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ABSTRACT 

Ant Colony Optimization (ACO) is a subfield of swarm intelligence which studies 

algorithms inspired by the observation of the behavior of biological ant colonies. It has 

been proposd by M. Dorigo and colleagues [8 – 9] as a meta-heuristic for solving 

combinatorial optimization problems. Ant-Miner is an application of ACO in data 

mining. It has been introduced by Parpinelli et al. [20] in 2002 as an ant-based algorithm 

for the discovery of classification rules. The classification rules are generated in the 

following form: 

IF <Conditions> THEN <class> 

The <conditions> part (antecedent) of the rule contains a logical combination of 

predictor attributes, in the form: term1 AND term2 AND... .  Each term is in the form of 

<attribute = value>, where value belongs to the domain of attribute. Ant-Miner has 

proved to be a very promising technique for classification rules discovery. Ant-Miner 

generates a fewer number of rules, fewer terms per each rule and performs competitively 

in terms of efficiency compared to the C4.5 algorithm (see experimental results in [20]). 

Hence, it has been a focus area of research and a lot of modification has been done to it in 

order to increase its quality in terms of classification accuracy and output rules 

comprehensibility (reducing the size of the rule set). 

The thesis proposes five extensions to Ant-Miner. 1) The thesis proposes the use 

of a logical negation operator in the antecedents of constructed rules, so the terms in the 

rule antecedents could be in the form of <attribute NOT= value>. This tends to generate 

rules with higher coverage and reduce the size of the generated rule set.  2) The thesis 

proposes the use stubborn ants, an ACO-variation in which an ant is allowed to take into 
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consideration its own personal past history. Stubborn ants tend to generate rules with 

higher classification accuracy in fewer trials per iteration. 3) The thesis proposes the use 

multiple types of pheromone; one for each permitted rule class, i.e. an ant would first 

select the rule class and then deposit the corresponding type of pheromone. The multi-

pheromone system improves the quality of the output in terms of classification accuracy 

as well as it comprehensibility. 4) Along with the multi-pheromone system, the thesis 

proposes a new pheromone update strategy, called quality contrast intensifier. Such a 

strategy rewards rules with high confidence by depositing more pheromone and penalizes 

rules with low confidence by removing pheromone. 5) The thesis proposes that each ant 

to have its own value of α and β parameters, which in a sense means that each ant has its 

own individual personality.  

In order to verify the efficiency of these modifications, several cross-validation 

experiments have been applied on each of eight datasets used in the experiment. Average 

output results have been recorded, and a test of statistical significance has been applied to 

indicate improvement significance. Empirical results show improvements in the 

algorithm's performance in terms of the simplicity of the generated rule set, the number of 

trials, and the predictive accuracy. 

 

Keywords: Ant Colony Optimization (ACO), Data Mining, Classification, Multi-

pheromone, Stubborn Ants, Ants with Personality. 
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Chapter 1  

INTRODUCTION 

1.1 Overview 

Swarm intelligence is a branch of soft computing in which the biological 

collective behavior is applied [2]. Many animal groups, such as fish schools and bird 

flocks exhibit such a swarm behavior. This behavior can also be seen in insects like ants 

and bees that display structural order and integrated behavior (see figure 1.2). At a high-

level, a swarm can be viewed as a group of homogenous agents cooperating in some 

purposeful behavior to achieve some goal. This collective intelligence seems to emerge 

from what are often large groups of relatively simple agents. The agents use simple local 

rules to govern their actions and via the interactions of the entire group, the swarm 

achieves its objectives. A type of self-organization emerges from the continuing actions 

of the group.  

 

Figure 1.1 - Biological Swarm Behavior Examples. [2] 
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Since the early 90‘s, several collective behavior (like social insects, bird flocking) 

inspired algorithms have been proposed and applied studied optimization problems like 

NP-hard problems (Traveling Salesman Problem, Quadratic Assignment Problem, Graph 

problems), network routing, clustering, data mining, job scheduling and many other  areas 

in order to solve problems that are combinatorial in nature. 

Particle Swarm Optimization (PSO) and Ant Colonies Optimization (ACO) are the most 

popular algorithms in the swarm intelligence domain. PSO is a population-based search 

algorithm and is initialized with a population of random solutions, called particles [2]. 

Unlike in the other evolutionary computation techniques, each particle in PSO is also 

associated with a velocity. Particles move through the search space with velocities which 

are dynamically adjusted according to their historical behaviors. Therefore, the particles 

have the tendency to move towards better search areas over the course of search process. 

The following figure describes the basic structure for PSO algorithms. 

 

Figure 1.2 - Basic Structure of PSO. [2] 
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Ant Colonies Optimization (ACO) algorithms were introduced around 1990   [8], 

[9], [10], [12]. These algorithms were inspired by the behavior of ant colonies. Ants are 

social insects, living in colonies and exhibit an effective collective behavior. Although 

each ant is relatively a simple insect with limited individual abilities, a swarm of ants has 

the ability to find the shortest path from their nest to food. This idea was the source of the 

proposed algorithms. 

When searching for food, ants initially explore the area surrounding their nest in a 

random manner. While moving, ants leave a chemical pheromone trail on the ground. 

Ants are guided by pheromone smell. Ants tend to choose the paths marked by the 

strongest pheromone concentration. When an ant finds a food source, it evaluates the 

quantity and the quality of the food and carries some of it back to the nest. During the 

return trip, the quantity of pheromone that an ant leaves on the ground may depend on the 

quantity and quality of the food. The pheromone trails will guide other ants to the food 

source. The indirect communication between the ants via pheromone trails enables them 

to find shortest paths between their nest and food sources. As given by Dorigo et al. [13], 

the main steps of the ACO algorithm are given below: 

1.  Pheromone trail initialization. 

2.  Solution construction using pheromone. 

3.  State transition rule.  

4.  Pheromone trail update. 

This process is iterated until a termination condition is reached. More details on the ACO 

algorithm are discussed in Chapter 3. 

One of the most important application of swarm intelligence algorithms is data 

mining. Data mining is the application of specific algorithms for extracting patterns from 
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data. The additional steps in the Knowledge Discovery and Data mining process (KDD), 

such as data selection, data cleaning, and proper display and interpretation of the results 

are essential to ensure that useful knowledge is derived from the data. 

The  task  of   interest   here  is classification,  which  is  the  task  of  assigning  a 

data point (a case in given a dataset) to a  predefined  class or  group  according  to  its  

predictive attributes.  The  classification problem and  accompanying  data  mining 

techniques  are  relevant  in  a  wide  variety  of domains  such  as  financial engineering,  

medical  diagnostic  and  marketing.  The result  of  a  classification technique  is  a  

model  which  makes  it  possible  to classify future cases (in other words, predict the 

class of a new case) based on a set of specific attributes in an automated way, with a 

sufficient level of confidence.  

In the literature, there is a lot of different techniques proposed for this 

classification task, some of the most commonly used being C4.5-based decision trees, 

logistic regression, linear  and  quadratic  discriminate  analysis,  k-nearest neighbor,  

artificial  neural networks and support vector machines. The  performance  of  the  

classifier  is  typically  determined  by  its  predictive accuracy  on  an independent  test  

set.  Benchmarking studies have shown that the non-linear classifier generated by neural 

networks and support vector machines score best on this performance measure. However, 

comprehensibility can be a key requirement as well, demanding that the user can interpret 

the model to understand the motivations behind the model‘s prediction.  

In some domains, such as credit scoring and medical diagnostics, the lack of 

comprehensibility is a major issue and causes a reluctance to use the classifier or even 

complete rejection of the model. In a credit scoring context, when credit has been denied 

the Equal Credit Opportunity Act of the U.S. requires that the financial institution 



5 

 

provides specific reasons why the customer‘s application was rejected, whereby vague 

reasons for denial are illegal. In the medical diagnostic domain as well, clarity and 

explainability are major constraints besides the classifier efficiency. The most suited 

classifiers for this type of problem are of course rules and trees. C4.5 is one of the 

techniques that construct such comprehensible, user-interpretable classification model 

with efficient predictive accuracy. On the other hand, other techniques, such as artificial 

neural network and support vector machine classifiers, are known for their predictive 

accuracy. However, they do not produce a comprehensive, explainable output.  

Ant-Miner is an ACO algorithm, proposed by Parpinelli et al. [20], that discovers 

classification rules of the form: 

IF <Term-1> AND <Term-2> AND . . . <Term-n> THEN <Class> 

where each term is of the form <attribute = value>, and the consequent of a rule is the 

predicted class. Chapter 3 is dedicated to describe the Ant-Miner algorithm in detail, 

where its related work is discussed in Chapter 4. 

1.2 Motivation 

Ant-Miner performance was compared with the performance of the well-known 

C4.5 algorithm in six public domain data sets [26]. Overall the results show that, 

concerning predictive accuracy, Ant-Miner is competitive with C4.5.  In addition, Ant-

Miner has consistently found considerably simpler (smaller) rules than C4.5. Although 

applying ACO in the field of classification rule discovery was a new trend, Ant-Miner 

produced promising results compared to a well-known, sophisticated decision tree 

algorithm, which has been evolving from early decision tree algorithms for at least a 

couple of decades. This has motivated a lot of research to focus on such an algorithm. 
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Since the birth of this ACO-based classification algorithm, several ideas and modification 

have been applied to the original Ant-Miner version in order to enhance its performance, 

yet various enhancements and extensions can be investigated, tried and tested to develop 

Ant-Miner from the perspective of a classification algorithm. From another perspective, 

as an ACO-based technique, a lot of ACO-based ideas and updates that arise in the 

literature of swarm intelligence can be easily applied to the Ant-Miner algorithm. 

1.3 Thesis Statement and Objective 

According to the state of Ant-Miner as a new, promising classification rule 

discovery technique and its ACO-based algorithm nature, my objective is to: 

“Implement effective extensions to the original version of Ant-Miner in order to 

improve its performance in terms of1) Produced model comprehensibility, via 

reducing the number of generated rules resulting in a smaller (simpler) model, 2) 

algorithm running time, via decreasing the number of iterations and the trials 

performed per iteration, and 3) produced model efficiency, via elevating the 

predictive accuracy of the generated rule set.” 

1.4 Thesis Contribution 

The main contribution of this Master‘s thesis consists of five extensions on the 

original Ant-Miner algorithm: 

1. Logical Negation Operator:  this allows the usage of a logical negation operator in 

the antecedents of constructed rules, so that the constructed rules would have a higher 

coverage. This should decrease the number of the generated rules, thus improving 

output comprehensibility, as well as increasing its classification accuracy. 
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2. Applying Stubborn Ants:  an ACO-variation in which an ant is allowed to take into 

consideration its own personal history. The technique was introduced in 2008 in [1]. 

The idea is to promote search diversity by having each ant be influenced by its own 

history of constructing solutions in addition to the pheromone trails left by other ants. 

This tends to reduce the number of trials needed to converge on a rule per iteration. 

Besides, stubborn ants produce better results in terms of classification accuracy. 

3. Multi-Pheromone Ant-Miner:  using multiple types of pheromone, one for each 

permitted rule class, i.e. an ant would first select the rule class and then deposit the 

corresponding type of pheromone. An ant is only influenced by the amount of the 

pheromone deposited for the class for which it is trying to construct a rule. In this 

case, pheromone is not shared amongst ants constructing rules for different classes. 

This allows choosing terms that are only relevant to the selected class. This improves 

the classification accuracy of the generated rules. 

4. Quality Contrast Intensifier:  A new pheromone updates procedure where a rule 

whose quality is higher than a specific threshold would be rewarded by allowing it to 

deposit higher quantities of pheromone. In the same manner, rules with lower levels 

of quality are penalized by removing pheromone from their terms in the construction 

graph. This is used to direct the ants to use the good tried paths and unexplored paths 

rather than the low-quality-tried paths. The result of such an extension is to reduce the 

trials per rule and find better classification rules in term of accuracy. Moreover, a new 

convergence test is applied in order to insure that the discovered rule satisfies a 

minimum quality threshold. Otherwise, new different rules should be sought. 

5. Ants with Personality: we allow each ant to have its own value of α and β 

parameters, which represent the weight of the cognitive component and the social 
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component respectively in the state transition formula (see formula 2.2). This in a 

sense means that each ant has its own individual personality. This promotes search 

diversity and helps in finding new better solutions. 

1.5 Thesis Overview 

This thesis is structured as follows: 

Chapter 2 consists of two parts. Part1 describes the Ant Colony Optimization 

(ACO) technique in detail. It starts by explaining the biological behavior of the swarms, 

and then it moves to the artificial collective behavior and ACO meta-heuristic algorithm. 

Some ACO variations are discussed in the end of the chapter. The second part of Chapter 

2 talks about data mining and knowledge discovery. Knowledge discovery steps are 

explained, followed by discussion of various data mining tasks. Challenges of data 

mining are tackled and different applications of data mining are mentioned at the end of 

this chapter. 

Chapter 3 introduces the original version of Ant-Miner algorithm. A detailed 

description of the algorithm steps, results and algorithm issues are tackled in this chapter 

as well.  

Chapter 4 exhibits some of the most important related work to the original version 

of Ant-Miner. 

Chapter 5 to Chapter 8 introduce the extensions that have been applied on the 

original version of the Ant-Miner algorithm in the following order: Chapter 5 explains the 

use of logical negation operator in rule construction, Chapter 6 describes the use stubborn 

ants, Chapter 7 explains multi-pheromone system, applying a quality contrast intensifier 
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in pheromone update as well as introducing the new convergence test, and Chapter 8 

shows the use of ants with personality.  

Chapter 9 describes the experimental approach that was used to test the 

performance of the new modifications on the algorithm. Experimental results and their 

discussion are shown in this chapter as well.  

Chapter 10 summarizes this thesis and discusses options for future research. 
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Chapter 2  

BACKGROUND 

PART 1: ANT COLONY OPTIMIZATION 

2.1 Introduction to ACO 

Ant Colony Optimization (ACO) is subfield of swarm intelligence which studies 

algorithms inspired by the observation of the behavior of biological ant colonies. ACO 

was proposed by M. Dorigo et al. [8 – 9] as meta-heuristic method for solving 

optimization problems. As was described in Chapter 1, swarm intelligence algorithms are 

self-organizing systems that are made up of simple individuals cooperating with each 

other to achieve a goal, without any form of central control over the swarm members.  

Although ants are simple insects, ant colonies are able to solve complex problems such as 

finding shorts path from the nest to the food utilizing the collective behavior of the whole 

swarm communicating indirectly with each other via pheromone trails. This chapter 

illustrates the basic ideas of ACO and describes some variations in the literature for the 

algorithm. A comprehensive overview about ACO can be found in ―Ant Colony 

Optimization‖, a book by M. Dorigo and T. Stützle [13]. 

2.2 Biological Ants Behavior 

Social insect swarms like ant colonies are distributed systems that, in spite of the 

simplicity of their individuals, produce a collective behavior that enables a swarm of 

insects to accomplish complex tasks that, in some cases, far exceed the individual 

capabilities of a single insect [13]. The high coordinated, self-organizing structure that is 

exhibited by colonies of ants can be used to build an agent-based artificial system to solve 
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hard computational problems. Ants coordinate their activities via stigmergy, a form of 

indirect communication mediated by altering the environment. 

As an example of stigmergy observed in colonies of ants, an ant drops a chemical 

substance called a pheromone while waking from source to food and vice versa. Other 

ants are able to smell this pheromone, and its presence influences the choices they make 

along their path. An ant is more likely to follow route containing high concentrations of 

pheromone over one that does not.  The pheromone deposited on the ground forms a 

pheromone trail, which allows the ants to find good sources of food that have been 

previously identified by other ants.  The similar types of behavior of ant colonies have 

inspired different kinds of ant algorithms, foraging, division of labor, brood sorting, and 

cooperative transport. 

The ―double bridge‖ is an effective experiment was done by Deneubourg et al. in 

the 90s [6] to explore the pheromone trail-laying and -following behavior of Argentine 

ant species. The experiment shows the collective behavior of ants that emerges through 

pheromone trial-based communication, which leads to converge on the shorter path from 

source to distention. The following section presents an overview of this experiment. 

2.2.1 Double Bridge Experiment 

The nest of the ants was connected to a food source by two bridges. In the first 

experiment, the two bridges were equal in length.  The behavior of the ants in choosing 

which branch to take when searching for food and bringing it back to the nest was then 

observed over time. The ants start exploring the surroundings of the nest and randomly 

find one of the bridges and reach the food source. During their journey to the food source 

and back, the ants deposit pheromone on the bridge that they use.  Initially, each ant 



12 

 

randomly chooses one of the bridges. After some time, there will be more pheromone 

deposited on one of the bridges than on the other. Because ants tend to prefer in 

probability to follow a stronger pheromone trail, the bridge that has more pheromone will 

attract more ants. This in turn makes the pheromone trail grow stronger, until the colony 

of ants converges toward the use of a same bridge.  

