Raphson 

method with 

Line search 

and 

bisection 

features 
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SDS11 Large 

displace

ment 

static 

analysis 

Vertical 

gravity load 

(g= 800 

m/s2) 

750X1500 mm 

beam with a 

lower 

boundary 

restrained in 

UX, UY, UZ 

Model was created using 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity Material properties for 

steel reinforcement: elastic 

isotropic, isotropic work 

hardening plasticity. 

Symmetric contact between dome 

panels, and asymmetric contact 

between the lower panel edges and the 

boundary beam. 

Bonded (initial) contact with FKN = 

0.01, pene tolerance = 0.001, contact 

algorithm is the augmented 

lagrangian, maximum friction stress = 

4 MPa 

Mixed-mode debonding with a CZM 

material model, maximum normal 

stress = 2.5 MPa, maximum tangential 

stress = 4 MPa. separation and sliding 

at completion of debonding = 0.005, 

damping coefficient = 0.0001 

Newton-

Raphson 

method with 

Line search 

and 

bisection 

features 

SDS12 Large 

displace

ment 

static 

analysis 

Vertical 

gravity load 

(g= 800 

m/s2) 

750X1500 mm 

beam with a 

lower 

boundary 

restrained in 

UX, UY, UZ, 

and 

asymmetric 

contact 

Model was created using 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity Material properties for 

steel reinforcement: elastic 

isotropic, isotropic work 

Symmetric contact between dome 

panels, and asymmetric contact 

between the lower panel edges and the 

boundary beam. 

Bonded (initial) contact with FKN = 

0.005, pene tolerance = 0.001, contact 

algorithm is the augmented 

lagrangian, maximum friction stress = 

4 MPa 

Newton-

Raphson 

method with 

Line search 

and 

bisection 

features 
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between the 

lower panel 

edges and the 

ring beam 

hardening plasticity. Mixed-mode debonding with a CZM 

material model, maximum normal 

stress = 2.5 MPa, maximum tangential 

stress = 4 MPa. separation and sliding 

at completion of debonding = 0.005, 

damping coefficient = 0.0001 

SDS13 Large 

displace

ment 

static 

analysis 

Vertical 

gravity load 

(g= 600 

m/s2) 

750X1500 mm 

beam with a 

lower 

boundary 

restrained in 

UX, UY, UZ, 

and 

asymmetric 

contact 

between the 

lower panel 

edges and the 

ring beam 

Model was created using 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity Material properties for 

steel reinforcement: elastic 

isotropic, isotropic work 

hardening plasticity. Crushing is 

enabled. 

Symmetric contact between dome 

panels, and asymmetric contact 

between the lower panel edges and the 

boundary beam 

Bonded (initial) contact with FKN = 

0.01, pene tolerance = 0.001, the 

contact algorithm is the augmented 

lagrangian, maximum  friction stress = 

4 MPa 

Mixed-mode debonding with a CZM 

material model, maximum normal 

stress = 2.5 MPa, maximum tangential 

stress = 4 MPa, separation and sliding 

at completion of debonding = 0.005, 

damping coefficient = 0.0001 

Newton-

Raphson 

method with 

Line search 

and 

bisection 

features 
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SDS14 Large 

displace

ment 

static 

analysis 

Vertical 

gravity load 

(g= 600 

m/s2) 

750X1500 mm 

beam with a 

lower 

boundary 

restrained in 

UX, UY, UZ, 

and 

asymmetric 

contact 

between the 

lower panel 

edges and the 

ring beam 

Model was created using 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity Material properties for 

steel reinforcement: elastic 

isotropic, isotropic work 

hardening plasticity. 

