
American University in Cairo American University in Cairo

AUC Knowledge Fountain AUC Knowledge Fountain

Theses and Dissertations

2-1-2011

Extensions to the ant-miner classification rule discovery algorithm Extensions to the ant-miner classification rule discovery algorithm

Khalid Magdy Salama

Follow this and additional works at: https://fount.aucegypt.edu/etds

Recommended Citation Recommended Citation

APA Citation
Salama, K. (2011).Extensions to the ant-miner classification rule discovery algorithm [Master’s thesis, the
American University in Cairo]. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/1202

MLA Citation
Salama, Khalid Magdy. Extensions to the ant-miner classification rule discovery algorithm. 2011.
American University in Cairo, Master's thesis. AUC Knowledge Fountain.
https://fount.aucegypt.edu/etds/1202

This Thesis is brought to you for free and open access by AUC Knowledge Fountain. It has been accepted for
inclusion in Theses and Dissertations by an authorized administrator of AUC Knowledge Fountain. For more
information, please contact mark.muehlhaeusler@aucegypt.edu.

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/etds
https://fount.aucegypt.edu/etds?utm_source=fount.aucegypt.edu%2Fetds%2F1202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/1202?utm_source=fount.aucegypt.edu%2Fetds%2F1202&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/1202?utm_source=fount.aucegypt.edu%2Fetds%2F1202&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mark.muehlhaeusler@aucegypt.edu

The American University in Cairo

School of Sciences and Engineering

EXTENSIONS TO THE ANT-MINER CLASSIFICATION

RULE DISCOVERY ALGORITHM

A Thesis Submitted to

Department of Computer Science and Engineering

In partial fulfillment of the requirements for

the degree of Master of Science

By

 Khalid Magdy Nagib Salama

B.Sc., Computer Science

The American University in Cairo

Under the supervision of

Prof. Ashraf Abdebar, Prof. Ahmed Rafea and Prof. Awad Khalil

November 2010

ii

The American University in Cairo

School of Sciences and Engineering

EXTENSIONS TO THE ANT-MINER CLASSIFICATION RULE

DISCOVERY ALGORITHM

A Thesis Submitted to

Department of Computer Science and Engineering

in partial fulfillment of the requirements for

the degree of Master of Science

has been approved by

Dr.

Thesis Committee Chair / Adviser _______________________________________

Affiliation __

Dr.

Thesis Committee Chair / Adviser _______________________________________

Affiliation __

Dr.

Thesis Committee Reader / examiner _____________________________________

Affiliation ___

Dr.

Thesis Committee Reader / examiner _____________________________________

Affiliation ___

Dr.

Thesis Committee Reader / examiner _____________________________________

Affiliation ___

__________________ __________ _____________________ _________

Department Chair/ Date Dean Date

iii

ACKNOWLEDGMENTS

First, I thank god for enabling me to complete this thesis along with my work. It was hard

to balance between working and studying. However, with god‘s help, I did it.

I am deeply indebted to my supervisor Prof. Ashraf Abdelbar who was very encouraging

in the research and tried to pull the best out of me. His ideas and advice were great help

for me. I hope we would be always together in the research.

I would like to express my gratitude to my parents, who were very supportive to me in to

complete this work. Thanks to my mother for her love and care and praying for me.

Thanks to me father for his support and encouragements and pushing me to the limits.

Special thanks to my college and friend, Ismail, who helped me to improve the English

style and grammar for the thesis. Another special thanks to my Syrian friend, Ramiz, who

helped me with his experience and advice.

I dedicate this thesis to my supervisor, family and my friends, Ismail, Ramiz, Yosri,

Essam, Bassem and Risha.

iv

ABSTRACT

Ant Colony Optimization (ACO) is a subfield of swarm intelligence which studies

algorithms inspired by the observation of the behavior of biological ant colonies. It has

been proposd by M. Dorigo and colleagues [8 – 9] as a meta-heuristic for solving

combinatorial optimization problems. Ant-Miner is an application of ACO in data

mining. It has been introduced by Parpinelli et al. [20] in 2002 as an ant-based algorithm

for the discovery of classification rules. The classification rules are generated in the

following form:

IF <Conditions> THEN <class>

The <conditions> part (antecedent) of the rule contains a logical combination of

predictor attributes, in the form: term1 AND term2 AND... . Each term is in the form of

<attribute = value>, where value belongs to the domain of attribute. Ant-Miner has

proved to be a very promising technique for classification rules discovery. Ant-Miner

generates a fewer number of rules, fewer terms per each rule and performs competitively

in terms of efficiency compared to the C4.5 algorithm (see experimental results in [20]).

Hence, it has been a focus area of research and a lot of modification has been done to it in

order to increase its quality in terms of classification accuracy and output rules

comprehensibility (reducing the size of the rule set).

The thesis proposes five extensions to Ant-Miner. 1) The thesis proposes the use

of a logical negation operator in the antecedents of constructed rules, so the terms in the

rule antecedents could be in the form of <attribute NOT= value>. This tends to generate

rules with higher coverage and reduce the size of the generated rule set. 2) The thesis

proposes the use stubborn ants, an ACO-variation in which an ant is allowed to take into

v

consideration its own personal past history. Stubborn ants tend to generate rules with

higher classification accuracy in fewer trials per iteration. 3) The thesis proposes the use

multiple types of pheromone; one for each permitted rule class, i.e. an ant would first

select the rule class and then deposit the corresponding type of pheromone. The multi-

pheromone system improves the quality of the output in terms of classification accuracy

as well as it comprehensibility. 4) Along with the multi-pheromone system, the thesis

proposes a new pheromone update strategy, called quality contrast intensifier. Such a

strategy rewards rules with high confidence by depositing more pheromone and penalizes

rules with low confidence by removing pheromone. 5) The thesis proposes that each ant

to have its own value of α and β parameters, which in a sense means that each ant has its

own individual personality.

In order to verify the efficiency of these modifications, several cross-validation

experiments have been applied on each of eight datasets used in the experiment. Average

output results have been recorded, and a test of statistical significance has been applied to

indicate improvement significance. Empirical results show improvements in the

algorithm's performance in terms of the simplicity of the generated rule set, the number of

trials, and the predictive accuracy.

Keywords: Ant Colony Optimization (ACO), Data Mining, Classification, Multi-

pheromone, Stubborn Ants, Ants with Personality.

vi

TABLE OF CONTENTS

Chapter 1 INTRODUCTION .. 1

1.1 Overview ... 1

1.2 Motivation ... 5

1.3 Thesis Statement and Objective .. 6

1.4 Thesis Contribution ... 6

1.5 Thesis Overview ... 8

Chapter 2 BACKGROUND ... 10

2.1 Introduction to ACO ... 10

2.2 Biological Ants Behavior .. 10

2.2.1 Double Bridge Experiment .. 11

2.2.2 Related Algorithmic Model ... 13

2.2.3 Artificial Ants .. 14

2.3 Ant Colony Optimization Meta-Heuristic .. 16

2.3.1 Construct a Solution ... 19

2.3.2 Apply Local Search .. 20

2.3.3 Update Pheromone ... 20

2.4 Traveling Sales Person Problem ... 21

2.5 ACO Variations .. 23

2.5.1 Ants System ... 23

2.5.2 MAX-MIN Ant System ... 23

2.5.3 Ant Colony System .. 23

2.6 Introduction to Data Mining ... 24

2.7 Knowledge Discovery Steps ... 25

2.8 Data Preparation.. 26

vii

2.8.1 Data Mining ... 27

2.8.2 Knowledge Presentation .. 28

2.9 Overview of Data Mining Tasks ... 29

2.9.1 Classification .. 29

2.9.2 Clustering ... 33

2.9.3 Association Rules Mining .. 34

2.9.4 Regression .. 35

2.9.5 Deviation Detection ... 36

2.10 Issues and Challenges in Data Mining .. 37

2.10.1 Data Issues ... 37

2.10.2 Mining Techniques Issues .. 38

2.10.3 User Interaction Issues ... 38

2.11 Data Mining Applications ... 39

2.12 Summary ... 41

Chapter 3 ANT-MINER ... 43

3.1 Introduction ... 43

3.2 Ant-Miner Algorithm .. 44

3.3 Construction Graph ... 48

3.4 Rule Construction ... 50

3.5 Heuristic Function ... 52

3.6 Rule Pruning ... 54

3.7 Pheromone Update .. 55

3.8 Algorithm Parameters ... 58

3.9 Ant-Miner Results Discussion .. 60

3.10 Ant-Miner Implementation ... 62

3.10.1 Data Structures and Operations .. 62

3.10.2 Execution Profiling and Analysis .. 69

viii

3.11 Summary ... 71

Chapter 4 ANT-MINER RELATED WORK .. 72

4.1 Introduction ... 72

4.2 Ant_Miner2 [2002] ... 73

4.3 Ant_Miner3 [2003] ... 73

4.3.1 Pheromone Update Method ... 74

4.3.2 State Transition Procedure ... 74

4.4 A New Rule Pruning Procedure [2005] .. 76

4.4.1 Original Ant-Miner Rule Pruning Procedure ... 76

4.4.2 The New Hybrid Rule Pruner for Ant-Miner ... 78

4.5 Multi-Label Ant-Miner (MulAM) [2006] ... 80

4.6 Ant-Miner for Discovering Unordered Rule Sets [2006] 85

4.7 AntMiner+ [2007] ... 88

4.7.1 MAX-MIN Ant System ... 88

4.7.2 Construction Graph .. 89

4.7.3 A Class is Selected before Rule Construction ... 90

4.7.4 Handling Continuous Attributes .. 91

4.7.5 Weight Parameters ... 91

4.8 cAnt-Miner [2008 – 2009] .. 92

4.9 Summary ... 93

Chapter 5 USING LOGICAL NEGATION OPERATOR 95

5.1 Introduction ... 95

5.2 Using Logical Negation .. 95

5.3 Algorithm Modifications .. 98

5.4 Logical Negation Operator Implementation ... 99

5.4.1 Data Structure and Operation ... 99

ix

5.4.2 Execution Profiling and Analysis .. 101

5.5 Summary ... 102

Chapter 6 INCORPORATING STUBBORN ANTS ... 104

6.1 Introduction ... 104

6.2 Stubborn Ants ... 104

6.3 Stubborn Ant Implementation... 108

6.3.1 Data Structures and Operations .. 108

6.3.2 Execution Profiling and Analysis .. 111

6.4 Summary ... 112

Chapter 7 UTILIZING MULTI-PHEROMONE ANT SYSTEM 113

7.1 Introduction ... 113

7.2 Multi-Pheromone Ant System .. 114

7.3 Quality Contrast Intensifier ... 123

7.4 New Convergence Test ... 125

7.5 Multi-pheromone Implementation .. 126

7.5.1 Data structure and Operations .. 126

7.5.2 Execution Profiling and Analysis .. 132

7.6 Summary ... 134

Chapter 8 GIVING ANTS PERSONALITY .. 136

8.1 Introduction ... 136

8.2 Stagnation and Early Convergence ... 136

8.3 Ants with Personality .. 137

8.4 Ants with Personality Implementation.. 138

8.4.1 Data Structure and Operations ... 138

8.4.2 Execution Profiling and Analysis .. 140

x

8.5 Summary ... 141

Chapter 9 EXPERIMENTS AND RESULTS .. 142

9.1 Introduction ... 142

9.2 Datasets ... 142

9.3 Experimental Approach .. 143

9.4 Algorithm Parameters ... 144

9.5 Experimental Results .. 145

9.5.1 Car Evaluation Dataset Results .. 147

9.5.2 Tic-Ta-To Dataset Results ... 149

9.5.3 Mushrooms Dataset Results ... 151

9.5.4 Nursery Dataset Results ... 153

9.5.5 Dermatology Dataset Results ... 155

9.5.6 Soybean Dataset Results .. 157

9.5.7 Contraceptive Method Choice Dataset Results .. 159

9.5.8 BDS Dataset Results .. 161

9.5.9 Ants with Personality Experimental Results .. 163

9.6 Summary ... 164

Chapter 10 CONCLUSION AND FUTURE WORK .. 165

10.1 Conclusion .. 165

10.2 Results Summary .. 166

10.3 Future work ... 166

xi

LIST OF FIGURES

Figure 1.1 - Biological Swarm Behavior Examples. [2] ... 1

Figure 1.2 - Basic Structure of PSO. [2] ... 2

Figure 2.1 - Experimental Setup for the Double Bridge Experiment. [6] 12

Figure 2.2 - Traffic Behavior for each Case in the Double Bridge Experiment. [6] 13

Figure 2.3 - Construction Graph for TSP with Four Cities. .. 22

Figure 2.4 - Knowledge Discovery Process. ... 25

Figure 2.5 - Process of Building a Classification Model. ... 30

Figure 3.1 - AntColony Class Diagram. ... 66

Figure 4.1 - Construction Graph for AntMiner+. [18] .. 89

Figure 4.2 - A Path of an Ant in AntMiner+. [18] .. 90

Figure 4.3 - The Complete Construction Graph for AntMiner+. [18] 92

xii

LIST OF ALGORITHMS

Algorithm 2.1 - Ant Colony Optimization Meta-heuristic. .. 18

Algorithm 3.1 - Original Ant-Miner. .. 44

Algorithm 4.1 - Ant_Miner3 State Transition Rule. ... 75

Algorithm 4.2 - Rule Pruning Procedure of the Original Version of Ant-Miner. 77

Algorithm 4.3 - Hybrid Rule Pruning Procedure. ... 78

Algorithm 4.4 - Multi-Label Ant-Miner (MuLAM). .. 81

Algorithm 4.5 - Unordered Rule Set Ant-Miner. .. 85

Algorithm 6.1 - Ant-Miner with Stubborn Ants. .. 105

Algorithm 7.1 - Multi-pheromone Ant-Miner. ... 116

xiii

LIST OF TABLES

Table 3.1 - Ant-Miner Execution Profile. ... 70

Table 5.1 - Ant-Miner with Logical Negation Execution Profile. 101

Table 6.1 - Stubborn Ants Excution Profile. ... 111

Table 7.1 - Multi-pheromone Ant-Miner Execution Profile. .. 133

Table 8.1 - Ants with Personality Execution Profile. ... 140

Table 9.1 - Description of Dataset Used in the Experiments .. 143

Table 9.2 - Car Evaluation Dataset Experimental Results Summary 147

Table 9.3 - Car Evaluation Dataset Detailed Results for ANOVA Test 148

Table 9.4 - Tic-Tac-To Dataset Experimental Results Summary 149

Table 9.5 - Tic-Tac-To Dataset Detailed Results for ANOVA Test 150

Table 9.6 - Mushrooms Dataset Experimental Results Summary 151

Table 9.7 - Mushrooms Dataset Detailed Results for ANOVA Test 152

Table 9.8 - Nursery Dataset Experimental Results Summary 153

Table 9.9 - Nursery Dataset Detailed Results for ANOVA Test 154

Table 9.10 - Dermatology Dataset Experimental Results Summary 155

Table 9.11 - Dermatology Dataset Detailed Results for ANOVA Test 156

Table 9.12 - Soybean Dataset Experimental Results Summary 157

Table 9.13 - Soybean Dataset Detailed Results for ANOVA Test 158

Table 9.14 - Contraceptive Method Choice Dataset Experimental Results Summary . 159

Table 9.15 - Contraceptive Method Choice Dataset Detailed Results for ANOVA Test160

Table 9.16 - BDS Dataset Experimental Results Summary ... 161

Table 9.17 - BDS Dataset Detailed Results for ANOVA Test 162

Table 9.18 - Ants with Personality Experimental Results .. 163

1

Chapter 1

INTRODUCTION

1.1 Overview

Swarm intelligence is a branch of soft computing in which the biological

collective behavior is applied [2]. Many animal groups, such as fish schools and bird

flocks exhibit such a swarm behavior. This behavior can also be seen in insects like ants

and bees that display structural order and integrated behavior (see figure 1.2). At a high-

level, a swarm can be viewed as a group of homogenous agents cooperating in some

purposeful behavior to achieve some goal. This collective intelligence seems to emerge

from what are often large groups of relatively simple agents. The agents use simple local

rules to govern their actions and via the interactions of the entire group, the swarm

achieves its objectives. A type of self-organization emerges from the continuing actions

of the group.

Figure 1.1 - Biological Swarm Behavior Examples. [2]

2

Since the early 90‘s, several collective behavior (like social insects, bird flocking)

inspired algorithms have been proposed and applied studied optimization problems like

NP-hard problems (Traveling Salesman Problem, Quadratic Assignment Problem, Graph

problems), network routing, clustering, data mining, job scheduling and many other areas

in order to solve problems that are combinatorial in nature.

Particle Swarm Optimization (PSO) and Ant Colonies Optimization (ACO) are the most

popular algorithms in the swarm intelligence domain. PSO is a population-based search

algorithm and is initialized with a population of random solutions, called particles [2].

Unlike in the other evolutionary computation techniques, each particle in PSO is also

associated with a velocity. Particles move through the search space with velocities which

are dynamically adjusted according to their historical behaviors. Therefore, the particles

have the tendency to move towards better search areas over the course of search process.

The following figure describes the basic structure for PSO algorithms.

Figure 1.2 - Basic Structure of PSO. [2]

3

Ant Colonies Optimization (ACO) algorithms were introduced around 1990 [8],

[9], [10], [12]. These algorithms were inspired by the behavior of ant colonies. Ants are

social insects, living in colonies and exhibit an effective collective behavior. Although

each ant is relatively a simple insect with limited individual abilities, a swarm of ants has

the ability to find the shortest path from their nest to food. This idea was the source of the

proposed algorithms.

When searching for food, ants initially explore the area surrounding their nest in a

random manner. While moving, ants leave a chemical pheromone trail on the ground.

Ants are guided by pheromone smell. Ants tend to choose the paths marked by the

strongest pheromone concentration. When an ant finds a food source, it evaluates the

quantity and the quality of the food and carries some of it back to the nest. During the

return trip, the quantity of pheromone that an ant leaves on the ground may depend on the

quantity and quality of the food. The pheromone trails will guide other ants to the food

source. The indirect communication between the ants via pheromone trails enables them

to find shortest paths between their nest and food sources. As given by Dorigo et al. [13],

the main steps of the ACO algorithm are given below:

1. Pheromone trail initialization.

2. Solution construction using pheromone.

3. State transition rule.

4. Pheromone trail update.

This process is iterated until a termination condition is reached. More details on the ACO

algorithm are discussed in Chapter 3.

One of the most important application of swarm intelligence algorithms is data

mining. Data mining is the application of specific algorithms for extracting patterns from

4

data. The additional steps in the Knowledge Discovery and Data mining process (KDD),

such as data selection, data cleaning, and proper display and interpretation of the results

are essential to ensure that useful knowledge is derived from the data.

The task of interest here is classification, which is the task of assigning a

data point (a case in given a dataset) to a predefined class or group according to its

predictive attributes. The classification problem and accompanying data mining

techniques are relevant in a wide variety of domains such as financial engineering,

medical diagnostic and marketing. The result of a classification technique is a

model which makes it possible to classify future cases (in other words, predict the

class of a new case) based on a set of specific attributes in an automated way, with a

sufficient level of confidence.

In the literature, there is a lot of different techniques proposed for this

classification task, some of the most commonly used being C4.5-based decision trees,

logistic regression, linear and quadratic discriminate analysis, k-nearest neighbor,

artificial neural networks and support vector machines. The performance of the

classifier is typically determined by its predictive accuracy on an independent test

set. Benchmarking studies have shown that the non-linear classifier generated by neural

networks and support vector machines score best on this performance measure. However,

comprehensibility can be a key requirement as well, demanding that the user can interpret

the model to understand the motivations behind the model‘s prediction.

In some domains, such as credit scoring and medical diagnostics, the lack of

comprehensibility is a major issue and causes a reluctance to use the classifier or even

complete rejection of the model. In a credit scoring context, when credit has been denied

the Equal Credit Opportunity Act of the U.S. requires that the financial institution

5

provides specific reasons why the customer‘s application was rejected, whereby vague

reasons for denial are illegal. In the medical diagnostic domain as well, clarity and

explainability are major constraints besides the classifier efficiency. The most suited

classifiers for this type of problem are of course rules and trees. C4.5 is one of the

techniques that construct such comprehensible, user-interpretable classification model

with efficient predictive accuracy. On the other hand, other techniques, such as artificial

neural network and support vector machine classifiers, are known for their predictive

accuracy. However, they do not produce a comprehensive, explainable output.

Ant-Miner is an ACO algorithm, proposed by Parpinelli et al. [20], that discovers

classification rules of the form:

IF <Term-1> AND <Term-2> AND . . . <Term-n> THEN <Class>

where each term is of the form <attribute = value>, and the consequent of a rule is the

predicted class. Chapter 3 is dedicated to describe the Ant-Miner algorithm in detail,

where its related work is discussed in Chapter 4.

1.2 Motivation

Ant-Miner performance was compared with the performance of the well-known

C4.5 algorithm in six public domain data sets [26]. Overall the results show that,

concerning predictive accuracy, Ant-Miner is competitive with C4.5. In addition, Ant-

Miner has consistently found considerably simpler (smaller) rules than C4.5. Although

applying ACO in the field of classification rule discovery was a new trend, Ant-Miner

produced promising results compared to a well-known, sophisticated decision tree

algorithm, which has been evolving from early decision tree algorithms for at least a

couple of decades. This has motivated a lot of research to focus on such an algorithm.

6

Since the birth of this ACO-based classification algorithm, several ideas and modification

have been applied to the original Ant-Miner version in order to enhance its performance,

yet various enhancements and extensions can be investigated, tried and tested to develop

Ant-Miner from the perspective of a classification algorithm. From another perspective,

as an ACO-based technique, a lot of ACO-based ideas and updates that arise in the

literature of swarm intelligence can be easily applied to the Ant-Miner algorithm.

1.3 Thesis Statement and Objective

According to the state of Ant-Miner as a new, promising classification rule

discovery technique and its ACO-based algorithm nature, my objective is to:

“Implement effective extensions to the original version of Ant-Miner in order to

improve its performance in terms of1) Produced model comprehensibility, via

reducing the number of generated rules resulting in a smaller (simpler) model, 2)

algorithm running time, via decreasing the number of iterations and the trials

performed per iteration, and 3) produced model efficiency, via elevating the

predictive accuracy of the generated rule set.”

1.4 Thesis Contribution

The main contribution of this Master‘s thesis consists of five extensions on the

original Ant-Miner algorithm:

1. Logical Negation Operator: this allows the usage of a logical negation operator in

the antecedents of constructed rules, so that the constructed rules would have a higher

coverage. This should decrease the number of the generated rules, thus improving

output comprehensibility, as well as increasing its classification accuracy.

7

2. Applying Stubborn Ants: an ACO-variation in which an ant is allowed to take into

consideration its own personal history. The technique was introduced in 2008 in [1].

The idea is to promote search diversity by having each ant be influenced by its own

history of constructing solutions in addition to the pheromone trails left by other ants.

This tends to reduce the number of trials needed to converge on a rule per iteration.

Besides, stubborn ants produce better results in terms of classification accuracy.

3. Multi-Pheromone Ant-Miner: using multiple types of pheromone, one for each

permitted rule class, i.e. an ant would first select the rule class and then deposit the

corresponding type of pheromone. An ant is only influenced by the amount of the

pheromone deposited for the class for which it is trying to construct a rule. In this

case, pheromone is not shared amongst ants constructing rules for different classes.

This allows choosing terms that are only relevant to the selected class. This improves

the classification accuracy of the generated rules.

4. Quality Contrast Intensifier: A new pheromone updates procedure where a rule

whose quality is higher than a specific threshold would be rewarded by allowing it to

deposit higher quantities of pheromone. In the same manner, rules with lower levels

of quality are penalized by removing pheromone from their terms in the construction

graph. This is used to direct the ants to use the good tried paths and unexplored paths

rather than the low-quality-tried paths. The result of such an extension is to reduce the

trials per rule and find better classification rules in term of accuracy. Moreover, a new

convergence test is applied in order to insure that the discovered rule satisfies a

minimum quality threshold. Otherwise, new different rules should be sought.

5. Ants with Personality: we allow each ant to have its own value of α and β

parameters, which represent the weight of the cognitive component and the social

8

component respectively in the state transition formula (see formula 2.2). This in a

sense means that each ant has its own individual personality. This promotes search

diversity and helps in finding new better solutions.

1.5 Thesis Overview

This thesis is structured as follows:

Chapter 2 consists of two parts. Part1 describes the Ant Colony Optimization

(ACO) technique in detail. It starts by explaining the biological behavior of the swarms,

and then it moves to the artificial collective behavior and ACO meta-heuristic algorithm.

Some ACO variations are discussed in the end of the chapter. The second part of Chapter

2 talks about data mining and knowledge discovery. Knowledge discovery steps are

explained, followed by discussion of various data mining tasks. Challenges of data

mining are tackled and different applications of data mining are mentioned at the end of

this chapter.

Chapter 3 introduces the original version of Ant-Miner algorithm. A detailed

description of the algorithm steps, results and algorithm issues are tackled in this chapter

as well.

Chapter 4 exhibits some of the most important related work to the original version

of Ant-Miner.

Chapter 5 to Chapter 8 introduce the extensions that have been applied on the

original version of the Ant-Miner algorithm in the following order: Chapter 5 explains the

use of logical negation operator in rule construction, Chapter 6 describes the use stubborn

ants, Chapter 7 explains multi-pheromone system, applying a quality contrast intensifier

9

in pheromone update as well as introducing the new convergence test, and Chapter 8

shows the use of ants with personality.

Chapter 9 describes the experimental approach that was used to test the

performance of the new modifications on the algorithm. Experimental results and their

discussion are shown in this chapter as well.

Chapter 10 summarizes this thesis and discusses options for future research.

10

Chapter 2

BACKGROUND

PART 1: ANT COLONY OPTIMIZATION

2.1 Introduction to ACO

Ant Colony Optimization (ACO) is subfield of swarm intelligence which studies

algorithms inspired by the observation of the behavior of biological ant colonies. ACO

was proposed by M. Dorigo et al. [8 – 9] as meta-heuristic method for solving

optimization problems. As was described in Chapter 1, swarm intelligence algorithms are

self-organizing systems that are made up of simple individuals cooperating with each

other to achieve a goal, without any form of central control over the swarm members.

Although ants are simple insects, ant colonies are able to solve complex problems such as

finding shorts path from the nest to the food utilizing the collective behavior of the whole

swarm communicating indirectly with each other via pheromone trails. This chapter

illustrates the basic ideas of ACO and describes some variations in the literature for the

algorithm. A comprehensive overview about ACO can be found in ―Ant Colony

Optimization‖, a book by M. Dorigo and T. Stützle [13].

2.2 Biological Ants Behavior

Social insect swarms like ant colonies are distributed systems that, in spite of the

simplicity of their individuals, produce a collective behavior that enables a swarm of

insects to accomplish complex tasks that, in some cases, far exceed the individual

capabilities of a single insect [13]. The high coordinated, self-organizing structure that is

exhibited by colonies of ants can be used to build an agent-based artificial system to solve

11

hard computational problems. Ants coordinate their activities via stigmergy, a form of

indirect communication mediated by altering the environment.