In another experiment, the two bridges were not of the same length so that the 

longer branch was twice as long as the short one. At the beginning, ants leave the nest to 

explore the environment and arrive at a decision point where they have to choose one of 

the two branches. The two branches initially appear identical to the ants, they choose 

randomly. Therefore, it can be expected that, on average, half of the ants choose the short 

branch and the other half the longer branch. Because one branch is shorter than the other, 

the ants choosing the short branch are the first to reach the food and to start their return to 

the nest. Therefore, the pheromone intensity will increase faster on the short branch. 

Then, when other ants make a decision between the two bridges, the higher level of 

pheromone on the short branch will bias their decision in its favor, which will in time be 

used by all the ants because of the autocatalytic process described previously.  

 

Figure 2.1 - Experimental Setup for the Double Bridge Experiment. [6] 

(a) Branches have equal length. (b) Branches have different length. 
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Figure 2.2 - Traffic Behavior for each Case in the Double Bridge Experiment. [6] 

(a) Branches have equal length. (b) Branches have different length. 

When compared to the experiment with the two branches of equal length, the 

influence of initial random fluctuations is much reduced, and stigmergy, autocatalysis, 

and differential path length are the main mechanisms at work. Interestingly, it can be 

observed that, even when the longer branch is twice as long as the short one, not all the 

ants use the short branch, but a small percentage may take the longer one. This may be 

interpreted as a type of ‗‗path exploration.‘‘  Figure 2.1 and 2.2 show the experimental 

setup and observed result for both experiments. Figures were taken from [13]. 

2.2.2 Related Algorithmic Model 

A model was developed by Goss et al. [7] to explain the behavior observed in the 

double bridge experiment described in the previous section. As explained in [13], 

assuming that    number of ants has taken the first branch and    has taken the second 

one after   unites of time. The probability    that     ant selects the first branch is 

given by the following equation: 

        
       

               
 (2.1) 
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where parameters   and   are needed to fit the model to the experimental data. The 

probability    that the same ant chooses the second bridge is 1-       . This model 

assumes that the amount of pheromone on a branch is proportional to the number of ants 

that used the branch in the past and no pheromone evaporation is considered by the 

model.  So the at any given time  , the probability that that an ant chooses branch   

depends on the number of ants that have    previously selected that branch. Assuming 

that branch   is the shorter one. At time   the number of ant that has taken branch   is 

probably larger as they take the path from the nest to the food and back in a shorter 

amount of time than the other branches. Therefore, the probability    of ant       to 

select the shorter branch   would be larger than the probability of selecting other 

branches. 

This basic model explains the foraging behavior of real ants in solving such an 

optimization problem, which is finding the shortest path, without any global sight or 

master control. Instead, stigmergic communication happens via the pheromone that ants 

deposit on the ground. This can be an inspiration to design artificial ants that solve 

optimization problems defined in a similar way. The following section describes ideas 

behind artificial ants. 

2.2.3 Artificial Ants 

The binary bridge experiments show that ant colonies exhibit a collective behavior 

that is able to solve optimization problems. With stigmergic communication, via 

pheromone depositing and the use of probabilistic rules based on local information they 

can find the shortest path between two points in their environment. An idea towards an 

artificial ant system is to represent the solution space for any optimization problem as a 
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set of nodes in a graph, representing the variable states of the solution. Artificial ants can 

visit these states to build a candidate solution for the problem. Artificial ants may 

simulate pheromone laying by modifying an appropriate pheromone variable associated 

with solution states they visit. They would have only local access to these pheromone 

variables according to the stigmergic communication model. 

Ant Colony Optimization (ACO) is an artificial ants system that basically follows 

the previously described ideas of real ants' behavior. Both real and artificial ant colonies 

are composed of a swarm of simple individuals that use collective behavior to achieve a 

certain goal.  In the case of real ants, the goal is to find the food using a good (short) path, 

while in the case of artificial ants, it is to find a good solution to a given optimization 

problem. A single ant (either a real or an artificial one) is able to find a solution to its 

problem, but only cooperation among many individuals through stigmergy enables them 

to find good solutions. 

Artificial ants live in a virtual world, probably a graph of nodes representing the 

search space of the solution for a given problem. The use of pheromone, which is in the 

artificial system a numeric variable associated with each state in the search graph, 

depositing and influenced by it while searching in the solution states graph constructing a 

solution. A sequence of pheromone values associated with problem states is called 

artificial pheromone trail. 

There are many similarities between real and artificial ants. However, there are 

some important differences between real and artificial ants. These differences are listed 

below as were described by M. Dorigo and T. Stützle in [13]: 

 Artificial ants live in a discrete world—they move sequentially through a finite set of 

problem states. 
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 In real ants, there is the coupling between the autocatalytic mechanism and the 

implicit evaluation of solutions. As for the double bridge experiment, the fact that 

shorter paths are completed earlier than longer ones, and therefore they receive 

pheromone reinforcement quicker. So the shorter the path is, the sooner the 

pheromone is deposited, and the more the ants use the shorter path. On the other hand, 

artificial ants drop pheromone after the solution is constructed and its quality is 

evaluated. This may not have anything related to the quickness in which the 

pheromone accumulates on a path due to its length. Thus, the amount of the 

pheromone may vary according to the quality of the solution to simulate enforced 

catalytic mechanism toward the good paths. 

 Artificial ants may use local heuristics, local search and other additional mechanisms. 

The following section describes ant colony optimization meta-heuristic model in 

detail with illustration of the ACO algorithm.   

2.3 Ant Colony Optimization Meta-Heuristic  

“A meta-heuristic refers to a master strategy that guides and modifies other 

heuristics to produce solutions beyond those that are normally generated in a quest for 

local optimality.” —Tabu Search, Fred Glover and Manuel Laguna, 1998.  

In other words, meta-heuristic it is a set of algorithmic concepts that can be used 

to define heuristic methods applicable to a wide set of different problems [13]. This can 

be seen as a general-purpose method designed to guide an underlying problem-specific 

heuristic toward promising regions of the search space containing high-quality solutions. 

A meta-heuristic is therefore a general algorithmic framework which can be applied to 
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different optimization problems with relatively few modifications to make them adapted 

to a specific problem. 

M. Dorigo et al. formalized an ACO meta-heuristic model using pheromone 

manipulation for solving Combinational Optimization Problems (COPs) [8]. This has 

since been used to tackle many combinatorial optimization problems. The model can be 

defined as follows; a model           of a COP consists of: 

 A search space   defined over a finite set of discrete decision variables and a set    of 

constraints among the variables. 

 An objective function        
  to be optimized (minimized or maximized). 

The search space   is a set of discrete variables           , with discrete 

values   
  

       
    

      
     . A variable instantiation is the assignment of value   

  
 

to variable   , denoted by      
  
. An instantiated decision variable      

  
 is called a 

solution component and denoted by    , The set of all possible solution components is 

denoted by  . Any solution      , that is a complete variables assignment in which each 

decision variable has a value assigned that satisfies all the constraints in the set   , is a 

feasible solution of the given COP. A solution      is called a global optimum if and 

only if                   (for minimization). The set of all globally optimal solutions 

is denoted by     . To solve a (COP), at least one      needed to be found. 

The aforementioned model for COP is the basis for pheromone manipulation used 

in ACO. A pheromone trail parameter      is associated with each component    .  The set 

of all pheromone trail parameters is denoted by  . The value of a pheromone trail 

parameter      in a given time   associated with decision component     is denoted by 

      . This pheromone value is then used and updated by the (ACO) algorithm during the 
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search. This allows modeling the probability distribution of different components of the 

solution.  

In ACO, the described model is represented as a graph, called construction graph, 

which is traversed by artificial ants to build a solution for a given problem. The 

construction graph         is a fully connected graph consisting of a set of vertices   

and a set of edges  .   The set of components   may be associated either with the set of 

vertices   of the graph   , or with the set of its edges  .  An ant constructs a solution 

incrementally while moving from vertex to vertex along the edges of the graph. 

Additionally, the ant deposits a certain amount of pheromone on the components, that is, 

either on the vertices or on the edges that they visit.  The amount of pheromone,   , 

deposited depends on the quality of the solution found.  Subsequent ants are influenced 

by pheromone trails and use them as guides toward good decision components in the 

search graph. This increases the probability of choosing such decision components in the 

following ant trials.  The ant colony optimization meta-heuristic technique is shown in the 

following algorithm. 

 

Algorithm 2.1 - Ant Colony Optimization Meta-heuristic. 

Set parameters, initialize pheromone trails. 

WHILE termination conditions not met 

DO 

Construct a Solution 

Apply Local Search          {optional}  

Update Pheromone 

END WHILE 



19 

 

 

As shown in Algorithm 2.1, each ant in the swarm builds a solution by 

incrementally selecting solution components from the construction graph utilizing the 

pheromone on it. A local search might be applied to enhance the solution quality. Then 

the pheromone is updated on the ant trail during its navigation. The amount of pheromone 

to deposit may depend on an evaluation function used to determine the quality of the 

constructed solution. These steps are repeated until a predefined termination condition is 

met. The following is a more detailed explanation for the basic components of the 

algorithm.   

2.3.1 Construct a Solution 

Each                          constructs a solution from elements of a finite 

set of available solution components         in the construction graph   , where   

represents the index of the solution variable and   the index of the value belonging to the 

domain this variable. Each      starts with an empty solution     . At each step in the 

solution construction, a valid solution component is added to the partial solution from a 

set of feasible neighbors to the current ant solution state        . The process of 

constructing a solution can be viewed as a path in the construction graph    where the set 

of constraints among the variables   defines the feasible neighbors       at each step 

according to the current state of the partial solution   . 

The decision component     selection at each step is done probabilistically 

according to the following formula: 
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               (2.2) 

where: 

        is the amount of the pheromone associated to component     at time  . 

     is a problem dependent heuristic value assigned to component    . 

   and   are positive parameters, whose values determine the relative importance of 

pheromone versus heuristic information. 

2.3.2 Apply Local Search 

Local search is an optional solution that can be applied after the solution is 

constructed in order to enhance the solution by locally optimizing it. Local search a can 

be implemented as problem specific operation and is done before the pheromone update 

step. Then the locally optimized solutions are then used to decide which pheromones to 

update. Local search improves the quality of the solution constructed and enhances the 

overall output of the algorithm. However, it might be an expensive operation depending 

on the combinations scope that the operation searches in. Local search can be done after 

each ant constructs a solution or can be done iteration based on the best solution 

constructed by set of ants per iteration. 

2.3.3 Update Pheromone 

After a solution is constructed, the pheromone on the construction graph is 

updated to guide subsequent ants to good decisions to take while constructing their 

solutions. This pheromone update is done by two steps: 

 Pheromone Reinforcement: this done by increasing the pheromone value associated 

with the decision components          according to the quality of the constructed 
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solution, as they are good or promising components. The reinforcement is done by the 

following equation: 

                                 (2.3) 

where        
  is a fitness function that evaluates the quality of solution   . 

 Pheromone Evaporation: this is done by decreasing the pheromone value associated 

with all         in the construction graph so that the bad components (the ones that are 

not being chosen frequently) get their pheromone values decreased and give space to 

other components in unexplored regions in the construction graph to get selected. This 

is to avoid early convergence of the algorithm. Evaporation is done as follows [13]: 

                                 (2.4) 

where   is evaporation factor parameter          . 

2.4 Traveling Sales Person Problem 

This section describes the implementation of ACO and how it works to solve the 

famous NP-hard problem: traveling sales person. The TSP consists of a set of locations 

(cities) and a traveling salesman that has to visit all the locations once and only once. The 

distances between the locations are given and the task is to find a Hamiltonian tour of 

minimal length. 
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Figure 2.3 - Construction Graph for TSP with Four Cities. 

The first thing to apply ACO on a problem is to have a construction graph that 

represents the solution components space for the problem. As shown in figure 2.3, the 

construction graph         for TSP consists of vertices   representing the cities 

                 .   is the set of edges connecting the cities, which represents the 

solution components    , and with which the pheromone is associated. The length value of 

each edge represents the distance between city    and   . 

Each ant starts from a randomly selected location (vertex of the graph   ).  Then, 

at each construction step it moves along the edges of the graph, by which it selects a 

solution component. Each ant memorizes the solution components (edges) that it selected 

through its path, and in subsequent steps it chooses among the edges that do not lead to 

vertices that it has already visited (this constraint defines feasible movements to the ant 

according to its current partial solution        ) . At each construction step an ant 

chooses probabilistically the edge to follow using equation (2.2). An ant has constructed a 

solution once it has visited all the vertices of the graph. 

Afterwards, the pheromone is updated according to the quality of the constructed 

path. A possible fitness function for TSP solution is: 

         
 

            
            (2.5) 

which is the inverse of the length of the tour constructed by the ant. Ant colony 

optimization has been shown to perform quite well on the TSP [25]. 
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2.5 ACO Variations 

2.5.1 Ants System 

Ant System was introduced in the literature by M. Dorigo et al. in [9]. It is the 

first ACO algorithm to be proposed. Its main characteristic is that the pheromone values 

are updated by all the ants that have completed constructing the solution. In other words, 

after each ant constructs a solution, it updates its pheromone trial according to the quality 

of the solution it generated, unlike other techniques which update the pheromone after the 

best solution is selected among a set of ants that constructed solution in an iteration of the 

algorithm. 

2.5.2 MAX-MIN Ant System 

MAX -MIN Ant System is an improvement over the original Ant System idea. 

MMAS was proposed by T. Stützle and Hoos in [24], who introduced a number of 

changes of which the most important are the following: only the best ant can update the 

pheromone trails, and the minimum and maximum values of the pheromone are limited. 

2.5.3 Ant Colony System 

Another improvement over the original Ant System is Ant Colony System (ACS), 

introduced by L. M. Gambardella and M. Dorigo [11]. The most interesting contribution 

of ACS is the introduction of a local pheromone update in addition to the pheromone 

update performed at the end of the construction process (offline pheromone update). The 

main goal of the local update is to diversify the search performed by subsequent ants 

during the same iteration. In fact, decreasing the pheromone concentration on the edges as 

they are traversed during one iteration encourages subsequent ants to choose other edges 
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and hence to produce different solutions. This makes the possibility of several ants 

producing identical solutions per a given iteration less likely. 

PART 2: DATA MINING AND KNOWLEDG DISCOVERY 

2.6 Introduction to Data Mining 

Since the widespread of transactional software that has automated various systems 

in different fields, a huge volume and variety of data has been continuously collected.  

Storing and retaining immense amounts of data in easily accessible form was availed 

effectively. As a matter of fact, this raw data potentially stores a huge amount of 

information and hidden patterns. Hence, the need of discovering these hidden patterns and 

convert them into useful knowledge arose.  

The notion of finding useful patterns in data has been given a variety of names 

including data mining, knowledge extraction, information discovery, and data pattern 

processing. Data mining is the application of specific algorithms for extracting patterns 

from data. Research directions have emerged in the recent past for tackling the problem 

of making sense out of large, complex data sets. As conventional methods for sifting 

through huge amounts of data manually and making sense out of it is slow, expensive, 

subjective and prone to errors, the need to automate the process has been a research focus. 

Knowledge discovery from databases (KDD) evolved as a research with multi-

disciplinary fields containing databases, machine learning, pattern recognition, statistics 

and artificial intelligence. 

Data is stored in huge repositories with high dimensionality in different types and 

formats; numerical, textual, graphical, symbolic, linked. Typical examples of some such 

domains are the world-wide web, geo-scientific data, maps, multimedia, and time series 
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data as in financial markets. In addition, the type of the knowledge wished to be 

discovered varies in a wide range according to the domain of interest and it task of use 

needed from the knowledge. All these factors encourage developing advanced techniques 

for mining complex data. 

2.7 Knowledge Discovery Steps 

Basically, Knowledge discovery process has three essential parts: data 

preparation, data mining and knowledge presentation. Data mining is the core step where 

the techniques for extracting the useful hidden patterns are applied. In this sense, data 

preparation and knowledge presentation can be considered, respectively, to be pre-

processing and post-processing steps of data mining.   

 

Figure 2.4 - Knowledge Discovery Process. 

 

As shown in Figure 2.4, raw data in different types and formats is received from 

non-homogenous data sources. Various tasks of data preparation and data fusion are 

applied to the raw data to create a cleansed, filtered, integrated and malleable version that 

is appropriate for different task of information retrieval and knowledge extraction. As 

data mining algorithms are applied, generated models and discovered knowledge are 
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stored in a knowledge base for further usage. A neat presentation and visualization is 

required for the knowledge to facilitate user interaction. 

2.8 Data Preparation 

Data source repositories have data in different types and formats. Some errors 

may occur during the data recording and storing by the source system such as missing 

values, noise, inconsistency etc. In addition, among the huge amount of the available data, 

only some parts of it can be interesting or useful for a specific knowledge discovery task 

and other parts should be neglected. Data needs different structures and formats to be 

suitable for data knowledge discovery processing tasks. Therefore, before going to 

perform mining on the data, some kind of pre-processing [15] is required.  Preprocessing 

of data is done in the following major ways: 

 Data cleaning: This is performed to remove inconsistency, noise to fill up missing 

values and to filter needed portions.  

 Data integration.  This is needed to combine and unify data from multiple different 

sources like databases, data cubes, flat files etc. Correlation analysis, detecting data 

conflict, and resolving semantic heterogeneity are used for data fusion. 