Symmetric contact between dome 

panels, and asymmetric contact 

between the lower panel edges and the 

boundary beam 

Bonded (initial) contact with FKN = 

0.01, contact algorithm is the penalty 

method, maximum friction stress = 4 

MPa 

Mixed-mode debonding with a CZM 

material model, maximum normal 

stress = 2.5 MPa, maximum tangential 

stress = 4 MPa, separation and sliding 

at completion of debonding = 0.005, 

damping coefficient = 0.0001 

Newton-

Raphson 

method with 

Line search 

and 

bisection 

features 

SDS15 Large 

displace

ment 

static 

analysis 

Vertical 

gravity load 

(g= 600 

m/s2) 

750X1500 mm 

beam with a 

lower 

boundary 

restrained in 

UX, UY, UZ, 

and 

asymmetric 

contact 

between the 

Model was created using 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity Material properties for 

steel reinforcement: elastic 

isotropic, isotropic work 

hardening plasticity. 

Symmetric contact between dome 

panels, and asymmetric contact 

between the lower panel edges and the 

boundary beam 

Bonded (initial) contact with FKN = 

0.5, pene tolerance = 0.001, the 

contact algorithm is the augmented 

lagrangian, maximum friction stress = 

4 MPa 

Mixed-mode debonding with a CZM 

Newton-

Raphson 

method with 

Line search 

and 

bisection 

features 
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lower panel 

edges and the 

ring beam 

material model, maximum normal 

stress = 2.5 MPa, maximum tangential 

stress = 4 MPa, separation and sliding 

at completion of debonding = 0.005, 

damping coefficient = 0.0001 

SDS16 Large 

displace

ment 

static 

analysis 

Vertical 

gravity load 

(g= 600 

m/s2) 

750X1500 mm 

beam with a 

lower 

boundary 

restrained in 

UX, UY, UZ, 

and 

asymmetric 

contact 

between the 

lower panel 

edges and the 

ring beam 

Model was created using 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity Material properties for 

steel reinforcement: elastic 

isotropic, isotropic work 

hardening plasticity. 

Symmetric contact between dome 

panels, and asymmetric contact 

between the lower panel edges and the 

boundary beam 

Bonded (initial) contact with FKN = 

0.01, pene tolerance = 0.0001, the 

contact algorithm is the augmented 

lagrangian, maximum friction stress = 

4 MPa 

Mixed-mode debonding with a CZM 

material model, maximum normal 

stress = 2.5 MPa, maximum tangential 

stress = 4 MPa. separation and sliding 

at completion of debonding = 0.005, 

damping coefficient = 0.0001 

Newton-

Raphson 

method with 

Line search 

and 

bisection 

features 
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SDS17 Large 

displace

ment 

static 

analysis 

Vertical 

gravity load 

(g= 600 

m/s2) 

750X1500 mm 

beam with a 

lower 

boundary 

restrained in 

UX, UY, UZ, 

and symmetric 

contact 

between the 

lower panel 

edges and the 

ring beam 

Model was created using 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity Material properties for 

steel reinforcement: elastic 

isotropic, isotropic work 

hardening plasticity. 

Symmetric contact between dome 

panels, and symmetric contact 

between the lower panel edges and the 

boundary beam 

Bonded (initial) contact with FKN = 

0.01, pene tolerance = 0.001, contact 

algorithm is the augmented 

lagrangian, maximum friction stress = 

4 MPa 

Mixed-mode debonding with a CZM 

material model, maximum normal 

stress = 2.5 MPa, maximum tangential 

stress = 4 MPa, separation and sliding 

at completion of debonding = 0.005, 

damping coefficient = 0.0001 

Newton-

Raphson 

method with 

Line search 

and 

bisection 

features 

SDS18 Large 

displace

ment 

static 

analysis 

Vertical 

gravity load 

(g= 600 

m/s2) 

750X1500 mm 

beam with a 

lower 

boundary 

restrained in 

UX, UY, UZ, 

and symmetric 

contact 

between the 

Model was created using 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity Material properties for 

steel reinforcement: elastic 

isotropic, isotropic work 

Symmetric contact between dome 

panels, and symmetric contact 

between the lower panel edges and the 

boundary beam 

Bonded (initial) contact with FKN = 

0.01, pene tolerance = 0.001, contact 

algorithm is the augmented 

lagrangian, maximum friction stress = 

4 MPa 

Newton-

Raphson 

method with 

Line search 

and 

bisection 

features 
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lower panel 

edges and the 

ring beam 

hardening plasticity. Mixed-mode debonding with a CZM 

material model, maximum normal 

stress = 2.5 MPa, maximum tangential 

stress = 4 MPa, separation and sliding 

at completion of debonding = 0.02, 

damping coefficient = 0.0001 

SDS19 Large 

displace

ment 

static 

analysis 

Vertical 

gravity load 

(g= 600 

m/s2) 