As an example of stigmergy observed in colonies of ants, an ant drops a chemical

substance called a pheromone while waking from source to food and vice versa. Other

ants are able to smell this pheromone, and its presence influences the choices they make

along their path. An ant is more likely to follow route containing high concentrations of

pheromone over one that does not. The pheromone deposited on the ground forms a

pheromone trail, which allows the ants to find good sources of food that have been

previously identified by other ants. The similar types of behavior of ant colonies have

inspired different kinds of ant algorithms, foraging, division of labor, brood sorting, and

cooperative transport.

The ―double bridge‖ is an effective experiment was done by Deneubourg et al. in

the 90s [6] to explore the pheromone trail-laying and -following behavior of Argentine

ant species. The experiment shows the collective behavior of ants that emerges through

pheromone trial-based communication, which leads to converge on the shorter path from

source to distention. The following section presents an overview of this experiment.

2.2.1 Double Bridge Experiment

The nest of the ants was connected to a food source by two bridges. In the first

experiment, the two bridges were equal in length. The behavior of the ants in choosing

which branch to take when searching for food and bringing it back to the nest was then

observed over time. The ants start exploring the surroundings of the nest and randomly

find one of the bridges and reach the food source. During their journey to the food source

and back, the ants deposit pheromone on the bridge that they use. Initially, each ant

12

randomly chooses one of the bridges. After some time, there will be more pheromone

deposited on one of the bridges than on the other. Because ants tend to prefer in

probability to follow a stronger pheromone trail, the bridge that has more pheromone will

attract more ants. This in turn makes the pheromone trail grow stronger, until the colony

of ants converges toward the use of a same bridge.

In another experiment, the two bridges were not of the same length so that the

longer branch was twice as long as the short one. At the beginning, ants leave the nest to

explore the environment and arrive at a decision point where they have to choose one of

the two branches. The two branches initially appear identical to the ants, they choose

randomly. Therefore, it can be expected that, on average, half of the ants choose the short

branch and the other half the longer branch. Because one branch is shorter than the other,

the ants choosing the short branch are the first to reach the food and to start their return to

the nest. Therefore, the pheromone intensity will increase faster on the short branch.

Then, when other ants make a decision between the two bridges, the higher level of

pheromone on the short branch will bias their decision in its favor, which will in time be

used by all the ants because of the autocatalytic process described previously.

Figure 2.1 - Experimental Setup for the Double Bridge Experiment. [6]

(a) Branches have equal length. (b) Branches have different length.

13

Figure 2.2 - Traffic Behavior for each Case in the Double Bridge Experiment. [6]

(a) Branches have equal length. (b) Branches have different length.

When compared to the experiment with the two branches of equal length, the

influence of initial random fluctuations is much reduced, and stigmergy, autocatalysis,

and differential path length are the main mechanisms at work. Interestingly, it can be

observed that, even when the longer branch is twice as long as the short one, not all the

ants use the short branch, but a small percentage may take the longer one. This may be

interpreted as a type of ‗‗path exploration.‘‘ Figure 2.1 and 2.2 show the experimental

setup and observed result for both experiments. Figures were taken from [13].

2.2.2 Related Algorithmic Model

A model was developed by Goss et al. [7] to explain the behavior observed in the

double bridge experiment described in the previous section. As explained in [13],

assuming that number of ants has taken the first branch and has taken the second

one after unites of time. The probability that ant selects the first branch is

given by the following equation:

 (2.1)

14

where parameters and are needed to fit the model to the experimental data. The

probability that the same ant chooses the second bridge is 1- . This model

assumes that the amount of pheromone on a branch is proportional to the number of ants

that used the branch in the past and no pheromone evaporation is considered by the

model. So the at any given time , the probability that that an ant chooses branch

depends on the number of ants that have previously selected that branch. Assuming

that branch is the shorter one. At time the number of ant that has taken branch is

probably larger as they take the path from the nest to the food and back in a shorter

amount of time than the other branches. Therefore, the probability of ant to

select the shorter branch would be larger than the probability of selecting other

branches.

This basic model explains the foraging behavior of real ants in solving such an

optimization problem, which is finding the shortest path, without any global sight or

master control. Instead, stigmergic communication happens via the pheromone that ants

deposit on the ground. This can be an inspiration to design artificial ants that solve

optimization problems defined in a similar way. The following section describes ideas

behind artificial ants.

2.2.3 Artificial Ants

The binary bridge experiments show that ant colonies exhibit a collective behavior

that is able to solve optimization problems. With stigmergic communication, via

pheromone depositing and the use of probabilistic rules based on local information they

can find the shortest path between two points in their environment. An idea towards an

artificial ant system is to represent the solution space for any optimization problem as a

15

set of nodes in a graph, representing the variable states of the solution. Artificial ants can

visit these states to build a candidate solution for the problem. Artificial ants may

simulate pheromone laying by modifying an appropriate pheromone variable associated

with solution states they visit. They would have only local access to these pheromone

variables according to the stigmergic communication model.

Ant Colony Optimization (ACO) is an artificial ants system that basically follows

the previously described ideas of real ants' behavior. Both real and artificial ant colonies

are composed of a swarm of simple individuals that use collective behavior to achieve a

certain goal. In the case of real ants, the goal is to find the food using a good (short) path,

while in the case of artificial ants, it is to find a good solution to a given optimization

problem. A single ant (either a real or an artificial one) is able to find a solution to its

problem, but only cooperation among many individuals through stigmergy enables them

to find good solutions.

Artificial ants live in a virtual world, probably a graph of nodes representing the

search space of the solution for a given problem. The use of pheromone, which is in the

artificial system a numeric variable associated with each state in the search graph,

depositing and influenced by it while searching in the solution states graph constructing a

solution. A sequence of pheromone values associated with problem states is called

artificial pheromone trail.

There are many similarities between real and artificial ants. However, there are

some important differences between real and artificial ants. These differences are listed

below as were described by M. Dorigo and T. Stützle in [13]:

 Artificial ants live in a discrete world—they move sequentially through a finite set of

problem states.

16

 In real ants, there is the coupling between the autocatalytic mechanism and the

implicit evaluation of solutions. As for the double bridge experiment, the fact that

shorter paths are completed earlier than longer ones, and therefore they receive

pheromone reinforcement quicker. So the shorter the path is, the sooner the

pheromone is deposited, and the more the ants use the shorter path. On the other hand,

artificial ants drop pheromone after the solution is constructed and its quality is

evaluated. This may not have anything related to the quickness in which the

pheromone accumulates on a path due to its length. Thus, the amount of the

pheromone may vary according to the quality of the solution to simulate enforced

catalytic mechanism toward the good paths.

 Artificial ants may use local heuristics, local search and other additional mechanisms.

The following section describes ant colony optimization meta-heuristic model in

detail with illustration of the ACO algorithm.

2.3 Ant Colony Optimization Meta-Heuristic

“A meta-heuristic refers to a master strategy that guides and modifies other

heuristics to produce solutions beyond those that are normally generated in a quest for

local optimality.” —Tabu Search, Fred Glover and Manuel Laguna, 1998.

In other words, meta-heuristic it is a set of algorithmic concepts that can be used

to define heuristic methods applicable to a wide set of different problems [13]. This can

be seen as a general-purpose method designed to guide an underlying problem-specific

heuristic toward promising regions of the search space containing high-quality solutions.

A meta-heuristic is therefore a general algorithmic framework which can be applied to

17

different optimization problems with relatively few modifications to make them adapted

to a specific problem.

M. Dorigo et al. formalized an ACO meta-heuristic model using pheromone

manipulation for solving Combinational Optimization Problems (COPs) [8]. This has

since been used to tackle many combinatorial optimization problems. The model can be

defined as follows; a model of a COP consists of:

 A search space defined over a finite set of discrete decision variables and a set of

constraints among the variables.

 An objective function
 to be optimized (minimized or maximized).

The search space is a set of discrete variables , with discrete

values

 . A variable instantiation is the assignment of value

to variable , denoted by

. An instantiated decision variable

 is called a

solution component and denoted by , The set of all possible solution components is

denoted by . Any solution , that is a complete variables assignment in which each

decision variable has a value assigned that satisfies all the constraints in the set , is a

feasible solution of the given COP. A solution is called a global optimum if and

only if (for minimization). The set of all globally optimal solutions

is denoted by . To solve a (COP), at least one needed to be found.

The aforementioned model for COP is the basis for pheromone manipulation used

in ACO. A pheromone trail parameter is associated with each component . The set

of all pheromone trail parameters is denoted by . The value of a pheromone trail

parameter in a given time associated with decision component is denoted by

 . This pheromone value is then used and updated by the (ACO) algorithm during the

18

search. This allows modeling the probability distribution of different components of the

solution.

In ACO, the described model is represented as a graph, called construction graph,

which is traversed by artificial ants to build a solution for a given problem. The

construction graph is a fully connected graph consisting of a set of vertices

and a set of edges . The set of components may be associated either with the set of

vertices of the graph , or with the set of its edges . An ant constructs a solution

incrementally while moving from vertex to vertex along the edges of the graph.

Additionally, the ant deposits a certain amount of pheromone on the components, that is,

either on the vertices or on the edges that they visit. The amount of pheromone, ,

deposited depends on the quality of the solution found. Subsequent ants are influenced

by pheromone trails and use them as guides toward good decision components in the

search graph. This increases the probability of choosing such decision components in the

following ant trials. The ant colony optimization meta-heuristic technique is shown in the

following algorithm.

Algorithm 2.1 - Ant Colony Optimization Meta-heuristic.

Set parameters, initialize pheromone trails.

WHILE termination conditions not met

DO

Construct a Solution

Apply Local Search {optional}

Update Pheromone

END WHILE

19

As shown in Algorithm 2.1, each ant in the swarm builds a solution by

incrementally selecting solution components from the construction graph utilizing the

pheromone on it. A local search might be applied to enhance the solution quality. Then

the pheromone is updated on the ant trail during its navigation. The amount of pheromone

to deposit may depend on an evaluation function used to determine the quality of the

constructed solution. These steps are repeated until a predefined termination condition is

met. The following is a more detailed explanation for the basic components of the

algorithm.

2.3.1 Construct a Solution

Each constructs a solution from elements of a finite

set of available solution components in the construction graph , where

represents the index of the solution variable and the index of the value belonging to the

domain this variable. Each starts with an empty solution . At each step in the

solution construction, a valid solution component is added to the partial solution from a

set of feasible neighbors to the current ant solution state . The process of

constructing a solution can be viewed as a path in the construction graph where the set

of constraints among the variables defines the feasible neighbors at each step

according to the current state of the partial solution .

The decision component selection at each step is done probabilistically

according to the following formula:

20

 (2.2)

where:

 is the amount of the pheromone associated to component at time .

 is a problem dependent heuristic value assigned to component .

 and are positive parameters, whose values determine the relative importance of

pheromone versus heuristic information.

2.3.2 Apply Local Search

Local search is an optional solution that can be applied after the solution is

constructed in order to enhance the solution by locally optimizing it. Local search a can

be implemented as problem specific operation and is done before the pheromone update

step. Then the locally optimized solutions are then used to decide which pheromones to

update. Local search improves the quality of the solution constructed and enhances the

overall output of the algorithm. However, it might be an expensive operation depending

on the combinations scope that the operation searches in. Local search can be done after

each ant constructs a solution or can be done iteration based on the best solution

constructed by set of ants per iteration.

2.3.3 Update Pheromone

After a solution is constructed, the pheromone on the construction graph is

updated to guide subsequent ants to good decisions to take while constructing their

solutions. This pheromone update is done by two steps:

 Pheromone Reinforcement: this done by increasing the pheromone value associated

with the decision components according to the quality of the constructed

21

solution, as they are good or promising components. The reinforcement is done by the

following equation:

 (2.3)

where
 is a fitness function that evaluates the quality of solution .

 Pheromone Evaporation: this is done by decreasing the pheromone value associated

with all in the construction graph so that the bad components (the ones that are

not being chosen frequently) get their pheromone values decreased and give space to

other components in unexplored regions in the construction graph to get selected. This

is to avoid early convergence of the algorithm. Evaporation is done as follows [13]:

 (2.4)

where is evaporation factor parameter .

2.4 Traveling Sales Person Problem

This section describes the implementation of ACO and how it works to solve the

famous NP-hard problem: traveling sales person. The TSP consists of a set of locations

(cities) and a traveling salesman that has to visit all the locations once and only once. The

distances between the locations are given and the task is to find a Hamiltonian tour of

minimal length.

22

Figure 2.3 - Construction Graph for TSP with Four Cities.

The first thing to apply ACO on a problem is to have a construction graph that

represents the solution components space for the problem. As shown in figure 2.3, the

construction graph for TSP consists of vertices representing the cities

 . is the set of edges connecting the cities, which represents the

solution components , and with which the pheromone is associated. The length value of

each edge represents the distance between city and .

Each ant starts from a randomly selected location (vertex of the graph). Then,

at each construction step it moves along the edges of the graph, by which it selects a

solution component. Each ant memorizes the solution components (edges) that it selected

through its path, and in subsequent steps it chooses among the edges that do not lead to

vertices that it has already visited (this constraint defines feasible movements to the ant

according to its current partial solution) . At each construction step an ant

chooses probabilistically the edge to follow using equation (2.2). An ant has constructed a

solution once it has visited all the vertices of the graph.

Afterwards, the pheromone is updated according to the quality of the constructed

path. A possible fitness function for TSP solution is:

 (2.5)

which is the inverse of the length of the tour constructed by the ant. Ant colony

optimization has been shown to perform quite well on the TSP [25].

23

2.5 ACO Variations

2.5.1 Ants System

Ant System was introduced in the literature by M. Dorigo et al. in [9]. It is the

first ACO algorithm to be proposed. Its main characteristic is that the pheromone values

are updated by all the ants that have completed constructing the solution. In other words,

after each ant constructs a solution, it updates its pheromone trial according to the quality

of the solution it generated, unlike other techniques which update the pheromone after the

best solution is selected among a set of ants that constructed solution in an iteration of the

algorithm.

2.5.2 MAX-MIN Ant System

MAX -MIN Ant System is an improvement over the original Ant System idea.

MMAS was proposed by T. Stützle and Hoos in [24], who introduced a number of

changes of which the most important are the following: only the best ant can update the

pheromone trails, and the minimum and maximum values of the pheromone are limited.

2.5.3 Ant Colony System

Another improvement over the original Ant System is Ant Colony System (ACS),

introduced by L. M. Gambardella and M. Dorigo [11]. The most interesting contribution

of ACS is the introduction of a local pheromone update in addition to the pheromone

update performed at the end of the construction process (offline pheromone update). The

main goal of the local update is to diversify the search performed by subsequent ants

during the same iteration. In fact, decreasing the pheromone concentration on the edges as

they are traversed during one iteration encourages subsequent ants to choose other edges

24

and hence to produce different solutions. This makes the possibility of several ants

producing identical solutions per a given iteration less likely.

PART 2: DATA MINING AND KNOWLEDG DISCOVERY

2.6 Introduction to Data Mining

Since the widespread of transactional software that has automated various systems

in different fields, a huge volume and variety of data has been continuously collected.

Storing and retaining immense amounts of data in easily accessible form was availed

effectively. As a matter of fact, this raw data potentially stores a huge amount of

information and hidden patterns. Hence, the need of discovering these hidden patterns and

convert them into useful knowledge arose.

The notion of finding useful patterns in data has been given a variety of names

including data mining, knowledge extraction, information discovery, and data pattern

processing. Data mining is the application of specific algorithms for extracting patterns

from data. Research directions have emerged in the recent past for tackling the problem

of making sense out of large, complex data sets. As conventional methods for sifting

through huge amounts of data manually and making sense out of it is slow, expensive,

subjective and prone to errors, the need to automate the process has been a research focus.

Knowledge discovery from databases (KDD) evolved as a research with multi-

disciplinary fields containing databases, machine learning, pattern recognition, statistics

and artificial intelligence.

Data is stored in huge repositories with high dimensionality in different types and

formats; numerical, textual, graphical, symbolic, linked. Typical examples of some such

domains are the world-wide web, geo-scientific data, maps, multimedia, and time series

25

data as in financial markets. In addition, the type of the knowledge wished to be

discovered varies in a wide range according to the domain of interest and it task of use

needed from the knowledge. All these factors encourage developing advanced techniques

for mining complex data.

2.7 Knowledge Discovery Steps

Basically, Knowledge discovery process has three essential parts: data

preparation, data mining and knowledge presentation. Data mining is the core step where

the techniques for extracting the useful hidden patterns are applied. In this sense, data

preparation and knowledge presentation can be considered, respectively, to be pre-

processing and post-processing steps of data mining.

Figure 2.4 - Knowledge Discovery Process.

As shown in Figure 2.4, raw data in different types and formats is received from

non-homogenous data sources. Various tasks of data preparation and data fusion are

applied to the raw data to create a cleansed, filtered, integrated and malleable version that

is appropriate for different task of information retrieval and knowledge extraction. As

data mining algorithms are applied, generated models and discovered knowledge are

26

stored in a knowledge base for further usage. A neat presentation and visualization is

required for the knowledge to facilitate user interaction.

2.8 Data Preparation

Data source repositories have data in different types and formats. Some errors

may occur during the data recording and storing by the source system such as missing

values, noise, inconsistency etc. In addition, among the huge amount of the available data,

only some parts of it can be interesting or useful for a specific knowledge discovery task

and other parts should be neglected. Data needs different structures and formats to be

suitable for data knowledge discovery processing tasks. Therefore, before going to

perform mining on the data, some kind of pre-processing [15] is required. Preprocessing

of data is done in the following major ways:

 Data cleaning: This is performed to remove inconsistency, noise to fill up missing

values and to filter needed portions.

 Data integration. This is needed to combine and unify data from multiple different

sources like databases, data cubes, flat files etc. Correlation analysis, detecting data

conflict, and resolving semantic heterogeneity are used for data fusion.

 Data transformation. The format of data in the repositories may not be suitable for

processing. So, the format of the data should be transformed to a one suitable for

a particular task. This is done for smoothing, aggregation, generalization,

normalization, and attributes construction.

 Discretization. This step consists of transforming a continuous attribute into a

categorical (or nominal) attribute, taking only a few discrete values - e.g., the real-

valued attribute. Salary can be discretized to take on only three values, say "low",

27

―medium", and ―high". This step is particularly required when the data mining

algorithm cannot cope with continuous attributes. In addition, discretization often

improves the comprehensibility of the discovered knowledge.

 Data reduction. This is needed to have a reduced version of data that can work

effectively with a data mining algorithm. This data reduction is done in terms of

dimensionality reduction, data cube aggregation, as well as data compression.

 Data selection. For the purpose of processing and analysis, relevant data are selected

and retrieved in this step.

2.8.1 Data Mining

Data mining is the core part in the knowledge discovery process, which aims to

discover and extract interesting, potentially useful hidden patterns from large amounts of

data. Patterns discovered could be of different types such as associations, trees, profiles,

sub-graphs, and anomalies. The interestingness and the usefulness of the knowledge to be

discovered are relative to the problem and the concerned user. A piece of information

may be of immense value to one user and absolutely useless to another. Often data mining

and knowledge discovery are treated as synonymous, while there exists another school of

thought which considers data mining to be an integral step in the process of knowledge

discovery.

Different data mining techniques are used to carry out different knowledge

discovery tasks. Classification, clustering, association analysis, regression and deviation

detection are the most common data mining techniques that are used for different

knowledge discovery task. These techniques are described in the following section.

28

Data mining techniques mostly consist of three components: a model, a preference

criterion and a search algorithm [14]. The most common model functions in current data

mining techniques include classification, clustering, regression, and link analysis and

dependency modeling. A model is selected according to the intended discovery task and

the nature of the useful knowledge to be extracted. Models vary in the flexibility of the

model for representing the underlying data and the interpretability of the model in human

terms. This includes decision trees and rules, linear and nonlinear models, example-based

techniques such as NN-rule and case-based reasoning, probabilistic graphical dependency

models (e.g., Bayesian network) and relational attribute models. The preference criterion

is used to evaluate the efficiency of the model according the underlying dataset.

Preference citation can determined which model to use for mining, as it best fits the

current nature of data. It tries to avoid over-fitting of the underlying data or generating a

model function with a large number of degrees of freedom. The search algorithm is then

defined for the model that carries out the intended knowledge discovery task.

2.8.2 Knowledge Presentation

As the knowledge is extracted, the user should be able to interpret this knowledge

and make use of the extracted patterns for decision making concerning his domain. The

discovered knowledge will be interesting for the user if it is easily understood, valid,

novel and useful. Presentation of the information extracted in the data mining step in a

format easily understood by the user is an important issue in knowledge discovery. Data

visualization and knowledge representation are important components. The following are

some interesting ways of data presentation:

 Decision Trees.

29

 Graphs.

 Tables and cross-tabs

 Charts and Histograms.

 Natural language generated rules.

2.9 Overview of Data Mining Tasks

Data mining tasks vary according to what types of knowledge we are want to try

and discover and how the discovered knowledge is intended to be used. In general, data

mining tasks can be classified into two categories, descriptive and predictive [15]. The

descriptive techniques provide a summary of the data and profile its general

characteristics and properties. On the other hand, the predictive techniques learn from the

current data in order to make forecasts or predictions about the behavior of new data. The

following is description of most commonly used data mining tasks.

2.9.1 Classification

Classification is a type of supervised learning. In supervised learning, the data set

contains objects with several attributes as input features for each object, and one attribute

is considered the class (or the label) of this object. Classification is a process of building a

model that can describe and classify the object class as a function of its input attributes.

As shown in figure 2.5, the input for classifier model discovery is a training set that

contains labeled cases (cases which their classes are known). A classification model is

built upon relationship patterns discovered between the input attributes and the classes of

the cases. Now the classification model is able to classify (find the class) of unlabeled

input cases, whether they are a testing set of cases or whole new cases which their classes

need to be predicted.

30

Figure 2.5 - Process of Building a Classification Model.

Note that some data mining techniques for classification generate a classifier that

can only classify unlabeled cases without describing the relationships between the

attributes of a case and its class. Examples of such techniques are the nearest neighbor

classifier, Bayes maximum likelihood classifier and Neural Networks-based classifier.

Other techniques can produce a classification model that not only can predict a class of an

unlabeled case, but can also describe the relationships between the input features and the

classes of the cases. This description can be in the form of rules or classification trees.

Decision trees and rule induction are examples. The latter type of classification

techniques has an advantage of model interpretation as it provides insight for the user

regarding the data at hand and on the relationship patterns amongst it. Some of these

techniques are now briefly described.

 Nearest Neighbor Classifier: It assigns the unlabeled cases the class of the nearest

neighbor to it within the labeled training set. Given a training set with many labeled

cases
 , the distance is calculated between the new unlabeled case

31

 and each case
 in the training set using distance function.

The new unlabeled case is given the class of case that has the least value of

distance with it. If k-nearest neighbor is considered, the new case is assigned the

class of the majority of the nearest cases [15].

 Naïve Bayes Classifier: is a simple probabilistic classifier based on applying Bayes'

theorem with attributes independence assumptions [15]. Let us consider having a data

set with attributes
 for each case. Assuming that attributes are

conditionally independent of one another given class , we have:

 (2.6)

This is a dramatic reduction compared to the parameters needed to

characterize if we make no conditional independence assumption. Naïve

Bayes aims to train a classifier that will output the probability distribution over

possible values of , for each new instance that we ask it to classify. The expression

for the probability that will take on its k-th possible value is the maximum value of

the following equation calculated for each :

 (2.7)

 Decision Trees: A decision tree is an acyclic graph. In these tree structures, leaves

represent classifications and branches represent conjunctions of features that lead to

those classifications. It is easy to convert any decision tree into classification rules.

Once the training data set is available, a decision tree can be constructed from them

from top to bottom using a recursive divide and conquer algorithm. This process is

32

also known as decision tree induction. A version of ID3 [15], a well-known decision-

tree induction algorithm, is described below.

1. Create a node N.

2. If all training data points belong to the same class (C) then return N as leaf node

labeled with class C.

3. If cardinality (features) is NULL then return N as a leaf node with the class label

of the majority of the points in the training data set.

4. Select a feature (F) corresponding to the highest information gain, then label node

N with feature F.

5. For each known value of F, partition the data points as .

6. Generate a branch from node N with the condition feature = .

7. If is empty, then attach a leaf labeled with the most common class in the data

points left in the training set.

8. Else attach the node returned by Decision tree induction (, (features-F)).

Assume we have a data set with cases labeled with classes. is the

number of cases belonging to class . Suppose that each case has features

 . Each feature F can the cases into subsets

 . The

information gain of a feature is measured by the following equation:

 (2.8)

where

 (2.9)

and

33

 (2.10)

Here, is the probability that a data point in belongs to class .

2.9.2 Clustering

Clustering is the process of partitioning the input data set into groups or segments,

where each group is called a cluster. Each cluster contains a subset of the data points that

are more similar to one another and less similar (dissimilar) to data points in other

clusters. The similarity and dissimilarity are measured in terms of some distance function.

Cluster analysis serves as a powerful descriptive model that can profile the data point

according to its attributes and exhibits similarities and dissimilarities between the data

clusters that are found.

Clustering is considered as an unsupervised learning, as the input cases to any

clustering technique are not required to be labeled. The clustering algorithm should

discover these labels as each cluster can be considered as a class for the data points that it

contains after it is discovered.

K-Means algorithm [15] has been one of the more widely used ones; it consists of

the following steps:

1. Choose initial cluster center , ,.., randomly from the domain space of the

input data point
 .

2. Assign each data point to cluster , if the distance between and

 is the least among the distance between and all other cluster centers.

3. Computer new cluster centers as follows:

34

 (2.11)

where is the number of data points belonging to cluster .

4. Terminate if no change in the centers occurs or upon meeting any other criteria.

Although K-means is one of the widely used clustering algorithms, it suffers from

shortcomings. Outliers can affect the computation of centriods. K-medoid attempts to

alleviate this problem by using the medoid, the most centrally located object, as the

representative of the cluster. (PAM), (CLARA) and (CLARANS) are various

implementations of K-medoid. Fuzzy K-Means cluster the data set with membership

value associated with each data point for each cluster. Hierarchal clustering uses top

down (divisive) or bottom up (aggregative) approach to find clusters with no initial

cluster center and now initial clusters number. Density based clustering (DBSCAN) is

another clustering technique that can discover arbitrarily-shape clusters, which is used for

mining spatial data. [15].