 Data transformation. The format of data in the repositories may not be suitable for 

processing.  So, the  format  of  the  data should be  transformed to a  one suitable  for  

a  particular  task.  This is done for smoothing, aggregation, generalization, 

normalization, and attributes construction.  

 Discretization. This step consists of transforming a continuous attribute into a 

categorical (or nominal) attribute, taking only a few discrete values - e.g., the real-

valued attribute. Salary can be discretized to take on only three values, say "low", 
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―medium", and ―high".  This step is particularly required when the data mining 

algorithm cannot cope with continuous attributes. In addition, discretization often 

improves the comprehensibility of the discovered knowledge.  

 Data reduction. This is needed to have a reduced version of data that can work 

effectively with a data mining algorithm.  This data reduction is done in terms of 

dimensionality reduction, data cube aggregation, as well as data compression. 

 Data selection. For the purpose of processing and analysis, relevant data are selected 

and retrieved in this step. 

2.8.1 Data Mining 

Data mining is the core part in the knowledge discovery process, which aims to 

discover and extract interesting, potentially useful hidden patterns from large amounts of 

data. Patterns discovered could be of different types such as associations, trees, profiles, 

sub-graphs, and anomalies. The interestingness and the usefulness of the knowledge to be 

discovered are relative to the problem and the concerned user. A piece of information 

may be of immense value to one user and absolutely useless to another. Often data mining 

and knowledge discovery are treated as synonymous, while there exists another school of 

thought which considers data mining to be an integral step in the process of knowledge 

discovery. 

Different data mining techniques are used to carry out different knowledge 

discovery tasks. Classification, clustering, association analysis, regression and deviation 

detection are the most common data mining techniques that are used for different 

knowledge discovery task. These techniques are described in the following section.  
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Data mining techniques mostly consist of three components: a model, a preference 

criterion and a search algorithm [14]. The most common model functions in current data 

mining techniques include classification, clustering, regression, and link analysis and 

dependency modeling. A model is selected according to the intended discovery task and 

the nature of the useful knowledge to be extracted. Models vary in the flexibility of the 

model for representing the underlying data and the interpretability of the model in human 

terms. This includes decision trees and rules, linear and nonlinear models, example-based 

techniques such as NN-rule and case-based reasoning, probabilistic graphical dependency 

models (e.g., Bayesian network) and relational attribute models. The preference criterion 

is used to evaluate the efficiency of the model according the underlying dataset. 

Preference citation can determined which model to use for mining, as it best fits the 

current nature of data. It tries to avoid over-fitting of the underlying data or generating a 

model function with a large number of degrees of freedom. The search algorithm is then 

defined for the model that carries out the intended knowledge discovery task.  

2.8.2 Knowledge Presentation 

As the knowledge is extracted, the user should be able to interpret this knowledge 

and make use of the extracted patterns for decision making concerning his domain. The 

discovered knowledge will be interesting for the user if it is easily understood, valid, 

novel and useful. Presentation of the information extracted in the data mining step in a 

format easily understood by the user is an important issue in knowledge discovery. Data 

visualization and knowledge representation are important components. The following are 

some interesting ways of data presentation: 

 Decision Trees. 
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 Graphs. 

 Tables and cross-tabs 

 Charts and Histograms. 

 Natural language generated rules. 

2.9 Overview of Data Mining Tasks  

Data mining tasks vary according to what types of knowledge we are want to try 

and discover and how the discovered knowledge is intended to be used. In general, data 

mining tasks can be classified into two categories, descriptive and predictive [15]. The 

descriptive techniques provide a summary of the data and profile its general 

characteristics and properties. On the other hand, the predictive techniques learn from the 

current data in order to make forecasts or predictions about the behavior of new data.  The 

following is description of most commonly used data mining tasks.  

2.9.1 Classification 

Classification is a type of supervised learning. In supervised learning, the data set 

contains objects with several attributes as input features for each object, and one attribute 

is considered the class (or the label) of this object. Classification is a process of building a 

model that can describe and classify the object class as a function of its input attributes. 

As shown in figure 2.5, the input for classifier model discovery is a training set that 

contains labeled cases (cases which their classes are known).  A classification model is 

built upon relationship patterns discovered between the input attributes and the classes of 

the cases. Now the classification model is able to classify (find the class) of unlabeled 

input cases, whether they are a testing set of cases or whole new cases which their classes 

need to be predicted. 
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Figure 2.5 - Process of Building a Classification Model. 

Note that some data mining techniques for classification generate a classifier that 

can only classify unlabeled cases without describing the relationships between the 

attributes of a case and its class. Examples of such techniques are the nearest neighbor 

classifier, Bayes maximum likelihood classifier and Neural Networks-based classifier. 

Other techniques can produce a classification model that not only can predict a class of an 

unlabeled case, but can also describe the relationships between the input features and the 

classes of the cases. This description can be in the form of rules or classification trees. 

Decision trees and rule induction are examples. The latter type of classification 

techniques has an advantage of model interpretation as it provides insight for the user 

regarding the data at hand and on the relationship patterns amongst it. Some of these 

techniques are now briefly described. 

 Nearest Neighbor Classifier: It assigns the unlabeled cases the class of the nearest 

neighbor to it within the labeled training set. Given a training set with many labeled 

cases    
           , the distance   is calculated between the new unlabeled case 
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     and each case         
            in the training set using distance function. 

The new unlabeled case      is given the class of case that has the least value of 

distance   with it. If k-nearest neighbor is considered, the new case is assigned the 

class of the majority of the   nearest cases [15]. 

 Naïve Bayes Classifier: is a simple probabilistic classifier based on applying Bayes' 

theorem with attributes independence assumptions [15]. Let us consider having a data 

set with   attributes    
            for each case. Assuming that attributes are 

conditionally independent of one another given class  , we have: 

                        

 

   

 (2.6) 

This is a dramatic reduction compared to the         parameters needed to 

characterize        if we make no conditional independence assumption. Naïve 

Bayes aims to train a classifier that will output the probability distribution over 

possible values of  , for each new instance   that we ask it to classify.  The expression 

for the probability that   will take on its k-th possible value is the maximum value of 

the following equation calculated for each   : 

                                (2.7) 

 Decision Trees: A decision tree is an acyclic graph. In these tree structures, leaves 

represent classifications and branches represent conjunctions of features that lead to 

those classifications. It is easy to convert any decision tree into classification rules. 

Once the training data set is available, a decision tree can be constructed from them 

from top to bottom using a recursive divide and conquer algorithm. This process is 
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also known as decision tree induction. A version of ID3 [15], a well-known decision-

tree induction algorithm, is described below. 

1. Create a node N. 

2. If all training data points belong to the same class (C) then return N as leaf node 

labeled with class C. 

3. If cardinality (features) is NULL then return N as a leaf node with the class label 

of the majority of the points in the training data set. 

4. Select a feature (F) corresponding to the highest information gain, then label node 

N with feature F. 

5. For each known value     of F, partition the data points as   . 

6. Generate a branch from node N with the condition feature =   . 

7. If    is empty, then attach a leaf labeled with the most common class in the data 

points left in the training set.   

8. Else attach the node returned by Decision tree induction (    , (features-F)). 

Assume we have a data set with   cases labeled with   classes.    is the 

number of cases belonging to class   . Suppose that each case has   features 

   
           . Each feature F can the cases into   subsets    

           . The 

information gain of a feature is measured by the following equation: 

                           (2.8) 

where  

        
             

 
 

 

   

                  (2.9) 

and 
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 (2.10) 

Here,     is the probability that a data point in     belongs to class   . 

2.9.2 Clustering 

Clustering is the process of partitioning the input data set into groups or segments, 

where each group is called a cluster. Each cluster contains a subset of the data points that 

are more similar to one another and less similar (dissimilar) to data points in other 

clusters. The similarity and dissimilarity are measured in terms of some distance function. 

Cluster analysis serves as a powerful descriptive model that can profile the data point 

according to its attributes and exhibits similarities and dissimilarities between the data 

clusters that are found.  

Clustering is considered as an unsupervised learning, as the input cases to any 

clustering technique are not required to be labeled. The clustering algorithm should 

discover these labels as each cluster can be considered as a class for the data points that it 

contains after it is discovered.  

K-Means algorithm [15] has been one of the more widely used ones; it consists of 

the following steps: 

1. Choose   initial cluster center    ,   ,..,    randomly from the domain space of the 

input data point    
           . 

2. Assign each data point    to cluster   ,                 if the distance between    and 

   is the least among the distance between    and all other cluster centers. 

3. Computer new cluster centers as follows: 
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            (2.11) 

where    is the number of data points belonging to cluster   . 

4. Terminate if no change in the centers occurs or upon meeting any other criteria.  

Although K-means is one of the widely used clustering algorithms, it suffers from 

shortcomings. Outliers can affect the computation of centriods. K-medoid attempts to 

alleviate this problem by using the medoid, the most centrally located object, as the 

representative of the cluster. (PAM), (CLARA) and (CLARANS) are various 

implementations of K-medoid. Fuzzy K-Means cluster the data set with membership 

value associated with each data point for each cluster. Hierarchal clustering uses top 

down (divisive) or bottom up (aggregative) approach to find clusters with no initial 

cluster center and now initial clusters number. Density based clustering (DBSCAN) is 

another clustering technique that can discover arbitrarily-shape clusters, which is used for 

mining spatial data. [15]. 

2.9.3 Association Rules Mining 

Discovery of association relationship among large set of data items is useful in 

decision-making. A typical example for association rules mining is market basket 

analysis, which studies customer buying habits by finding associations between the 

different items that customers place in their baskets. An association rule is thus a 

relationship of the form:                , where   and   are sets of  items 

and  . Such a rule generation technique consists of finding frequent item sets       

(set of items, such as   and   satisfying minimum support and minimum confidence) 
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from which rules like     are generated. The measures support is the percentage of 

transactions that contain both the item sets. Thus: 

                             (2.12) 

          
        

    
         (2.13) 

Although  both  classification  and  association  rules  have  an  IF-THEN 

structure, association rules can have more than one item in the consequent part, whereas 

classification rules always have one attribute (class label) in the consequent. In other 

words, for classification rules, predicting attributes and the goal attribute. Predicting 

attributes can occur only in the rule antecedent, whereas the goal attribute occurs only in 

the rule consequent. 

2.9.4  Regression 

Regression analysis includes any techniques for modeling and analyzing several 

variables (criterion), when the focus is on the relationship between a dependent variable 

and one or more independent variables (predictor). More specifically, regression analysis 

helps us understand how the typical value of the dependent variable changes when any 

one of the independent variables is varied, while the other independent variables are held 

fixed. 

Linear regression is a form of regression where the relationship between variables 

is modeled with a straight line (linear equation), learned using the training data points. A 

straight line, through the input vector   (known as predictor variable) and the output 

vector   (known as response variable), can be modeled as         where   and   

are the regression coefficient and slope of the line, computed as: 
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            (2.12) 

         (2.13) 

where     and    are averages of vector   and vector   respectively.  

2.9.5 Deviation Detection 

This is also known as the process of detection of outliers. Outliers are those 

patterns that are distinctly different from the normal, frequently occurring, patterns, based 

on some measurement. These patterns can be found in some data objects that do not 

comply with the general behavior of the data. They are inconsistent from the remaining 

set of data. These data objects are called outliers. 

The wide range of applications of outlier detection includes fraud detection, 

customized marketing, detection of criminal activity in e-commerce, network intrusion 

detection, and weather prediction. The different approaches for outlier detection can be 

broadly categorized into three types [15]: 

 Statistical approach: Here, the data distribution or the probability model of the data set 

is considered as the primary factor. 

 Distance-based approach: An object O in a data set T is a        -outlier if at least 

fraction p of the objects in T lies greater than distance D from O. 

 Deviation-based approach: Deviation from the main characteristics of the objects is 

basically considered here.  Objects that ―deviate‖ from the description are treated as 

outliers. 
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2.10 Issues and Challenges in Data Mining 

2.10.1 Data Issues 

 High dimensionality: Datasets usually contain huge amounts of records, with 

considerably a large number of attributes. This affects the performance of the data 

mining algorithm not only in terms of running time, but also the efficiency and the 

accuracy of the produced model as several irrelevant features have to be considered 

during model training. Therefore, these considerations should be taken while 

developing a mining algorithm and can exploit the advantages of techniques such as 

dimensionality reduction, sampling, approximation methods as well as incorporation 

of domain specific prior knowledge. 

 Complex Types: Databases may contain complex data objects such as: hypertext and 

multimedia, graphical data, transaction data, and spatial and temporal data. An 

efficient, specific algorithm should be developed to cope with these types of data, or 

special versions of existing techniques can be tailored to work on such types of 

datasets.  

 Missing, incomplete and noisy data: The data preparation part plays an important 

role to solve such problems. As many errors may occur in recoding transactional data 

in the source systems, missing values and inconsistencies are born. This affects the 

quality of the generated model by the mining algorithms.  Data cleaning techniques, 

more sophisticated statistical methods to identify hidden attributes and their 

dependencies, as well as techniques for identifying outliers are therefore required to 

address this issue. 



38 

 

2.10.2 Mining Techniques Issues 

 Problem Definition and Domain Characteristics: A deep analysis on domain 

characteristics, available data nature and the problem to solve should be carried out 

before a specific mining model is recommended. This is needed as there is none that 

is equally applicable to a wide variety of data sets and can be called the universally 

best data mining technique. 

 Efficiency and accuracy: Efficiency and accuracy of a data mining technique are key 

issues. Data mining algorithms should be efficient enough in terms of outcome, 

usability and confidence so much that the user should be able to rely on the results 

and take decisions upon them. A lot of effort is done to enhance the efficiency of 

already existing mining techniques as well as develop new ones that can work 

efficiently in some specific problem situations and fabricate more comprehensive 

results. 

2.10.3 User Interaction Issues 

 Interpretation of the discovered patterns:  Some data mining techniques are 

preferred over others based on their ability to produce knowledge, represented in a 

natural language rules, graph or a tree, that is understandable, interpretable and 

traceable by the user. For example, neural networks classifiers and SVMs may 

produce better results than other algorithms such as rule induction. However, rule 

induction based classification can be preferable as they give the user insight into the 

discovered knowledge from his domain data. 
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2.11 Data Mining Applications 

 Spatial data mining. A spatial database stores a large amount of space-related data, 

such as maps, preprocessed remote sensing or medical imaging data and VLSI chip 

layout data.  They carry topological and/or distance information and are usually 

organized via a multidimensional structure utilizing data cubes. Spatial data mining 

refers to the extraction of knowledge like spatial relationships or other interesting 

patterns from large geo-spatial databases. 

 Web mining. With the explosive growth of  information sources available on the 

World Wide Web  (WWW), it has become increasingly necessary for users  to  utilize  

automated  tools  in  order  to  find,  filter,  and  evaluate desired  information and  

resources. Web mining can be broadly defined as the discovery and analysis of useful 

information from the WWW. In order to mine the web basically two ideas are used. 

Web content mining: here the idea is the automatic search and retrieval of the 

information. Web usage mining: the basic idea here is the automatic discovery and 

analysis of user access patterns from one or more web servers. 

 Text mining. In  recent  days we  can have  databases,  which  contain  large 

collections of  documents from various sources such as news articles, research papers, 

books, digital libraries, e-mail messages, and various web pages which are called text  

databases  or  document databases.  These text  databases are rapidly  growing  due  to  

the  increasing amount  of  information  available  in electronic forms, such as 

electronic publications, e-mails, etc. Data stored in most text databases are semi-

structured data, in that they are neither completely unstructured nor completely 

structured. For example, a document may contain a few structured fields, such as title, 
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authors, publication date, and category and so on, but also contain some largely 

unstructured text component such as abstract and contents.  This type of text data 

presents challenges to traditional retrieval techniques.  As a result, text-mining 

concepts are increasingly coming into light. Text mining goes one step beyond the 

traditional approach and discovers knowledge from semi-structured text data as well.  

 Image mining. Actually image mining, i.e. mining the image databases, falls under 

the multimedia database mining, which also contains audio data, video data along 

with image data. Basically images are stored with some description against a 

particular image.  Again  images  are  nothing  but  some  intensity values,  which  

figure the  image  in  terms  of  color,  shape, texture  etc.  The mining  task  is  based  

on  using  such  information contained  in  the  images. Based on this image mining 

techniques can be categorized in two places: description based retrieval, and content 

based retrieval.  

 Biological data mining. Biological researches are dealing greatly with the 

development of new pharmaceuticals, various therapies, medicines and human 

genome by discovering large-scale sequencing patterns and gene functions. In the 

process of gene technology, DNA data analysis becomes significantly focused with 

data mining applications. Since the discovery of genetic causes for many diseases and 

disabilities and to discover new medicines as well as disease diagnosis, prevention, 

and treatment, DNA analysis is a must. The DNA sequences form the foundation of 

the genetic code of all living organisms. All DNA sequences are comprised of four 

basic nucleotides [i.e. Adenine (A), Cytosine (C), Guanine (G), and Thiamine (T)]. 