750X1500 mm 

beam with a 

lower 

boundary 

restrained in 

UX, UY, UZ, 

and symmetric 

contact 

between the 

lower panel 

edges and the 

ring beam 

Model was created using 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity Material properties for 

steel reinforcement: elastic 

isotropic, isotropic work 

hardening plasticity. 

Symmetric contact between dome 

panels, and symmetric contact 

between the lower panel edges and the 

boundary beam 

Bonded (initial) contact with FKN = 

0.01, pene tolerance = 0.001, contact 

algorithm is the augmented 

lagrangian, maximum friction stress = 

4 MPa 

Mixed-mode debonding with a CZM 

material model, maximum normal 

stress = 400 MPa, maximum 

tangential stress = 240 MPa, 

separation and sliding at completion 

of debonding = 0.01, damping 

coefficient = 0.0001 

Newton-

Raphson 

method with 

Line search 

and 

bisection 

features 
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SDS20 Large 

displace

ment 

static 

analysis 

Vertical 

gravity load 

(g= 2000 

m/s2) 

750X1500 mm 

beam with a 

lower 

boundary 

restrained in 

UX, UY, UZ, 

and symmetric 

contact 

between the 

lower panel 

edges and the 

ring beam 

Model was created using 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity. Concrete cracking is 

disabled. 

Material properties for steel 

reinforcement: elastic isotropic, 

isotropic work hardening 

plasticity. 

Symmetric contact between dome 

panels, and symmetric contact 

between the lower panel edges and the 

boundary beam 

Bonded (initial) contact with FKN = 

0.05, pene tolerance = 0.005, contact 

algorithm is the augmented 

lagrangian, maximum friction stress = 

4 MPa 

Mixed-mode debonding with a CZM 

material model, maximum normal 

stress = 400 MPa, maximum 

tangential stress = 240 MPa, 

separation and sliding at completion 

of debonding = 0.005, damping 

coefficient = 0.0001 

Newton-

Raphson 

method with 

Line search 

and 

bisection 

features 
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Table 33: Normal Pressure Loading 

FE Model 

Code 

Type of 

Analysis 

Loading Boundary 

Conditions 

Element and Material Properties Contact Conditions Solution 

Method 

SDS21 Large 

displace

ment 

static 

analysis 

Normal 

pressure = 

3E+05 N/m2 

+ (g = 9.81 

m/s2) 

750X1500 mm 

beam with a 

lower 

boundary 

restrained in 

UX, UY, UZ, 

and symmetric 

contact 

between the 

lower panel 

edges and the 

ring beam 

Model was created using 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity.  

Material properties for steel 

reinforcement: elastic isotropic, 

isotropic work hardening 

plasticity. 

Symmetric contact between dome 

panels, and symmetric contact 

between the lower panel edges and the 

boundary beam 

Bonded (initial) contact with FKN = 

0.05, pene tolerance = 0.005, contact 

algorithm is the augmented 

lagrangian, maximum friction stress = 

4 MPa 

Mixed-mode debonding with a CZM 

material model, maximum normal 

stress = 400 MPa, maximum 

tangential stress = 240 MPa, 

separation and sliding at completion 

of debonding = 0.005, damping 

coefficient = 0.0001 

Newton-

Raphson 

method with 

Line search 

and 

bisection 

features 

SDS22 Large 

displace

ment 

static 

analysis 

Normal 

pressure = 

3.5E+05 

N/m2 (no 

inertia) 

750X1500 mm 

beam with a 

lower 

boundary 

restrained in 

Model was created using 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

Symmetric contact between dome 

panels, and symmetric contact 

between the lower panel edges and the 

boundary beam 

Bonded (initial) contact with FKN = 

Newton-

Raphson 

method with 

Line search 

and 
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UX, UY, UZ, 

and symmetric 

contact 

between the 

lower panel 

edges and the 

ring beam 

isotropic work hardening 

plasticity. 