2.9.3 Association Rules Mining

Discovery of association relationship among large set of data items is useful in

decision-making. A typical example for association rules mining is market basket

analysis, which studies customer buying habits by finding associations between the

different items that customers place in their baskets. An association rule is thus a

relationship of the form: , where and are sets of items

and . Such a rule generation technique consists of finding frequent item sets

(set of items, such as and satisfying minimum support and minimum confidence)

35

from which rules like are generated. The measures support is the percentage of

transactions that contain both the item sets. Thus:

 (2.12)

 (2.13)

Although both classification and association rules have an IF-THEN

structure, association rules can have more than one item in the consequent part, whereas

classification rules always have one attribute (class label) in the consequent. In other

words, for classification rules, predicting attributes and the goal attribute. Predicting

attributes can occur only in the rule antecedent, whereas the goal attribute occurs only in

the rule consequent.

2.9.4 Regression

Regression analysis includes any techniques for modeling and analyzing several

variables (criterion), when the focus is on the relationship between a dependent variable

and one or more independent variables (predictor). More specifically, regression analysis

helps us understand how the typical value of the dependent variable changes when any

one of the independent variables is varied, while the other independent variables are held

fixed.

Linear regression is a form of regression where the relationship between variables

is modeled with a straight line (linear equation), learned using the training data points. A

straight line, through the input vector (known as predictor variable) and the output

vector (known as response variable), can be modeled as where and

are the regression coefficient and slope of the line, computed as:

36

 (2.12)

 (2.13)

where and are averages of vector and vector respectively.

2.9.5 Deviation Detection

This is also known as the process of detection of outliers. Outliers are those

patterns that are distinctly different from the normal, frequently occurring, patterns, based

on some measurement. These patterns can be found in some data objects that do not

comply with the general behavior of the data. They are inconsistent from the remaining

set of data. These data objects are called outliers.

The wide range of applications of outlier detection includes fraud detection,

customized marketing, detection of criminal activity in e-commerce, network intrusion

detection, and weather prediction. The different approaches for outlier detection can be

broadly categorized into three types [15]:

 Statistical approach: Here, the data distribution or the probability model of the data set

is considered as the primary factor.

 Distance-based approach: An object O in a data set T is a -outlier if at least

fraction p of the objects in T lies greater than distance D from O.

 Deviation-based approach: Deviation from the main characteristics of the objects is

basically considered here. Objects that ―deviate‖ from the description are treated as

outliers.

37

2.10 Issues and Challenges in Data Mining

2.10.1 Data Issues

 High dimensionality: Datasets usually contain huge amounts of records, with

considerably a large number of attributes. This affects the performance of the data

mining algorithm not only in terms of running time, but also the efficiency and the

accuracy of the produced model as several irrelevant features have to be considered

during model training. Therefore, these considerations should be taken while

developing a mining algorithm and can exploit the advantages of techniques such as

dimensionality reduction, sampling, approximation methods as well as incorporation

of domain specific prior knowledge.

 Complex Types: Databases may contain complex data objects such as: hypertext and

multimedia, graphical data, transaction data, and spatial and temporal data. An

efficient, specific algorithm should be developed to cope with these types of data, or

special versions of existing techniques can be tailored to work on such types of

datasets.

 Missing, incomplete and noisy data: The data preparation part plays an important

role to solve such problems. As many errors may occur in recoding transactional data

in the source systems, missing values and inconsistencies are born. This affects the

quality of the generated model by the mining algorithms. Data cleaning techniques,

more sophisticated statistical methods to identify hidden attributes and their

dependencies, as well as techniques for identifying outliers are therefore required to

address this issue.

38

2.10.2 Mining Techniques Issues

 Problem Definition and Domain Characteristics: A deep analysis on domain

characteristics, available data nature and the problem to solve should be carried out

before a specific mining model is recommended. This is needed as there is none that

is equally applicable to a wide variety of data sets and can be called the universally

best data mining technique.

 Efficiency and accuracy: Efficiency and accuracy of a data mining technique are key

issues. Data mining algorithms should be efficient enough in terms of outcome,

usability and confidence so much that the user should be able to rely on the results

and take decisions upon them. A lot of effort is done to enhance the efficiency of

already existing mining techniques as well as develop new ones that can work

efficiently in some specific problem situations and fabricate more comprehensive

results.

2.10.3 User Interaction Issues

 Interpretation of the discovered patterns: Some data mining techniques are

preferred over others based on their ability to produce knowledge, represented in a

natural language rules, graph or a tree, that is understandable, interpretable and

traceable by the user. For example, neural networks classifiers and SVMs may

produce better results than other algorithms such as rule induction. However, rule

induction based classification can be preferable as they give the user insight into the

discovered knowledge from his domain data.

39

2.11 Data Mining Applications

 Spatial data mining. A spatial database stores a large amount of space-related data,

such as maps, preprocessed remote sensing or medical imaging data and VLSI chip

layout data. They carry topological and/or distance information and are usually

organized via a multidimensional structure utilizing data cubes. Spatial data mining

refers to the extraction of knowledge like spatial relationships or other interesting

patterns from large geo-spatial databases.

 Web mining. With the explosive growth of information sources available on the

World Wide Web (WWW), it has become increasingly necessary for users to utilize

automated tools in order to find, filter, and evaluate desired information and

resources. Web mining can be broadly defined as the discovery and analysis of useful

information from the WWW. In order to mine the web basically two ideas are used.

Web content mining: here the idea is the automatic search and retrieval of the

information. Web usage mining: the basic idea here is the automatic discovery and

analysis of user access patterns from one or more web servers.

 Text mining. In recent days we can have databases, which contain large

collections of documents from various sources such as news articles, research papers,

books, digital libraries, e-mail messages, and various web pages which are called text

databases or document databases. These text databases are rapidly growing due to

the increasing amount of information available in electronic forms, such as

electronic publications, e-mails, etc. Data stored in most text databases are semi-

structured data, in that they are neither completely unstructured nor completely

structured. For example, a document may contain a few structured fields, such as title,

40

authors, publication date, and category and so on, but also contain some largely

unstructured text component such as abstract and contents. This type of text data

presents challenges to traditional retrieval techniques. As a result, text-mining

concepts are increasingly coming into light. Text mining goes one step beyond the

traditional approach and discovers knowledge from semi-structured text data as well.

 Image mining. Actually image mining, i.e. mining the image databases, falls under

the multimedia database mining, which also contains audio data, video data along

with image data. Basically images are stored with some description against a

particular image. Again images are nothing but some intensity values, which

figure the image in terms of color, shape, texture etc. The mining task is based

on using such information contained in the images. Based on this image mining

techniques can be categorized in two places: description based retrieval, and content

based retrieval.

 Biological data mining. Biological researches are dealing greatly with the

development of new pharmaceuticals, various therapies, medicines and human

genome by discovering large-scale sequencing patterns and gene functions. In the

process of gene technology, DNA data analysis becomes significantly focused with

data mining applications. Since the discovery of genetic causes for many diseases and

disabilities and to discover new medicines as well as disease diagnosis, prevention,

and treatment, DNA analysis is a must. The DNA sequences form the foundation of

the genetic code of all living organisms. All DNA sequences are comprised of four

basic nucleotides [i.e. Adenine (A), Cytosine (C), Guanine (G), and Thiamine (T)].

These four nucleotides are combined in different orders to form long sequences or

chains in the structure of DNA. There are almost an unlimited number of ways that

41

the nucleotides can be ordered and sequenced which play important role in various

diseases. It is a challenging task to identify such a particular sequence from among

the unlimited sequences, which are actually responsible for various diseases. Now

people are trying to use data mining techniques to search and analyze these sequence

patterns. In addition to DNA sequencing, linkage analysis and association analysis

(where the structure, function, next generation genes, co-occurring genes, etc.) are

also studied. For all these, machine learning, association analysis, pattern matching,

sequence alignments, Bayesian learning, etc. techniques are being used in

bioinformatics recently.

 Distributed Data Mining. The evolution of KDD system from being centralized and

stand alone along the dimension of data distribution signifies the emergence of

Distributed Data Mining (DDM). Specifically, when data mining is undertaken in an

environment, where users, data, hardware, and the mining software are geographically

dispersed, will be called DDM. Typically such environments are also characterized by

the heterogeneity of data, various user bases, and large data volumes.

2.12 Summary

Part 1 has presented Ant Colony Optimization technique which is a field in swarm

intelligence inspired by the behavior of biological ants. (ACO) is a meta-heuristic

algorithm that is used to solve combinational optimization problems (COP). Artificial

ants live in a virtual world, called a construction graph, which represents the solution

search space for the given problem. Elements in the construction graph are the solution

components which each ant selects while traversing the graph to construct a solution. The

pheromone deposited on the construction graph is the way of communication and sharing

42

information among the ants in the colony. The ant drops pheromone proportional to the

quality to the solution that it constructed. The pheromone is considered the guide for

subsequent ants to decision components in the construction graph with good or promising

quality. The ant chose the next decision probabilistically according to the amount of

pheromone associated with it and a heuristic value for that decision component. ACO has

proven to be quite efficient and flexible. Ant colony optimization algorithms are

currently state-of-the-art for solving many COPs.

Part 2 has given a wide overview on data mining and knowledge discovery

concepts and issues. Data mining has become very important since the enormous growth

of data in different domains with various types and formats. Knowledge discovery is

known as the process of finding and extracting hidden useful pattern from raw data. There

are three basic phases in knowledge discovery process. The first step is data preparation

which involves data cleansing, integration, selection, reduction and transformation to be

in a valid form processing. The second step, which is the core step in the process, is data

mining. Several techniques of data mining exist and are applied to solve various types of

knowledge discovery needs. Such techniques include classification, clustering,

association rule discovery, regression, and outlier detection. Data mining has been

utilized in several domains like web mining, text mining, image mining, spatial data

mining, and biological data mining.

43

Chapter 3

ANT-MINER

3.1 Introduction

Ant-Miner was proposed by Parpinelli et al. [20] in 2002. Utilizing ACO

techniques, Ant-Miner is a data mining algorithm that is designed to generate

classification rules from a given dataset. As for a typical ACO algorithm, the ant is

considered an agent that incrementally constructs and modifies a solution from the

construction graph to the given problem. The problem is to build a classification model

and the solution is a set of rules that can be used for classification. Therefore, each ant in

the swarm tries to construct a rule that can be used in the classification model rule set.

Basically, Ant-Miner is a rule-based induction algorithm that makes use of ACO‘s

collective behavior. As mentioned before, the generated rules are expressed in the

following form:

IF <Conditions> THEN <class>

The <conditions> part (antecedent) of the rule contains a logical combination of

predictor attributes, in the form: term1 AND term2 AND... . Each term is a triple

<attribute, operator, value>, where value is a value belonging to the domain of attribute,

and the operator element in the triple is always ―=‖. The original version of Ant-Miner

deals only with categorical attributes. As such, continuous (real-valued) attributes are

discretized as a preprocessing step. However, several modifications have been done to the

algorithm to come up with new versions that can cope with continuous attributes

efficiently. Some of these versions are mentioned in the next chapter. The <class> part

44

(consequent) of the rule contains the class predicted for cases in given dataset whose

predictor attributes satisfy the <conditions> part of the rule.

Ant-Miner discovers an ordered list of classification rules. For each ant trial, an

ant attempts to discover a rule by selecting terms probabilistically according to a heuristic

function and pheromone amount for this term. After a rule is constructed, the ant updates

the pheromone on its trial to lead next ants in their paths. The best rule is selected among

the ants that have constructed rules and added to the discovered rule set. The algorithm is

repeated until the discovered rules cover a sufficient portion of the given dataset. The first

part of this chapter describes the algorithm of the original Ant-Miner in detail.

3.2 Ant-Miner Algorithm

The following pseudo code describes the outline of the original Ant-Miner

algorithm. Algorithm 3.1 – Original Ant-Miner is taken from [20]. The following is

detailed description on the algorithm.

Algorithm 3.1 - Original Ant-Miner.

TrainingSet = {all training cases};

DiscoveredRuleList = []; /* initialize rule list with empty list */

WHILE (TrainingSet > Max_uncovered_cases)

 ; /* ant index, and also rule index */

 ; /* convergence test index */

Initialize all trails with the same amount of pheromone;

REPEAT

 starts with an empty rule and incrementally constructs rule ;

by adding one term at a time to the current rule;

45

Prune rule ; /* remove irrelevant terms from rule */

Update the pheromone of all trails by increasing pheromone in the trail followed

by (proportional to the quality of) and decreasing pheromone in the other

trails (simulating pheromone evaporation);

IF (is equal to) /* update convergence test */

THEN ;

ELSE ;

END IF

 ;

UNTIL (i ≥ No_of_ants) OR (j ≥ No_rules_converg)

Choose the best rule among all rules constructed by all the ants;

Add rule to DiscoveredRuleList;

TrainingSet = TrainingSet - {set of cases correctly covered by };

END WHILE

As an ACO-based algorithm, the decision components in the construction graph of

Ant-Miner are the available attribute values, by which a rule‘s antecedent terms can be

constructed. The algorithm consists of two nested loops: the outer loop where a single

rule in each iteration is added to the discovered rule list and the inner loop where an ant in

each iteration constructs a rule as follows. Each ant in the colony attempts to construct a

rule‘s antecedents by selecting terms probabilistically according to a heuristic value

(using a heuristic function that will be discussed later) and pheromone amount for this

term. As an ant starts, it has an empty rule (a rule with no term in its antecedent and no

46

consequent class). As the ant moves through the construction graph (which will be

described later), it tries to construct its empty rule premises by adding one term at a time

to have a current partial rule corresponding to the current partial path followed by that ant

in the construction graph.

The ant keeps adding terms one-at-a-time to its current partial rule until it faces a

stopping condition that prevents it from adding more terms to its current rule it is

constructing. This stopping condition can arise in two cases: the first case is when any

term that could be added to the rule would make the rule cover a number of cases; less

than a user-specified threshold, called min_cases_per_rule (minimum number of cases

that should be covered by a rule). This condition exists in order to avoid constructing

rules with low convergence, which may lead to extra running time for the algorithm and

over fitting in the generated rules set. The second case that makes the ant stop is when all

attributes have already been used by the ant, so that there is no more attributes to be

added to the rule premises.

As the ant faces one of the two stopping condition, the ant has now completed

building a rule antecedents (it has completed its path through the construction graph). The

rule consequent is then chosen by determining the class value with maximum occurrence

in the cases matching the rule antecedents. The constructed rule (premises with

consequent class) is pruned in a post-processing step to remove irrelevant terms that

might have been unduly included in the rule. Pruning the rule premises tends to enhance

the quality of the rule in term of coverage and accuracy, since irrelevant terms may have

been included in the rule due to stochastic variations in the term selection procedure

and/or due to the use of a shortsighted, local heuristic functions - which consider only

47

one-attribute-at-a-time, ignoring attribute interactions. The pruning procedure will be

described later in this chapter.

When an ant completes its rule, the amount of pheromone is updated on its trial

according to the quality of the generated rule. Then another ant starts to construct its rule,

using the new amounts of pheromone to guide its search. This process is repeated for at

most a predefined number of ants. This number is a system parameter, called no_of_ants.

However, this iterative process can stop earlier, when convergence occurs. Convergence

occurs when stagnation is detected as the current ant has constructed a rule that is

exactly the same as the rule constructed by the previous no_rules_converg – 1

ants. no_rules_converg (number of rules used to test convergence of the ants) is also a

system parameter. This stopping criterion detects that the ants have already converged to

the same constructed rule, which is equivalent to converging to the same path in real Ant

Colony Systems. The best rule amongst the rules constructed by all ants is selected, added

to the discovered rule set and considered for the classification rules model. The other

rules are discarded. This completes a single iteration of the algorithm. After the best rule

among the ants trial is selected, all the cases covered by this rule are removed from the

training set.

This course of action is considered an iteration of the outer loop. When the next

iteration of the Ant-Miner algorithm starts, it runs in a reduced training set. This process

is repeated for as many iterations as necessary to find rules covering a sufficient portion

of the cases in the training set. This sufficient portion is reached when the number of

uncovered cases in the training set is less than a predefined threshold, called

max_uncovered_cases (maximum number of uncovered cases in the training set), at

which the algorithm stops execution. When a sufficient portion of the training set cases is

48

covered by the discovered rules, the search for further rules stops. At this point the system

has generated a classification model consisting of an ordered rule list (in order of

discovery), which will be used to classify new cases, unseen during training.

A default rule is added to the last position of the rule list. The default rule has an

empty antecedent (i.e. no condition) and has a consequent predicting the majority class in

the set of training cases that are not covered by any rule. This default rule is automatically

applied if none of the previous rules in the list cover a new case to be classified.

Once the rule list is complete, it is ready to classify a new test case set. This is

done by applying the discovered rules, in order. The first rule that matches the new case is

applied and case is assigned the class predicted by that rule‘s consequent.

3.3 Construction Graph

As was described in Chapter 2, the ACO technique represents the solution space

for a given problem as a graph, from where an ant can construct a solution. The solution

is basically the path that the ant took in its trial from source to sink. The decisions (nodes)

that the ant selected during its path are considered the components of the solution to the

problem. In Ant-Miner, since the solution to be constructed for the classification problem

is a rule that consists of set of terms, then the terms are considered the solution

components for the current problem. Accordingly, the construction graph should contain

all the available terms than can be used to construct a rule (solution). The Ant-Miner

construction graph is typically a graph consisting of nodes, where each node represents an

attribute value for each attribute values in the dataset. The set of nodes in the

construction graph nodes is

49

where i is i-th attribute, n is the number of nodes and is the j-th value of i-th attribute.

Thus, each node is selected to represent a term . The set of terms that the

ant chosen in its path represents a rule:

Each node in the construction graph contains an amount of pheromone. At the

beginning of each iteration, the pheromone is initialized for each term with the same

value given by the function:

 (3.1)

where:

 a is the total number of attributes.

 br is the number of values in the domain of attribute i.

The construction graph does not include the class attribute values; it only includes

terms contributing in constructing the rule premises. The rule consequent (class) is

selected after the rule antecedents are constructed by determining the class value with

maximum occurrence in the cases matching the rule antecedents.

Each node has a Boolean property indicating whether it is still available for use or

not. A node can be ignored from the construction graph if all the cases in the training set

containing the value of the attribute that the node represents are covered by the

discovered rules. The Boolean property of the node helps the ant to consider the node

during term selection or to ignore it.

50

A heuristic value is also associated with each node that represents the local quality

of this term to be selected, which affects the node selection probability by the current ant.

This value is updated after each rule is discovered and the training set is reduced. The

used heuristic function is described in one of the following sections.

The amount of the pheromone is updated on each node after each ant trial to

influence other ants‘ selection of the terms in the next trials. Rule construction and

pheromone update are discussed each in separate following sections.

3.4 Rule Construction

A rule is constructed incrementally by adding a terms to the current partial rule

that an ant holds. As mentioned before, is in form of , where is i-th

attribute and is the j-th value of the domain of . The probability that is

selected by the ant to be added to the current partial rule is given by the following

equation:

 (3.2)

where:

 is the value of a problem-dependent heuristic function for .

 is the current amount of the pheromone on for the current ant through

its current trial.

 is the total number of attributes.

 br is the number of values in domain of the i-th attribute.

given that the Boolean property that indicates whether can still be used is true.

51

As shown in equation (3.1), the probability of a term to be selected is calculated

according to two components. The first is which is the value of a problem-dependent

heuristic function, and the second is which is the amount of the pheromone on .

The first component is a problem-dependent heuristic function , which is a measure of

the predictive power of . The higher the value of the better the is in the

context of the given problem (classification), and so the higher the probability of it being

selected. The heuristic value for each term is calculated by the same function, which will

be described in the following section.

The second component that affects the probability of selecting a term is the

amount of pheromone currently associated with , which is entirely dependent

on the paths that other ants took during their previous trials in rule construction. As

mentioned in Chapter 2, in the typical ACO technique, the amount of the pheromone on

the construction graph acts as an indirect way of communication between the ants in the

colony. It represents the experience of the pervious ants in constructing solution and gives

advice to the next ants about the good paths to take in their trials to attempt in

constructing better ones. In the beginning, all the terms have the same amount of the

pheromone. However, as soon as an ant finishes its path, the amount of pheromone in

each term visited by the ant is updated, as will be explained in detail shortly. The amount

of the pheromone to be dropped on the trail depends on the quality of the rule constructed

by taking this path; the better the quality of the rule constructed by the ant, the higher

the amount of pheromone added to the terms selected during the trail. With time, and

after several ants have attempted to construct rules, the ―best‖ path (collection of terms to

52

be selected) will have a greater probability to be taken by upcoming ants as the amount of

pheromone on this path increase.

The term to be selected and added to the partial rules is subjected to some

restrictions: cannot be selected if the current partial rule contains (i.e. if

the current partial rule contains another value from the same domain of the attribute

 . Another restriction is that a term cannot be added to the current partial rules if this

makes the extended partial rule cover less than a predefined minimum number of cases,

called the min_cases_per_rule threshold, as mentioned previously in section 3.2.

In rule construction process, the ant builds the rule premises only, without

specifying the rule consequent to be assigned to the rule. The selection of the class that

will be the rule consequent is decided afterwards. After rule premises are completed, the

system chooses the rule consequent (predicted class) that maximizes the quality of the

rule. This is done by assigning to the rule consequent the majority class among the cases

covered by the rule.

3.5 Heuristic Function

Each node in the construction graph has a current heuristic value that represents

the local quality of this node to be selected as part of a solution for the current problem

context. This value is calculated for each node with the same problem-dependent heuristic

function. As for Ant-Miner, the node in the construction graph represents a term that

could be added to a rule. The context is a classification problem. The heuristic value to be

calculated an estimate of the quality of a given term, with respect to its ability to improve

the predictive accuracy of the rule. This heuristic function is based on information theory,

introduced by T. Cover and J. A. Thomas in [5].

53

More precisely, the value of the heuristic function for a term involves a

measure of the entropy (or amount of information gain) associated with that term [21].

For each of the form of , where is i-th attribute and is the j-

th value of the domain of , its entropy is given the following equation:

 (3.3)

where:

 is the number of classes.

 is the total number of cases in partition (partition containing the cases where

attribute has value).

 is the number of cases in partition that have class .

If the value of is high, this means that value in attribute is

more uniformly distributed among the classes, and so the lower the predictive power of

 . The terms to be selected should have a high predictive power to be added to the

current partial rule. Therefore, in Ant-Miner, the higher the value of , the

smaller the probability of an ant choosing to be added to its partial rule.

The value of the heuristic function is normalized. The resultant normalized,

information-theoretic heuristic function given by the following equation:

 (3.4)

where:

 is the total number of attributes.

54

 bi is the number of values in domain of the i-th attribute.

 is the entropy of calculated by equation (3.3)

 is the number of classes.

 for is always the same regardless the content of the current partial

rule. is calculated for each as a preprocessing step before each

outer iteration in the Ant-Miner algorithm.

If attribute does not occur in the training set, then = 0. In this case,

 is set to its maximum value; . This corresponds to assigning to

 the lowest possible predictive power. If all the cases in the partition belong to

the same class then = 0. This corresponds to assigning to the

highest possible predictive power. Note that the value of varies in the

range:

3.6 Rule Pruning

The main goal of rule pruning is to remove irrelevant terms that might have been

unduly included in the rule. As mentioned above, Rule pruning potentially increases the

predictive power of the rule, by increasing its coverage without sacrificing its confidence.

This also helps to avoid it over-fitting to the training data. Simpler rules generated after

rule pruning are more easily interpreted by the user as they are shorter and more general.

That was another motivation for pruning the rules.

For each ant constructing a rule, as soon as the ant completes the construction

of its rule, the rule pruning procedure is performed. The search strategy of rule

55

pruning procedure used in Ant-Miner is very similar to the rule pruning procedure

suggested by Quinlan [22], although the rule quality criterion used in the two procedures

are very different from each other.

The basic idea is to iteratively remove one-term-at-a-time from the rule while this

process improves the quality of the rule. In the first iteration one starts with the full rule.

Then one tentatively tries to remove each of the terms of the rule – each one in turn – and

computes the quality of the resulting rule, using the quality function defined by

equation (3.5) . This step may involve re-assigning another class to the rule, since a

pruned rule can have a different majority class in its covered cases. The term whose

removal most improves the quality of the rule is effectively removed from the rule,

completing the first iteration. In the next iteration one removes again the term whose

removal most improves the quality of the rule, and so on. This process is repeated until

the rule has just one term or until there is no term whose removal will improve the quality

of the rule. [20]

Another rule pruning procedure was introduced by A. Chan and A. Freitas in [4].

This new procedure has enhanced the quality of the generated rules. A brief description of

the procedure is mentioned in the following chapter.

3.7 Pheromone Update

Each node in the construction graph, which represents a term to be selected by an

ant for rule construction, has current amount of pheromone associated with it. This

amount of pheromone changes as ants select nodes though their trials and drop

pheromone on the selected nodes during their paths. All the terms are initialized with the

same amount of pheromone. The initial amount of pheromone deposited at each path

56

position is inversely proportional to the number of values of all attributes, as given by the

aforementioned equation (3.1).

As an ant finishes constructing the rule, the amount of pheromone in all nodes in

the construction graph is updated. This pheromone updating has two operations:

a) Increasing the amount of pheromone associated with each term in the construction

graph that was selected during the rule construction (terms occur in the constructed

rule).

b) Decreasing the amount of pheromone associated with each term in the construction

graph that was not selected in during the rule construction (terms that does not occur

in the constructed rule). This acts as pheromone evaporation in the typical ACO

algorithm.

As for increasing the pheromone on used terms – which is also known in ACO

systems as pheromone reinforcement – each ant drops pheromone on the terms that were

selected through its path during its trial after it completes rule construction. If

occurs in the constructed rule, this operation increases the probability of being

selected by ants in the future trials, as the current ant acknowledges the benefit of

selecting such term. The amount of pheromone being dropped on each , selected

by the ant, through its path is proportional to the quality of the rule constructed by the ant

using these terms. The better the rule is, the higher the increase in the amount of

pheromone for each occurring in the rule.

The quality of the rule constructed by an ant, denoted by is computed by the

formula: , as defined in the following

equation:

57

 (3.5)

where:

 is the rule constructed by current

 TP (true positives) is the number of cases covered by the rule that have the class

predicted by the rule.

 FP (false positives) is the number of cases covered by the rule that have a class

different from the class predicted by the rule.

 FN (false negatives) is the number of cases that are not covered by the rule but that

have the class predicted by the rule.

 TN (true negatives) is the number of cases that are not covered by the rule and that do

not have the class predicted by the rule.

The larger the value of , the higher the quality of the rule. Note that varies

within the range: . Pheromone update is performed according to the following

equation:

 (3.6)

This formula is applied for each contained in the constructed rule. Therefore, the

value of the pheromone associated with each term in the constructed rule is increased by

an amount proportional to the rule quality calculated via formula (3.5).

Decreasing the pheromone in unused terms corresponds to the phenomenon of

pheromone evaporation in real ant colony systems. In typical ACO systems, evaporation

is obtained via an evaporation factor to be multiplied to each in the construction

graph after pheromone reinforcement (as was described in the Chapter 2).