These four nucleotides are combined in different orders to form long sequences or 

chains in the structure of DNA. There are almost an unlimited number of ways that 



41 

 

the nucleotides can be ordered and sequenced which play important role in various 

diseases.  It is a challenging task to identify such a particular sequence from among 

the unlimited sequences, which are actually responsible for various diseases. Now 

people are trying to use data mining techniques to search and analyze these sequence 

patterns. In addition to DNA sequencing, linkage analysis and association analysis 

(where the structure, function, next generation genes, co-occurring genes, etc.) are 

also studied. For all these, machine learning, association analysis, pattern matching, 

sequence alignments, Bayesian learning, etc. techniques are being used in 

bioinformatics recently. 

 Distributed Data Mining. The evolution of KDD system from being centralized and 

stand alone along the dimension of data distribution signifies the emergence of 

Distributed Data Mining (DDM). Specifically, when data mining is undertaken in an 

environment, where users, data, hardware, and the mining software are geographically 

dispersed, will be called DDM. Typically such environments are also characterized by 

the heterogeneity of data, various user bases, and large data volumes. 

2.12 Summary 

Part 1 has presented Ant Colony Optimization technique which is a field in swarm 

intelligence inspired by the behavior of biological ants. (ACO) is a meta-heuristic 

algorithm that is used to solve combinational optimization problems (COP). Artificial 

ants live in a virtual world, called a construction graph, which represents the solution 

search space for the given problem. Elements in the construction graph are the solution 

components which each ant selects while traversing the graph to construct a solution. The 

pheromone deposited on the construction graph is the way of communication and sharing 
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information among the ants in the colony. The ant drops pheromone proportional to the 

quality to the solution that it constructed. The pheromone is considered the guide for 

subsequent ants to decision components in the construction graph with good or promising 

quality. The ant chose the next decision probabilistically according to the amount of 

pheromone associated with it and a heuristic value for that decision component. ACO has 

proven to be quite efficient and flexible.  Ant colony optimization algorithms are 

currently state-of-the-art for solving many COPs. 

Part 2 has given a wide overview on data mining and knowledge discovery 

concepts and issues. Data mining has become very important since the enormous growth 

of data in different domains with various types and formats. Knowledge discovery is 

known as the process of finding and extracting hidden useful pattern from raw data. There 

are three basic phases in knowledge discovery process. The first step is data preparation 

which involves data cleansing, integration, selection, reduction and transformation to be 

in a valid form processing. The second step, which is the core step in the process, is data 

mining. Several techniques of data mining exist and are applied to solve various types of 

knowledge discovery needs. Such techniques include classification, clustering, 

association rule discovery, regression, and outlier detection. Data mining has been 

utilized in several domains like web mining, text mining, image mining, spatial data 

mining, and biological data mining.  
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Chapter 3  

ANT-MINER 

3.1 Introduction 

Ant-Miner was proposed by Parpinelli et al. [20] in 2002. Utilizing ACO 

techniques, Ant-Miner is a data mining algorithm that is designed to generate 

classification rules from a given dataset. As for a typical ACO algorithm, the ant is 

considered an agent that incrementally constructs and modifies a solution from the 

construction graph to the given problem. The problem is to build a classification model 

and the solution is a set of rules that can be used for classification. Therefore, each ant in 

the swarm tries to construct a rule that can be used in the classification model rule set. 

Basically, Ant-Miner is a rule-based induction algorithm that makes use of ACO‘s 

collective behavior. As mentioned before, the generated rules are expressed in the 

following form: 

IF <Conditions> THEN <class> 

The <conditions> part (antecedent) of the rule contains a logical combination of 

predictor attributes, in the form: term1 AND term2 AND... .  Each term is a triple 

<attribute, operator, value>, where value is a value belonging to the domain of attribute, 

and the operator element in the triple is always ―=‖. The original version of Ant-Miner 

deals only with categorical attributes. As such, continuous (real-valued) attributes are 

discretized as a preprocessing step. However, several modifications have been done to the 

algorithm to come up with new versions that can cope with continuous attributes 

efficiently. Some of these versions are mentioned in the next chapter. The <class> part 
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(consequent) of the rule contains the class predicted for cases in given dataset whose 

predictor attributes satisfy the <conditions> part of the rule.  

Ant-Miner discovers an ordered list of classification rules. For each ant trial, an 

ant attempts to discover a rule by selecting terms probabilistically according to a heuristic 

function and pheromone amount for this term. After a rule is constructed, the ant updates 

the pheromone on its trial to lead next ants in their paths. The best rule is selected among 

the ants that have constructed rules and added to the discovered rule set. The algorithm is 

repeated until the discovered rules cover a sufficient portion of the given dataset. The first 

part of this chapter describes the algorithm of the original Ant-Miner in detail.  

3.2 Ant-Miner Algorithm 

The following pseudo code describes the outline of the original Ant-Miner 

algorithm. Algorithm 3.1 – Original Ant-Miner is taken from [20]. The following is 

detailed description on the algorithm. 

Algorithm 3.1 - Original Ant-Miner. 

TrainingSet = {all training cases};  

DiscoveredRuleList = [ ]; /* initialize rule list with empty list */  

WHILE (TrainingSet > Max_uncovered_cases)  

     ; /* ant index, and also rule index */  

     ; /* convergence test index */  

Initialize all trails with the same amount of pheromone;  

REPEAT  

     starts with an empty rule and incrementally constructs rule   ;  

by adding one term at a time to the current rule;  
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Prune rule   ;   /* remove irrelevant terms from rule */  

Update the pheromone of all trails by increasing pheromone in the trail followed 

by      (proportional to the quality of   ) and decreasing pheromone in the  other 

trails (simulating pheromone evaporation);  

IF (   is equal to       ) /* update convergence test */  

THEN           ;  

ELSE       ;  

END IF  

         ;  

UNTIL (i ≥ No_of_ants) OR (j ≥ No_rules_converg)  

Choose the best rule        among all rules    constructed by all the ants;  

Add rule       to DiscoveredRuleList;  

TrainingSet = TrainingSet - {set of cases correctly covered by      };  

END WHILE  

 

As an ACO-based algorithm, the decision components in the construction graph of 

Ant-Miner are the available attribute values, by which a rule‘s antecedent terms can be 

constructed. The algorithm consists of two nested loops: the outer loop where a single 

rule in each iteration is added to the discovered rule list and the inner loop where an ant in 

each iteration constructs a rule as follows. Each ant in the colony attempts to construct a 

rule‘s antecedents by selecting terms probabilistically according to a heuristic value 

(using a heuristic function that will be discussed later) and pheromone amount for this 

term. As an ant starts, it has an empty rule (a rule with no term in its antecedent and no 
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consequent class). As the ant moves through the construction graph (which will be 

described later), it tries to construct its empty rule premises by adding one term at a time 

to have a current partial rule corresponding to the current partial path followed by that ant 

in the construction graph.  

The ant keeps adding terms one-at-a-time to its current partial rule until it faces a 

stopping condition that prevents it from adding more terms to its current rule it is 

constructing. This stopping condition can arise in two cases: the first case is when any 

term that could be added to the rule would make the rule cover  a  number  of  cases;  less  

than  a  user-specified  threshold,  called min_cases_per_rule (minimum number of cases 

that should be covered by a rule). This condition exists in order to avoid constructing 

rules with low convergence, which may lead to extra running time for the algorithm and 

over fitting in the generated rules set. The second case that makes the ant stop is when all 

attributes have already been used by the ant, so that there is no more attributes to be 

added to the rule premises. 

As the ant faces one of the two stopping condition, the ant has now completed 

building a rule antecedents (it has completed its path through the construction graph). The 

rule consequent is then chosen by determining the class value with maximum occurrence 

in the cases matching the rule antecedents. The constructed rule (premises with 

consequent class) is pruned in a post-processing step to remove irrelevant terms that 

might have been unduly included in the rule. Pruning the rule premises tends to enhance 

the quality of the rule in term of coverage and accuracy, since irrelevant terms may have 

been included in the rule due to stochastic variations in the term selection procedure 

and/or due to the use of a shortsighted,  local  heuristic  functions  -  which  consider  only  
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one-attribute-at-a-time, ignoring attribute interactions. The pruning procedure will be 

described later in this chapter. 

When an ant completes its rule, the amount of pheromone is updated on its trial 

according to the quality of the generated rule. Then another ant starts to construct its rule, 

using the new amounts of pheromone to guide its search. This process is repeated for at 

most a predefined number of ants. This number is a system parameter, called no_of_ants. 

However, this iterative process can stop earlier, when convergence occurs. Convergence 

occurs when stagnation is detected as the current ant has constructed a  rule  that  is  

exactly  the  same  as  the  rule  constructed  by  the  previous no_rules_converg  –  1  

ants.  no_rules_converg (number of rules used to test convergence of the ants) is also a 

system parameter. This stopping criterion detects that the ants have already converged to 

the same constructed rule, which is equivalent to converging to the same path in real Ant 

Colony Systems. The best rule amongst the rules constructed by all ants is selected, added 

to the discovered rule set and considered for the classification rules model. The other 

rules are discarded. This completes a single iteration of the algorithm. After the best rule 

among the ants trial is selected, all the cases covered by this rule are removed from the 

training set.  

This course of action is considered an iteration of the outer loop.  When the next 

iteration of the Ant-Miner algorithm starts, it runs in a reduced training set. This process 

is repeated for as many iterations as necessary to find rules covering a sufficient portion 

of the cases in the training set. This sufficient portion is reached when the number of 

uncovered cases in the training set is less than a predefined threshold, called 

max_uncovered_cases (maximum number of uncovered cases in the training set), at 

which the algorithm stops execution. When a sufficient portion of the training set cases is 
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covered by the discovered rules, the search for further rules stops. At this point the system 

has generated a classification model consisting of an ordered rule list (in order of 

discovery), which will be used to classify new cases, unseen during training. 

A default rule is added to the last position of the rule list. The default rule has an 

empty antecedent (i.e. no condition) and has a consequent predicting the majority class in 

the set of training cases that are not covered by any rule. This default rule is automatically 

applied if none of the previous rules in the list cover a new case to be classified. 

Once the rule list is complete, it is ready to classify a new test case set. This is 

done by applying the discovered rules, in order. The first rule that matches the new case is 

applied and case is assigned the class predicted by that rule‘s consequent. 

3.3 Construction Graph 

As was described in Chapter 2, the ACO technique represents the solution space 

for a given problem as a graph, from where an ant can construct a solution. The solution 

is basically the path that the ant took in its trial from source to sink. The decisions (nodes) 

that the ant selected during its path are considered the components of the solution to the 

problem. In Ant-Miner, since the solution to be constructed for the classification problem 

is a rule that consists of set of terms, then the terms are considered the solution 

components for the current problem. Accordingly, the construction graph should contain 

all the available terms than can be used to construct a rule (solution). The Ant-Miner 

construction graph is typically a graph consisting of nodes, where each node represents an 

attribute value for each attribute values in the dataset. The set of nodes     in the 

construction graph nodes is  
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where i  is i-th attribute, n is the number of nodes and    is the j-th value of i-th attribute. 

Thus, each node is selected to represent a term           .  The set of terms that the 

ant chosen in its path represents a rule:  

                                  

Each node in the construction graph contains an amount of pheromone. At the 

beginning of each iteration, the pheromone is initialized for each term with the same 

value given by the function:  

          
 

   
 
   

 (3.1) 

where: 

 a is  the  total  number  of  attributes. 

 br is the number of values in the domain of attribute i. 

The construction graph does not include the class attribute values; it only includes 

terms contributing in constructing the rule premises. The rule consequent (class) is 

selected after the rule antecedents are constructed by determining the class value with 

maximum occurrence in the cases matching the rule antecedents. 

Each node has a Boolean property indicating whether it is still available for use or 

not. A node can be ignored from the construction graph if all the cases in the training set 

containing the value of the attribute that the node represents are covered by the 

discovered rules. The Boolean property of the node helps the ant to consider the node 

during term selection or to ignore it. 
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A heuristic value is also associated with each node that represents the local quality 

of this term to be selected, which affects the node selection probability by the current ant. 

This value is updated after each rule is discovered and the training set is reduced. The 

used heuristic function is described in one of the following sections. 

The amount of the pheromone is updated on each node after each ant trial to 

influence other ants‘ selection of the terms in the next trials. Rule construction and 

pheromone update are discussed each in separate following sections. 

3.4 Rule Construction 

A rule is constructed incrementally by adding a terms to the current partial rule 

that an ant holds. As mentioned before,        is in form of        , where    is i-th 

attribute and     is the j-th value of the domain of   . The probability that        is 

selected by the ant to be added to the current partial rule is given by the following 

equation: 

     
          

              
  
   

 
   

          (3.2) 

where: 

     is the value of a problem-dependent heuristic function for       . 

        is the current amount of the pheromone on        for the current ant through 

its current trial. 

   is the total number of attributes. 

 br is the number of values in domain of the i-th attribute. 

given that the Boolean property that indicates whether        can still be used is true. 
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As shown in equation (3.1), the probability of a term to be selected is calculated 

according to two components. The first is      which is the value of a problem-dependent 

heuristic function, and the second is     which is the amount of the pheromone on       . 

The first component is a problem-dependent heuristic function    , which is a measure of 

the predictive power of       . The higher the value of      the better the        is in the 

context of the given problem (classification), and so the higher the probability of it being 

selected. The heuristic value for each term is calculated by the same function, which will 

be described in the following section. 

The second component that affects the probability of selecting a term is the 

amount of pheromone     currently associated with       , which is entirely dependent 

on the paths that other ants took during their previous trials in rule construction. As 

mentioned in Chapter 2, in the typical ACO technique, the amount of the pheromone on 

the construction graph acts as an indirect way of communication between the ants in the 

colony. It represents the experience of the pervious ants in constructing solution and gives 

advice to the next ants about the good paths to take in their trials to attempt in 

constructing better ones. In the beginning, all the terms have the same amount of the 

pheromone. However, as soon as an ant finishes its path, the amount of pheromone in 

each term visited by the ant is updated, as will be explained in detail shortly.  The amount 

of the pheromone to be dropped on the trail depends on the quality of the rule constructed 

by taking this path; the better the quality of the rule constructed  by  the  ant,  the  higher  

the  amount  of  pheromone  added  to  the  terms selected during the trail. With time, and 

after several ants have attempted to construct rules, the ―best‖ path (collection of terms to 
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be selected) will have a greater probability to be taken by upcoming ants as the amount of 

pheromone on this path increase. 

The term to be selected and added to the partial rules is subjected to some 

restrictions:        cannot be selected if the current partial rule contains        (i.e. if 

the current partial rule contains another value    from the same domain of the attribute 

  .  Another restriction is that a term cannot be added to the current partial rules if this 

makes the extended partial rule cover less than a predefined minimum number of cases, 

called the min_cases_per_rule threshold, as mentioned previously in section 3.2. 

In rule construction process, the ant builds the rule premises only, without 

specifying the rule consequent to be assigned to the rule. The selection of the class that 

will be the rule consequent is decided afterwards. After rule premises are completed, the 

system chooses the rule consequent (predicted class) that maximizes the quality of the 

rule. This is done by assigning to the rule consequent the majority class among the cases 

covered by the rule. 

3.5 Heuristic Function 

Each node in the construction graph has a current heuristic value that represents 

the local quality of this node to be selected as part of a solution for the current problem 

context. This value is calculated for each node with the same problem-dependent heuristic 

function. As for Ant-Miner, the node in the construction graph represents a term that 

could be added to a rule. The context is a classification problem. The heuristic value to be 

calculated an estimate of the quality of a given term, with respect to its ability to improve 

the predictive accuracy of the rule. This heuristic function is based on information theory, 

introduced by T. Cover and J. A. Thomas in [5]. 
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More precisely, the value of the heuristic  function  for  a  term  involves  a  

measure  of  the  entropy  (or  amount  of information gain) associated with that term [21]. 

For each        of the form of            , where    is i-th attribute and     is the  j-

th value of the domain of   ,  its entropy is given the following equation: 

                
       

 

     
 

 

   

      
       

 

     
  (3.3) 

where: 

   is the number of classes. 

       is the total number of cases in partition      ( partition containing the cases where 

attribute    has value     ). 

        
  is the number of cases in partition       that have class  .  

If the value of               is high, this means that value     in attribute    is 

more uniformly distributed among the classes, and so the lower the predictive power of 

      . The terms to be selected should have a high predictive power to be added to the 

current partial rule. Therefore, in Ant-Miner, the higher the value of             , the 

smaller the probability of an ant choosing        to be added to its partial rule. 

The value of the heuristic function is normalized. The resultant normalized, 

information-theoretic heuristic function given by the following equation: 

    
                     

                       
 
   

 
   

 (3.4) 

where: 

   is the total number of attributes. 
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 bi is the number of values in domain of the i-th attribute. 

              is the entropy of        calculated by equation  (3.3) 

   is the number of classes. 

             for        is always the same regardless the content of the current partial 

rule.              is calculated for each        as a preprocessing step before each 

outer iteration in the Ant-Miner algorithm. 