Material properties for steel 

reinforcement: elastic isotropic, 

isotropic work hardening 

plasticity. 

0.05, pene tolerance = 0.005, contact 

algorithm is the augmented 

lagrangian, maximum friction stress = 

4 MPa 

Mixed-mode debonding with a CZM 

material model, maximum normal 

stress = 400 MPa, maximum 

tangential stress = 240 MPa, 

separation and sliding at completion 

of debonding = 0.005, damping 

coefficient = 0.0001 

bisection 

features 

SDS23 Large 

displace

ment 

static 

analysis 

Normal 

pressure = 

6E+05 N/m2 

(no inertia) 

Translational 

DOFs are 

restrained 

(UX, UY, UZ) 

Model was created using 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity. Material properties for 

steel reinforcement: elastic 

isotropic, isotropic work 

hardening plasticity. 

Symmetric contact between dome 

panels, and symmetric contact 

between the lower panel edges and the 

boundary beam 

Bonded (initial) contact with FKN = 

0.05, pene tolerance = 0.005, contact 

algorithm is the augmented 

lagrangian, maximum friction stress = 

4 MPa. 

Mixed-mode debonding with a CZM 

material model, maximum normal 

stress = 400 MPa, maximum 

tangential stress = 240 MPa, 

Newton-

Raphson 

method with 

Line search 

and 

bisection 

features 
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separation and sliding at completion 

of debonding = 0.005, damping 

coefficient = 0.0001 

MDS23 Large 

displace

ment 

static 

analysis 

Normal 

pressure = 

3.5E+05 

N/m2 (no 

inertia) 

750X1500 mm 

beam with a 

lower 

boundary 

restrained in 

UX, UY, UZ 

Model was created using 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity.  

Material properties for steel 

reinforcement: elastic isotropic, 

isotropic work hardening 

plasticity. 

No Contact Newton-

Raphson 

method with 

Line search 

and 

bisection 

features 

MDS24 Large 

displace

ment 

static 

analysis 

Normal 

pressure = 

3.5E+06 

N/m2 (no 

inertia) 

A 750X1500 

mm boundary 

ring beam 

hinged at 8 

locations 

around the 

perimeter of 

the structure 

Model was created using 

SHELL281 and BEAM189 

elements, and linear elastic 

material properties 

No Contact Newton-

Raphson 

method with 

Line search 

and 

bisection 

features 

MDS26 Large 

displace

Normal 

pressure = 

Translational 

DOFs are 

Model was created using 

SOLID65 elements. Material 

No Contact Newton-

Raphson 
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ment 

static 

analysis 

6E+06 N/m2 

(no inertia) 

restrained 

(UX, UY, UZ) 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity.  

Material properties for steel 

reinforcement: elastic isotropic, 

isotropic work hardening 

plasticity. 

method with 

Line search 

and 

bisection 

features 

 

Table 34: Concentrated Loading 

FE Model 

Code 

Type of 

Analysis 

Loading Boundary 

Conditions 

Element and Material Properties Contact Conditions Solution 

Method 

SDS24 Large 

displacem

ent static 

analysis 

Concentrate

d vertical 

load = 

3000000 N 

+(g = 9.81 

m/s2) 

750X1500 mm 

beam with a 

lower boundary 

restrained in UX, 

UY, UZ, and 

symmetric 

contact between 

the lower panel 

edges and the 

ring beam 

Model was created using 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity Material properties for 

steel reinforcement: elastic 

isotropic, isotropic work 

hardening plasticity. 