58

In this original version of Ant-Miner, the pheromone evaporation process is

simulated by normalizing the value of each pheromone for each after

pheromone reinforcement. More precisely, this normalization is performed by dividing

the value of each by the summation of all on each node in the construction graph.

When a rule is constructed, only the terms occurring in the rule constructed by an ant

have their amount of pheromone increased by equation (3.6). Therefore, at normalization

time the amount of pheromone of an unused term (the terms that did not occurred in the

constructed rule) will be computed by dividing its current value (the pervious value that

was not increased) by the total summation of pheromone for all terms (which was

increased as a result of reinforcing the pheromone amount on the used terms). The final

effect will be to reduce the normalized amount of pheromone for each unused term. Used

terms will, have their normalized amount of pheromone increased due to application of

equation (3.6).

3.8 Algorithm Parameters

This original version of Ant-Miner algorithm has the following parameters:

 Number of Ants (no_of_ants): this is also the maximum number of ant trials for

constructing rule in each iteration of the system. In each iteration, the best rule

constructed in that iteration is considered a discovered rule. Note that the larger the

no_of_ants, the more candidate rules are evaluated per iteration, but the slower the

system becomes.

 Minimum number of cases per rule (min_cases_per_rule): each rule must cover at

least min_cases_per_rule, this guarantees certain degree of generality an coverage

59

in the discovered rules. This helps avoiding over-fitting to the training data and

decreasing number of overall system iterations needed,

 Maximum number of uncovered cases (max_uncovered_cases): this threshold tells

the system when to stop. The process of rule discovery is iteratively performed until

the remaining cases in the training set that are not covered by any of the

discovered rule is less than this threshold.

 Number of rules used to test convergence of the ants (no_rules_converg): If the

current ant has constructed a rule that is exactly the same as the rule constructed by

the previous no_rules_converg –1 ant, then the system concludes that the a

stagnation has occurred, no ant can take another path to construct a different (possibly

better) rule, and the whole colony has converged to a single rule (path).

The experimental results that have been published in [20] – and will be discussed

in the following section – were produced by running the algorithm with the following

values of the aforementioned parameters:

 Number of Ants (no_of_ants) = 3000.

 Minimum number of cases per rule (min_cases_per_rule) = 10.

 Maximum number of uncovered cases in the training set

(max_uncovered_cases) = 10;

 Number of rules used to test convergence of the ants (no_rules_converg) =10.

The next section will show the computational result that was produced by

experimented the running the original Ant-Miner algorithm and was published in [20]. A

brief discussion on the efficiency of the algorithm according to the published results is

included in the following section. Some issues and considerations on the algorithm will

60

be highlighted as they represent the triggers for other enhancements and related work

done on this original version, and the motivation of the modifications proposed in this

thesis.

3.9 Ant-Miner Results Discussion

Ant-Miner has been evaluated across six public-domain data sets from the UCI

(University of California at Irvine) data set repository (2000) [26]. The detailed

description of the used datasets characteristics and the experimental results can be found

in [20].

In three data sets, namely Wisconsin breast cancer, Hepatitis and Heart disease,

Ant-Miner discovered a rule set that is both simpler and more accurate than the rule set

discovered by C4.5. In one data set, Ljubljana breast cancer, Ant-Miner was more

accurate than C4.5, but the rule sets discovered by Ant-Miner and C4.5 have about the

same level of simplicity. (C4.5 discovered fewer rules, but Ant-Miner discovered rules

with a smaller number of terms.) Finally, in two data sets, namely Tic-tac-toe and

Dermatology, C4.5 achieved a better accuracy rate than Ant-Miner, but the rule set

discovered by Ant-Miner was simpler than the one discovered by C4.5.

It is also important to notice that in all six data sets the total number of terms of

the rules discovered by Ant-Miner was smaller than C4.5‘s one, which is a strong

evidence of the simplicity of the rules discovered by Ant-Miner.[20]

As for the first implementation of the algorithm, Ant-Miner has proved to be a

very promising technique for classification rules discovery. Ant-Miner generates a fewer

number of rules, less number terms per each rules, and performs competitively in terms of

61

efficiency compared to C4.5 algorithm. Hence, it has been a focus area of research and a

lot of modification has been done to it in order to increase its efficiency.

Considering some issues in the original version of the Ant-Miner algorithm:

a) This version copes only with the categorical attributes, and the continuous attributes

should be discretized as a pre-processing step. Coping with real-valued attributes

would be an important feature to avail.

b) The rule consequent (rule class) is selected after rule antecedents‘ construction.

Selecting the consequent of the rule before rule construction should enhance the

quality of the generated rules and improve its running time.

c) Pheromone is associated with graph nodes, which represent the available terms to

construct rules, unlike the typical ACO techniques, where pheromone is associated

with edges between nodes. Applying such an idea can introduce terms dependency

and can generate better rules.

d) As for any ACO system, a balance between exploration and exploitation is needed. In

the current implementation of the algorithm, exploitation is dominant as all the ants

follow the pheromone of all previous ants. Giving some personality to each ant can

improve the exploration part and enhance the algorithm performance.

e) Ant-Miner can by hybridized with other evolutionary computation techniques.

f) Different heuristic functions and quality evaluation functions can be tried, and

different pruning procedure can be applied.

Most of the aforementioned issues have been tacked in further research

concerning this area of interest. The following chapter describes the work that has been

done on the Ant-Miner algorithm and focuses on the work related to the modifications on

the algorithm introduced in the thesis.

62

3.10 Ant-Miner Implementation

The work of this thesis has used a re-written Ant-Miner program that was built

using C# and Microsoft.NET technologies. Both of the original and the extended version

of the Ant-Miner algorithm were developed using the same aforementioned technology.

The following subsection describes the used data structures for the Ant-Miner

implementation and some of the code optimizations that were used. A comprehensive

profiling and analysis for the execution behavior of the code is exhibited as well. This is

done in order to point to the time consuming operations and give some speculation about

the need of the proposed extensions as well as comparing the execution performance of

these extensions to the original one.

3.10.1 Data Structures and Operations

 Construction Graph Node Representation: A node in the construction graph is

the decision component that an ant selects to construct its solution. In Ant-Miner, the

decision component is the attribute value that represents a term in a rule. The following

code shows the implementation of the node in the code.

public struct Node

{

 public int AttributeIndex;

 public int ValueIndex;

 public int [] ValueFrequency;

 public double PheromoneAmount;

 public double HeuristicValue;

 public double Probability;

 public bool UnusableValue;

 }

The node is represented as a structure which contains the data fields necessary to describe

the node entity. AttributeIndex is the index of the attribute in the dataset.

ValueIndex is the index of the value in the domain of this attribute.

63

ValueFrequency is an array which contains the frequency of occerance of this

attribute value for each class (this is needed to faclitate calculating the heuristic value

based on the information gain). PheromoneAmount represents the current amount of

pheromone associated with this node. HeuristicValue represents the value for the

heuristic function for this attribute value. Both PheromoneAmount and

HeuristicValue are used to calculate the value of the Probability field for a

given node. A boolean field is associated with each node, named

UnusableValue,used to indicate whether this value is still in use or not. This field is

set to true if it occures less than min_cases_per_rule in the remaining cases in the

training set. If so, this attribute will not be considered for selection in rule construction

procedure.

 Construction Graph Representation: The construction graph contains of all

nodes (the decisions components) in which an ant traverses to construction a rule

(solution). The construction graph is represented as a two-dimensional array of nodes,

which is declared in the swarm class and initialized in

BuildConstructionGraph() method, as shown in the following code.

private Node[][] _constructionGraph;

…

private void BuildConstructionGraph()

{

this._constructionGraph = new

Node[this._trainingSetDataTable.Columns.Count][];

for (int attributeIndex = 0; attributeIndex <

this._trainingSetDataTable.Columns.Count; attributeIndex++)

{

List<string> values = this.GetDistinctAttributeValues(attributeIndex);

this._constructionGraph[attributeIndex] = new Node[values.Count];

64

for (int valueIndex = 0; valueIndex <

this._constructionGraph[attributeIndex].Length; valueIndex += 1)

{

this._constructionGraph[attributeIndex][valueIndex].AttributeIndex =

attributeIndex;

this._constructionGraph[attributeIndex][valueIndex].ValueIndex =

valueIndex;

this._constructionGraph[attributeIndex][valueIndex].ValueFrequency = new

int[numberOfClasses];

}

}

…

}

An additional array is used to support the construction graph, attDistinctLeft

,is used to keep track of the remaning values in the attribute domain which still in used

(UnusableValue=flase). This helps the ants to discard the attribute whose values

became unsuable when constructing a rule. For exmaple, when

this._constructionGraph[i][j].UnusableValue is set to true,

attDistinctLeft[i]which represents the number of distinct values in attribute i

is decreased. When attDistinctLeft[i]becomes 0, this attribute will not be used

for rule construction in further iterations.

 Ant Representation: The ant entity is represented as a class that contains the

data fields for an ant object to help constructing a rule. The following is the

implementation code for the ant entity.

public class Ant

{

 private int _antNumber;

 private int[] _ruleAntecedents;

 private int _ruleclassIndex;

 private double _ruleQuality;

 private List<int> _instancesIndexList;

 private bool[] _memory;

…

65

}

As shown in the previous code, each ant has an array of integers,

ruleAntecedents, which repesents the partial rule the the ant is currently

constucting. The array elements are intially intialized with -1, and as the ant selects a

node from the construction graph, the value index is added to the element of the array

conspoding to its attribute index. Moreover, _memory array keeps track of whether an

ant has selected a value for a given attribute or not. For example, if

_memory[i]=false,this means that an ant can select a value from the domain of

attribute i from the construction graph. Each ant also keeps track of the instance index

of the cases that are coverd by the current rule, using _instancesIndexList. This

helps applying the minimum cases coverd by a rule when adding a new term to the rule

by searching in the occerances of this term only in _instancesIndexList.It also

helps in determinding the rule class by calcualting the class value that has the highest

occerance in the cases of_instancesIndexList.

 Ant Colony Representation: The AntColony class is the core of the Ant-Miner

program. In contains all the algorithm parameters as well as the methods needed for

running the algorithm. The following class diagram shows the design of the Ant-Miner

class. Note that the class contains other data fields and helper methods that are not shown

in the class diagram as they are only used for housekeeping operations.

66

Figure 3.1 - AntColony Class Diagram.

As shown in figure 3.1, AntColony class contains the properties needed for running

the Ant-Miner algorithm. It has ConstructionGraph, which represents the current

instance of the construction graph for the dataset at hand. The AntsNumber property

represents the number of permitted trials per iteration. The MaxIterationsNumber

value is the maximum global iterations that the Ant-Miner can perform before it covers

the minimum required cases from the training set by the generated rules. The

67

ConvergenceThreshold indicates when to determine that the ants have converged

on a specific rule. This is considered when the current ant has constructed a rule that is

the same as the previous ConvergenceThreshold-1 ant rules. .

MinCoveragePercentage represents the minimum cases to be covered by the

constructed rules before stopping to generate more rules. Finally, OutptAntRules is

the generated rule list.

 When a new object of the AtColony class is instantiated, the aforementioned

parameters are passed to its constructor to be set, and the

BulildConstructionGraph() is called, which is considered as a pre-processing

operation for running the algorithm program.

The Run() method is the main operation for executing the Ant-Miner Algorithm.

It starts as follows:

while (this._currentIterationNumber < MaxIterationsNumber &&

this._currentCoverage < this.MinCoveragePercentage)

{

this.InitializePheromone();

this.InitializeNodeInformation();

…

}

At the beginning of each iteration, the methods InitializeNodeInformation

and InitializePheromone are called. Both of them are called only once at the

beginning of each iteration. Then, the inner loop for ant trials begins to discover a rule for

the current iteration. As follows:

…

for (_currentIterationNumber = 0; _currentIterationNumber <

this.AntsNumber && !convergence; _currentIterationNumber++)

{

68

this._currentAnt = new Ant();

this.ConstructRule(this._currentAnt);

this.DetermineRuleClass(this._currentAnt);

this.CalculateRuleQuality(this._currentAnt);

this._currentAnt = this.PruneRule(this._currentAnt);

generatedAnts[_currentIterationNumber] = this._currentAnt;

if (_currentAnt.RuleQuality > generatedAnts[bestAntIndex].RuleQuality)

bestAntIndex = _currentIterationNumber;

this.UpdatePheromone(generatedAnts[bestAntIndex]);

convergence=TestConvergence();

}

this.OutputAntRules.Add(generatedAnts[bestAntIndex]);

this.RemoveCoverdCasesFromTrainingSet(generatedAnts[bestAntIndex]);

…

The previous code shows the logical implementation of each iteration of Ant-Miner.

On each iteration, several trials to discover a rule are performed until the maximum of

trials is reached (AntsNumber) or convergence became true. In each trial, a new

ant is created and referenced by _currentAnt.the _currentAnt constructs a rule

by invoking ConstructRule() method. This method calls

SelectNodeProbablistically(), which inturn calls

CalculateNodeProbabilities() method and uses a rolette-wheel procedure to

choose a node. Afer rule atecednets are chosen, DetermineRuleClass() is called,

which uses the _instancesIndexList associated with _currentAnt to

determined the class with the highest occerance in the covered cases by the current rule.

Then the rule quality is claculated and set to _currentAnt.RuleQuality. The

prunning procedure then takes palce by invoking PruneRule() method, which

iteratively calls DetermineRuelClase() and ClauclateRuleQuality()

methods after removing term by term. After that, the ant with the constructed, prunned

rule is added to the generatedAnts and the index of the best ant is updated.

69

The best rule is selected after several ant trials. This discovered rule is added to

OutputAntRules and the covered cases by this rule are removed from the training set.

3.10.2 Execution Profiling and Analysis

The performance of the algorithm has been discussed through the quality of its

output in the section 3.9. The quality of the rule set generated using Ant-Miner was

evaluated in terms of its classification accuracy and comprehensibility (number of rules

and number of terms per rule). However, the execution of the algorithm should be

profiled and analyzed in terms of running time. Such profiling helps in indicating which

operation takes a longer time in execution, and how any modification to the algorithm

could affect the running time. For example, a modification may be applied on the

algorithm that increases the number of trials needed to converge on a rule per iteration,

yet it could decrease the actual running time of a single iteration. Another modification

could decrease the overall iterations needed to stop execution, on the other hand, it might

be using a complex heuristic function or quality evaluation function that increases the

overall running. The following table exhibits an execution profile of the algorithm on

CarEvaluation dataset (see section 9.2 Chapter 9).

A metric of measure is presented to profile the execution of the Ant-Miner

algorithm. Running time, number of method calls, average running time for a single call

of the method and the percentage of the running time of the method to the whole

execution are recoded. Such a profiling gives a deep insight about the performance of the

execution of the Ant-Miner algorithm and highlights the points of the algorithm where

enhancements can be directed to and modification can be applied.

70

Method Time

(m.sec)

Calls

Avg. Time

(sec)

% to

Parent

% to

Total

Run() 5704.2 1 5704.2 100% 100%

>ConstructRule() 43878.46 1112 39.459 13% 13%

>>CalculateNodeProbabilities() 51 4105 0.0124 2% <1%

>>SelectNodeProbablistically() 0.9 4205 0.0002 < 1 % <1%

>PruneRule() 12136.6 1112 10.914 42% 47%

>>CalculateRuleQuality() 16777.06 2242 7.483 19% 34%

>>DetermineRuleClass() 27162.86 2242 12.115 15% 21%

>UpdatePheromone() 2.81 1112 0.0025 < 1 % <1%

>IntializeNodeInformation() 40744.29 8 5093.036 15% 14%

>IntializePheromone() 0.015 8 0.0018 < 1 % <1%

>BuildConstructionGraph() 1.02 1 1.02 <1% <1%

Table 3.1 - Ant-Miner Execution Profile.

As shown in Table 3.1, the PruneRule() method took the highest percentage

of the total running time (47%). This is because it calls 3 time consuming methods each

time it is called, namely CalcuateRuleQuality(), DetermineRuleClass()

and UpdateInstancesIndexList(). The first method

CalcuateRuleQuality() , which takes 24% of the total runing time, calculating the

quality of the rule using , which needs to scan the whole

training set each time it is called. DetermineRuleClass()uses the

InstanceIndexList field associated to the ant that contains the covered cases

indexes by the current rule to calculate the the class with the highest occuerance amoung

these instances. This is done by scanning the InstanceIndexList and takes 21% of

the running time. As rule term is removed during the prunning procedure, the

71

InstanceIndexList covered by the new rule changes, thus

UpdateInstancesIndexList()is called, this takes 11% of the run time.

IntializeNodeInformation() comes after the previous methods in

running time consumption (16%). This method involves scanning the training set to set

attribute value frequncey for each class and claculate its heuristic value.

3.11 Summary

In summary, this chapter has described the original version of Ant-Miner that was

published in 2002 [20]. Ant-Miner is an ACO based algorithm designed to discover

classification rules. Iteratively, a swarm of ant tries to discover a rule to be used for

building a rule-based classification model. Hence, each ant in the swarm wanders the

construction graph looking for terms to select for rule construction. The ant is influenced

in path selection via the amount of the pheromone on the terms and the heuristic value of

each term. After an ant finish constructing a rule, the quality of the rule is evaluated, and

the pheromone is updated on the trail that the ant took according to the rule quality. Rule

pruning takes place to remove irrelevant terms from the rules. As all the ants finish their

trials, the best generated rule is selected and added to the discovered rule list. The

algorithm is then repeated on the reduced training set after the covered cases by the

discovered rule are removed. After the minimum covered cases number is reached, the

algorithm stops, and the discovered ordered list of rules is ready for classifying new

unlabeled cases.

72

Chapter 4

ANT-MINER RELATED WORK

4.1 Introduction

In the previous chapter, a detailed description of the original version of Ant-Miner

was introduced. Ant-Miner was proposed by Parpinelli et al. [20] in 2002 as an ACO-

based algorithm for discovering classification rules from labeled cases. Empirical results

have chosen competitive performance to C4.5 and CN2 concerning predictive accuracy

on the test set and better generated rules in term of simplicity. However, Ant-Miner had

some issues that were tackled in later versions. This chapter aims to present the literature

review on Ant-Miner and the related work that has been done to improve it. The chapter

lists the various versions of Ant-Miner that have been introduced in the literature in the

order in which they were introduced in, along with a brief description of each. Section 4.2

presents Ant_Miner2 which introduced a new heuristic function for Ant-Miner. Section

4.3 presents Ant_Miner3 that suggested a new pheromone evaporation technique. A new

pruning procedure is described in section 4.4. An Ant-Miner algorithm for multi-label

classification is presented in section 4.5. Section 4.6 describes a new version which

discovers unordered rule sets. AntMiner+ is discussed in section 4.7. cAntMiner, which is

a version that copes with continuous attributes, is presented in section 4.8.

73

4.2 Ant_Miner2 [2002]

In Ant-Miner2, B. Liu et al. have introduced a density-based heuristic for rule

discovery [16]. The idea is that the ACO algorithm does not need accurate

information in this heuristic value since the idea of the pheromone should

compensate the small potential errors in the heuristic values. In other words, a simpler

heuristic value may do the job as well as the complex one. As a result, an easily

computable density estimation equation, shown in the equation (4.1) was proposed to

calculate a heuristic value :

 (4.1)

where:

 is the size of partition that occurred in.

 is the occurrence of the majority class in partition .

Although the density based function has less computational cost, Ant_miner2,

with the simple heuristic function based on the density of the majority class, has

introduced identical results to the original Ant-Miner, which were produced with entropy

as a heuristic value measure [16].

4.3 Ant_Miner3 [2003]

B. Liu, H. A. Abbass, and B. McKay have introduced a new version

(Ant_Miner3) [17] based on their previously proposed one (Ant_Miner2). They

contributed with two new modifications on Ant_Miner2 concerning pheromone update

state transition procedure. The modifications are described in the following subsections.

74

4.3.1 Pheromone Update Method

A new pheromone update method has been introduced in Ant_Miner3, show in

equation (4.2). In this original version of Ant-Miner, the pheromone evaporation process

is simulated by normalizing the value of each pheromone for each after

pheromone reinforcement. More precisely, this normalization is performed by dividing

the value of each by the summation of all on each node in the construction graph.

When a rule is constructed, only the terms occurring in the rule constructed by an ant

have their amount of pheromone increased by equation (3.6).In Ant_Miner3, the amount

of pheromone associated with each term that occurs in the constructed rule is updated by

equation (4.2), and the pheromone of unused terms is updated by normalization.

 (4.2)

where:

 is the pheromone evaporation factor, which controls how fast the old path

evaporates. This parameter controls the influence of the history on the current

pheromone trail. A large value of indicates a fast evaporation rate and vice versa.

A value 0.1 was fixed and used for the experimentation of this modification.

 represents the quality of the contracted rule, which ranges in .

4.3.2 State Transition Procedure

Pheromone amounts in the construction graph represent the current knowledge of

the colony which influences subsequent ants in choosing their paths. This benefits

exploitation of prior knowledge. But it increases the probability of choosing terms

belonging to previously discovered rules according to equation (4.2) In order to improve

75

exploration; Ant_Miner3 has introduced a new state transition procedure - shown in

Algorithm 4.1 - that is taken from [17].

Algorithm 4.1 - Ant_Miner3 State Transition Rule.

where:

 q1 and q2 are random numbers.

 is a parameter in [0,1].

 is the number of i-th attribute values.

 is possibility calculated using equation (4.2).

Therefore, the results not only depend on the heuristic functions and

pheromone , but also on a random number, which increases the likelihood of choosing

terms not used in previously constructed rules. If then is selected

randomly as a favor for exploration. Else, corresponds to an exploitation of the

knowledge available about the problem, as is selected based on heuristic functions

 and pheromone from equation (4.2). , which represents the

exploration/exploitation balancer, was set to 0.4.

Although Ant_Miner3 needed more ants to converge and find a solution, and the

discovered rules by Ant_Miner3 are more than rules discovered by the original version of

76

Ant-Miner, the mean accuracy of the rule sets discovered by Ant_Miner3 is higher than

that of Ant-Miner.

4.4 A New Rule Pruning Procedure [2005]

As was described in the previous chapter, Ant-Miner generates rules in the form

of IF <antecedents> THEN <consequent>, where antecedents are the terms that were

selected probabilistically during rule construction based on a heuristic value and

pheromone value . Irrelevant terms may have been included in the rule due to

stochastic variations in the term selection procedure and/or due to the use of a

shortsighted, local heuristic function, ignoring attribute interactions. Pruning can improve

the quality of a rule by removing irrelevant terms from the rule antecedent. As a result,

pruning can improve both the predictive accuracy and the comprehensibility of the rule.

A. Chan and A. Freitas have introduced a new classification rule pruning procedure for

Ant-Miner in [4]. The following section is a description of the original rule pruning

procedure followed by a section that describes the new rule pruning procedure introduced

in [4].

4.4.1 Original Ant-Miner Rule Pruning Procedure

In original version of Ant-Miner, the pruning procedure tries to improve the

quality of the constructed rule (measured by the rule‘s predictive accuracy), by removing

irrelevant terms from the rule antecedent. This is done by iteratively removing one

term at a time while it improves on the rule‘s quality [20]. This iterative process

stops when no term removal will further increase the quality of the current rule

undergoing pruning. The pruned rule with the best quality is then selected for pheromone

update. The procedure is described as follows in Algorithm 4.2.

77

Algorithm 4.2 - Rule Pruning Procedure of the Original Version of Ant-Miner.

Execute_pruning = true;

WHILE (Execute_pruning = true) AND (Number of terms in rule antecedent > 1)

FOR EACH (term in the current rule to be pruned)

Temporarily remove and assign to the rule consequent the most frequent class

among the examples covered by the rule antecedent;

Evaluate rule quality;

Reinstate term in rule antecedent;

END FOR

IF (rule quality was improved some iteration of the FOR loop)

THEN

Remove permanently the term whose removal improves current rule most;

ELSE

Execute_pruning = false;

END IF-THEN-ELSE

END WHILE

Rule pruning has proved to enhance the quality of the generated rules by Ant-

Miner. However, the rule pruning operation is the most time consuming part of the

algorithm (see Table 3.1 section 3.10.2 execution profile of Ant-Miner) as it is quite

sensitive to the number of attributes of the input data set. This is due to the fact that the

larger the number of attributes in the data being mined, in general the larger the number

of terms in a constructed rule before pruning, and so the larger the number of iterations in

78

the loops of Algorithm 4.2. Moreover, in each iteration of the FOR EACH loop, a term is

temporarily removed and the quality of the reduced candidate rule has to be computed by

the rule quality evaluation formula (3.5). The quality evaluation formula is a quite

computationally expensive operation as it scans the entire dataset to calculate values of

TP, FP, TN and FN.

4.4.2 The New Hybrid Rule Pruner for Ant-Miner

The new rule pruning procedure proposed in [4] is a hybrid rule pruner, combining

the original Ant-Miner‘s rule pruner with a rule pruner based on information gain. The

basic idea is to combine the effectiveness of the original Ant-Miner pruner (in terms of

maximizing predictive accuracy) with the speed of a rule pruner based on information

gain. This latter is very fast, because it does not require any scan of the training set. If the

number of terms in the rule antecedent of a generated rule exceeds the value of , the rule

first undergoes reduction of the number of terms to the value of parameter .

This reduction is obtained as follows. For each term within the rule antecedent, the rule

pruner computes the probability of selecting that term. This probability measure is based

on the pre-computed value of that term‘s information gain with respect to the class

attribute. Then the rule pruner selects number of terms with the probability of selecting

each term proportional to the information gain of that term. Once terms have been

selected the resulting reduced rule is placed back into Ant-Miner‘s original rule pruner. A

high-level description of the proposed hybrid rule pruner is described in the following

algorithm. For more details about the algorithm, refer to [4].

Algorithm 4.3 - Hybrid Rule Pruning Procedure.

79

INPUT:

a) information gain of all terms individually, calculated using the entire current

training set; /* previously done by another procedure of Ant Miner */

b) value of r /* user-defined parameter: number of terms in the current rule which will be

given to Ant-Miner‘s original rule pruner */

Reduced_rule = {};

Num_terms_selected = 0;

IF (number of terms in current rule‘s antecedent >)

THEN

WHILE (Num_terms_selected <)

FOR EACH (term in current rule‘s antecedent)

Calculate probability of selecting a term as:

 / *T = number of terms in the rule antecedent */

END FOR

Create roulette wheel for selection and select one Term, called selected_term, by

spinning the wheel;

Reduced_rule = Reduced_rule selected_term;

Remove selected_term from current rule‘s antecedent to avoid reselection;

Num_terms_selected = Num_terms_selected + 1;

END WHILE

Assign to the consequent of the Reduced_rule the most frequent class among all examples

covered by the rule;

80

Run Ant-Miner‘s original rule pruner on Reduced_rule;

ELSE

Run Ant-Miner‘s original rule pruner on current rule;

END IF-THEN-ELSE

Experimental result has shown that, in general, the hybrid pruner significantly

reduced the computational time of Ant-Miner, by comparison with the computational

time taken with the original rule pruner, without sacrificing the accuracy of the

generated rules. Moreover, shorter rule lengths were obtained in general by applying the

new pruning procedure which enhanced the comprehensibility of the generated rules.