If attribute    does not occur in the training set, then       = 0. In this case, 

             is set to its maximum value;        . This corresponds to assigning to 

       the lowest possible predictive power. If all the cases in the partition      belong to 

the same class then             = 0. This corresponds to assigning to        the 

highest possible predictive power. Note that the value of              varies in the 

range: 

                         

3.6 Rule Pruning  

The main goal of rule pruning is to remove irrelevant terms that might have been 

unduly included in the rule. As mentioned above, Rule pruning potentially increases the 

predictive power of the rule, by increasing its coverage without sacrificing its confidence. 

This also helps to avoid it over-fitting to the training data. Simpler rules generated after 

rule pruning are more easily interpreted by the user as they are shorter and more general. 

That was another motivation for pruning the rules.   

For each ant constructing a rule, as  soon  as  the  ant completes  the  construction  

of  its  rule, the  rule  pruning  procedure  is  performed.  The search strategy of rule 
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pruning procedure used in Ant-Miner is very similar to the rule pruning procedure 

suggested by Quinlan [22], although the rule quality criterion used in the two procedures 

are very different from each other. 

The basic idea is to iteratively remove one-term-at-a-time from the rule while this 

process improves the quality of the rule. In the first iteration one starts with the full rule. 

Then one tentatively tries to remove each of the terms of the rule – each one in turn – and 

computes the quality of  the  resulting  rule,  using  the  quality  function  defined  by  

equation  (3.5) . This step may involve re-assigning another class to the rule, since a 

pruned rule can have a different majority class in its covered cases. The term whose 

removal most improves the quality of the rule is effectively removed from the rule, 

completing the first iteration. In the next iteration one removes again the term whose 

removal most improves the quality of the rule, and so on. This process is repeated until 

the rule has just one term or until there is no term whose removal will improve the quality 

of the rule. [20] 

Another rule pruning procedure was introduced by A. Chan and A. Freitas in [4]. 

This new procedure has enhanced the quality of the generated rules. A brief description of 

the procedure is mentioned in the following chapter.  

3.7 Pheromone Update 

Each node in the construction graph, which represents a term to be selected by an 

ant for rule construction, has current amount of pheromone associated with it. This 

amount of pheromone changes as ants select nodes though their trials and drop 

pheromone on the selected nodes during their paths. All the terms are initialized with the 

same amount of pheromone. The initial amount of pheromone deposited at each path 
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position is inversely proportional to the number of values of all attributes, as given by the 

aforementioned equation (3.1). 

As an ant finishes constructing the rule, the amount of pheromone in all nodes in 

the construction graph is updated. This pheromone updating has two operations: 

a) Increasing the amount of pheromone associated with each term in the construction 

graph that was selected during the rule construction (terms occur in the constructed 

rule). 

b) Decreasing the amount of pheromone associated with each term in the construction 

graph that was not selected in during the rule construction (terms that does not occur 

in the constructed rule). This acts as pheromone evaporation in the typical ACO 

algorithm. 

As for increasing the pheromone on used terms – which is also known in ACO 

systems as pheromone reinforcement – each ant drops pheromone on the terms that were 

selected through its path during its trial after it completes rule construction. If        

occurs in the constructed rule, this operation increases the probability of        being 

selected by ants in the future trials, as the current ant acknowledges the benefit of 

selecting such term. The amount of pheromone being dropped on each        , selected 

by the ant, through its path is proportional to the quality of the rule constructed by the ant 

using these terms. The better the rule is, the higher the increase in the amount of 

pheromone for each        occurring in the rule. 

The quality of the rule constructed by an ant, denoted by   is computed by the 

formula:                                        , as defined in the following 

equation: 
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     (3.5) 

where: 

    is the rule constructed by current      

 TP (true positives) is the number of cases covered by the rule that have the class 

predicted by the rule.  

 FP (false positives) is the number of cases covered by the rule that have a class 

different from the class predicted by the rule.  

 FN (false negatives) is the number of cases that are not covered by the rule but that 

have the class predicted by the rule.  

 TN (true negatives) is the number of cases that are not covered by the rule and that do 

not have the class predicted by the rule.  

The larger the value of  , the higher the quality of the rule. Note that   varies 

within the range:      . Pheromone update is performed according to the following 

equation: 

                             (3.6) 

This formula is applied for each        contained in the constructed rule. Therefore, the 

value of the pheromone associated with each term in the constructed rule is increased by 

an amount proportional to the rule quality calculated via formula (3.5). 

Decreasing the pheromone in unused terms corresponds to the phenomenon of 

pheromone evaporation in real ant colony systems. In typical ACO systems, evaporation 

is obtained via an evaporation factor   to be multiplied to each     in the construction 

graph after pheromone reinforcement (as was described in the Chapter 2). 
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In this original version of Ant-Miner, the pheromone evaporation process is 

simulated by normalizing the value of each pheromone     for each        after 

pheromone reinforcement. More precisely, this normalization is performed by dividing 

the value of each     by the summation of all     on each node in the construction graph. 

When a rule is constructed, only the terms occurring in the rule constructed by an ant 

have their amount of pheromone increased by equation (3.6). Therefore, at normalization 

time the amount of pheromone of an unused term (the terms that did not occurred in the 

constructed rule) will be computed by dividing its current value (the pervious value that 

was not increased) by the total summation of pheromone for all terms (which was 

increased as a result of reinforcing the pheromone amount on the used terms). The final 

effect will be to reduce the normalized amount of pheromone for each unused term. Used 

terms will, have their normalized amount of pheromone increased due to application of 

equation (3.6). 

3.8 Algorithm Parameters 

This original version of Ant-Miner algorithm has the following parameters: 

 Number  of  Ants  (no_of_ants): this  is  also  the  maximum  number  of ant trials for 

constructing rule in each iteration of the system. In each iteration, the best rule 

constructed in that iteration is considered a discovered rule. Note that the larger the 

no_of_ants, the more candidate rules are evaluated per iteration, but the slower the 

system becomes. 

 Minimum number of cases per rule (min_cases_per_rule): each rule must cover  at  

least  min_cases_per_rule,  this guarantees  certain  degree  of generality an coverage  
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in  the  discovered  rules.  This  helps  avoiding  over-fitting  to  the training data and 

decreasing number of overall system iterations needed, 

 Maximum number of uncovered cases (max_uncovered_cases): this threshold tells 

the system when to stop. The process of rule discovery is iteratively performed  until  

the  remaining cases in the training set that  are  not  covered  by  any of the 

discovered rule is less than this threshold.  

 Number of rules used to test convergence of the ants  (no_rules_converg): If the 

current ant has constructed a rule that is exactly the same as the rule constructed  by  

the  previous  no_rules_converg  –1  ant,  then  the  system concludes that the a 

stagnation has occurred, no ant can take another path to construct a different (possibly 

better) rule,  and the whole colony has converged to a single rule (path). 

The experimental results that have been published in [20] – and will be discussed 

in the following section – were produced by running the algorithm with the following 

values of the aforementioned parameters: 

 Number of Ants (no_of_ants) = 3000. 

 Minimum number of cases per rule (min_cases_per_rule) = 10. 

 Maximum   number   of   uncovered   cases   in   the   training   set 

(max_uncovered_cases) = 10; 

 Number of rules used to test convergence of the ants (no_rules_converg) =10. 

The next section will show the computational result that was produced by 

experimented the running the original Ant-Miner algorithm and was published in [20]. A 

brief discussion on the efficiency of the algorithm according to the published results is 

included in the following section. Some issues and considerations on the algorithm will 
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be highlighted as they represent the triggers for other enhancements and related work 

done on this original version, and the motivation of the modifications proposed in this 

thesis.  

3.9 Ant-Miner Results Discussion 

Ant-Miner has been evaluated across six public-domain data sets from the UCI 

(University of California at Irvine) data set repository (2000) [26]. The detailed 

description of the used datasets characteristics and the experimental results can be found 

in [20].  

In three data sets, namely Wisconsin breast cancer, Hepatitis and Heart disease, 

Ant-Miner discovered a rule set that is both simpler and more accurate than the rule set 

discovered by C4.5. In one data set, Ljubljana breast cancer, Ant-Miner was more 

accurate than C4.5, but the rule sets discovered by Ant-Miner and C4.5 have about the 

same level of simplicity. (C4.5 discovered fewer rules, but Ant-Miner discovered rules 

with a smaller number of terms.) Finally, in two data sets, namely Tic-tac-toe and 

Dermatology, C4.5 achieved a better accuracy rate than Ant-Miner, but the rule set 

discovered by Ant-Miner was simpler than the one discovered by C4.5. 

It is also important to notice that in all six data sets the total number of terms of 

the rules discovered by Ant-Miner was smaller than C4.5‘s one, which is a strong 

evidence of the simplicity of the rules discovered by Ant-Miner.[20] 

As for the first implementation of the algorithm, Ant-Miner has proved to be a 

very promising technique for classification rules discovery. Ant-Miner generates a fewer 

number of rules, less number terms per each rules, and performs competitively in terms of 
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efficiency compared to C4.5 algorithm. Hence, it has been a focus area of research and a 

lot of modification has been done to it in order to increase its efficiency. 

Considering some issues in the original version of the Ant-Miner algorithm: 

a) This version copes only with the categorical attributes, and the continuous attributes 

should be discretized as a pre-processing step. Coping with real-valued attributes 

would be an important feature to avail.  

b) The rule consequent (rule class) is selected after rule antecedents‘ construction. 

Selecting the consequent of the rule before rule construction should enhance the 

quality of the generated rules and improve its running time.  

c) Pheromone is associated with graph nodes, which represent the available terms to 

construct rules, unlike the typical ACO techniques, where pheromone is associated 

with edges between nodes. Applying such an idea can introduce terms dependency 

and can generate better rules. 

d) As for any ACO system, a balance between exploration and exploitation is needed. In 

the current implementation of the algorithm, exploitation is dominant as all the ants 

follow the pheromone of all previous ants. Giving some personality to each ant can 

improve the exploration part and enhance the algorithm performance. 

e) Ant-Miner can by hybridized with other evolutionary computation techniques.   

f) Different heuristic functions and quality evaluation functions can be tried, and 

different pruning procedure can be applied.  

Most of the aforementioned issues have been tacked in further research 

concerning this area of interest. The following chapter describes the work that has been 

done on the Ant-Miner algorithm and focuses on the work related to the modifications on 

the algorithm introduced in the thesis. 
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3.10 Ant-Miner Implementation 

The work of this thesis has used a re-written Ant-Miner program that was built 

using C# and Microsoft.NET technologies. Both of the original and the extended version 

of the Ant-Miner algorithm were developed using the same aforementioned technology. 

The following subsection describes the used data structures for the Ant-Miner 

implementation and some of the code optimizations that were used. A comprehensive 

profiling and analysis for the execution behavior of the code is exhibited as well. This is 

done in order to point to the time consuming operations and give some speculation about 

the need of the proposed extensions as well as comparing the execution performance of 

these extensions to the original one. 

3.10.1 Data Structures and Operations 

 Construction Graph Node Representation: A node in the construction graph is 

the decision component that an ant selects to construct its solution. In Ant-Miner, the 

decision component is the attribute value that represents a term in a rule. The following 

code shows the implementation of the node in the code. 

public struct Node 

{ 

  public int AttributeIndex; 

      public int ValueIndex; 

      public int [] ValueFrequency; 

      public double PheromoneAmount; 

      public double HeuristicValue; 

      public double Probability; 

      public bool UnusableValue; 

        

 } 

The node is represented as a structure which contains the data fields necessary to describe 

the node entity. AttributeIndex is the index of the attribute in the dataset. 

ValueIndex is the index of the value in the domain of this attribute. 
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ValueFrequency  is an array which contains the frequency of occerance of this 

attribute value for each class (this is needed to faclitate calculating the heuristic value 

based on the information gain).  PheromoneAmount represents the current amount of 

pheromone associated with this node. HeuristicValue represents the value for the 

heuristic function for this attribute value. Both PheromoneAmount and 

HeuristicValue are used to calculate the value of the Probability field for a 

given node. A boolean field is associated with each node, named 

UnusableValue,used to indicate whether this value is still in use or not. This field is 

set to true if it occures less than min_cases_per_rule in the remaining cases in the 

training set. If so, this attribute will not be considered for selection in rule construction 

procedure. 

 Construction Graph Representation: The construction graph contains of all 

nodes (the decisions components) in which an ant traverses to construction a rule 

(solution). The construction graph is represented as a two-dimensional array of nodes, 

which is declared in the swarm class and initialized in 

BuildConstructionGraph() method, as shown in the following code. 

private Node[][] _constructionGraph; 

… 

private void BuildConstructionGraph() 

{ 

             

this._constructionGraph = new 

Node[this._trainingSetDataTable.Columns.Count][]; 

 

for (int attributeIndex = 0; attributeIndex < 

this._trainingSetDataTable.Columns.Count; attributeIndex++) 

{ 

List<string> values = this.GetDistinctAttributeValues(attributeIndex); 

 

this._constructionGraph[attributeIndex] = new Node[values.Count]; 
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for (int valueIndex = 0; valueIndex < 

this._constructionGraph[attributeIndex].Length; valueIndex += 1) 

{ 

                                            

this._constructionGraph[attributeIndex][valueIndex].AttributeIndex = 

attributeIndex;                                                

this._constructionGraph[attributeIndex][valueIndex].ValueIndex = 

valueIndex;          

this._constructionGraph[attributeIndex][valueIndex].ValueFrequency = new 

int[numberOfClasses];                                     

} 

 

} 

 

… 

                         

} 

 

An additional array is used to support the construction graph, attDistinctLeft 

,is used to keep track of the remaning values in the attribute domain which still in used 

(UnusableValue=flase). This helps the ants to discard the attribute whose values 

became unsuable when constructing a rule. For exmaple, when 

this._constructionGraph[i][j].UnusableValue is set to true,  

attDistinctLeft[i]which represents the number of distinct values in attribute i 

is decreased. When attDistinctLeft[i]becomes 0, this attribute will not be used 

for rule construction in further iterations. 

 Ant Representation:  The ant entity is represented as a class that contains the 

data fields for an ant object to help constructing a rule. The following is the 

implementation code for the ant entity.  

public class Ant 

{ 

 

        private int _antNumber;        

        private int[] _ruleAntecedents; 

        private int _ruleclassIndex; 

        private double _ruleQuality; 

        private List<int> _instancesIndexList; 

        private bool[] _memory; 

… 
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} 

As shown in the previous code, each ant has an array of integers, 

ruleAntecedents, which repesents the partial rule the the ant is currently 

constucting. The array elements are intially intialized with -1, and as the ant selects a 

node from the construction graph, the value index is added to the element of the array 

conspoding to its attribute index. Moreover, _memory array keeps track of whether an 

ant has selected a value for a given attribute or not. For example, if 

_memory[i]=false,this means that an ant can select a value from the domain of 

attribute i from the construction graph. Each ant also keeps track of the instance index 

of the cases that are coverd by the current rule, using _instancesIndexList. This 

helps applying the minimum cases coverd by a rule when adding a new term to the rule 

by searching in the occerances of this term only in _instancesIndexList.It also 

helps in determinding the rule class by calcualting the class value that has the highest 

occerance in the cases of_instancesIndexList. 

 Ant Colony Representation:  The AntColony class is the core of the Ant-Miner 

program. In contains all the algorithm parameters as well as the methods needed for 

running the algorithm. The following class diagram shows the design of the Ant-Miner 

class. Note that the class contains other data fields and helper methods that are not shown 

in the class diagram as they are only used for housekeeping operations. 
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Figure 3.1 - AntColony Class Diagram. 

As shown in figure 3.1, AntColony class contains the properties needed for running 

the Ant-Miner algorithm. It has ConstructionGraph, which represents the current 

instance of the construction graph for the dataset at hand. The AntsNumber property 

represents the number of permitted trials per iteration. The MaxIterationsNumber 

value is the maximum global iterations that the Ant-Miner can perform before it covers 

the minimum required cases from the training set by the generated rules. The 
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ConvergenceThreshold indicates when to determine that the ants have converged 

on a specific rule. This is considered when the current ant has constructed a rule that is 

the same as the previous ConvergenceThreshold-1 ant rules. . 

MinCoveragePercentage represents the minimum cases to be covered by the 

constructed rules before stopping to generate more rules. Finally, OutptAntRules is 

the generated rule list. 

 When a new object of the AtColony class is instantiated, the aforementioned 

parameters are passed to its constructor to be set, and the 

BulildConstructionGraph() is called, which is considered as a pre-processing 

operation for running the algorithm program.  

The Run() method is the main operation for executing the Ant-Miner Algorithm. 