Symmetric contact between dome 

panels and symmetric contact between 

the lower panel edges and the 

boundary beam. Bonded (initial) 

contact with FKN = 0.05, pene 

tolerance = 0.005, the contact 

algorithm is the augmented 

lagrangian, Maximum friction stress = 

4 Mpa. Mixed-mode debonding with a 

CZM material model, maximum 

Newton-

Raphson 

method with 

Line search 

and 

bisection 

features 
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normal stress = 2.5 MPa, maximum 

tangential stress = 4 MPa. separation 

and sliding at completion of 

debonding = 0.005, damping 

coefficient = 0.0001, slip flag off 

SDS25 Large 

displacem

ent static 

analysis 

Two load 

steps of 

Pressure on 

an circular 

steel plate 

of D =4 m, t 

=3 cm.  

each step = 

240000 

N/m2 (+ g = 

9.81 m/s2) 

750X1500 mm 

beam with a 

lower boundary 

restrained in UX, 

UY, UZ, and 

symmetric 

contact between 

the lower panel 

edges and the 

ring beam 

Model was created using 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity Material properties for 

steel reinforcement: elastic 

isotropic, isotropic work 

hardening plasticity. 

Symmetric contact between dome 

panels and symmetric contact between 

the lower panel edges and the 

boundary beam. Bonded (initial) 

contact with FKN = 0.05, pene 

tolerance = 0.005, the contact 

algorithm is the augmented 

lagrangian, Maximum friction stress = 

4 Mpa. Mixed-mode debonding with a 

CZM material model, maximum 

normal stress = 2.5 MPa, maximum 

tangential stress = 4 MPa. separation 

and sliding at completion of 

debonding = 0.005, damping 

coefficient = 0.0001, slip flag off 

Newton-

Raphson 

method with 

Line search 

and 

bisection 

features 

MDS25 Large 

displacem

ent static 

analysis 

Two load 

steps of 

Pressure on 

an circular 

750X1500 mm 

beam with a 

lower boundary 

restrained in UX, 

Model was created using 

SOLID65 elements. Material 

properties for the concrete are: 

elastic isotropic, nonlinear 

No contact Newton-

Raphson 

method with 

Line search 
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steel plate 

of D =4 m, t 

=3 cm.  

each step = 

240000 

N/m2 (+ g = 

9.81 m/s2) 

UY, UZ, and 

symmetric 

contact between 

the lower panel 

edges and the 

ring beam 

nonmetal concrete plasticity, 

isotropic work hardening 

plasticity Material properties for 

steel reinforcement: elastic 

isotropic, isotropic work 

hardening plasticity. 

and 

bisection 

features 

 

Table 35: Unsymmetric Loading 

FE 

Model 

Code 

Type of 

Analysis 

Loading Boundary 

Conditions 

Element and Material 

Properties 

Contact Conditions Solution 

Method 

SDS27 Large 

displacem

ent static 

analysis 

Unsymmetric 

gravity 

loading on 

only one half 

of the dome 

(g = 500 

m/s2) 

750X1500 

mm beam 

with a lower 

boundary 

restrained in 

UX, UY, UZ, 

and symmetric 

contact 

between the 

lower panel 

edges and the 

ring beam 

(Fy = 400 MPa) Model was 

created using SOLID65 

elements. Material properties 

for the concrete are: elastic 

isotropic, nonlinear nonmetal 

concrete plasticity, isotropic 

work hardening plasticity 

Material properties for steel 

reinforcement: elastic 

isotropic, isotropic work 

hardening plasticity. 

Symmetric contact between dome panels and 

symmetric contact between the lower panel 

edges and the boundary beam. Bonded 

(initial) contact with FKN = 0.05, pene 

tolerance = 0.005, the contact algorithm is the 

augmented lagrangian, Maximum friction 

stress = 4 Mpa. Mixed-mode debonding with 

a CZM material model, maximum normal 

stress = 2.5 MPa, maximum tangential stress = 

4 MPa. separation and sliding at completion of 

debonding = 0.005, damping coefficient = 

0.0001, slip flag off 

Newton-

Raphson 

method with 

Line search 

and 

bisection 

features 
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