4.5 Multi-Label Ant-Miner (MulAM) [2006]

Multi-label classification principles are similar to single- label classification

ones; the aim is to find a classification model that is able to describe the class attribute(s)

as a function of input attributes from labeled cases so that labels of new case can be

predicted using this model. However, in multi-label classification there are two or

more class attributes to be predicted. As a result, the consequent of a classification

rule contains one or more attribute prediction, each prediction involving a different

class attribute.

A. Chan and A. Freitas have introduced a version of Ant-Miner, called (MulAM)

that copes with multi-label classification [3]. Although several workarounds have been

used to apply traditional classification techniques to solve multi-label classification

problems, none of them proved efficient in doing such a task. One approach is to split

the original dataset into near identical datasets, where each contains all input

81

attributes and all cases, but each dataset produced in this way contains only one of the

class attributes to be predicted. This results in requiring the classification

algorithm to be trained on nearly the same dataset several times: as many as the

number of the class attributes. This technique ignores possible correlations between class

attributes, thus the resulting rules lakes the appropriate comprehensibility. Moreover, it‘s

is computationally expensive. Another approach is to convert the existing class

attributes into a single class attribute, where each value of this new class attribute

represents a combination of the class attributes that were initially present in the

data set. However, by doing such a workaround, the number of values of the new single-

class attribute will increase exponentially with the number of original class

attributes. Therefore, it becomes more difficult to predict a class value, as the

number of cases associated with any given value of the new single class attribute

decreases considerably, reducing the amount of information to effectively predict

each class value.

The following algorithm was proposed in [3] as a version of Ant-Miner, an Ant

Colony classification rule generation technique that copes with multi-label datasets:

Algorithm 4.4 - Multi-Label Ant-Miner (MuLAM).

TrainingSet = {set of all training examples}

DiscoveredRuleList = {}

WHILE (TrainingSet > MaxUncovExamples)

 ; /* ant index */

Calculate information gain of each term considering all class attributes based on current

training examples;

82

For each class attribute , initialize all cells of the pheromone matrix

REPEAT

 starts with an empty partial rule ;

Current ruleset = { };

WHILE ((there is at least 1 unused attribute) AND (there is at least 1 unpredicted

class attribute))

 chooses, out of the unused terms, a term to be added to current partial rule

 , with a probability proportional to the product of a heuristic function and the

pheromone;

IF (after adding the chosen term to the partial rule the rule will still cover more

than MinExamplesPerRule)

THEN Add the chosen term to the current partial rule ;

RuleCons = ;

FOR EACH (Class attribute)

IF (partial Rule predicts class attribute with high confidence)

THEN

RuleCons = RuleCons È (predicted class for class attribute);

Mark class attribute as predicted;

END IF

END FOR EACH

IF (RuleCons) THEN

Create complete rule (with rule format IF … AND … THEN

RuleCons);

83

 = U ;

END IF

ELSE

Quit this WHILE loop;

END IF-THEN-ELSE

END WHILE

IF (there are still unpredicted class attributes) THEN Create one complete rule predicting

each of those class attributes;

FOR EACH (class attribute predicted by this rule)

Create a temporary IF () THEN ;

Use original Ant-Miner pruning technique to prune this temporary rule. Instead of

allowing the consequent to be modified during pruning, the current consequent is

kept fixed, which will potentially produce a new only;

END FOR

END IF

FOR EACH (rule in)

Update pheromone matrix for each predicted class attribute in the rule,

increasing pheromone of terms in rule antecedent and reducing pheromone

(evaporation via normalization) of terms not used in the rule. Pheromone

increasing is based on quality of partial rule predicting class attribute only;

 ;

END FOR

UNTIL (t ≥ MaxNoAnts)

84

Choose best set of rules among those generated by all Ants in current population

by using the rule quality measure;

Add to DiscoveredRuleList;

 TrainingSet = TrainingSet – {set of examples where all the class attributes have been

correctly predicted by };

END WHILE

In MuLAM, each ant does not produce a single rule like in the original

Ant-Miner. Rather, each ant discovers a candidate rule set. The reason for this is due to

addressing the multi-label classification task, where there are multiple class attributes

to be predicted. Each ant discovers at least one rule and at most a number of

rules equal to the number of class attributes, a different rule for each class to be

predicted. An ant will discover a single rule only in the case where that rule is considered

good enough to predict all class attributes. After an ant constructs its rule

antecedents, the selection of prediction class value occurs. Before the algorithm makes a

prediction for this current rule, it initializes the rule consequent with the empty set. This

rule consequent holds all class attribute (with empty values) that are being predicted

by the rule. The ant enters the FOR loop, where it processes each class attribute

separately. So for every class attribute, the algorithm then decides under a certain pre-

pruning criteria whether the current class attribute should be added to the rule

consequent as a prediction. A detailed description of the algorithm is found in [3].

85

4.6 Ant-Miner for Discovering Unordered Rule Sets [2006]

J. Smaldon and A. Freitas have introduced one of the main important

contributions to Ant-Miner, which is fixing in advance the class predicted by the rule

[23]. The basic idea is to set the class as a consequent of the rule before selecting the

terms that construct the rule antecedents. In the original Ant-Miner, ants chose terms

for a rule with the goal of decreasing entropy in the class distribution of examples

matching the rule in construction. The consequent of the rule is then assigned afterwards

by determining the class value that would produce the highest quality rule. On the

other hand, in Unordered Rule Set Ant-Miner, as the class is set before rule construction,

the terms are chosen with respect to its relevance to the selected class. The approach has

improved the quality of the generated rules in terms of accuracy. The following algorithm

describes the proposed version in [23].

Algorithm 4.5 - Unordered Rule Set Ant-Miner.

Discovered Rule Set = {} /* initialize rule set with empty set */

FOR EACH Class

TrainingSet = {all training cases}

PositiveSet = {training cases of current class}

NegativeSet = TrainingSet – PositiveSet

WHILE (|PositiveSet| > max_uncovered_cases)

 ;

 ;

 initialise all trails to the same amount of pheromone;

 REPEAT

86

 starts with an empty rule and incrementally constructs a classification

rule by adding one term at a time to the current rule;

Prune rule ;

 IF (LaplaceCorrectedConfidence() > RuleConfidenceThreshold)

 THEN increase pheromone of terms in rule

END IF

Update pheromones in all other terms by normalizing the pheromone

values (simulating evaporation)

IF (equals -1)

 THEN ;

 ELSE ;

END IF

 ;

 UNTIL (i No_of_ants) OR (j No_rules_converg)

Choose the best rule among all rules constructed by all ants;

Add rule to DiscoveredRuleSet;

TrainingSet = TrainingSet – {set of positive cases covered by };

PositiveSet = PositiveSet – {set of positive cases covered by };

END WHILE

END FOR

As shown in algorithm 4.4, an extra For-Each loop is added as the outer loop of

the algorithm, iterating over the values in the class attribute domain. Each value is set as a

87

rule consequent for the rules to be built by subsequent ants. Each iteration of the For-Each

loop discovers an unordered set of rules, all of which predict the current class value. At

the beginning of each iteration, the entire training set is reinstated, so that a maximal

number of negative examples are available to the algorithm. Ants discover rules from

the training data until the number of positive examples (belonging to the current

class) remaining in the dataset that have not been covered by a discovered rule is

less than or equal to the value determined by the max_uncovered_cases parameter.

As the class for the rules is known prior terms selection, a better heuristic function

is used to focus on the terms that have more relevance to the current class. The Laplace-

corrected confidence is used, as follows:

 (4.3)

where | , k| is the number of training cases having and the current

positive class k, | | is the number of training cases having and

no_of_classes is the number of values in the class attribute‘s domain.

As for rule quality evaluation and pheromone update, the same fitness function

used in the original Ant-miner is used for this version (see equation 3.5). However, a

threshold formula has been added to determine whether to accept this rule or not. The

formula is defined as folows :

 (4.4)

where |k| is the number of training cases with the current (positive) class, and

|training set| is the total number of cases in the current training set.

88

The new proposed version of the Ant-Miner, where the class of the rule is fixed

before rule construction has shown to be a very good improvement in regards to the

discovered rules in terms of rule accuracy and number of terms. However, the whole

algorithm should be repeated for each class value, which increases the number of the

overall iterations needed to discover rules covering the minimum needed cases.

Moreover, the number of generated rules is larger than the number of rules generated by

Ant-Miner, which affects the quality of the output in terms of simplicity.

4.7 AntMiner+ [2007]

AntMiner+, which was proposed by D. Martens et al. [18], is considered another

important version of Ant-Miner with several modifications which enhanced the

performance of the algorithm. The following section describes the main differences in the

AntMiner+.

4.7.1 MAX-MIN Ant System

The first modification in AntMiner+ is utilizing the MAX-MIN Ant System [24].

As was described in Chapter 2 section 2.4.2, the MMAS has a maximum and a minimum

value of the pheromone on the construction graph. Initially, the pheromone on the

construction graph is initialized with . As the pheromone is updated on the

construction graph (deposited and evaporated), the pheromone amount cannot exceed

 or go bellow . The idea behind this is to improve exploration and avoid early

stagnation of the swarm. Moreover, only the ant that describes the best rule will update

the pheromone of its path, which balances the exploitation aspect in front of the

aforementioned pheromone clipping technique that keeps the exploration aspect.

89

4.7.2 Construction Graph

The construction graph for AntMiner+ is a directed acyclic graph (DAG) where

the decision components are the edges which connect the nodes that represent the term

constructing the rule antecedents. The following figure describes the (DAG) construction

graph of AntMiner+:

Figure 4.1 - Construction Graph for AntMiner+. [18]

As an ant starts to construct a rule, an ant should choose from each pool of terms

which represent the values of an input attribute. After selecting a value from the current

attribute it can then move to the next attribute. A value of nil is added to each attribute

value‘s pool to give a probability of bypassing an attribute. Each value in attribute is

connected to all the values of the following attribute . The pheromone is associated

with edges between the nodes, in contrast to the original version of Ant-Miner where the

pheromone is associated with terms themselves. This introduces attribute value

dependency. However, the constructed rules can be sensitive to the attributes order in the

construction graph.

90

4.7.3 A Class is Selected before Rule Construction

In AntMiner+ the ant selects the class value before constructing the rule. Thus, an

extra vertex group is added that comes first in the construction graph. This is similar to

considering the class variable as just one of the variables, treated as such when

calculating the heuristic values and pheromone update. The class value is selected

probabilistically according to the amount of pheromone on the edge leading to it. This

amount of pheromone indicates that this class value has contributed in classifying a rule

with high quality, which should be selected in subsequent trials. The following figure

shows a path of an ant on the AntMiner+ construction graph:

Figure 4.2 - A Path of an Ant in AntMiner+. [18]

Since the rule consequent is known before the rule construction, the heuristic function is

defined as follows:

 (4.5)

where

 is the portion of the dataset covered by .

91

 is the current selected class.

The quality is evaluated as rule confidence + rule coverage.

Multiple ants in the same iteration can construct rules with different class as a

consequent of the rule. However, the pheromone is shared by all ants constructing rules

with different consequents. Any ant is influenced by the pheromone dropped by any other

ant constructing similar or different labeled rule. The term that leads to construct a good

rule with class Cx as a consequent does not necessary lead to construct a good rule with

Cy as a consequent. This could affect the quality of generated rules.

4.7.4 Handling Continuous Attributes

In the original Ant-Miner version, the continuous-valued attributes should be

discretized as a pre-processing step. In AntMiner+, each continuous attribute is

represented by two pools of values

 and
 . The values selected by the ant

during the rule construction from

 and
 define the range of the continuous

value suitable for the current constructed rule. However, both

 and
 have a

discrete set of values. Figure 4.2 shows the idea on the construction graph.

4.7.5 Weight Parameters

In the typical (ACO) state transition formula, the heuristic value component

and the pheromone value component are each raised to the power of and

respectivly. The powers are used to gives different emphasis on each component. In the

Original Ant-Miner, equals equaling to 1.0. AntMiner+ allows other values to be

chosen and actually lets the ants themselves choose suitable values. This is done by

introducing two new vertex groups in the construction graph: one for each weight

92

parameter. The values for the weight parameters were limited to integers between the

value of 1 and 3.

Figure 4.3 - The Complete Construction Graph for AntMiner+. [18]

4.8 cAnt-Miner [2008 – 2009]

Otero et al. [19] have proposed an Ant-Miner extension — named cAnt-Miner (Ant-

Miner coping with continuous attributes) — which can dynamically create thresholds on

continuous attributes‘ domain values during the rule construction process. Since

cAntMiner has the ability of coping with continuous attributes ―on-the-fly‖, continuous

attributes do not need to be discretized in a preprocessing step. Firstly, cAnt-Miner

includes vertices to represent continuous attributes in the construction graph. Secondly, in

order to compute the heuristic information for continuous attributes, cAnt-Miner

incorporates a dynamic entropy-based discretization procedure: a threshold value needs

to be selected in order to dynamically partition the set of examples into two intervals:

 and . The best threshold value v is the value v that minimizes the entropy of

the partition, computed as:

93

 (4.6)

where:

 is the total number of examples in the partition of training examples where the

attribute has a value less than .

 is the total number of examples in the partition of training examples where the

attribute has a value greater than or equals .

 is the total number of training examples.

Thirdly, when a continuous attribute vertex () is selected by an ant to be added

to its current partial rule, a relational operator and a value is computed using a similar

procedure as for the heuristic information. Fourthly, the pheromone updating procedure

has been extended to cope with continuous attribute vertices. In the case of continuous

attributes, pheromone values are associated with continuous attribute vertices not

considering the operator and threshold value, that is, there is a single entry in the

pheromone matrix for each continuous attribute, in contrast to multiple entries for

nominal attributes — nominal attributes have an entry for every pair.

4.9 Summary

This chapter has presented a literature review on Ant-Miner and the related work

that has been done on the original version. Several modifications have been introduced to

improve the quality of the algorithm by trying different heuristic functions, setting the

class before constructing the rule antecedents, applying a new rule pruning procedure,

proposing different pheromone update strategies, handling multi-label classification, and

trying to cope with continuous attributes. However, a lot of other ideas can be applied to

94

enhance the exploration\exploitation behavior of the algorithm. Moreover, different

pheromone update (deposit and evaporation) can be tried.

95

Chapter 5

USING LOGICAL NEGATION OPERATOR

5.1 Introduction

The first extension to the original Ant-Miner algorithm presented in this thesis is

using the logical negation operator in constructing rule antecedents. In which case, terms

contained in the constructed rules can be in the form of <attribute Not= value>. Such

terms match more cases than the original form, leading to constructing rules with a

possible higher coverage. The advantage of this extension is that it can reduce the number

of the generated rules, which in turn improves the comprehensibility of the output. In

order to apply this extension, allowing using logical negation, a simple modification is

done on the construction graph. Results in Chapter 9 shows that using logical negation

operators not only decreases the size of the generated rule set, but also increases its

classification accuracy. This chapter describes in detail this extension and the

modifications on the algorithm to support it. Data structure updates and program

execution performance are discussed to show the implication of enabling such a

modification on the algorithm.

5.2 Using Logical Negation

In the original and various versions of Ant-Miner, the construction graph consists

of nodes representing attribute values of the dataset. These nodes are the decisions

components (terms) that are selected to construct a solution (rule antecedents) by ants

traversing the construction graph. The set of nodes in the construction graph is:

96

where:

 i is i-th attribute of the features that describes the case in the dataset.

 n is the number of attributes in the construction graph.

 is the j-th value of i-th attribute.

Thus the constructed rule antecedent will be in the form of:

To allow using the logical negation operators in the antecedents of constructed

rules, the values and their negation per attribute will be added to the construction graph.

The set of nodes (N) in the construction graph will be:

Thus, the available decision components in the construction graph allow constructing rule

antecedents in the form of:

Negation values are added for the attribute that has more than two values in its

domain. This supports constructing terms in the form of <attribute=value>. An example

of a generated rule using logical negation operator is: ―IF <price = low> AND <condition

NOT = bad> THEN <Class=Buy>‖. Terms that have logical negation match more cases

on the regular terms. This leads to construct rule with high coverage. More precisely,

assume we have the following subset of 8 cases taken from a dataset that has two

attributes and the class:

97

Condition Safety Class

Excellent Bad Buy

Very Good Very Good Buy

Good Good Buy

Good Very Good Buy

Bad Very Good Wait

Bad Very Good Wait

Bad Good Don‘t Buy

Bad Bad Don‘t Buy

If the logical negation operator is used for constructing classification rules for the

previous dataset, 3 ordered rules will be needed to correctly classify the whole dataset.

These rules are as follows:

1) IF <Condition NOT = Bad> THEN <Class =Buy>

2) ELSE IF< Condition = Bad > AND <Safety=Very Good> THEN <Class=Wait>

3) ELSE <Class= Don‘t buy>

Because the rules generated with the logical negation operator have a higher coverage, the

output rule set size becomes smaller than the rule set generated without using logical

negation. The following is the generated rules without using logical negation:

1) IF< Condition = Bad > AND <Safety=Very Good> THEN <Class=Wait>

2) ELSE IF< Condition = Bad > AND <Safety=Good> THEN <Class=Don‘t Buy>

3) ELSE IF< Condition = Bad > AND <Safety=Bad> THEN <Class=Don‘t Buy>

4) ELSE <Class= Buy>

98

At least 4 rules are needed to correctly classify the pervious labeled cases, or three

rules that classify some cases incorrectly.

Using negative attributes doubles the size of the construction graph. However, it

enables constructing rules that have greater coverage of the training cases. Hence, it

produces a lower number of rules, which improve the comprehensibility of the output.

Moreover, a reduced number of iterations are needed to reach the threshold of the number

of cases to be covered, which reduces the overall runtime of the algorithm (see section

5.4.2 execution profile). Results in Chapter 9 also show that it has a better performance in

terms of accuracy in addition to the reduced number of iterations and the simpler

(smaller) rule set.

5.3 Algorithm Modifications

No modification is needed in the Ant-Miner algorithm to support using logical

negation operator in constructing classification rules. Pheromone update procedure is

done regularly with the negation values and the heuristic value is calculated for the

negation attribute values the same as it is calculated for regular attribute values, using

formula (3.4) in Chapter 3, which involves information gain, or any other heuristic

functions that were used in various Ant-Miner versions (i.e. density based, or Laplace-

corrected confidence) (see Chapter 4).

It is worthy to mention that the choice of the rule evaluation function can affect

the efficiency of the generated output rules in terms of classification when using logical

negation. Because using logical negation operators generates rules with high coverage,

the confidence of the rule (which affects its classification accuracy) may be damaged.

Using quality evaluation function that put more emphasis on the rule confidence should

99

overcome this drawback and balance between the coverage of the rule and its

classification accuracy.

5.4 Logical Negation Operator Implementation

This section discusses the modifications that have been done on the code of the

original Ant-Miner program to avail the use of logical negation operator in constructing

rule antecedents. The execution performance with the use of this extension is discussed as

well.

5.4.1 Data Structure and Operation

A few code modifications have been added to the original Ant-Miner program in

order to implement using logical negation operator. First, a new data field has been added

to the data structure that represents the node in the construction graph. IsNegation is a

Boolean data field that indicates whether this node represents an attribute value or its

negation value. The code for the new node data structure is described as follows:

public struct Node

{

 public int AttributeIndex;

 public int ValueIndex;

public bool IsNegation;

 public int [] ValueFrequency;

 public double PheromoneAmount;

 public double HeuristicValue;

 public double Probability;

 public bool UnusableValue;

 }

The second modification is in building the construction graph. Each distinct value

in the domain of an attribute is added twice in the construction graph, the first time the

added, IsNegation is set to false, while the second time it is set to true. By this, each

attribute value has two exisitances in the construction graph, with and without negation.

This only applies on the attributes that have more than two values in their domains. Such

100

modification affects the logic of the BuildConstructionGraph() method. The

new implementation of the method is as follows:

private void BuildConstructionGraph(bool useLogicalNegation)

{

this._constructionGraph = new

Node[this._trainingSetDataTable.Columns.Count][];

for (int attributeIndex = 0; attributeIndex <

this._trainingSetDataTable.Columns.Count; attributeIndex++)

{

List<string> values = this.GetDistinctAttributeValues(attributeIndex);

this._constructionGraph[attributeIndex] = new Node[values.Count];

for (int valueIndex = 0; valueIndex <

this._constructionGraph[attributeIndex].Length; valueIndex += 1)

{

this._constructionGraph[attributeIndex][valueIndex].AttributeIndex =

attributeIndex;

this._constructionGraph[attributeIndex][valueIndex].ValueIndex =

valueIndex;

this._constructionGraph[attributeIndex][valueIndex].IsNegation= false;

this._constructionGraph[attributeIndex][valueIndex].ValueFrequency = new

int[numberOfClasses];

if(useLogicalNegation && values.Count>2)

{

this._constructionGraph[attributeIndex][valueIndex].AttributeIndex =

attributeIndex;

this._constructionGraph[attributeIndex][valueIndex].ValueIndex =

valueIndex;

this._constructionGraph[attributeIndex][valueIndex].IsNegation= true;

this._constructionGraph[attributeIndex][valueIndex].ValueFrequency = new

int[numberOfClasses];

}

}

}

…

}

 When a node with IsNegation field set to true added to the rule antecedent,

the treatment of the rule case matching differs, as a case would be a match if the value of

a given attributes in the case does not equal the value of the selected node (term) in the

101

rule with the logical negation. This implies a need of a modification in two methods,

namely CalculateRuleQuality() and IntializeNodeInformation().

The former involves rule case matching, and the latter involves calculate attribute value

frequencies and heuristic values.

5.4.2 Execution Profiling and Analysis

The following table exhibits the execution profile of Ant-Miner program after

implementing the use of logical negation operator. Results of the output quality in terms

of predictive accuracy and comprehensibility are shown in Chapter 9. The following

profile shows how such a modification has affected the program running time.

Method Time

(m.sec)

Calls

Avg. Time

(m.sec)

% to

Parent

% to

Total

Run() 4188.4 1 4188.4 100% 100%

>ConstructRule() 586.376 395 1.484 14% 14%

>>CalculateNodeProbabilities() 18.84 515 0.813 2% <1%

>>SelectNodeProbablistically() 0.84 515 0.813 < 1 % <1%

>PruneRule() 1968.548 595 3.308 47% 47%

>>CalculateRuleQuality() 1130.868 514 2.2 20% 27%

>>DetermineRuleClass() 628.26 514 1.222 11% 15%

>UpdatePheromone() 48.04 595 0.703 < 1 % <1%

>IntializeNodeInformation() 1047.1 5 209.42 25% 25%

>IntializePheromone() 0.24 5 83.768 < 1 % <1%

>BuildConstructionGraph() 1.8 1 418.84 <1% <1%

Table 5.1 - Ant-Miner with Logical Negation Execution Profile.

As shown in Table 5.1, the overall running time of the Ant-Miner program with

the use of logical negation operator has decreased by 30 % in comparison to the running

time of the original An-Miner shown in Table 3.1. Although the running time of all of the

102

methods that takes the largest amount of the execution decreased from 30% to 60%, the

overall all running time reduction is because the application has executed a fewer number

of iterations, and needed less number of trials per each iteration. Therefore, the number of

calls to the time consuming methods decreased, thusly decreasing the overall running

time.

It is reasonable that the running time for ConstructRule() and

IntializeNodeInformation() increases with the use of logical negation

operator. This is due to the duplication of the number of nodes in the construction graph.

For the former method, the number of to select from increases, so the

CalculateProbabilities() and SelectNodeProbablistically() take

more time. For the latter method, more time is needed to set node information regarding

occurrence frequencies and heuristic values, as more nodes are available in the case of

using logical negation. Nonetheless, according to the running time compared to the

original one, the increase of running time of each method did not affect the overall

running time.

5.5 Summary

This chapter has introduced the first extension to the original Ant-Miner

algorithm, which is the use of logical negation operator. Allowing the use of logical

negation operator in constructing rule antecedents produces rules with higher coverage

and decreases the number of rules needed to cover the minimum coverage needed to stop

execution. This enhances the output in terms of comprehensibility and decreases the

overall running time. Moreover, results show that it has a positive effect on the

classification accuracy of the generated rules.

103

104

Chapter 6

INCORPORATING STUBBORN ANTS

6.1 Introduction

Stubborn ants were introduced in 2008 in [1]. The idea is to promote search

diversity by having each ant be influenced by its own history of constructing solutions in

addition to the pheromone trails left by other ants. Basically, each ant does several trials

in the execution of the algorithm. Each ant memorizes the best solution that it has

constructed during its own trials. If a term belongs to the antecedents of rule, then the

term will have an amplified probability of being selected by the ant, with the degree of

amplification depending on the quality of the solution. Such a technique helps in finding

different solutions as each ant will have a partially different search path in the

construction graph, which leads to improving the quality of the output rules in terms of

classification accuracy.

6.2 Stubborn Ants

In the original version of Ant-Miner algorithm, the state transition procedure

depends on the heuristic value for a node representing a given term and its pheromone

level currently associated with this node (see equation 3.2). Thus, the probability of

selecting does not differ from an ant to another. In other words, an ant does not

have any identity or special behavior in selecting terms and constructing a rule. The idea

behind stubborn ants is to promote search diversity by having each ant be influenced by

its own history of constructing solutions.

105

Stubborn ants were first introduced by A. M. Abedlbar in [1]. Originally it was

used to solve optimization problems such TSP. In stubborn ants, not only can an ant learn

from the experience of other ants via pheromones - which gives a clue about the quality

of the selected decisions (term) in the previous trials, each ant can also learn from its own

history of constructing solutions. Consequently, each ant will have a partially different

search path, which introduces diversity in the colony. Basically, each ant does several

trials in the execution of the algorithm. Each memorizes the best solution
 that it

has constructed during its own trials. The probability to be selected by is

amplified by the quality of the best solution
 that the ant memorizes from its history if

the belongs to the antecedents of rule
 .

To incorporate stubborn ants in the Ant-Miner algorithm, the following pseudo-

code shows the required modification on Ant-Miner algorithm:

Algorithm 6.1 - Ant-Miner with Stubborn Ants.