It starts as follows: 

while (this._currentIterationNumber < MaxIterationsNumber && 

this._currentCoverage < this.MinCoveragePercentage) 

{ 

          

this.InitializePheromone(); 

this.InitializeNodeInformation(); 

 

… 

 

} 

 

At the beginning of each iteration, the methods InitializeNodeInformation 

and InitializePheromone are called. Both of them are called only once at the 

beginning of each iteration. Then, the inner loop for ant trials begins to discover a rule for 

the current iteration. As follows: 

… 

 

for (_currentIterationNumber = 0; _currentIterationNumber < 

this.AntsNumber && !convergence; _currentIterationNumber++) 

{ 
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this._currentAnt = new Ant(); 

this.ConstructRule(this._currentAnt); 

this.DetermineRuleClass(this._currentAnt); 

this.CalculateRuleQuality(this._currentAnt); 

this._currentAnt = this.PruneRule(this._currentAnt); 

generatedAnts[_currentIterationNumber] = this._currentAnt; 

 

if (_currentAnt.RuleQuality > generatedAnts[bestAntIndex].RuleQuality) 

bestAntIndex = _currentIterationNumber; 

 

this.UpdatePheromone(generatedAnts[bestAntIndex]); 

 

convergence=TestConvergence(); 

} 

this.OutputAntRules.Add(generatedAnts[bestAntIndex]);                    

this.RemoveCoverdCasesFromTrainingSet(generatedAnts[bestAntIndex]); 

 

… 

 

The previous code shows the logical implementation of each iteration of Ant-Miner. 

On each iteration, several trials to discover a rule are performed until the maximum of 

trials is reached (AntsNumber) or  convergence became true. In each trial, a new 

ant is created and referenced by _currentAnt.the  _currentAnt constructs a rule 

by invoking ConstructRule() method. This method calls 

SelectNodeProbablistically(), which inturn calls 

CalculateNodeProbabilities() method and uses a rolette-wheel procedure to  

choose a node. Afer rule atecednets are chosen, DetermineRuleClass() is called, 

which uses the _instancesIndexList associated with _currentAnt to 

determined the class with the highest occerance in the covered cases by the current rule. 

Then the rule quality is claculated and set to _currentAnt.RuleQuality. The 

prunning procedure then takes palce by invoking PruneRule() method, which  

iteratively calls DetermineRuelClase() and ClauclateRuleQuality() 

methods after removing term by term. After that, the ant with the constructed, prunned 

rule is added to the generatedAnts and the index of the best ant is updated. 
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The best rule is selected after several ant trials. This  discovered rule is added to 

OutputAntRules and the covered cases by this rule are removed from the training set. 

3.10.2 Execution Profiling and Analysis 

The performance of the algorithm has been discussed through the quality of its 

output in the section 3.9. The quality of the rule set generated using Ant-Miner was 

evaluated in terms of its classification accuracy and comprehensibility (number of rules 

and number of terms per rule). However, the execution of the algorithm should be 

profiled and analyzed in terms of running time. Such profiling helps in indicating which 

operation takes a longer time in execution, and how any modification to the algorithm 

could affect the running time. For example, a modification may be applied on the 

algorithm that increases the number of trials needed to converge on a rule per iteration, 

yet it could decrease the actual running time of a single iteration. Another modification 

could decrease the overall iterations needed to stop execution, on the other hand, it might 

be using a complex heuristic function or quality evaluation function that increases the 

overall running. The following table exhibits an execution profile of the algorithm on 

CarEvaluation dataset (see section 9.2 Chapter 9). 

A metric of measure is presented to profile the execution of the Ant-Miner 

algorithm. Running time, number of method calls, average running time for a single call 

of the method and the percentage of the running time of the method to the whole 

execution are recoded. Such a profiling gives a deep insight about the performance of the 

execution of the Ant-Miner algorithm and highlights the points of the algorithm where 

enhancements can be directed to and modification can be applied. 
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Method Time 

(m.sec) 

Calls 

# 

Avg.  Time 

(sec) 

% to 

Parent 

% to 

Total 

Run() 5704.2 1 5704.2 100% 100% 

>ConstructRule() 43878.46 1112 39.459 13% 13% 

>>CalculateNodeProbabilities() 51 4105 0.0124 2% <1% 

>>SelectNodeProbablistically() 0.9 4205 0.0002 < 1 % <1% 

>PruneRule() 12136.6 1112 10.914 42% 47% 

>>CalculateRuleQuality() 16777.06 2242 7.483 19% 34% 

>>DetermineRuleClass() 27162.86 2242 12.115 15% 21% 

>UpdatePheromone() 2.81 1112 0.0025 < 1 % <1% 

>IntializeNodeInformation() 40744.29 8 5093.036 15% 14% 

>IntializePheromone() 0.015 8 0.0018 < 1 % <1% 

>BuildConstructionGraph() 1.02 1 1.02 <1% <1% 

Table 3.1 - Ant-Miner Execution Profile. 

As shown in Table 3.1, the PruneRule() method took the highest percentage 

of the total running time (47%). This is because it calls 3 time consuming methods each 

time it is called, namely CalcuateRuleQuality(), DetermineRuleClass() 

and UpdateInstancesIndexList(). The first method 

CalcuateRuleQuality() , which takes 24% of the total runing time, calculating the 

quality of the rule using                        , which needs to scan the whole 

training set each time it is called. DetermineRuleClass()uses the 

InstanceIndexList field associated to the ant that contains the covered cases 

indexes by the current rule to calculate the the class with the highest occuerance amoung 

these instances. This is done by scanning the InstanceIndexList and takes 21% of 

the running time. As rule term is removed during the prunning procedure, the 
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InstanceIndexList covered by the new rule changes, thus 

UpdateInstancesIndexList()is called, this takes 11% of the run time. 

IntializeNodeInformation() comes after the previous methods in 

running time consumption (16%). This method involves scanning the training set to set 

attribute value frequncey for each class and claculate its heuristic value. 

3.11 Summary   

In summary, this chapter has described the original version of Ant-Miner that was 

published in 2002 [20]. Ant-Miner is an ACO based algorithm designed to discover 

classification rules. Iteratively, a swarm of ant tries to discover a rule to be used for 

building a rule-based classification model. Hence, each ant in the swarm wanders the 

construction graph looking for terms to select for rule construction. The ant is influenced 

in path selection via the amount of the pheromone on the terms and the heuristic value of 

each term. After an ant finish constructing a rule, the quality of the rule is evaluated, and 

the pheromone is updated on the trail that the ant took according to the rule quality. Rule 

pruning takes place to remove irrelevant terms from the rules. As all the ants finish their 

trials, the best generated rule is selected and added to the discovered rule list. The 

algorithm is then repeated on the reduced training set after the covered cases by the 

discovered rule are removed. After the minimum covered cases number is reached, the 

algorithm stops, and the discovered ordered list of rules is ready for classifying new 

unlabeled cases. 
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Chapter 4  

ANT-MINER RELATED WORK 

4.1 Introduction 

In the previous chapter, a detailed description of the original version of Ant-Miner 

was introduced. Ant-Miner was proposed by Parpinelli et al. [20] in 2002 as an ACO-

based algorithm for discovering classification rules from labeled cases. Empirical results 

have chosen competitive performance to C4.5 and CN2 concerning predictive accuracy 

on the test set and better generated rules in term of simplicity. However, Ant-Miner had 

some issues that were tackled in later versions. This chapter aims to present the literature 

review on Ant-Miner and the related work that has been done to improve it. The chapter 

lists the various versions of Ant-Miner that have been introduced in the literature in the 

order in which they were introduced in, along with a brief description of each. Section 4.2 

presents Ant_Miner2 which introduced a new heuristic function for Ant-Miner. Section 

4.3 presents Ant_Miner3 that suggested a new pheromone evaporation technique. A new 

pruning procedure is described in section 4.4.  An Ant-Miner algorithm for multi-label 

classification is presented in section 4.5. Section 4.6 describes a new version which 

discovers unordered rule sets. AntMiner+ is discussed in section 4.7. cAntMiner, which is 

a version that copes with continuous attributes, is presented in section 4.8. 
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4.2 Ant_Miner2 [2002] 

In Ant-Miner2, B. Liu et al. have introduced a density-based heuristic for rule 

discovery [16]. The idea is that  the  ACO  algorithm  does  not  need accurate 

information  in  this  heuristic  value  since  the  idea  of  the  pheromone  should 

compensate the small potential errors in the heuristic values. In other words, a simpler 

heuristic value may do the job as well as the complex one. As a result, an easily 

computable density estimation equation, shown in the equation (4.1) was proposed to 

calculate a heuristic value    : 

    
                 

     
               (4.1) 

where: 

     is the size of partition that        occurred in. 

                   is the occurrence of the majority class in partition     . 

Although the density based function has less computational cost, Ant_miner2, 

with the simple heuristic function based on the density of the majority class, has 

introduced identical results to the original Ant-Miner, which were produced with entropy 

as a heuristic value measure [16]. 

4.3 Ant_Miner3 [2003] 

B. Liu, H. A. Abbass, and B. McKay have introduced a new version 

(Ant_Miner3) [17] based on their previously proposed one (Ant_Miner2). They 

contributed with two new modifications on Ant_Miner2 concerning pheromone update 

state transition procedure. The modifications are described in the following subsections. 
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4.3.1 Pheromone Update Method 

A new pheromone update method has been introduced in Ant_Miner3, show in 

equation (4.2). In this original version of Ant-Miner, the pheromone evaporation process 

is simulated by normalizing the value of each pheromone     for each        after 

pheromone reinforcement. More precisely, this normalization is performed by dividing 

the value of each     by the summation of all     on each node in the construction graph. 

When a rule is constructed, only the terms occurring in the rule constructed by an ant 

have their amount of pheromone increased by equation (3.6).In Ant_Miner3, the amount 

of pheromone associated with each term that occurs in the constructed rule is updated by 

equation (4.2), and the pheromone of unused terms is updated by normalization. 

                         
 

   
                    (4.2) 

where: 

   is the pheromone evaporation factor, which controls  how  fast  the  old  path  

evaporates.  This parameter controls the influence of the history on the current 

pheromone trail.  A large value of    indicates a fast evaporation rate and vice versa. 

A value 0.1 was fixed and used for the experimentation of this modification. 

   represents the quality of the contracted rule, which ranges in      . 

4.3.2 State Transition Procedure 

Pheromone amounts in the construction graph represent the current knowledge of 

the colony which influences subsequent ants in choosing their paths. This benefits 

exploitation of prior knowledge. But it increases the probability of choosing terms 

belonging to previously discovered rules according to equation (4.2) In order to improve 
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exploration; Ant_Miner3 has introduced a new state transition procedure - shown in 

Algorithm 4.1 - that is taken from [17]. 

Algorithm 4.1 - Ant_Miner3 State Transition Rule. 

 

where: 

 q1 and q2 are random numbers. 

   is a parameter in [0,1]. 

    is the  number  of  i-th  attribute  values. 

     is  possibility calculated using equation (4.2). 

Therefore,  the  results not only depend on the heuristic functions     and 

pheromone    , but also on a random number, which increases the likelihood of choosing 

terms not used in previously    constructed    rules. If        then        is selected 

randomly as a favor for exploration. Else,       corresponds to an exploitation of the 

knowledge available about the problem, as        is selected based on heuristic functions 

   and pheromone     from equation (4.2).  , which represents the 

exploration/exploitation balancer, was set to 0.4. 

Although Ant_Miner3 needed more ants to converge and find a solution, and the 

discovered rules by Ant_Miner3 are more than rules discovered by the original version of 
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Ant-Miner, the mean accuracy of the rule sets discovered by Ant_Miner3 is higher than 

that of Ant-Miner. 

4.4 A New Rule Pruning Procedure [2005] 

As was described in the previous chapter, Ant-Miner generates rules in the form 

of IF <antecedents> THEN <consequent>, where antecedents are the terms that were 

selected probabilistically during rule construction based on a heuristic value     and 

pheromone value    . Irrelevant terms may have been included in the rule due to 

stochastic variations in the term selection procedure and/or due to the use of a 

shortsighted, local heuristic function, ignoring attribute interactions. Pruning can improve 

the quality of a rule by removing irrelevant terms from the rule antecedent. As a result, 

pruning can improve both the predictive accuracy and the comprehensibility of the rule.  

A. Chan and A. Freitas have introduced a new classification rule pruning procedure for 

Ant-Miner in [4]. The following section is a description of the original rule pruning 

procedure followed by a section that describes the new rule pruning procedure introduced 

in [4]. 

4.4.1 Original Ant-Miner Rule Pruning Procedure 

In original version of Ant-Miner, the pruning procedure tries to improve the 

quality of the constructed rule (measured by the rule‘s predictive accuracy), by removing 

irrelevant terms from the rule antecedent.  This  is  done  by  iteratively  removing  one 

term  at  a  time  while  it  improves  on  the  rule‘s  quality [20].  This iterative process 

stops when no term removal will further increase the quality of the current rule 

undergoing pruning. The pruned rule with the best quality is then selected for pheromone 

update. The procedure is described as follows in Algorithm 4.2. 
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Algorithm 4.2 - Rule Pruning Procedure of the Original Version of Ant-Miner. 

Execute_pruning = true;  

WHILE (Execute_pruning = true) AND (Number of terms in rule antecedent > 1)  

FOR EACH (term    in the current rule to be pruned)  

Temporarily remove    and assign to the rule consequent the most frequent class 

among the examples covered by the rule antecedent;  

Evaluate rule quality;  

Reinstate term    in rule antecedent;  

END FOR  

IF (rule quality was improved some iteration of the FOR loop)  

THEN  

Remove permanently the term whose removal improves current rule most;  

ELSE  

Execute_pruning = false;  

END IF-THEN-ELSE  

END WHILE 

 

Rule pruning has proved to enhance the quality of the generated rules by Ant-

Miner. However, the rule pruning operation is the most time consuming part of the 

algorithm (see Table 3.1 section 3.10.2 execution profile of Ant-Miner) as it is quite 

sensitive to the number of attributes of the input data set. This is due to the fact that the 

larger the number of attributes in the data being mined, in general the larger the number 

of terms in a constructed rule before pruning, and so the larger the number of iterations in 
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the loops of Algorithm 4.2. Moreover, in each iteration of the FOR EACH loop, a term is 

temporarily removed and the quality of the reduced candidate rule has to be computed by 

the rule quality evaluation formula (3.5). The quality evaluation formula is a quite 

computationally expensive operation as it scans the entire dataset to calculate values of 

TP, FP, TN and FN.   

4.4.2 The New Hybrid Rule Pruner for Ant-Miner 

The new rule pruning procedure proposed in [4] is a hybrid rule pruner, combining 

the original Ant-Miner‘s rule pruner with a rule pruner based on information gain. The 

basic idea is to combine the effectiveness of the original Ant-Miner pruner (in terms of 

maximizing predictive accuracy) with the speed of a rule pruner based on information 

gain.  This latter is very fast, because it does not require any scan of the training set. If the 

number of terms in the rule antecedent of a generated rule exceeds the value of  , the rule 

first  undergoes  reduction  of  the  number  of  terms  to  the  value  of  parameter   .  

This reduction is obtained as follows.  For each term within the rule antecedent, the rule 

pruner computes the probability of selecting that term. This probability measure  is  based  

on  the  pre-computed  value  of  that  term‘s  information  gain  with respect to the class 

attribute. Then the rule pruner selects   number of terms with the probability of selecting 

each term proportional to the information gain of that term. Once   terms have been 

selected the resulting reduced rule is placed back into Ant-Miner‘s original rule pruner. A 

high-level description of the proposed hybrid rule pruner is described in the following 

algorithm. For more details about the algorithm, refer to [4]. 

 

Algorithm 4.3 - Hybrid Rule Pruning Procedure. 
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INPUT: 

a)   information   gain   of   all   terms   individually, calculated using the entire current 

training set;  /* previously done by another procedure of Ant Miner */  

b) value of r /* user-defined parameter: number of terms in the current rule which will be 

given to Ant-Miner‘s original rule pruner */  

Reduced_rule = {};  

Num_terms_selected = 0;  

IF  (number  of  terms  in  current  rule‘s  antecedent  >   )  

THEN  

WHILE (Num_terms_selected <  )  

FOR EACH (term    in current rule‘s antecedent)  

Calculate probability of selecting a term     as:  

         
            

             
 
   

 

      / *T = number of terms in the rule antecedent */  

END FOR  

Create roulette wheel for selection and select one Term, called selected_term, by 

spinning the wheel;  

Reduced_rule = Reduced_rule   selected_term;  

Remove selected_term from current rule‘s antecedent to avoid reselection;  

Num_terms_selected = Num_terms_selected + 1;  

END WHILE  

Assign to the consequent of the Reduced_rule the most frequent class among all examples 

covered by the rule;  
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Run Ant-Miner‘s original rule pruner on Reduced_rule;  

ELSE  

Run Ant-Miner‘s original rule pruner on current rule;  

END IF-THEN-ELSE 

 

Experimental result has shown that, in general, the hybrid pruner significantly 

reduced the computational time of Ant-Miner,  by  comparison  with  the  computational  

time  taken  with  the original rule  pruner, without sacrificing the accuracy of the 

generated rules. Moreover, shorter rule lengths were obtained in general by applying the 

new pruning procedure which enhanced the comprehensibility of the generated rules. 

4.5 Multi-Label Ant-Miner (MulAM) [2006] 

Multi-label  classification  principles are  similar  to single- label  classification 

ones; the aim is to find a classification model that is able to describe the class attribute(s) 

as a function of input attributes from labeled cases so that labels of new case can be 

predicted using this model.  However,  in  multi-label classification  there  are  two  or  

more  class  attributes  to  be predicted.  As  a  result,  the  consequent  of  a  classification  

rule contains  one  or  more  attribute prediction,  each  prediction  involving  a different 

class attribute. 