TrainingSet = {all training cases};

DiscoveredRuleList = []; /* initialize rule list with empty list */

AntList=Ants[Ants Number];

WHILE (TrainingSet < Min_covered_cases)

 ; /* ant index*/

 ; /* convergence test index */

 ; /* trial index */

Initialize all trails with the same amount of pheromone;

REPEAT

FOR EACH in AntList

106

 starts with an empty rule and incrementally constructs a classification rule

 by adding one term at a time to the current rule; /* influenced by pheromone

amount, heuristic function value and best history rule*/

Prune rule ; /* remove irrelevant terms from rule */

Update the pheromone of all trails by increasing pheromone in the trail followed

by (proportional to the quality of) and decreasing pheromone in the

other trails (simulating pheromone evaporation);

IF (Quality > History Best Rule Quality)

THEN History Best Rule = /* update best history rule */

IF (is equal to) /* update convergence test */

THEN ;

ELSE ;

END IF

 ;

END FOR EACH

 ;

UNTIL (t ≥ No_of_Ants) OR (j ≥ No_rules_converg)

 ;

UNTIL (i ≥ No_of_trials)

Choose the best rule among all rules constructed by all the ants;

Add rule to DiscoveredRuleList;

TrainingSet = TrainingSet - {set of cases correctly covered by };

END WHILE

107

As shown in Algorithm 6.1, Ant-Miner with stubborn ants, a set of ants does

several trials to construct classification rules. Therefore, an extra outer loop is added

before the FOR EACH ant loop. This outer loop helps each ant to do several trials during

the execution of the algorithm. Note that the size of the colony affects the behavior of the

stubborn ants; as the number of the ants decreases, the stubbornness effect is more

applied, given that the total number of trials per iteration is fixed. For example, given that

the maximum trials allowed per iteration is 3000, if the colony has 3000 ants, then each

ant will do only one trial, which is the case of the original algorithm. On the other hand, if

the size of the colony is 30, in such case each ant can do up to 100 trials. And if the size

of the colony is 10, then the number of iterations that can be performed by a single ant is

300. Therefore, the number of ants and the number of trials per ant should be adapted for

each data set according to the required average trials per iteration in order to amplify the

effect of stubborn ants to the appropriate amount.

Each ant memorizes the rule that has best quality from the rules that it constructed

in the previous trials. The quality of the best rule influences the ant‘s decision in choosing

of a term in the current rule construction. The probability that a term will be added to

the current rule is given by the following formula:

 (6.1)

where:

 if belongs to current ant‘s history

best rule,
 , otherwise = .

 is the value of a problem-dependent heuristic function.

108

 is the amount of pheromone associated with at iteration t.

 is the total number of attributes.

 bi is the number of values in domain of the i-th attribute.

 is the quality of the current ant best history rule.

Stubborn ants add individuality to each ant, which promotes exploration and

diversity in the algorithm. This tends to discover better solutions. Results show an

increase of rule accuracy when using stubborn ants as well as a decrease in number of

trials per iteration.

6.3 Stubborn Ant Implementation

This section discusses the modifications needed on the implementation of the

original Ant-Miner program in order to enable the use of stubborn ants. Implications on

the execution running time are discussed as well.

6.3.1 Data Structures and Operations

The first modification on the code that was made to enable the use of stubborn

ants is on the data structure representation of the ant. The following code shows the new

ant data structure representation to cope with stubborn ants:

public class Ant

{

 private int _antNumber;

 private int[] _currentRuleAntecedents;

 private int _currentRuleclassIndex;

 private double _currentRuleQuality;

private int[] _historyBestRuleAntecedents;

private double _historyBestRuleQuality;

 private List<int> _instancesIndexList;

private bool[] _memory;

…

}

109

In order to enable the ant to memorize its best rule constructed thus far, two new

data fields are added to the ant data structure: hisoryBestRuleAntecedents, an

array of integers representing the indices of attributes values structuring the best rule

discovered by the ant so far, and historyBestRuleQuality,which is the quality of

the this rule.

The second modification is in the logic of executing the algorithm. First, an array

of ants is intialized with the number of ants in the colony, so that each ant can live to

perform more than a trial, memorizing its best constructed rule. In case of stubborn ants

we have three nested loops. The (while) loop that represents global iterations in which

each iteration a rule is discovered. Inside it, a new loop is added, which is (for) loop that

repesents the number of trials that each ant would perform. Finally, in each iteration of

the previous loop, a (for each ant) loop iterates on the ants in the colony so that each

perfrom a rule discovery trial. The following code shows the implementation of the logic:

Ant[] ants = new Ant[AntsNumber];

while (this._currentIterationNumber < MaxIterationsNumber &&

this._currentCoverage < this.MinCoveragePercentage)

{

this.InitializePheromone();

this.InitializeNodeInformation();

this.InitiazlizeAnts();

…

for (_currentIterationNumber = 0; _currentIterationNumber <

this.AntsNumber && !convergence; _currentIterationNumber++)

{

foreach (Ant ant in ants)

{

this._currentAnt = ant;

this.ConstructRule(this._currentAnt);

…

110

After each ant constructs a rule, if the new constructed rule has a better quality

than the current memorized rule, then this new rule is set to

hisoryBestRuleAntecedents and becomes the ant best constructed rule, as

follows:

…

generatedAnts[trialIndex] = this._currentAnt;

if (this._currentAnt.CurrentRuleQuality >

this._currentAnt.HistoryBestRuleQuality)

{

this._currentAnt._historyBestRuleQuality =

this._currentAnt._currentRuleQuality;

this._currentAnt._historyBestRuleAntecedents =

this._currentAnt._currentRuleAntecedents.Clone() as int[];

}

…

The third important modification that is done on the code to use stubborn ants is in the

CalculateNodeProbabilities() method in order to amplify the probability of

selecting a node if its term exists in the current ant‘s _historyBestRule. The code is

modified as follows:

…

for (attributeIndex = 0; attributeIndex < this._constructionGraph.Length

- 1; attributeIndex++)

{

for (valueIndex = 0; valueIndex <

this._constructionGraph[attributeIndex].Length; valueIndex++)

{

if (!ant.Memory[attributeIndex])

{

double value =

this._constructionGraph[attributeIndex][valueIndex].HeuristicValue

*

this._constructionGraph[attributeIndex][valueIndex].Pheromone;

if (ant.HistoryBestRule != null && ant.HistoryBestRule[attributeIndex]

!= -1)

{value += value * ant._historyBestRuleQuality;}

111

value = value / sum;

this._constructionGraph[attributeIndex][ValueIndex].Probability = value;

}

else

this._constructionGraph[attributeIndex][ValueIndex].Probability = 0.0;

}

}

6.3.2 Execution Profiling and Analysis

The following table exhibits the execution profile of Ant-Miner program after

implementing the use of stubborn ants (as described in the previous subsection). The

execution profile shows how such a modification has affected the running time of the

program.

Method Time

(m.sec)

Calls

Avg. Time

(m.sec)

% to

Parent

% to

Total

Run() 5017.3 1 5017.3 100% 100%

>ConstructRule() 652.249 907 0.719 13% 13%

>>CalculateNodeProbabilitie() 87.03 4105 0.021 2% <1%

>>SelectNodeProbablistically() 0.9 4205 0.0002 < 1 % <1%

>PruneRule() 2358.131 907 2.599 42% 47%

>>CalculateRuleQuality() 1705.882 2242 0.76 19% 34%

>>DetermineRuleClass() 1053.633 2242 0.469 15% 21%

>UpdatePheromone() 501.73 907 0.553 < 1 % <1%

>IntializeNodeInformation() 702.422 7 100.346 15% 14%

>IntializePheromone() 0.015 7 0.002 < 1 % <1%

>BuildConstructionGraph() 1.02 1 1.02 <1% <1%

Table 6.1 - Stubborn Ants Excution Profile.

As shown in the previous execution profiling, the ConstructRule() running

time increased than its original version with 3% because it calls the method

CalculateNodeProbabilities() whose running time has increased.

112

Nonetheless, the overall running time of the algorithm, represented in the Run() method,

is almost the same as the execution of the original Ant-Miner. This is because the number

of overall iterations has decreased from 8 to 7 and the number of total trials has decreased

from 1112 to 809. This compensated for the increase of running time of the

aforementioned methods, which are called in each trial.

6.4 Summary

This chapter has presented the use of stubborn ants in the context of Ant-Miner

classification rule discovery algorithm. The motivation is to introduce search diversity by

giving identity to each ant in the colony. Each ant learns from its own history besides the

experience of other ants in constructing classification rules. Each ant memorizes its own

history best rule that it has constructed during its previous trials. When constructing a

new rule, the probability of selecting a term for a rule is amplified by the quality of the

memorized rule if this term exists in it. Imperial results have shown improvements in the

classification accuracy of the generated rules. Moreover, the running time has not been

damaged by applying such a modification on the program original of the Ant-Miner

algorithm.

113

Chapter 7

UTILIZING MULTI-PHEROMONE ANT SYSTEM

7.1 Introduction

Multi-pheromone is a new ACO system where multiple types of pheromone are

used. In Ant-Miner, one type of pheromone for each permitted rule class can be

deposited. In essence, an ant would first select the rule class and then deposit the

corresponding type of pheromone. Unlike the original version of Ant-Miner where the

class is selected after rule antecedents construction, in multi-pheromone system the ant

chooses the terms that are specifically related to the classification of the previously

selected class. Moreover, the ant constructing a rule labeled by is only influenced by

the pheromone corresponding to this class which was deposited by ants previously

constructed rules labeled by . Such a modification led to other changes in the algorithm

in order to maximize the quality of the discovered rules in terms of comprehensibility and

classification accuracy. A different heuristic function, which focuses on the confidence of

the term to be selected given the pre-selected class, is used. An even more appropriate

rule quality evaluation function is customized for evaluating rules constructed using such

a system. A new proposed pheromone update strategy, named Quality Contrast

Intensifier, is used. This aims to reward a rule whose quality is higher than a certain

threshold by depositing more pheromone and penalizing a low-quality rule by removing

pheromone from its terms in the construction graph. Finally, a new rule convergence test

114

is used to ensure that the produced rule satisfies a minimum quality threshold. Otherwise,

this convergence should be ignored, re-initialize, and start looking for better rules.

7.2 Multi-Pheromone Ant System

In the original Ant-Miner, the consequent of a rule is chosen after its antecedents

are selected by determining the class value with maximum occurrence in the cases

matching the rule premises. Thus, a term is chosen for rule antecedents in order to

decreasing entropy in the class distribution of cases that match the rule in construction

However, selecting the rule class before constructing the rule antecedents allows choosing

antecedent terms that are specifically related to the classification of the pre-selected rule

class. The idea of selecting the rule consequent prior to rule construction was introduced

in different flavors. These ideas are introduced in Chapter 4 - Ant-Miner Related Work.

The following brief description on them:

 J. Smaldon and A. Frietas in [23] introduced an algorithm that tries to construct rules

for each class independently: an extra For-Each (class value) loop is added as an outer

loop for the original algorithm. The consequent of the rule is known by the ant during

rule construction and does not change. An ant tries to choose terms that will produce

the rule predicting the class value in the current iteration of the For-Each loop with an

optimum level of accuracy. This approach generates better rules in comparison with

the original Ant-Miner where a term is chosen for a rule only in order to decrease

entropy in the class distribution of cases matching the rule under construction.

However, the entire execution (with the complete training set) is repeated separately

for each class value until the number of positive examples (belonging to the current

class) remaining in the dataset that have not been covered by the discovered rules is

115

less than or equal to max uncovered cases. This increases the algorithm running time.

Moreover, the number of the generated rules by this version is increased, which

damages the simplicity of the output. For a more detailed description of the algorithm,

refer to [23].

 D. Martens introduced the same idea in Ant-Miner+ [18]. An extra vertex group is

added at the start in the construction graph containing class values to allow the

selection of class first. This is similar to considering the class as another variable.

Rules with different classes can be constructed in the same iteration. Different

heuristic values are applied according to the selected class in order to choose the term

that is relevant to the prediction of the selected class. However, the pheromone is

shared by all ants constructing rules with different consequents. In other words, any

ant is influenced by the pheromone dropped by any other ant constructing similar or

different labeled rules. This can negatively affect the quality of the constructed rules,

as the terms that lead to constructing a good rule with class as a consequent do not

necessarily lead to constructing a good rule with as a consequent for a

classification rule.

Unlike the version of Ant-Miner in [23], our proposed multi-pheromone Ant-

Miner system executes the course of operations only once during the entire training

process. Ants in the multi-pheromone system can construct rules with different

consequent classes in the same iteration simultaneously. Nonetheless, the ant is only

influenced by the ants that have constructed rules with the same consequent, using a

multiple types of pheromone system.

116

First, an ant probabilistically selects the rule consequent prior to antecedents based

on pheromone information as described below. Then, it tries to choose terms that are

relevant to predicting this class. The rule is then evaluated and the pheromone is updated.

But, unlike the version of Ant-Miner in [18], the ant drops different kinds of pheromone

as many as the permitted classes. The next ant is only influenced by the amount of the

pheromone deposited for the class for which it is trying to construct a rule. In this case,

pheromone is not shared amongst ants constructing rules for different classes. This allows

choosing terms that are only relevant to the selected class. The algorithm is shown in

Algorithm 7.1 – Multi-pheromone Ant-Miner.

Algorithm 7.1 - Multi-pheromone Ant-Miner.

TrainingSet = {all training cases};

DiscoveredRuleList = []; /* initialize rule list with empty list */

WHILE (TrainingSet < min_covered_cases)

t = 1; /* ant index, and also rule index */

Is_convergence=false /* a flag for convergence test*/

Initialize pheromone of class value nodes.

Initialize pheromone type of the term nodes dedicated for the class of previously

constructed rule, and leave the other pheromone types as they are. /* if it is the

first iteration, all pheromone array elements are initialized in each node.*/

REPEAT

 Probabilistically selects a rule consequent class according to the

pheromone information associated to the class values.

117

 starts with an empty rule and incrementally constructs a classification rule

by adding one term at a time to the current rule.

Prune rule ; /* remove irrelevant terms from rule */

Update the pheromone type of corresponding to class value in the

construction graph using Quality Contrast Intensifier;

Update the pheromone of class in the class value nodes /* this will affect the

selection of the class for subsequent ants*/

Apply Convergence Test;

UNTIL (i ≥ no_of_ants) OR (Is_convergence)

Choose the best rule among all rules constructed by all the ants, add rule

to DiscoveredRuleList;

TrainingSet = TrainingSet - {set of cases correctly covered by };

END WHILE

As shown in Algorithm 7.1 – Multi-pheromone Ant-Miner, the idea of multi-

pheromone Ant-Miner is that each class has a different pheromone to be deposited on the

terms in the construction graph. In essence, we are replacing the traditional two-

dimensional pheromone structure (attribute, value) by a new three-dimensional

pheromone structure (attribute, value, class). The same applies as to the heuristic value

structure; class-based structure.

During rule construction, the rule class is already set and an ant is only influenced

by the amount of pheromone in the pheromone array element dedicated to its rule class.

Similarly in pheromone update, an ant deposits pheromone in the array element dedicated

118

to the current rule class in each node belonging to the trial. Class values are also

represented in nodes in the construction graph, and pheromone can be deposited on them.

This pheromone affects the probability of selecting the rule class for subsequent ants. The

pheromone is initialized in the node of class values as follows:

 (7.1)

where:

 As where is the number of instances labeled with class .

 is the size of the training set.

In pheromone update, the of pheromone level increases in the node of the

constructed rule class according to the quality of the rule, as follows:

 (7.2)

where:

 is the class of the constructed rule.

 is quality of the constructed rule.

The problem dependent heuristic function chosen is the Laplace-corrected

confidence for each term as in [27], given by:

 (7.3)

where:

 is the heuristic value for given that class is selected.

119

 | , k| is the number of training cases having and the current selected

class k.

 | | is the number of training cases having .

 No_of_classes is the number of values in the class attribute‘s domain.

The probability of selecting given that class is chosen is calculated is follows:

 (7.4)

where:

 is the value of a problem-dependent heuristic function for value j-th in attribute i-

th for class k

 is the amount of pheromone associated with for class k at iteration

t.

 is the total number of attributes.

 br is the number of values in domain of the r-th attribute.

The rule generated via multi-pheromone system is evaluated, to update the

pheromone levels (as described in the following subsection), by a function that balances

between the support and the confidence of the rule, as follows:

 (7.5)

where:

 , represents the ratio of the number of cases that match

rule 's premises and are labeled by its class to the total number of cases that match

 's premises.

120

 , represents the ratio of the number of cases that match

 's premises and are labeled by its class to the total number of cases in the training

set.

After the best iteration rule is selected, the cases covered by this rule are removed

from the training set and the pheromone is initialized but only in the pheromone array

element dedicated to the class of this rule. Leaving the pheromone in the array element of

other classes tends not to waste the wisdom that has been collected by the ants in the

previous trails for the rest of the classes, leading to faster convergence in the next

iterations.

Note that for applying multi-pheromone Ant-Miner system with stubborn ants,

each ant in the swarm should memorize the best rules it has generated, one for each class

value. Hence, when an ant tries to select a term from the construction graph, knowing that

the class is already set, the probability of selecting this term is amplified by the best rule

that the ant memorizes for this current class if this term occurs in this rule.

Multi-pheromone Ant-Miner system generates better rule sets in terms of

predictive accuracy with a smaller number of rules, which improves the Ant-Miner

performance as a classification algorithm in terms of efficiency and comprehensibility.

The reasons that make multi-pheromone technique outperform the original one are

summarized in the following points:

1. The rule consequent (class) is chosen prior to rule antecedents (terms): this allows the

ant to select terms that are relevant to the classification of the selected class, not to

decrease entropy in the class distribution of cases matching the rule under

construction. A better heuristic function is used in multi-pheromone (equation 7.3),

121

which is related to the confidence of a term given the selected class. Such a heuristic

function leads to better terms that have classification relevance to the selected class.

2. A better rule evaluation function is used: the evaluation function used for multi-

pheromone Ant-Miner works better in determining the classification accuracy of the

generated rule, as it evolves the rule support and its confidence. Such an evaluation

function is suitable in multi-pheromone system as the rule is constructed to improve

its confidence given the selected class. Unlike the original version, where the rule is

constructed to reduce entropy of the class distribution in the cases of the dataset.

Moreover, as the evaluation function balances between the coverage of the rule and its

classification accuracy, the size of the output rule set is reduced.

3. The pheromone in the construction graph is a three-dimensional structure (attribute,

value, class). This is behind calling this system multi-pheromone. After rule

construction, an ant deposits on the selected terms a specific type of pheromone

corresponding to the rule class. Subsequently, the following ants that select the same

class are only influenced by this type of pheromone in term selection. In other words,

an ant constructing a rule labeled by is not influenced by pheromone deposited by

previous ants constructed rules labeled by or . An ant constructing a rule

labeled by is only influenced by pheromone deposited by previous ants

constructing rules labeled by . Such a technique prevents selecting irrelevant terms

to the classification of the currently chosen rule class. This is unlike AntMiner+[18]

where the pheromone is shared between all the ants constructing similar or different

labeled rules.

122

4. The rule class is selected probabilistically, based on the heuristic information of the

class: this allows constructing rules with different classes in the same algorithm

iteration. Hence, best rules among all the available classes are constructed first,

leading to a better classification accuracy rule set output with fewer rules to be

generated, in comparison to the new Ant-Miner version proposed in [23], where the

rule classes are selected iteratively. In latter versions, the whole algorithm is repeated

for each class with entire training set. This produced an unordered rule set with more

rules and terms per rule.

The following is a sample output of the rules generated by both the original Ant-Miner

and the multi-pheromone Ant-miner applied on Car Evaluation data set (see section 9.2

Chapter 9).

Original Ant-Miner Multi-pheromone Ant-miner

Rule Sup. Conf. Rule Sup. Conf

.

IF <Persons=2> Then

<Class=unacceptable>

0.33 1 IF <Safety=Low> Then

<Class=unacceptable>

0.33 1

IF<Safety=medium> Then

<Class=acceptable>

0.15 0.46 IF <Persons=2> Then

<Class=unacceptable>

0.33 1

IF <Buying=Very high>

Then
<Class=unacceptable>

0.19 0.75 IF <Safety=high> Then

<Class=acc>

0.27 0.73

IF <Buying=High> Then

<Class=unacceptable>

0.22 0.66 IF <luggage=Small> Then

<Class=unacceptable>

0.47 0.74

IF <Safety=High> Then

<Class=acceptable>

0.24 0.47 IF <Safety=medium> Then

<Class=unacceptable >

0.55 0.5

IF <Doors=2> Then

<Class=unacceptable>

0.25 1

IF <Buying=medium>

Then
<Class=unacceptable>

0.48 1

IF <Persons=more> Then

<Class=acceptable>

0.51 1

 Cov.

97%

Acc.

77%

 Cov.

100%

Acc.

84%

123

As shown in the previous table, multi-pheromone Ant-miner has produced a rule set

with a higher classification accuracy (84% compared to 77%) and with fewer rules (5

rules compared to 8 rules). It has been noticed that about 85% of the runs of multi-

pheromone algorithm produce the first 2 rules, and 75% of the runs produce the first three

rules in order. These top rules have a confidence of 100% and the highest possible

support. Note that the rules constructed at first have a higher confidence than the rules

constructed later on. This is unlike the original version, where better rules could be

constructed first. This proves that multi-pheromone targets the best relevant terms to the

classification accuracy of a given class. By constructing best rules first, the number of

generated rules is reduced. Moreover, as the class with the value ―unacceptable‖ has the

largest number of the cases, the multi-pheromone system tends to construct rules labeled

by this class in order to generate rules with higher coverage and reduce the number of the

generated rule set.

7.3 Quality Contrast Intensifier

In the pheromone update procedure for typical ACO algorithms, the amount of

pheromone deposited is based on the quality of the trial. The idea is to intensify the

contrast between bad solutions, good solutions and better ones as well as the unvisited

solution. Quality contrast intensifier takes place as a new strategy for the pheromone

update procedure. An ant that constructed a solution with good quality is rewarded by

amplifying the amount of the pheromone to be dropped in its trail. By contrast, the ant

that constructed a bad rule is penalized by removing pheromone from its trial according to

the weakness of the constructed solution.

124

In order to apply such an idea in Ant-Miner, we consider the quality of the

generated rule, which involves both support and confidence of the rule (see equation 7.5).

If the confidence of the constructed rule exceeds an upper threshold , the pheromone to

be deposited for this rule is amplified. On the other hand, if the confidence of the rule gets

below a lower threshold , pheromone should be removed from the trial of this rule.

This is shown as follows:

 (7.6)

where:

 is the amount of pheromone to be deposited in iteration t.

 is the quality of the rule generated by the aforementioned rule quality

evaluation function (7.5).

 and are the upper and lower thresholds for the rule confidence at which the

quality is contrasted. Typical used values are 0.85 and 0.35 respectively, given that

both support and confidence values ranges from 0 to 1.

Such a strategy comes with several advantages. First, higher quality rules get

significantly more pheromone than other normal and low quality solution, which leads to

faster convergence. Second, it ensures the balance in the quality of output between the

number of the generated rules (which is affected by the rule support) and the

classification accuracy of these rules (which is affect by the confidence of the rule). For

example, some attribute values have a very high occurrence among the training set cases.

This increases the support value in the quality evaluation, which increases the quality of

the rule in general, regardless of the rule confidence. Thus, this quality contrast intensifier

125

works in the favor of the rule confidence in order not to generate a significantly fewer

rules with low classification quality. Finally, penalizing bad rules by removing

pheromone from its trial gives opportunity to unvisited nodes to be selected in further

iterations, as their pheromone amount probably gets higher than the already tried bad

nodes. This enhances the exploration aspect of the algorithm.

7.4 New Convergence Test

In the Ant-Miner algorithm, the best rule in each iteration is selected to be added

to the discovered rule list. This is done after a certain number trials per iteration, or when

a convergence occurs. A convergence occurs when there no more better rules are being

generated after a certain number iterations (no_rules_converg). Sometimes, an early

convergence occurs and causes stagnation in the ant colony, while the best discovered

rule yet has an insufficient quality, or at least, better rules could have been discovered if it

was not for the early stagnation.

The new proposed convergence test tries to overcome such a problem. The idea is

to set a minimum threshold for the quality of the solution to be selected. If the algorithm

converged on a solution that satisfies this threshold, then it is considered. Otherwise, re-

initialization with some sort of randomization occurs so that better solution could be

discovered in the subsequent trials. As for Ant-Miner, if the best discovered rule yet has a

confidence that is lower a certain threshold (0.5) then pheromone levels in the nodes in

the construction graph should be re-initialized randomly, in order to introduce noise in the

colony so that better rules could be discovered. The no_rules_converg counter for the

convergence test is rest as well. If no rule with the sufficient confidence threshold is

discovered after a certain number of iterations, a convergence is now considered for the

126

algorithm. Note that the convergence test threshold is set only on the confidence of the

rule not on the overall quality of the rule. The idea behind that is to prevent selecting rule

with high support and low confidence. A rule to be considered for selection should satisfy

the confidence threshold (if possible), and then the rule with the best overall quality is

selected. This tends not to sacrifice the discovered rule set classification accuracy in favor

of its size.

7.5 Multi-pheromone Implementation

The program code implementation for the multi-pheromone Ant-Miner system is

described in this section. Several modifications have been done on the data structure used

in the algorithm as well as the operations in order to apply the multi-pheromone behavior.

The quality contrast intensifier procedure for pheromone updating is described, along

with the implementation of the new convergence test logic. Running time implication of

these modifications is exhibited through an effective execution profiler.

7.5.1 Data structure and Operations

 Construction Graph Node Representation: The most significant modification in

the Ant-Miner algorithm used data structure is in the construction graph. The attribute

value node, which represents the decision component in the construction graph, has the

pheromone represented in an array, where the length of this array is the number of

permitted classes. Each element in the array contains the pheromone amount for each

class value. And similarly, each node has an array of heuristic information, one array

information element for each class. The following code shows the implementation of the

node data structure in the multi-pheromone system.

public struct Node

{

127

 public int AttributeIndex;

 public int ValueIndex;

 public int []ValueFrequency;

 public double []PheromoneAmounts;

 public double []HeuristicValues;

 public double []Probabilities;

 public bool UnusableValue;

 }

As shown in the previous code snippet, PheromoneAmounts represents the pehromone

array for each node, HeuristicValue is the heuristic value array and

Probabilities is the probability array where the probablity of selecting this node

given a spcific class is calcualted and stored.

 Class Value Node Representation: A new data structure has been added to the

construction graph that represents the available classes in the domain of the current

dataset. This data strucutre contains the current pheromone amount existing per each class

value, which intialy set to the frequency of the occerance of the class value in the dataset.

This data sturcture is used for calculating the probablity of selecting a class value by an

ant at the begineeing of an itration. This data structure is a member in the AntColony

class, and considered as a part of the whole construction graph.

private int[] _classFreq;

…

this._classFreq = new int[numberOfClasses];

 Construction Graph Intialization: The procedure for intializing construciton

graph nodes in the multi-pheromone system changed, as several attributes in the node

data structure became 2-dimensional members (a pheromone value for each different

class, and a heuristic value for each different class). Thus, the construciton graph nodes

are intiliaization as follows:

…

128

for (int attributeIndex = 0; attributeIndex <

this._constructionGraph.Length; attributeIndex++)

{

for (int valueIndex = 0; valueIndex <

this._constructionGraph[attributeIndex].Length; valueIndex++)

{

this._constructionGraph[attributeIndex][valueIndex].Probabilities = new

double[numberOfClasses];

this._constructionGraph[attributeIndex][valueIndex].PheromoneAmounts =

new double[numberOfClasses];

this._constructionGraph[attributeIndex][valueIndex].HeuristicValues =

new double[numberOfClasses];

this._constructionGraph[attributeIndex][valueIndex].Frequency =

new int[numberOfClasses];

}

}

…

 Execution behaviour implementation: The Run() method is the main

operation that executes the Ant-Miner. As for the multi-pheromone Ant-Miner system,

the folowing code shows the modifications on the Run() operation to cope with the

multi-pheromone logic.

while (this._currentIterationNumber < MaxIterationsNumber &&

this._currentCoverage < this.MinCoveragePercentage)

{

this.InitializePheromone();

this.InitializeNodeInformation(); //using laplace-corrected confidence

…

for (_currentIterationNumber = 0; _currentIterationNumber <

this.AntsNumber && !convergence; _currentIterationNumber++)

{

this._currentAnt = new Ant();

this.SelectRuleClass(this._currentAnt); //before rule construction

this.CalculateProbabilities(this._currentAnt);

this.ConstructRule(this._currentAnt);

this.CalculateRuleQuality(this._currentAnt);//using support+confidence

this._currentAnt = this.PruneRule(this._currentAnt);

generatedAnts[_currentIterationNumber] = this._currentAnt;

if (_currentAnt.RuleQuality > generatedAnts[bestAntIndex].RuleQuality)

bestAntIndex = _currentIterationNumber;

129

this.UpdatePheromoneUsingQualityContrastIntensifier

(this._currentAnt);

convergence=ApplyNewConvergenceTest(this._currentAnt);

…

}

this.OutputAntRules.Add(generatedAnts[bestAntIndex]);

this.RemoveCoverdCasesFromTrainingSet(generatedAnts[bestAntIndex]);

…

}

As shown in the previous code, pheromone levels and heuristic information are intialized

for each node in the construction graph at the begineeing of each iteraion. As for multi-

pheromone, the pheromone is intialized in PheromoneAmounts array elements that are

corssponding to the available classes. The heuristic information is claculated using

laplace-corrected function (see equation 7.3) for each attribute value-class and set in the

HeuristicValues array. For each trial in an iteration, the ant first select the rule

consquent class before constructing the rule antecedents terms. This selection is done

probablistically according to the pheromone information in _classFreq data structure.

After the class is selected, the ant constructs the rule antecedents, following only the

pheromone amount and the heuristic information associated with the current selected

class, as shown in the implementation of CalculateProbabilities()method as

follows:

private void CalculateProbabilities(Ant ant)

{

double sum = 0.0;

int attributeIndex = 0, valueIndex = 0;

for (attributeIndex = 0; attributeIndex <

this._constructionGraph.Length-1; attributeIndex++)

//if the attribute has not been used...

if (!ant.Memory[attributeIndex])

for (valueIndex = 0; valueIndex <

this._constructionGraph[attributeIndex].Length; valueIndex++)

130

sum +=

this._constructionGraph[attributeIndex][valueIndex].

HeuristicValues[ant.CurrentRuleClassIndex] *

this._constructionGraph[attributeIndex][valueIndex].

PheromoneAmounts[ant.CurrentRuleClassIndex];

for (attributeIndex = 0; attributeIndex <

this._constructionGraph.Length-1; attributeIndex++)

{

for (valueIndex = 0; valueIndex <

this._constructionGraph[attributeIndex].Length; valueIndex++)

{

if (!ant.Memory[attributeIndex])

{

this._constructionGraph[attributeIndex][valueIndex].

Probabilities[ant.CurrentRuleClassIndex]

=

this._constructionGraph[attributeIndex][valueIndex]

.HeuristicValue[ant.CurrentRuleClassIndex] *

this._constructionGraph[attributeIndex][valueIndex]

.PheromoneAmounts[ant.CurrentRuleClassIndex / sum;

}

else

this._constructionGraph[attributeIndex][valueIndex].

Probabilities[ant.CurrentRuleClassIndex] = 0.0;

}

}

}

After the rule is constructed, its quality is evaluated using the fitness funciton discussed in

the previous section (see equation 7.5). This evaluation function calculates the support in

the confidence of the generated rule, as the sum of them represents the overall quality of

the rule. The quality of the rule is then used in the pheromone update procedure, carried

out by UpdatePheromoneUsingQualityContrast-Intensifier() method.

The following is its code implementation.

private void UpdatePheromoneUsingQaualityContrastIntensifier(Ant ant)

{

//update pheromone for class nodes

this.classFreq[ant.CurrentRuleClassIndex] +=

this. classFreq[ant.CurrentRuleClassIndex]*ant.CurrentRuleQuality;

//normalize pheromone in class nodes

…

131

//update pheromone for used terms

for (int attributeIndex = 0; attributeIndex < ant.CurrentRule.Length;

attributeIndex ++)

{

if (ant.CurrentRule[attributeIndex] != -1)

{

int valueIndex = ant.CurrentRule[attributeIndex];

double currentPheromoneValue =

this._constructionGraph[attributeIndex][valueIndex].

PheromoneAmounts[ant.CurrentRuleClassIndex];

if (ant.CurrentRuleConfidence >= this._phi1)

{

currentPheromoneValue += 2 * ant.CurrentRuleQuality;

}

else if (ant.CurrentRuleConfidence <= this._phi2)

{

currentPheromoneValue -= ant.CurrentRuleQuality;

}

else

{

currentPheromoneValue += ant.CurrentRuleQuality;

}

This._constructionGraph[attributeIndex][valueIndex].

Pheromone[ant.CurrentRuleClassIndex] = currentPheromoneValue;

}

}

//normalize pheromone

…

}

Where _phi1 and _phi2 are the variables that represent the user deifned thresholds

for the quality contrast intensifier. These variables are data members in the AntColony

class.

The following code shows the implementation of the new convergence test procedure, in

which the algorithm ensures that the discovered rule satisfies a minimum quality

threshold before it is selected. Otherwise, the colony is considered to have an early

stagnation and re-initialization with some randomization.

…

private int _ruleConvergenceCount;

132

private int _convergenceDeltaCount;

private int _maxReintializationCount;

private int _currentReinitlizationCount;

private double _confidenceThreshold;

…

public bool ApplyNewConvergenceTest(Ant ant)

{

bool convergence = false;

if (ant.CurrentRuleQuality ==

generatedAnts[currentTrialIndex-1].CurrentRuleQuality)

_convergenceDeltaCount++;

else

_convergenceDeltaCount=0;

if (_convergenceDeltaCount == _ruleConvergenceCount)

{

if (ant.CurrentRuleConfidence > _confidenceThreshold ||

_currentReinitlizationCount == _maxReintializationCount)

convergence = true;

else

{

this.ReintializePheromoneLevelRandomly(ant);

this._convergenceDeltaCount=0;

this._currentReinitlizationCount++;

}

}

return convergence;

}

7.5.2 Execution Profiling and Analysis

This section shows the effect of the multi-pheromone system on the program

execution time of Ant-Miner. Table 7.1 exhibits the running time of the algorithm after

applying such an extension and how the behavior of this new technique along with the

used functions for quality evaluation and heuristic information calculation have affected

the execution of the algorithm. A detailed analysis for the execution profile is discussed

in the table below.

133

Method Time

(m.sec)

Calls

Avg. Time

(m.sec)

% to

Parent

% to

Total

Run() 3645.7 1 3645.7 100% 100%

>ConstructRule() 546.855 617 0.8863 15% 15%

>>CalculateNodeProbabilities() 47 2405 0.0195 2% <1%

>>SelectNodeProbablistically() 0.9 2805 0.00032 < 1 % <1%

>PruneRule() 1640.565 617 2.658 41% 45%

>>CalculateRuleQuality() 1020.796 2242 0.455 18% 28%

>UpdatePheromoneWith-

QualityContrastIntensifier()

3.17 617 0.00513 < 1 % <1%

>IntializeNodeInformation() 692.683 5 138.536 20% 19%

>IntializePheromone() 0.107 5 0.0214 < 1 % <1%

>BuildConstructionGraph() 1.94 1 1.94 <1% <1%

Table 7.1 - Multi-pheromone Ant-Miner Execution Profile.

As shown in the previous table, multi-pheromone Ant-Miner outperforms the

original version of Ant-Miner in terms of execution time. The average running time is

less than 70% of the running time of the original algorithm. Multi-pheromone system

takes less running time because of two main reasons. The first reason is that the number

of overall iterations that the algorithm takes is less than the original one. This is due to the

high coverage of the generated rules besides its confidence. Thus, less number of rules is

needed to cover a sufficient portion of the training set. Consequently, a fewer number of

iterations the algorithm executes. The second reason of the reduced execution time using

multi-pheromone system is the fact that the single ant trial takes less time. In each ant

trial, ConstructRule(), PruneRule(), and pheromone update methods are

called. The profilers show that both rule construction and pheromone update methods

takes almost the same time in both algorithms. However, the most time consuming

method, PruneRule()(47% of the execution time of the algorithm), takes less time in

134

the multi-pheromone algorithm than its corresponding method in the original Ant-Miner

algorithm. This is caused by the fact that the CalculateRuleQuality() method ,

that is called each time by PruneRule(),takes less time in the multi-pheromone

algorithm. As in the original Ant-Miner algorithm, the program has to scan the whole

dataset cases in order to calculate the quality of the rule using equation 3.5 (

 . On the other hand, in the multi-pheromone system, the

program only needs to scan the _instancesIndexList associated with the ant

(which contains the indcies of the cases covred by the rule premises) in order to evaluate

the rule quality using equation 7.5 . Moreover, the

DetermindRuleClass() method (which is also a time consuming method) is no

longer called in PruneRule()method. Such an improvement has given the multi-

pheromone algorithm an edge in the execution time, although the number of trials in the

multi-pheromone system is more than the number of trials in the original algorithm due to

the new convergence test.

7.6 Summary

This chapter has introduced a genuine Ant-Miner variation that leads to improve

the quality of the output in terms classification accuracy and rule set size. Multi-

pheromone is a new version of Ant-Miner in which the ant selects the rule consequent

class prior to rule antecedent construction. The typical two-dimensional structure for

pheromone and heuristic information is replaced by a new three dimensional one

(attribute, value, class). In rule terms selection, the ant is only influenced by the

pheromone amount and the heuristic information values associated to the selected class

for a given term. This leads to the choice of terms that are more relevant to the

135

classification of the selected class, instead of choosing terms that minimize entropy

among the class values. Laplace-corrected is used as a heuristic function. New quality

evaluation function, which balances between the support of the rule and its confidence, is

used in rule evaluation. The quality value is used to update the pheromone on the

construction graph, using the quality contrast intensifier procedure. This procedure

rewards rules that exceed a certain level of confidence with more pheromone, and

penalizes low confidence rules by removing pheromone. This helps in producing rules

with higher confidence. A new convergence test was introduced to ensure the

classification quality of the generated rule before it is added to the discovered rule list.

Chapter 9 experimental results show that multi-pheromone Ant-Miner system

outperforms the original Ant-Miner in the terms of output efficiency and

comprehensibility, without compromising execution running time.

136

Chapter 8

GIVING ANTS PERSONALITY

8.1 Introduction

Ants with personality were proposed in the future work section of [1]. The idea is

to give each ant a personality so that each ant would have its own special behavior in

selecting terms during the rule construction procedure. The aim is to introduce diversity

in the search among the colony and empower the exploration aspect in the swarm

behavior. One idea to apply this was the use of stubborn ants, introduced in Chapter 6.

Another idea is to have each ant in the colony using its own weights for the social

component and the cognitive component in the state transition rule (see equation 3.2).

Applying such a modification should lead to discover new, and probably better,

solution during the execution of the algorithm. Empirical results show enhancements in

the quality of the output in terms of classification accuracy. However, such diversity has

increased the number of trials needed per iteration to converge.

8.2 Stagnation and Early Convergence

One of the most important challenges that face the ACO systems is the problem of

stagnation and early convergence. Stagnation occurs when several ant trials are done

without change or increase in the quality of the solutions that are found. This results in

converging on a solution that might not be good enough, or at least much better solution

137

could be found if there was more diversity in the search amongst the ants in the colony.

One of the reasons of early convergence is that the exploration aspect is not empathized

during the solution construction procedure. Ants would tend to exploit the best solution

that has been discovered so far, following the intense pheromone trial, without trying to

explore different solution.

One idea to face such a challenge is to adapted the pheromone update procedure

and introduce sophisticated evaporation strategies to avoid stagnation. This was

introduced in many previous related works (see Chapter 4). Another idea is to give each

ant a different behavior (or personality) in selecting decision components during solution

construction.

8.3 Ants with Personality

For typical ACO systems, the probabilistic transition function is calculated as

follows:

 (8.1)

As shown in the previous equation, the probability of an ant to select a node

depends on two components. The firs is heuristic value component , which represents

the cognitive aspect to the ant, and the pheromone value component ,which represents

the its social aspect. The former represents the tendency of the ant to choose the node

according to its quality. The later represents the tendency of the ant to choose the node

according to the experience of the previous ants in selecting such a term. Both

components are raised to the power of and respectivly. The exponents and are

138

used adjust the relative emphases of the pheromone and heuristic information terms. In

the original Ant-Miner, equals equals to 1.0.

The idea of giving personality to each ant refers to assign different equals

values for each ant in the colony. This was proposed in the future work section of [1].

The values of and are drawn from a random number generator using Gaussian

distribution function with a mean of 2 and standard deviation value that ranges from 0

to 1. Hence, some ants may tend to choose terms according to their predictive quality -

using heuristic value of the term - regardless of the selection of other previous ants. Other

ants may tend to follow the experience of the previous ants - via pheromone trials - during

rule construction. The aim of such modification is avoid stagnation and early

convergence by empowering the exploration aspect in the colony so that better rules

could be found. Note that a higher standard deviation value used, Note that a higher

standard deviation value would introduce a higher range of diversity between ant

behaviors in term selection. However, this could increase the number of trials needed in

each iteration to converge on a rule.

8.4 Ants with Personality Implementation

This section discusses the modifications needed on the implementation on the

original Ant-Miner program in order to enable the use of different values of and for

each ant. Implications on the execution running time are discussed as well.

8.4.1 Data Structure and Operations

The only modification that should be done in the data structures of the Ant-Miner

program is to add two double-value data fields representing values of and in the data

structure representing the ant entity. The new ant structure is as follows:

139

public class Ant

{

 private int _antNumber;

 private double _alpha;

 private double _beta;

 private int[] _ruleAntecedents;

 private int _ruleclassIndex;

 private double _currentRuleQuality;

 private List<int> _instancesIndexList;

private bool[] _memory;

…

}

Both of the _alpha and _beta data fileds are set for the ant as it is created and

intialized in its constructore using a Gaussian distribution function with mean of two and

variable standard deviation, as show in the following code:

//inside ant constructor

…

this._alpha =

Utilities.RandomUtility.GetNextDoubleFromGaussianFunction(mean, stdv);

this._beta = 3 - this._alpha;

…

 The last modification to be done is in calculating attribute value probability in

selecting a node during the rule construction. The change is to use the _alpha and

_beta values of each ant when calculating node probability. The folowing exhibit the

change of the method CalculateNodeProbabilities():

…

for (attributeIndex = 0; attributeIndex <

this._constructionGraph.Length-1; attributeIndex++)

{

for (valueIndex = 0; valueIndex <

this._constructionGraph[attributeIndex].Length; valueIndex++)

{

if (!ant.Memory[attributeIndex])

{

double result =

Math.Pow(

this._constructionGraph[attributeIndex][valueIndex].HeuristicValue,

ant._alpha)

140

*

Math.Pow(this._constructionGraph[attributeIndex][valueIndex].Pheromone,

ant._beta) / sum;

this._constructionGraph[attributeIndex][valueIndex].Probability =

result;

}

else

this._constructionGraph[attributeIndex][valueIndex].Probability = 0.0;

}

}

…

8.4.2 Execution Profiling and Analysis

The following table exhibits the execution profile of Ant-Miner program after

implementing the use of values of and for each ant (as described in the previous

subsection). Results of the output rules quality of the algorithm in terms of classification

accuracy and comprehensibility are described in Chapter 9. The following execution

profile shows how such a modification affects the running time of the program.

Method Time

(m.sec)

Calls

Avg. Time

(m.sec)

% to

Parent

% to

Total

Run() 9126.2 1 9126.2 100% 100%

>ConstructRule() 1186.406 1779 0.6668 13% 13%

>>CalculateNodeProbabilities() 62 6568 0.009 2% <1%

>>SelectNodeProbablistically() 0.9 6702 0.0001 < 1 % <1%

>PruneRule() 4289.314 1779 2.411 42% 47%

>>CalculateRuleQuality() 3102.908 3587 0.8650 19% 34%

>>DetermineRuleClass() 1916.502 3587 0.534 15% 21%

>UpdatePheromone() 3 1779 0.0016 < 1 % <1%

>IntializeNodeInformation() 1277.668 8 159.708 15% 14%

>IntializePheromone() 0.07 8 0.0087 < 1 % <1%

>BuildConstructionGraph() 0.6 1 0.6 <1% <1%

Table 8.1 - Ants with Personality Execution Profile.

141

As shown in table 8.1, the average running time of each leaf method did not

increased comparing to the original Ant-Miner methods running time. However, the

number of trials in the execution of the algorithm increases as more diversity was

introduced and led to late convergence. Consequently, the number of calls to

ConstructRule() and PruneRule() methods increased which led to increase the

overall running time to 60%. The increase of the number of trials was planned for, as

more diversity was intentionally added to the colony. The advantage is that the output

rules produced better results terms of accuracy.

8.5 Summary

The idea of giving ant personality was introduced in this chapter. The challenge

was to overcome the problem of stagnation and early convergence. The proposed

extension to avoid such a problem is to giving each ant its own values of the α and β

parameters, different from those of the rest of the colony. In our experimental results, we

use values of α and β drawn from a random number generator using a Gaussian

distribution with a mean of 2 and a standard deviation (σ) that ranges from 0 to 1.

142

Chapter 9

EXPERIMENTS AND RESULTS

9.1 Introduction

This chapter describes the experiments that were conducted to examine the

performance of the Ant-Miner algorithm using the proposed extensions that have been

presented in the previous chapters. Modifications were tested individually and together on

several public-dmain datasets with different properties. The next section describes the

datasets used for the experiments. Section 9.3 presents the experimental approach carried

out for testing the new extensions. Used values for the algorithm parameters are shown in

section 9.4. Section 9.5 exhibits the results of the experiments with analysis on each

dataset. Section 9.6 summarizes the results and concludes the experiments.

9.2 Datasets

The performance of the extended Ant-Miner with the new modifications was

evaluated using eight public-domain data sets from the UCI (University of California

at Irvine) dataset repository[26] – available from:

 http://www.ics.uci.edu/~mlearn/MLRepository.html.

The main characteristics of the datasets are shown in Table 9.1. The extended

version of Ant-Miner does not deal directly with continuous attributes, as they should be

discretized in pre-processing steps. The chosen datasets include only categorical attributes

in order to avoid the interference of the quality of the discretization method on the

experiment.

http://www.ics.uci.edu/~mlearn/MLRepository.html

143

Dataset Number of cases Number of

attributes

Number of

classes

Car Evaluation 1728 6 4

Nursery 12960 8 5

Tic-Tac-To 958 9 2

Mushrooms 8124 22 2

Dermatology 366 33 6

Soybean 307 35 19

Contraceptive Method Choice 1473 9 3

BDS 1248 8 2

Table 9.1 - Description of Dataset Used in the Experiments.

As shown in Table 9.1, eight datasets are used for experimenting the new

extensions. The number of cases for each dataset ranges from 958 to 12960 cases. Each

dataset has a set of features containing from 6 to 35 attributes. Two datasets have 3 values

for class attribute, namely Tic-Tac-To, Mushrooms and DBS datasets. The other five

datasets, Car Evaluation, Nursery, Dermatology, Contraceptive Method Choice and

Soybean datasets have more than 2 values for the class attributes. As was mentioned, all

the attributes in the dataset contains only categorical values to avoid discretization before

running the experiments.

9.3 Experimental Approach

Ten-fold cross validation was used to split the dataset into a training set and

testing set with ratio of 90% and 10% respectively. Each pair of training and testing data

was used for experimenting with each combination of modifications (original, using

negative attributes, using stubborn ants and multi-pheromone) 10 times and the average

was taken. The average of the ten folds was taken to conclude on cross validation run.

The cross-validation experiment process was carried out 10 times for each dataset with

different random partitioning of training\testing cases.

144

The number of rules generated (which represents the comprehensibility of the

output), the average number of trials per iteration (number of ant trials needed to

converge) and the accuracy of the generated rules were recorded to evaluate the quality of

the experiment.

For ants with personality, the algorithm has been executed on the eight

datasets with different values for the standard deviation parameter (σ). Each value of

standard deviation is tried 10 times for each training/testing pair taken from each dataset.

9.4 Algorithm Parameters

The following fixed parameter values where used for all experimental runs:

 Number of Ants (number_of_ants) =5. Note that each ant would do multiple trials.

This is done to support Stubborn Ants.

 Number of trials per Ant (number_of_trials per_ants) = 100. This represents the

number of trials that the set of ants in the swarm would do per iteration. Thus, each

ant in the swarm would do this exact number of trials.

 Number of trials to converge (no_rules_converg) =10. This parameter is needed to

test whether the whole swarm has converged to a specific rule or not. If the same rule

is discovered by 10 consequent ants, this is considered convergence, so the iteration is

exited and the rule is extracted.

 Maximum Uncovered Cases (max_uncovered_cases) =10%. This is the maximum

percentage of cases are allowed to be left uncovered by the generated rules. If the

number of uncovered cases is larger than this given parameter, the algorithm should

continue discovering rules to cover more cases.

145

 Number of Global Iterations =50. This indicates the maximum number if global

iterations needed to discover rules that can cover the minimum coverage of cases in

the training set.

 Quality Contrast Intensifier thresholds (): These are the upper and the lower

thresholds for the rule confidence at which the quality is amplified and deducted

respectively. Used values for the experiments are 0.75 and 0.35 respectively, given

that both support and confidence values ranges from 0 to 1.

Note that total trials per iteration equals to number_of_ants multiplied by

number_of_trials_per_ant, which equals to 500. Also note that it is the maximum

number of trials per iteration as any iteration can stop execution if the no_rules_converg

was met.

9.5 Experimental Results

The following is the results produced by testing the performance of the Ant-Miner

with the new extensions on the chosen datasets. Results for each dataset are presented in a

separate subsection. Each dataset subsection has tree items: 1) a table for experimental

results summary of applying each extension individually and with other ones, for both

multi-pheromone system and the original Ant-Miner system, 2) analysis of the results,

and 3) detailed results used for the test of statistical significance (ANOVA) of each

extension compared to the original one, along with the generated F-value and the

significance type. Note that the critical F-value for 10 runs to indicate normal significance

is 4.41. This means that there is a probability of 95% that the difference in results is

significant and did not occur randomly. In other words, the hypothesis of difference in

algorithm performance can be accepted by confidence of 95%. The F-value for 10 runs

146

that indicates strong significance is 8.29. This means that there is a probability of 99%

that the difference in results is significant and did not occur randomly. Similarly, this tells

that the hypothesis of difference in the algorithm performance can be accepted with

confidence of 99%.

Ant with personality has a separate table of results which contains the results for

each dataset using different values of standard deviation parameter given to the Gaussian

distribution function used to generate the values for α and β for each ant.

147

9.5.1 Car Evaluation Dataset Results

9.5.1.1 Results Summary

 Original Multi-Pheromone

Rules

Number

Trials/

Iteration

Accuracy

(%)

Rules

Number

Trials/

Iteration

Accuracy

(%)

None

8.46

±0.09

87

76.75

±0.38

5.98

±0.18

154 80.03

±0.31

Logical

Negation

5.96

±0.37

105 77.62

±0.54
3.06

±0.05

169 76.61

±0.20

Stubborn

Ants

8.47

±0.11

68 78.01

±0.63

6.02

±0.19

91 80.74

±0.35

Negation &

Stubborn

6.35

±0.15

84 77.88

±0.49

4.2

±0.21

114 81.62

±0.12

Table 9.2 - Car Evaluation Dataset Experimental Results Summary.

9.5.1.2 Results Analysis

As shown in Table 9.2, using logical negation reduced the average number of

rules generated by the algorithm, as the generated rules have a higher coverage of the

training cases. Stubborn ants improved the average accuracy of the generated rules and

reduced the average number of trials per iteration. Multi-pheromone system improved the

average accuracy with most of the scenarios compared to the original version. Using

multi-pheromone system along with stubborn ants and logical negation operator produced

the best average accuracy with a reduced number of rules and a smaller number of trials

per iteration.

148

9.5.1.3 Test of Statistical significance

 Original Negation Stubborn Multi-pheromone

Run Rules Acc. Rules Acc. Rules Acc. Rules Acc.

1 8.44 76.90 5.74 77.27 8.26 78.84 5.86 79.93

2 8.30 76.66 5.68 77.75 8.50 77.13 6.10 80.42

3 8.46 76.29 6.08 77.04 8.56 77.10 5.96 80.30

4 8.44 77.15 5.24 77.65 8.52 78.21 6.24 80.00

5 8.58 76.73 6.26 78.53 8.34 78.02 5.61 79.96

6 8.60 77.48 6.36 77.76 8.58 78.26 6.22 79.78

7 8.52 76.81 5.73 77.63 8.60 77.64 5.94 79.39

8 8.48 76.82 6.32 78.03 8.48 78.95 5.86 80.31

9 8.34 76.37 6.38 78.00 8.34 78.28 6.02 79.88

10 8.46 76.23 5.85 75.68 8.54 77.71 5.98 80.32

F- Value 414.11 7.3 0.015 29.27 1386.4 430.37

Significance Type Strong Normal - Strong Strong Strong

Table 9.3 - Car Evaluation Dataset Detailed Results for ANOVA Test.

149

9.5.2 Tic-Ta-To Dataset Results

9.5.2.1 Results Summary

 Original Multi-Pheromone

Rules

Number

Trials/

Iteration

Accuracy

(%)

Rules

Number

Trials/

Iteration

Accuracy

(%)

None

6.63

±0.32

89 70.1

±0.20

5.8

±0.13

148 69.9

±0.22

Logical

Negation

5.3

±0.20

120 71.6

±0.25
3.1

±0.24

109 70.8

±0.19

Stubborn

Ants

6.9

±0.25

59 71.9

±0.75

5.9

±0.27

83 70.3

±0.55

Negation &

Stubborn

4.9

±0.11

97 72.4

±0.34

3.2

±0.21

99 71.8

±0.29

Table 9.4 - Tic-Tac-To Dataset Experimental Results Summary.