A. Chan and A. Freitas have introduced a version of Ant-Miner, called (MulAM) 

that copes with multi-label classification [3].  Although several workarounds have been 

used to apply traditional classification techniques to solve multi-label classification 

problems, none of them proved efficient in doing such a task. One approach is  to  split  

the  original  dataset into  near  identical  datasets,  where  each  contains  all  input 
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attributes and all cases,  but  each  dataset produced in this way contains only one of the 

class attributes to be   predicted.   This   results   in   requiring   the   classification 

algorithm  to  be  trained  on  nearly  the  same  dataset  several times: as many as the 

number of the class attributes. This technique ignores possible correlations between class 

attributes, thus the resulting rules lakes the appropriate comprehensibility. Moreover, it‘s 

is computationally expensive. Another approach is to convert  the  existing  class 

attributes into a single class attribute, where each value of this new  class  attribute  

represents  a  combination  of  the  class attributes  that  were  initially  present  in  the  

data  set. However, by doing such a workaround, the number of values of the new single-

class   attribute   will   increase   exponentially   with   the number   of   original   class   

attributes.   Therefore,   it   becomes more  difficult  to  predict  a  class  value,  as  the 

number of cases associated with any given value of the new single   class   attribute   

decreases   considerably,   reducing   the amount of information to effectively predict 

each class value. 

The following algorithm was proposed in [3] as a version of Ant-Miner, an Ant 

Colony classification rule generation technique that copes with multi-label datasets: 

Algorithm 4.4 - Multi-Label Ant-Miner (MuLAM). 

TrainingSet = {set of all training examples}   

DiscoveredRuleList = {}   

WHILE (TrainingSet > MaxUncovExamples)  

     ;   /* ant index */   

Calculate information gain of each term considering all class attributes based on current 

training examples;   
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For each class attribute   , initialize all cells of the pheromone matrix    

REPEAT  

      starts with an empty partial rule   ;    

Current ruleset    = { };   

WHILE ((there is at least 1 unused attribute) AND (there is at least 1 unpredicted 

class attribute))  

      chooses, out of the unused terms, a term to be added to current partial rule 

  , with a probability proportional to the product of a heuristic function and the 

pheromone;   

IF (after adding the chosen term to the partial rule    the rule will still cover more 

than   MinExamplesPerRule)  

THEN Add the chosen term to the current partial rule    ;   

RuleCons =  ;    

FOR EACH (Class attribute   )                 

IF (partial Rule     predicts class attribute    with high confidence) 

THEN   

RuleCons = RuleCons È (predicted class for class attribute   );   

Mark class attribute    as predicted;      

END IF  

END FOR EACH  

IF (RuleCons   ) THEN  

Create complete rule      (with rule format IF      … AND …       THEN  

RuleCons);  
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     =    U     ;  

END IF  

ELSE  

Quit this WHILE loop;  

END IF-THEN-ELSE  

END WHILE   

IF (there are still unpredicted class attributes) THEN Create one complete rule predicting 

each of those class attributes;   

FOR EACH (class attribute    predicted by this rule)   

Create a temporary       IF (     ) THEN   ;   

Use original Ant-Miner pruning technique to prune this temporary rule. Instead of 

allowing   the consequent to be modified during pruning, the current consequent is 

kept fixed, which will potentially produce a new       only;  

END FOR  

END IF   

FOR EACH (rule in    )  

Update pheromone matrix for each predicted class attribute    in the rule, 

increasing pheromone of terms in rule antecedent and reducing pheromone 

(evaporation via normalization) of terms not used in the rule. Pheromone 

increasing is based on quality of partial rule predicting class attribute    only;    

         ;  

END FOR   

UNTIL ( t ≥ MaxNoAnts)  
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Choose best set of rules        among those generated by all Ants in current population 

by using the rule quality measure;   

Add        to DiscoveredRuleList;   

 TrainingSet = TrainingSet – {set of examples where all the class attributes have been 

correctly predicted by         };   

END WHILE 

 

In  MuLAM,  each  ant does  not  produce  a  single  rule  like  in  the  original  

Ant-Miner. Rather, each ant discovers a candidate rule set. The reason for this is due to 

addressing the multi-label  classification  task,  where  there  are  multiple  class attributes  

to  be  predicted.  Each  ant  discovers  at  least  one  rule and  at  most  a  number  of  

rules  equal  to  the  number  of  class attributes, a different rule for each class to be 

predicted. An ant will discover a single rule only in the case where that rule is considered   

good   enough   to   predict   all   class   attributes. After an ant constructs its rule 

antecedents, the selection of prediction class value occurs. Before the algorithm makes a 

prediction for this current rule, it initializes the rule consequent with the empty set. This 

rule  consequent  holds  all  class  attribute  (with empty values) that  are  being predicted  

by  the  rule.  The  ant  enters  the  FOR  loop,  where  it processes  each  class  attribute  

separately.  So  for  every  class attribute, the algorithm then decides under a certain pre-

pruning criteria  whether  the  current  class  attribute  should  be  added  to the rule 

consequent as a prediction. A detailed description of the algorithm is found in [3].   
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4.6 Ant-Miner for Discovering Unordered Rule Sets [2006] 

J. Smaldon and A. Freitas have introduced one of the main important 

contributions to Ant-Miner, which is fixing in advance the class predicted by the rule 

[23].  The basic idea is to set the class as a consequent of the rule before selecting the 

terms that construct the rule antecedents. In  the  original  Ant-Miner,  ants  chose  terms  

for  a  rule  with  the goal  of  decreasing  entropy  in  the  class  distribution  of  examples 

matching the rule in construction. The consequent of the rule is then  assigned  afterwards  

by  determining  the  class  value  that would  produce  the  highest  quality  rule. On the 

other hand, in Unordered Rule Set Ant-Miner, as the class is set before rule construction, 

the terms are chosen with respect to its relevance to the selected class. The approach has 

improved the quality of the generated rules in terms of accuracy. The following algorithm 

describes the proposed version in [23]. 

Algorithm 4.5 - Unordered Rule Set Ant-Miner. 

Discovered Rule Set = {} /* initialize rule set with empty set */  

FOR EACH Class  

TrainingSet = {all training cases}  

PositiveSet = {training cases of current class}  

NegativeSet = TrainingSet – PositiveSet  

WHILE (|PositiveSet| > max_uncovered_cases)  

                 ;  

                 ;  

            initialise all trails to the same amount of pheromone;  

            REPEAT  
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     starts with an empty rule and incrementally constructs a classification 

rule    by adding one term  at a time to the current rule;  

Prune rule   ;  

   IF (LaplaceCorrectedConfidence(  )  >  RuleConfidenceThreshold)  

     THEN increase pheromone of terms in rule      

END IF  

Update pheromones in all other terms by normalizing the pheromone 

values (simulating evaporation)  

IF (   equals     -1)  

      THEN          ;  

      ELSE      ;  

END IF  

       ;      

            UNTIL (i   No_of_ants) OR (j   No_rules_converg)  

Choose the best rule       among all rules     constructed by all ants;    

Add rule       to DiscoveredRuleSet;  

TrainingSet = TrainingSet – {set of positive cases covered by      };  

PositiveSet = PositiveSet – {set of positive cases covered by      };  

END WHILE  

END FOR 

 

As shown in algorithm 4.4, an extra For-Each loop is added as the outer loop of 

the algorithm, iterating over the values in the class attribute domain. Each value is set as a 
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rule consequent for the rules to be built by subsequent ants. Each iteration of the For-Each 

loop discovers an unordered set of rules, all of which predict the current class value. At 

the beginning of each iteration, the entire training set is reinstated, so that a maximal 

number of negative examples are available to the algorithm.  Ants  discover  rules  from  

the  training  data  until  the number  of  positive  examples  (belonging  to  the  current  

class) remaining  in  the  dataset  that  have  not  been  covered  by  a discovered  rule  is  

less  than  or  equal  to  the  value  determined  by the  max_uncovered_cases  parameter.  

As the class for the rules is known prior terms selection, a better heuristic function 

is used to focus on the terms that have more relevance to the current class. The Laplace-

corrected confidence is used, as follows: 

      
             

                         
               (4.3) 

where |      , k| is the number of training cases having        and the current 

positive class k, |      | is the number of training cases having         and  

no_of_classes  is  the  number  of  values  in  the class  attribute‘s  domain. 

As for rule quality evaluation and pheromone update, the same fitness function 

used in the original Ant-miner is used for this version (see equation 3.5).  However, a 

threshold formula has been added to determine whether to accept this rule or not. The 

formula is defined as folows : 

                                 
   

             
  (4.4) 

where  |k|  is  the  number  of  training  cases  with  the  current (positive) class, and 

|training set| is the total number of cases in the current training set. 
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The new proposed version of the Ant-Miner, where the class of the rule is fixed 

before rule construction has shown to be a very good improvement in regards to the 

discovered rules in terms of rule accuracy and number of terms. However, the whole 

algorithm should be repeated for each class value, which increases the number of the 

overall iterations needed to discover rules covering the minimum needed cases. 

Moreover, the number of generated rules is larger than the number of rules generated by 

Ant-Miner, which affects the quality of the output in terms of simplicity. 

4.7 AntMiner+ [2007] 

AntMiner+, which was proposed by D. Martens et al. [18], is considered another 

important version of Ant-Miner with several modifications which enhanced the 

performance of the algorithm. The following section describes the main differences in the 

AntMiner+. 

4.7.1 MAX-MIN Ant System 

The first modification in AntMiner+ is utilizing the MAX-MIN Ant System [24]. 

As was described in Chapter 2 section 2.4.2, the MMAS has a maximum and a minimum 

value of the pheromone on the construction graph. Initially, the pheromone on the 

construction graph is initialized with      . As the pheromone is updated on the 

construction graph (deposited and evaporated), the pheromone amount cannot exceed 

     or go bellow     .  The idea behind this is to improve exploration and avoid early 

stagnation of the swarm. Moreover, only the ant that describes the best rule will update 

the pheromone of its path, which balances the exploitation aspect in front of the 

aforementioned pheromone clipping technique that keeps the exploration aspect. 
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4.7.2 Construction Graph 

The construction graph for AntMiner+ is a directed acyclic graph (DAG) where 

the decision components are the edges which connect the nodes that represent the term 

constructing the rule antecedents. The following figure describes the (DAG) construction 

graph of AntMiner+: 

 

Figure 4.1 - Construction Graph for AntMiner+. [18] 

As an ant starts to construct a rule, an ant should choose from each pool of terms 

which represent the values of an input attribute. After selecting a value from the current 

attribute it can then move to the next attribute. A value of nil is added to each attribute 

value‘s pool to give a probability of bypassing an attribute. Each value in attribute    is 

connected to all the values of the following attribute     . The pheromone is associated 

with edges between the nodes, in contrast to the original version of Ant-Miner where the 

pheromone is associated with terms themselves. This introduces attribute value 

dependency. However, the constructed rules can be sensitive to the attributes order in the 

construction graph.  
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4.7.3 A Class is Selected before Rule Construction 

In AntMiner+ the ant selects the class value before constructing the rule. Thus, an 

extra vertex group is added that comes first in the construction graph. This is similar to 

considering the class variable as just one of the variables, treated as such when 

calculating the heuristic values and pheromone update. The class value is selected 

probabilistically according to the amount of pheromone on the edge leading to it. This 

amount of pheromone indicates that this class value has contributed in classifying a rule 

with high quality, which should be selected in subsequent trials. The following figure 

shows a path of an ant on the AntMiner+ construction graph: 

 

Figure 4.2 - A Path of an Ant in AntMiner+. [18] 

Since the rule consequent is known before the rule construction, the heuristic function is 

defined as follows: 

     
 

                

     
 (4.5) 

where  

     is the portion of the dataset covered by       . 
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    is the current selected class. 

The quality is evaluated as rule confidence + rule coverage. 

Multiple ants in the same iteration can construct rules with different class as a 

consequent of the rule. However, the pheromone is shared by all ants constructing rules 

with different consequents. Any ant is influenced by the pheromone dropped by any other 

ant constructing similar or different labeled rule. The term that leads to construct a good 

rule with class Cx as a consequent does not necessary lead to construct a good rule with 

Cy as a consequent. This could affect the quality of generated rules. 

4.7.4 Handling Continuous Attributes 

In the original Ant-Miner version, the continuous-valued attributes should be 

discretized as a pre-processing step. In AntMiner+, each continuous attribute is 

represented by two pools of values   
     

 and   
     . The values selected by the ant 

during the rule construction from    
     

 and   
      define the range of the continuous 

value suitable for the current constructed rule. However, both    
     

 and   
      have a 

discrete set of values. Figure 4.2 shows the idea on the construction graph. 

4.7.5 Weight Parameters 

In the typical (ACO) state transition formula, the heuristic value component     

and the pheromone value component     are each raised to the power of    and   

respectivly. The powers are used to gives different emphasis on each component. In the 

Original Ant-Miner,   equals   equaling to 1.0. AntMiner+ allows other values to be 

chosen and actually lets the ants themselves choose suitable values. This is done by 

introducing two new vertex groups in the construction graph: one for each weight 
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parameter. The values for the weight parameters were limited to integers between the 

value of 1 and 3. 

 

Figure 4.3 - The Complete Construction Graph for AntMiner+. [18] 

4.8 cAnt-Miner [2008 – 2009] 

Otero et al. [19] have proposed an Ant-Miner extension — named cAnt-Miner (Ant-

Miner coping with continuous attributes) — which can dynamically create thresholds on 

continuous attributes‘ domain values during the rule construction process. Since 

cAntMiner has the ability of coping with continuous attributes ―on-the-fly‖, continuous 

attributes do not need to be discretized in a preprocessing step. Firstly, cAnt-Miner 

includes vertices to represent continuous attributes in the construction graph. Secondly, in 

order to compute the heuristic information for continuous attributes, cAnt-Miner 

incorporates a dynamic entropy-based discretization procedure: a threshold value   needs 

to be selected in order to dynamically partition the set of examples into two intervals: 

     and     . The best threshold value v is the value v that minimizes the entropy of 

the partition, computed as: 
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                        (4.6) 

where: 

         is the total number of examples in the partition of training examples where the 

attribute    has a value less than  . 

         is the total number of examples in the partition of training examples where the 

attribute    has a value greater than or equals  . 

     is the total number of training examples. 

Thirdly, when a continuous attribute vertex (  ) is selected by an ant to be added 

to its current partial rule, a relational operator and a value is computed using a similar 

procedure as for the heuristic information. Fourthly, the pheromone updating procedure 

has been extended to cope with continuous attribute vertices. In the case of continuous 

attributes, pheromone values are associated with continuous attribute vertices not 

considering the operator and threshold value, that is, there is a single entry in the 

pheromone matrix for each continuous attribute, in contrast to multiple entries for 

nominal attributes — nominal attributes have an entry for every          pair. 

4.9 Summary 

This chapter has presented a literature review on Ant-Miner and the related work 

that has been done on the original version. Several modifications have been introduced to 

improve the quality of the algorithm by trying different heuristic functions, setting the 

class before constructing the rule antecedents, applying a new rule pruning procedure, 

proposing different pheromone update strategies, handling multi-label classification, and  

trying to cope with continuous attributes. However, a lot of other ideas can be applied to 
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enhance the exploration\exploitation behavior of the algorithm. Moreover, different 

pheromone update (deposit and evaporation) can be tried.   
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Chapter 5  

USING LOGICAL NEGATION OPERATOR 

5.1 Introduction 

The first extension to the original Ant-Miner algorithm presented in this thesis is 

using the logical negation operator in constructing rule antecedents. In which case, terms 

contained in the constructed rules can be in the form of <attribute Not= value>. Such 

terms match more cases than the original form, leading to constructing rules with a 

possible higher coverage. The advantage of this extension is that it can reduce the number 

of the generated rules, which in turn improves the comprehensibility of the output. In 

order to apply this extension, allowing using logical negation, a simple modification is 

done on the construction graph. Results in Chapter 9 shows that using logical negation 

operators not only decreases the size of the generated rule set, but also increases its 

classification accuracy. This chapter describes in detail this extension and the 

modifications on the algorithm to support it.  Data structure updates and program 

execution performance are discussed to show the implication of enabling such a 

modification on the algorithm. 

5.2 Using Logical Negation 

In the original and various versions of Ant-Miner, the construction graph consists 

of nodes representing attribute values of the dataset. These nodes are the decisions 

components (terms) that are selected to construct a solution (rule antecedents) by ants 

traversing the construction graph. The set of nodes     in the construction graph is: 
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where:  

 i  is i-th attribute of the features that describes the case in the dataset.  

 n is the number of attributes in the construction graph. 

     is the j-th value of i-th attribute.  

Thus the constructed rule antecedent will be in the form of:  

                                   

To allow using the logical negation operators in the antecedents of constructed 

rules, the values and their negation per attribute will be added to the construction graph. 