9.5.2.2 Results Analysis

In the Tic-Tac-Toe dataset (Table 9.4), the class attribute has two values. Multi-

pheromone did not improve the accuracy of the generated rules. However, it produced a

smaller rule set. Using logical negation reduced the average number of generated rules.

Stubborn ants enhanced the average accuracy of the rules. Using logical negation with

stubborn ants in the original version produced the best average accuracy while using

multi-pheromone with logical negation produced the least number of rules.

150

9.5.2.3 Test of Statistical significance

 Original Negation Stubborn Multi-pheromone

Run Rules Acc. Rules Acc. Rules Acc. Rules Acc.

1 7.03 70.1 5.61 71.76 7.2 72.4 6.04 70.42

2 7.00 70.51 5.33 71.68 7.24 73.12 6.01 69.82

3 6.44 70.32 5.42 71.65 7.11 72.13 5.83 70

4 6.84 70.2 5.37 71.81 6.73 72.1 5.84 69.74

5 6.75 70.00 5.14 71.88 6.74 72.03 5.72 69.79

6 5.98 70.06 5.85 71.57 7.08 71.87 5.65 69.71

7 6.32 69.93 5.23 70.98 6.44 71.88 5.81 70

8 6.80 70.22 5.41 71.61 6.92 72.1 5.66 70.21

9 6.55 69.85 5.38 71.65 6.70 70.67 5.73 79.87

10 6.67 69.87 5.21 71.45 6.93 70.6 5.72 69.85

F- Value 122.78 206.59 4.2 5.2 56.77 2.88

Significance Type Strong Strong - Normal Strong -

Table 9.5 - Tic-Tac-To Dataset Detailed Results for ANOVA Test.

151

9.5.3 Mushrooms Dataset Results

9.5.3.1 Results Summary

 Original Multi-Pheromone

Rules

Number

Trials/

Iteration

Accuracy

(%)

Rules

Number

Trials/

Iteration

Accuracy

(%)

None

6.20

±0.29

51 91.04

±0.54

4.28

±0.18

143 91.79

±0.9

Logical

Negation

4.60

±0.30

69 90.8

±0.60

3.68

±0.14

287 91.02

±1.07

Stubborn

Ants

6.34

±0.18

48 92.14

±0.8

4.28

±0.25

97 92.88

±0.62

Negation &

Stubborn

4.97

±0.34

49 90.25

±0.9
3.50

±0.08

139 91.70

±0.41

Table 9.6 - Mushrooms Dataset Experimental Results Summary.

9.5.3.2 Results Analysis

The Mushrooms dataset (Table 9.6) has a two-valued class attribute, as in Tic-

Tac-Toe. However, multi-pheromone system produced better results in terms of average

accuracy. Stubborn ants performed well in enhancing the average accuracy of the

generated rules. Using logical negation produced the least number of rules with a low

number of trials, but the average accuracy of the rules declined. Multi-pheromone with

stubborn ants produced the best average accuracy with an appropriate number of

generated rules.

152

9.5.3.3 Test of Statistical significance

 Original Negation Stubborn Multi-pheromone

Run Rules Acc. Rules Acc. Rules Acc. Rules Acc.

1 6.32 90.51 4.76 91.13 6.48 92.07 4.08 92.10

2 6.64 91.38 4.40 89.73 6.40 92.17 4.20 91.63

3 5.96 90.67 4.20 90.31 6.34 91.26 4.16 91.65

4 6.28 91.03 4.56 91.79 6.56 91.35 4.60 91.98

5 6.48 90.92 4.16 91.28 6.52 92.48 4.44 92.33

6 6.52 91.08 4.92 90.27 6.40 92.08 4.16 92.60

7 5.92 90.98 4.60 91.29 5.96 92.17 4.56 92.98

8 6.20 90.78 5.00 90.55 6.26 92.44 4.08 91.56

9 5.92 90.26 4.96 90.65 6.38 91.37 4.28 89.33

10 5.80 91.19 4.52 90.96 6.14 93.03 4.24 91.76

F- Value 144.33 0.911 1.64 16.68 304.9 4.48

Significance Type Strong - - Strong Strong Normal

Table 9.7 - Mushrooms Dataset Detailed Results for ANOVA Test.

153

9.5.4 Nursery Dataset Results

9.5.4.1 Results Summary

 Original Multi-Pheromone

Rules

Number

Trials/

Iteration

Accuracy

(%)

Rules

Number

Trials/

Iteration

Accuracy

(%)

None

8.11

±0.11

115 79.98

±0.73

6.48

±0.29

215 81.44

±1.09

Logical

Negation

5.16

±0.18

110 76.04

±0.7
3.5

±0.11

253 76.94

±0.47

Stubborn

Ants

8.14

±0.06

95 80.93

±0.66

6.72

±0.30

147 82.08

±0.82

Negation &

Stubborn

5.13

±0.15

90 76.00

±0.57

4.15

±0.13

237 77.60

±0.45

Table 9.8 - Nursery Dataset Experimental Results Summary.

9.5.4.2 Results Analysis

Experiments on the Nursery dataset (Table 9.8) have shown similar results to the

Mushrooms dataset. Using logical negation reduced the number of generated rules, but

came with a negative effect on the accuracy. Stubborn ants improved the average

accuracy of the generated rules, especially when used with multi-pheromone system, as

this combination produced the best average accuracy.

154

9.5.4.3 Test of Statistical significance

 Original Negation Stubborn Multi-pheromone

Run Rules Acc. Rules Acc. Rules Acc. Rules Acc.

1 8.14 80.29 5.25 75.98 8.14 81.57 6.70 81.02

2 7.88 78.14 4.82 75.91 8.17 80.32 6.64 83.20

3 8.00 80.13 5.11 77.14 8.17 80.57 6.85 81.49

4 8.02 80.26 5.28 76.06 8.20 80.76 6.14 80.50

5 8.14 80.37 5.22 75.48 8.05 79.98 6.44 81.84

6 8.14 80.08 5.14 77.00 8.11 80.82 6.58 81.64

7 8.14 79.31 5.11 75.80 8.17 81.91 5.85 79.33

8 8.25 80.53 5.28 75.55 8.14 81.54 6.61 81.69

9 8.22 80.51 4.91 74.63 8.25 81.57 6.58 82.73

10 8.17 80.19 5.42 76.54 8.05 80.29 6.41 80.96

F- Value 1938.43 78.2 0.72 8.25 270.47 12.30

Significance Type Strong Strong - Normal Strong Strong

Table 9.9 - Nursery Dataset Detailed Results for ANOVA Test.

155

9.5.5 Dermatology Dataset Results

9.5.5.1 Results Summary

 Original Multi-Pheromone

Rules

Number

Trials/

Iteration

Accuracy

(%)

Rules

Number

Trials/

Iteration

Accuracy

(%)

None

8.72

±0.26

94 74.72

±0.49

10.39

±0.22

170 82.77

±0.64

Logical

Negation

7.31

±0.14

59 80.84

±0.43

7.68

±0.15

120 86.47

±0.39

Stubborn

Ants

8.80

±0.28

79 74.80

±0.49

10.33

±0.43

159 83.01

±0.43

Negation &

Stubborn

7.32

±0.16

53 81.56

±0.41

7.54

±0.18

107 86.06

±0.41

Table 9.10 - Dermatology Dataset Experimental Results Summary.

9.5.5.2 Results Analysis

Experiments on Dermatology dataset have shown superiority in results when

using logical negation operator. As shown in Table 9.10, using logical negation operator

produced less number of rules, compared to the original version. Moreover, the accuracy

of the generated rule was enhanced significantly with the help of the logical negation

operator in rule construction. Stubborn ants did not improve the quality of the output in

terms of classification accuracy. However, they reduced the number of trials. Multi-

pheromone system produced better results in terms of classification accuracy. Using

multi-pheromone with logical negation operator produced the best classification accuracy,

while using logical negation with the original version of Ant-Miner produced the lowest

number of rules with good classification accuracy.

156

9.5.5.3 Test of Statistical significance

 Original Negation Stubborn Multi-pheromone

Run Rules Acc. Rules Acc. Rules Acc. Rules Acc.

1 8.64 75.18 7.24 81.15 8.82 74.27 10.46 82.32

2 9.2 74.29 7.36 80.27 8.82 75.13 10.22 83.62

3 8.68 75.43 7.06 80.72 9.22 74.91 10.06 82.59

4 8.76 74.62 7.3 81.56 8.62 74.9 10.5 83.35

5 8.38 75.24 7.38 81.16 8.88 74.31 10.28 81.40

6 8.56 74.43 7.54 80.24 8.74 75.94 10.42 83.35

7 8.4 74.21 7.56 80.54 8.92 74.54 10.48 82.54

8 8.82 74.67 7.24 80.72 9.18 74.89 10.78 82.91

9 8.7 74.02 7.24 80.78 8.24 74.59 10.1 82.48

10 9.12 75.17 7.32 81.24 8.56 74.43 10.56 83.13

F- Value 207.6 890.15 0.35 0.11 226.5 970.7

Significance Type Strong Strong - - Strong Strong

Table 9.11 - Dermatology Dataset Detailed Results for ANOVA Test.

157

9.5.6 Soybean Dataset Results

9.5.6.1 Results Summary

 Original Multi-Pheromone

Rules

Number

Trials/

Iteration

Accuracy

(%)

Rules

Number

Trials/

Iteration

Accuracy

(%)

None

11.15

±0.17

181 48.00

±0.30

11.30

±0.19

327 56.13

±0.46

Logical

Negation

9.23

±0.19

251 45.62

±0.40

10.79

±0.16

434 54.28

±0.29

Stubborn

Ants

11.08

±0.16

141 48.08

±0.5

11.50

±0.3

317 56.84

±0.47

Negation &

Stubborn

9.26

±0.22

167 46.87

±0.68

10.9

±0.2

425 54.27

±0.23

Table 9.12 - Soybean Dataset Experimental Results Summary

9.5.6.2 Results Analysis

As shown in the Table 9.12, utilizing multi-pheromone system improved the

accuracy of the generated rules from the Ant-Miner algorithm when experimented on

Soybean dataset. Using logical negation operator made its expected effect on the output,

which is reducing the number of rules, generated, thus improving the comprehensibility

of the output. Stubborn ants did not improve the quality of the output in terms of

classification accuracy very much. However, they needed fewer trials to produce the

better output rules than the original algorithm in terms of simplicity and accuracy. Using

logical negation with the original Ant-Miner version produced the least number of rules.

While using multi-pheromone with stubborn ants produced the highest classification

accuracy.

158

9.5.6.3 Test of Statistical significance

 Original Negation Stubborn Multi-pheromone

Run Rules Acc. Rules Acc. Rules Acc. Rules Acc.

1 11.54 47.79 8.86 45.35 11.13 47.51 11.30 55.82

2 11.28 47.89 9.21 45.23 10.84 47.89 11.45 55.87

3 10.97 48.31 9.26 45.77 11.17 48.44 11.25 56.35

4 11.15 48.52 9.30 45.17 10.93 48.33 11.56 56.34

5 11.00 47.78 9.45 46.42 11.26 48.87 11.07 56.20

6 11.04 47.71 9.10 45.17 10.97 47.77 11.54 55.80

7 11.00 47.65 9.17 45.93 11.36 47.49 11.06 56.68

8 11.19 47.96 9.28 45.93 10.93 47.54 11.45 55.18

9 11.17 48.03 9.54 45.51 11.17 48.47 11.04 56.40

10 11.21 48.38 9.08 45.67 11.04 48.54 11.32 56.68

F- Value 565.34 220.9 0.966 0.19 3.33 2146.3

Significance Type Strong Strong - - - Strong

Table 9.13 - Soybean Dataset Detailed Results for ANOVA Test.

159

9.5.7 Contraceptive Method Choice Dataset Results

9.5.7.1 Results Summary

 Original Multi-Pheromone

Rules

Number

Trials/

Iteration

Accuracy

(%)

Rules

Number

Trials/

Iteration

Accuracy

(%)

None

9.01

±0.18

94 43.45

±0.37

4.94

±0.19

330 45.97

±0.32

Logical

Negation

6.93

±0.29

60 43.53

±0.38
3.01

±0.12

490 45.60

±0.50

Stubborn

Ants

9.18

±0.27

87 44.08

±0.35

4.96

±0.17

303 45.79

±0.43

Negation &

Stubborn

6.96

±0.29

57 45.07

±0.38

4.25

±0.13

417 46.24

±0.38

Table 9.14 - Contraceptive Method Choice Dataset Experimental Results Summary.

9.5.7.2 Results Analysis

Table 9.14 shows the results of testing the Ant-Miner extensions on the

Contraceptive Method Choice dataset. Logical negation operator produced fewer rules

compared to the original version. Using logical negation with multi-pheromone produced

the least number of rules. Stubborn ants have improved the quality of the output in terms

of classification accuracy. Similarly, using multi-pheromone system improved the

classification accuracy of the generated rules. The best accuracy was produced form this

dataset by using logical negation with stubborn ants in the multi-pheromone system.

160

9.5.7.3 Test of Statistical significance

 Original Negation Stubborn Multi-pheromone

Run Rules Acc. Rules Acc. Rules Acc. Rules Acc.

1 8.88 43.66 7.12 43.47 9.14 43.89 4.82 45.40

2 9.18 43.68 6.92 43.62 8.74 43.85 5.20 46.10

3 9.24 43.71 6.98 43.17 8.98 44.14 5.02 45.85

4 8.80 42.87 7.06 43.24 9.74 43.80 5.20 45.74

5 9.16 42.93 6.82 43.18 8.98 43.93 4.06 46.48

6 8.70 43.74 6.76 43.82 9.24 44.02 4.98 46.17

7 9.20 43.67 7.00 43.28 9.36 44.37 4.86 46.35

8 9.02 43.70 6.68 43.75 9.14 44.55 4.72 45.98

9 8.92 42.94 7.10 44.40 9.38 43.97 5.04 45.64

10 9.02 43.64 6.90 43.37 9.18 44.33 5.04 46.01

F- Value 2275.9 2.23 289. 19.43 778.1 285.52

Significance Type Strong - - Strong Strong Strong

Table 9.15 - Contraceptive Method Choice Dataset Detailed Results for ANOVA Test

161

9.5.8 BDS Dataset Results

9.5.8.1 Results Summary

 Original Multi-Pheromone

Rules

Number

Trials/

Iteration

Accuracy

(%)

Rules

Number

Trials/

Iteration

Accuracy

(%)

None

11.34

±0.07

147 69.53

±0.70

10.98

±0.10

66 77.13

±0.52

Logical

Negation

4.58

±0.13

166 64.89

±0.50

3.38

±0.08

105 71.45

±0.26

Stubborn

Ants

11.26

±0.28

107 71.07

±0.36

11.03

±0.05

62 77.85

±0.36

Negation &

Stubborn

4.62

±0.15

152 65.77

±0.86
3.37

±0.04

99 71.47

±0.97

Table 9.16 - BDS Dataset Experimental Results Summary.

9.5.8.2 Results Analysis

The last dataset, BDS, exhibited similar behavior to the previous dataset when

experimenting the Ant-Miner extensions on it. Results in Table 9.16 show that using

logical negation reduced the number of rules generated by the algorithm. However, the

accuracy of the generated rules was reduced as well. Stubborn ants increased the accuracy

level of the generated rules without producing lager number of rules compared to the

original version. Multi-pheromone on the other hand improved the quality of the

generated rule in terms of classification accuracy noticeably, as well as reducing size of

the generated rule set, especially when used with logical negation operator. The highest

classification accuracy was produced when using multi-pheromone with stubborn ants.

While the lowest number of rules was generated when using logical negation operator

with multi-pheromone and stubborn ants.

162

9.5.8.3 Test of Statistical significance

 Original Negation Stubborn Multi-pheromone

Run Rules Acc. Rules Acc. Rules Acc. Rules Acc.

1 11.32 69.17 4.80 64.31 11.36 70.88 10.94 77.68

2 11.38 69.96 4.46 64.09 11.35 71.01 10.86 77.33

3 11.28 69.42 4.56 64.57 1

11.24

70.76 11.04 77.33

4 11.28 70.22 4.64 65.53 11.95 71.80 11.04 77.17

5 11.4 70.92 4.46 65.33 11.00 71.23 10.98 77.09

6 11.24 69.07 4.80 64.60 11.02 70.70 10.92 76.80

7 11.26 68.76 4.44 65.47 11.14 70.76 11.14 76.15

8 11.36 69.58 4.56 64.96 11.00 71.34 11.04 77.84

9 11.38 69.68 4.54 64.76 11.38 71.38 11.1 77.46

10 11.5 68.57 4.62 65.269 11.25 70.81 10.78 76.50

F- Value 227.9 287.7 0.58 37.45 68.2 751.42

Significance Type Strong Strong - Strong Strong Strong

Table 9.17 - BDS Dataset Detailed Results for ANOVA Test

163

9.5.9 Ants with Personality Experimental Results

 Rules Number Trial\Iteration Accuracy

Dataset

Car Evaluation 9.00

±0.18

8.85

±0.010

156 302 76.2

±0.31

77.03

±0.42

Tic-Tac-To 6.22

±0.30

6.50

±0.21

198 634 71.64

±0.27

71.89

±0.31

Mushrooms 6.40

±0.22

6.20

±0.17

167 538 92.72

±0.55

91.44

±0.38

Nursery 8.11

±0.18

8.21

±0.25

230 876 80.32

±0.73

80.82

±0.64

Dermatology 8.69

±0.16

8.64

±0.11

197 307 75.50

±0.45

75.57

±0.52

Soybean 11.12

±0.18

11.21

±0.22

361 815 48.60

±0.28

48.42

±0.31

CMC 8.99

±0.10

9.01

±0.12

142 296 43.26

±0.42

43.66

±0.35

BDS 11.30

±0.14

11.24

±0.12

301 640 70.02

±0.77

69.74

±0.82

Table 9.18 - Ants with Personality Experimental Results

The pervious table shows the results of using Ant with personality – where each

ant has its own values for α and β drown from a Gaussian distribution random generator

with mean of 1 and standard deviations of 0.5 and 1. Average rules number did not

change significantly when using different standard deviation for all datasets. However,

average accuracy and trials number has different values for each value of standard

deviation. 0.5 produced better average accuracy comparing to the original version of Ant-

Miner but with higher trials per iteration. Standard deviation of one produced even better

164

average accuracy than the results produced by using standard deviation of 0.5. However,

number of trials needed to converge per iteration has increased significantly when using

standard deviation of 1.

9.6 Summary

This chapter presented the experiments that were used to test the performance of

the proposed modifications on the original version of Ant-Miner. The proposed

modifications are: Using Negative Attributes, Stubborn Ants, Quality Contrast Intensifier,

Multi-pheromone Ant System and Ants with Personality. Each modification was test

alone and with other modifications on four public datasets. The results shown the effect

of each these modification on the performance of the algorithm in terms of number of

rules generated, number of trials needed for each iteration to converge and the accuracy

of the generated rules. The next chapter concludes the outcomes of the research and

mentions some future work on the field of Ant Colony Optimization in general and Ant-

Miner in specific.

165

Chapter 10

CONCLUSION AND FUTURE WORK

10.1 Conclusion

Ant-Miner is an Ant Colony algorithm for discovering classification rules. It has

been introduced in 2002 and proved to produce competitive results to the well-known

classification algorithm. Since then, a lot of modification has been applied to the

algorithm in order to develop its efficiency. This thesis proposes five new extensions to

Ant-Miner. First, we proposed using logical negation in rule antecedents' construction.

The aim was to discover rules with higher coverage in order to reduce the overall number

of the generated rules, which in turn improves the comprehensibility of the output.

Second, we proposed the use stubborn ants with Ant-Miner. Stubborn ants are variation

of ACO in which an ant can use its own past experience in rule constructing besides the

shared experience in the colony. The aim is to add individuality and promote search

diversity. Third, we proposed a new Ant-Miner system; multi-pheromone. In multi-

pheromone, the ant selects the class prior to constructing the rule antecedents. Each ant

can drop different type of pheromone as many as the permitted class, and it can only

follow the pheromone dedicated the class of the current rule being constructed. The aim is

to select terms that are more relevant to the classification of the selected class, so that

better rules in term of predictive accuracy are discovered. Fourth, we propose a new

strategy for pheromone update, aims to intensify the contrast between the quality of the

decision components i.e. rewarding good rules by amplifying the pheromone to be

dropped and penalizing bad rules by removing pheromone amounts. Finally, we proposed

166

the use of different values of α and β in term selection formula for each ant. The aim is to

give personality to each ant and promote search diversity.

10.2 Results Summary

In summary, experimental results indicate that using logical negation tends to

produce a lower number of rules. However, since the number of nodes in the construction

graph increases, the number of trials per iteration increases. Using logical negation does

not sacrifice the accuracy of the generated rules. On the other hand, using stubborn ants

reduces the number of trials needed per iteration to generate a rule and enhances the

accuracy of the rules. Multi- pheromone increases rule quality in terms of accuracy.

Furthermore, it produces a smaller rule set because of the evaluation function that

balances between a rule‘s classification accuracy and its coverage. As for ants with

personality, using σ = 1.0 produces better results in terms of accuracy than using σ = 0.5.

Nonetheless, the algorithm needs less trials using σ = 0.5. Note that a standard deviation

of 0.5 produces better results in terms of generated rules accuracy compared to the

original version of Ant-Miner.

10.3 Future work

Experimental results on four popular datasets indicate that these extensions are

promising and worthy of further exploration (see Chapter 9). In the future, we would like

to explore using a weight coefficient for stubbornness when using stubborn ants, which

may start at a small value and increase gradually over time. When using ants with

personality, we would like to explore gradually decreasing over time the value of the

standard deviation of the Gaussian distribution function used to generate the individual

α‘s and β‘s.

167

REFERENCES

[1] Abdelbar, A. M.: "Stubborn ants". Proceedings IEEE Swarm Intelligence Symposium,

pp. 1–5 (2008).

[2] Abraham, A., Grosan, C., Ramos V.: "Swarm Intelligence in Data Mining". Studies in

Computational Intelligence, vol. 34, (2006).

[3] Chan, A., Freitas, A.: "A new ant colony algorithm for multi-label classification with

applications in bioinformatics". Proc. Genetic and Evolutionary Computation Conf.

pp. 27-34 (2006).

[4] Chan, A., Freitas, A.: "A new classification-rule pruning procedure for an ant colony

algorithm". Artificial Evolution, Lecture Notes in Computer Science, vol. 3871, pp.

25–36 (2005).

[5] Cover, T. M., Thomas, J. A.: Elements of Information Theory. New York: John Wiley

& Sons (1991).

[6] Deneubourg, J. L., Aron, S., Goss, S., Pasteels, J.M., "The self-organizing

exploratory pattern of the Argentine ant". J. Insect Behav. , pp. 3-159, (1990).

[7] Deneubourg, J. L., Aron, S., Goss, S., Pasteels, J.M., "Self-organized shortcuts in

the Argentine ant". Naturwissenschaften, pp. 76- 579, (1989).

[8] Dorigo, M.: "Optimization Learning and Natural Algorithms, Ph.D. thesis (in

Italian)". Dipartimento di Elettronica, Politecnico di Milano. (1992).

[9] Dorigo, M., Colorni, A., Maniezzo, V.: "The Ant System: Optimization by a colony

of cooperating agents". IEEE Transactions on Systems, Man, and Cybernetics-Part

B., vol. 26, pp. 29–41 (1996).

168

[10] Dorigo, M., Di Caro, G.: The ant colony optimization meta-heuristic, in New

Ideas in Optimization. McGraw-Hill., p.11, (1999).

[11] Dorigo, M., Gambardella, L. M. Ant Colony System: A cooperative learning

approach to the travelling salesperson problem. IEEE Transactional on Evolutionary

Computation, vol. 1, pp. 53 – 66.

[12] Dorigo, M., Maniezzo, V., Colorni, A., "Positive Feedback as a Search Strategy,

Technical report". Dipartimento di Elettronica, pp. 91-016 (1991).

[13] Dorigo, M., Stützle, T.: Ant Colony Optimization. MIT Press. (2004).

[14] Fayyad, U., G. Piatetsky-Shapiro and P. Smyth,: "The KDD process for extracting

useful knowledge from volumes of data". Communications of the ACM , vol. 39, 27–

34 (1996).

[15] Jaiwei, H., Kamber, M.: Data Mining: Concepts and Techniques. Morgan

Kaufmann, (2006).

[16] Liu, B., Abbass, H. A. , McKay, B.: "Density-based heuristic for rule discovery

with ant-miner". In Proc. 6th Australasia-Japan Joint Workshop on Intell. Evol. Syst.,

pp. 180–184 (2002).

[17] Liu, B., Abbass, H. A., McKay, B.: "Classification rule discovery with ant colony

optimization". In Proc. IEEE/WIC Int. Conf. Intell. Agent Technol., pp. 83–88

(2003).

[18] Martens, D., Backer, M. D., Haesen, R., Vanthienen, J., Snoeck, M., Baesens, B.:

"Classification with ant colony optimization". IEEE Transactions on Evolutionary

Computation. vol. 11, pp. 651–665 (2007).

169

[19] Otero, F., Freitas, A., Johnson, C. G.: ―cAnt-Miner: an ant colony classification

algorithm to cope with continuous attributes‖. Ant Colony Optimization and Swarm

Intelligence. Lecture Notes in Computer Science, vol. 5217, pp. 48–59 (2008).

[20] Parpinelli, R.S., Lopes, H.S., Freitas, A.: ―Data mining with an ant colony

optimization algorithm‖. IEEE Transactions on Evolutionary Computation, vol. 6,

pp.321–332 (2002).

[21] Quinlan, J. R.: C4.5: Programs for Machine Learning. Morgan Kaufmann.

(1993).

[22] Quinlan, J. R.: ―Generating production rules from decision trees‖. Proc. Int. Joint

Conf. on Artif. Intel., pp. 304-307 (1987).

[23] Smaldon, J., Freitas, A.: ―A new version of the Ant-Miner algorithm discovering

unordered rule sets‖. Proceedings Genetic and Evolutionary Computation Conference

(GECCO), pp. 43–50 (2006).

[24] Stützle, T., Hoos, H. H., ―MAX-MIN Ant System‖. Future Generation Comput.

Syst., pp. 889,(2000).

[25] Stützle, T., Dorigo, M.: ―ACO algorithms for the traveling salesman problem‖.

Evolutionary Algorithms in Engineering and Computer Science, Wiley, pp. 163.

(1999).

[26] UCI Repository of Machine Learning Databases. Retrieved July 2009 from,

URL:http://www.ics.uci.edu/ mlearn/MLRepository.html

[27] Wang, Z., Feng, B.: ―Classification Rule Mining with an Improved Ant

Colony Algorithm‖. Advances in Artificial Intelligence, Lecture Notes in Computer

Science, vol. 3339, pp. 357–367 (2004).

	Extensions to the ant-miner classification rule discovery algorithm
	Recommended Citation
	APA Citation
	MLA Citation

	Table of Contents