The set of nodes (N) in the construction graph will be: 

      

 

   

                       

 

   

 

Thus, the available decision components in the construction graph allow constructing rule 

antecedents in the form of: 

                                      

Negation values are added for the attribute that has more than two values in its 

domain. This supports constructing terms in the form of <attribute=value>.  An example 

of a generated rule using logical negation operator is: ―IF <price = low> AND <condition 

NOT = bad> THEN <Class=Buy>‖. Terms that have logical negation match more cases 

on the regular terms. This leads to construct rule with high coverage. More precisely, 

assume we have the following subset of 8 cases taken from a dataset that has two 

attributes and the class: 
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Condition Safety Class 

Excellent Bad Buy 

Very Good Very Good Buy 

Good Good Buy 

Good Very Good Buy 

Bad Very Good Wait 

Bad Very Good Wait 

Bad Good Don‘t Buy 

Bad Bad Don‘t Buy 

 

If the logical negation operator is used for constructing classification rules for the 

previous dataset, 3 ordered rules will be needed to correctly classify the whole dataset. 

These rules are as follows: 

1) IF <Condition NOT = Bad> THEN <Class =Buy>  

2) ELSE IF< Condition = Bad > AND <Safety=Very Good> THEN <Class=Wait>  

3) ELSE <Class= Don‘t buy> 

Because the rules generated with the logical negation operator have a higher coverage, the 

output rule set size becomes smaller than the rule set generated without using logical 

negation. The following is the generated rules without using logical negation: 

1) IF< Condition = Bad > AND <Safety=Very Good> THEN <Class=Wait>  

2) ELSE IF< Condition = Bad > AND <Safety=Good> THEN <Class=Don‘t Buy>  

3) ELSE IF< Condition = Bad > AND <Safety=Bad> THEN <Class=Don‘t Buy>  

4) ELSE <Class= Buy> 
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At least 4 rules are needed to correctly classify the pervious labeled cases, or three 

rules that classify some cases incorrectly. 

Using negative attributes doubles the size of the construction graph. However, it 

enables constructing rules that have greater coverage of the training cases. Hence, it 

produces a lower number of rules, which improve the comprehensibility of the output. 

Moreover, a reduced number of iterations are needed to reach the threshold of the number 

of cases to be covered, which reduces the overall runtime of the algorithm (see section 

5.4.2 execution profile). Results in Chapter 9 also show that it has a better performance in 

terms of accuracy in addition to the reduced number of iterations and the simpler 

(smaller) rule set. 

5.3 Algorithm Modifications 

No modification is needed in the Ant-Miner algorithm to support using logical 

negation operator in constructing classification rules. Pheromone update procedure is 

done regularly with the negation values and the heuristic value is calculated for the 

negation attribute values the same as it is calculated for regular attribute values, using 

formula (3.4) in Chapter 3, which involves information gain, or any other heuristic 

functions that were used in various Ant-Miner versions (i.e. density based, or Laplace- 

corrected confidence) (see Chapter 4). 

It is worthy to mention that the choice of the rule evaluation function can affect 

the efficiency of the generated output rules in terms of classification when using logical 

negation. Because using logical negation operators generates rules with high coverage, 

the confidence of the rule (which affects its classification accuracy) may be damaged. 

Using quality evaluation function that put more emphasis on the rule confidence should 
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overcome this drawback and balance between the coverage of the rule and its 

classification accuracy. 

5.4 Logical Negation Operator Implementation 

This section discusses the modifications that have been done on the code of the 

original Ant-Miner program to avail the use of logical negation operator in constructing 

rule antecedents. The execution performance with the use of this extension is discussed as 

well. 

5.4.1 Data Structure and Operation 

A few code modifications have been added to the original Ant-Miner program in 

order to implement using logical negation operator. First, a new data field has been added 

to the data structure that represents the node in the construction graph. IsNegation is a 

Boolean data field that indicates whether this node represents an attribute value or its 

negation value. The code for the new node data structure is described as follows: 

public struct Node 

{ 

  public int AttributeIndex; 

      public int ValueIndex; 

public bool IsNegation; 

      public int [] ValueFrequency; 

      public double PheromoneAmount; 

      public double HeuristicValue; 

      public double Probability; 

      public bool UnusableValue; 

        

 } 

The second modification is in building the construction graph. Each distinct value 

in the domain of an attribute is added twice in the construction graph, the first time the 

added, IsNegation is set to false, while the second time it is set to true. By this, each 

attribute value has two exisitances in the construction graph, with and without negation. 

This only applies on the attributes that have more than two values in their domains. Such 
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modification affects the logic of the BuildConstructionGraph() method. The 

new implementation of the method is as follows: 

private void BuildConstructionGraph(bool useLogicalNegation) 

{ 

             

this._constructionGraph = new 

Node[this._trainingSetDataTable.Columns.Count][]; 

 

for (int attributeIndex = 0; attributeIndex < 

this._trainingSetDataTable.Columns.Count; attributeIndex++) 

{ 

List<string> values = this.GetDistinctAttributeValues(attributeIndex); 

 

this._constructionGraph[attributeIndex] = new Node[values.Count]; 

 

for (int valueIndex = 0; valueIndex < 

this._constructionGraph[attributeIndex].Length; valueIndex += 1) 

{ 

                                            

this._constructionGraph[attributeIndex][valueIndex].AttributeIndex = 

attributeIndex;                                                

this._constructionGraph[attributeIndex][valueIndex].ValueIndex = 

valueIndex;          

this._constructionGraph[attributeIndex][valueIndex].IsNegation= false; 

this._constructionGraph[attributeIndex][valueIndex].ValueFrequency = new 

int[numberOfClasses]; 

 

if(useLogicalNegation && values.Count>2) 

{ 

this._constructionGraph[attributeIndex][valueIndex].AttributeIndex = 

attributeIndex;                                                

this._constructionGraph[attributeIndex][valueIndex].ValueIndex = 

valueIndex;          

this._constructionGraph[attributeIndex][valueIndex].IsNegation= true; 

this._constructionGraph[attributeIndex][valueIndex].ValueFrequency = new 

int[numberOfClasses]; 

 

}                                     

} 

 

} 

 

… 

                         

} 

 

 When a node with IsNegation field set to true added to the rule antecedent, 

the treatment of the rule case matching differs, as a case would be a match if the value of 

a given attributes in the case does not equal the value of the selected node (term) in the 
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rule with the logical negation. This implies a need of a modification in two methods, 

namely CalculateRuleQuality() and IntializeNodeInformation(). 

The former involves rule case matching, and the latter involves calculate attribute value 

frequencies and heuristic values. 

5.4.2 Execution Profiling and Analysis 

The following table exhibits the execution profile of Ant-Miner program after 

implementing the use of logical negation operator. Results of the output quality in terms 

of predictive accuracy and comprehensibility are shown in Chapter 9. The following 

profile shows how such a modification has affected the program running time. 

Method Time 

(m.sec) 

Calls 

# 

Avg.  Time 

(m.sec) 

% to 

Parent 

% to 

Total 

Run() 4188.4 1 4188.4 100% 100% 

>ConstructRule() 586.376 395 1.484 14% 14% 

>>CalculateNodeProbabilities() 18.84 515 0.813 2% <1% 

>>SelectNodeProbablistically() 0.84 515 0.813 < 1 % <1% 

>PruneRule() 1968.548 595 3.308 47% 47% 

>>CalculateRuleQuality() 1130.868 514 2.2 20% 27% 

>>DetermineRuleClass() 628.26 514 1.222 11% 15% 

>UpdatePheromone() 48.04 595 0.703 < 1 % <1% 

>IntializeNodeInformation() 1047.1 5 209.42 25% 25% 

>IntializePheromone() 0.24 5 83.768 < 1 % <1% 

>BuildConstructionGraph() 1.8 1 418.84 <1% <1% 

Table 5.1 - Ant-Miner with Logical Negation Execution Profile. 

 

As shown in Table 5.1, the overall running time of the Ant-Miner program with 

the use of logical negation operator has decreased by 30 % in comparison to the running 

time of the original An-Miner shown in Table 3.1. Although the running time of all of the 
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methods that takes the largest amount of the execution decreased from 30% to 60%, the 

overall all running time reduction is because the application has executed a fewer number 

of iterations, and needed less number of trials per each iteration. Therefore, the number of 

calls to the time consuming methods decreased, thusly decreasing the overall running 

time. 

It is reasonable that the running time for ConstructRule() and 

IntializeNodeInformation() increases with the use of logical negation 

operator. This is due to the duplication of the number of nodes in the construction graph. 

For the former method, the number of to select from increases, so the 

CalculateProbabilities() and SelectNodeProbablistically() take 

more time. For the latter method, more time is needed to set node information regarding 

occurrence frequencies and heuristic values, as more nodes are available in the case of 

using logical negation. Nonetheless, according to the running time compared to the 

original one, the increase of running time of each method did not affect the overall 

running time. 

5.5 Summary 

This chapter has introduced the first extension to the original Ant-Miner 

algorithm, which is the use of logical negation operator. Allowing the use of logical 

negation operator in constructing rule antecedents produces rules with higher coverage 

and decreases the number of rules needed to cover the minimum coverage needed to stop 

execution. This enhances the output in terms of comprehensibility and decreases the 

overall running time. Moreover, results show that it has a positive effect on the 

classification accuracy of the generated rules.  



103 

 

 

  



104 

 

 

Chapter 6  

INCORPORATING STUBBORN ANTS  

6.1 Introduction 

Stubborn ants were introduced in 2008 in [1]. The idea is to promote search 

diversity by having each ant be influenced by its own history of constructing solutions in 

addition to the pheromone trails left by other ants. Basically, each ant does several trials 

in the execution of the algorithm. Each ant memorizes the best solution that it has 

constructed during its own trials. If a term belongs to the antecedents of rule, then the 

term will have an amplified probability of being selected by the ant, with the degree of 

amplification depending on the quality of the solution. Such a technique helps in finding 

different solutions as each ant will have a partially different search path in the 

construction graph, which leads to improving the quality of the output rules in terms of 

classification accuracy. 

6.2 Stubborn Ants 

In the original version of Ant-Miner algorithm, the state transition procedure 

depends on the heuristic value for a node representing a given term and its pheromone 

level currently associated with this node (see equation 3.2). Thus, the probability of 

selecting        does not differ from an ant to another. In other words, an ant does not 

have any identity or special behavior in selecting terms and constructing a rule. The idea 

behind stubborn ants is to promote search diversity by having each ant be influenced by 

its own history of constructing solutions. 
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Stubborn ants were first introduced by A. M. Abedlbar in [1]. Originally it was 

used to solve optimization problems such TSP.  In stubborn ants, not only can an ant learn 

from the experience of  other ants via pheromones - which gives a clue about the quality 

of the selected decisions (term) in the previous trials, each ant can also learn from its own 

history of constructing solutions. Consequently, each ant will have a partially different 

search path, which introduces diversity in the colony. Basically, each ant does several 

trials in the execution of the algorithm. Each       memorizes the best solution   
  that it 

has constructed during its own trials. The probability        to be selected by      is 

amplified by the quality of the best solution   
  that the ant memorizes from its history if 

the        belongs to the antecedents of rule   
 . 

To incorporate stubborn ants in the Ant-Miner algorithm, the following pseudo-

code shows the required modification on Ant-Miner algorithm: 

Algorithm 6.1 - Ant-Miner with Stubborn Ants. 

TrainingSet = {all training cases};  

DiscoveredRuleList = [ ]; /* initialize rule list with empty list */  

AntList=Ants[Ants Number]; 

WHILE (TrainingSet < Min_covered_cases)  

     ; /* ant index*/  

      ; /* convergence test index */  

     ; /* trial index */  

Initialize all trails with the same amount of pheromone;  

REPEAT  

FOR EACH      in AntList 
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       starts with an empty rule and incrementally constructs a classification rule 

    by adding one  term at a time to the current rule; /* influenced by pheromone 

amount, heuristic function value and best history rule*/  

Prune rule   ;   /* remove irrelevant terms from rule */  

Update the pheromone of all trails by increasing  pheromone in the trail followed 

by          (proportional to the quality of    ) and decreasing pheromone in the 

other trails  (simulating pheromone evaporation);  

IF (    Quality >       History Best Rule Quality) 

THEN       History Best Rule =     /* update best history rule */  

IF (    is equal to        ) /* update convergence test */  

THEN            ;  

ELSE       ;  

END IF  

         ;  

END FOR EACH 

        ; 

UNTIL (t ≥ No_of_Ants) OR (j ≥ No_rules_converg) 

     ;  

UNTIL (i ≥ No_of_trials)  

Choose the best rule        among all rules     constructed by all the ants;  

Add rule        to DiscoveredRuleList;  

TrainingSet = TrainingSet - {set of cases correctly covered by       };  

END WHILE 
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As shown in Algorithm 6.1, Ant-Miner with stubborn ants, a set of ants does 

several trials to construct classification rules. Therefore, an extra outer loop is added 

before the FOR EACH ant loop. This outer loop helps each ant to do several trials during 

the execution of the algorithm. Note that the size of the colony affects the behavior of the 

stubborn ants; as the number of the ants decreases, the stubbornness effect is more 

applied, given that the total number of trials per iteration is fixed. For example, given that 

the maximum trials allowed per iteration is 3000, if the colony has 3000 ants, then each 

ant will do only one trial, which is the case of the original algorithm. On the other hand, if 

the size of the colony is 30, in such case each ant can do up to 100 trials. And if the size 

of the colony is 10, then the number of iterations that can be performed by a single ant is 

300. Therefore, the number of ants and the number of trials per ant should be adapted for 

each data set according to the required average trials per iteration in order to amplify the 

effect of stubborn ants to the appropriate amount. 

Each ant memorizes the rule that has best quality from the rules that it constructed 

in the previous trials. The quality of the best rule influences the ant‘s decision in choosing 

of a term in the current rule construction. The  probability  that  a  term  will  be  added  to  

the  current  rule  is  given by the following formula:  

        
   

       
  
   

 
   

                     (6.1) 

where: 

                                    
   if        belongs to current ant‘s history 

best rule,   
 , otherwise     =           . 

     is the value of a problem-dependent heuristic function. 
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        is the  amount  of  pheromone  associated  with          at iteration t. 

   is the total number of attributes. 

 bi is the number of values in domain of the i-th attribute.  

     
   is the quality of the current ant best history rule. 

Stubborn ants add individuality to each ant, which promotes exploration and 

diversity in the algorithm. This tends to discover better solutions. Results show an 

increase of rule accuracy when using stubborn ants as well as a decrease in number of 

trials per iteration. 

6.3 Stubborn Ant Implementation 

This section discusses the modifications needed on the implementation of the 

original Ant-Miner program in order to enable the use of stubborn ants. Implications on 

the execution running time are discussed as well. 

6.3.1 Data Structures and Operations 

The first modification on the code that was made to enable the use of stubborn 

ants is on the data structure representation of the ant. The following code shows the new 

ant data structure representation to cope with stubborn ants: 

public class Ant 

{ 

 

      private int _antNumber;        

      private  int[] _currentRuleAntecedents;       

      private int _currentRuleclassIndex; 

      private double _currentRuleQuality; 

private  int[] _historyBestRuleAntecedents; 

private double _historyBestRuleQuality; 

      private List<int> _instancesIndexList; 

private bool[] _memory; 

… 

} 
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In order to enable the ant to memorize its best rule constructed thus far, two new 

data fields are added to the ant data structure: hisoryBestRuleAntecedents, an 

array of integers representing the indices of attributes values structuring the best rule 

discovered by the ant so far, and historyBestRuleQuality,which is the quality of 

the this rule. 

The second modification is in the logic of executing the algorithm. First, an array 

of ants is intialized with the number of ants in the colony, so that each ant can live to 

perform more than a trial, memorizing its best constructed rule. In case of stubborn ants 

we have three nested loops. The (while) loop that represents global iterations in which 

each iteration a rule is discovered. Inside it, a new loop is added, which is (for) loop that 

repesents the number of trials that each ant would perform. Finally, in each iteration of 

the previous loop, a (for each ant) loop iterates on the ants in the colony so that each 

perfrom a rule discovery trial. The following code shows the implementation of the logic: 

Ant[] ants = new Ant[AntsNumber]; 

while (this._currentIterationNumber < MaxIterationsNumber && 

this._currentCoverage < this.MinCoveragePercentage) 

{ 

          

this.InitializePheromone(); 

this.InitializeNodeInformation(); 

this.InitiazlizeAnts(); 

 

… 

 

for (_currentIterationNumber = 0; _currentIterationNumber < 

this.AntsNumber && !convergence; _currentIterationNumber++) 

{ 

 

foreach (Ant ant in ants) 

{ 

this._currentAnt = ant;  

this.ConstructRule(this._currentAnt); 

 

… 
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After each ant constructs a rule, if the new constructed rule has a better quality 

than the current memorized rule, then this new rule is set to 

hisoryBestRuleAntecedents and becomes the ant best constructed rule, as 

follows: 

… 

 

generatedAnts[trialIndex] = this._currentAnt; 

 

if (this._currentAnt.CurrentRuleQuality > 

this._currentAnt.HistoryBestRuleQuality) 

{ 

this._currentAnt._historyBestRuleQuality  = 

this._currentAnt._currentRuleQuality; 

this._currentAnt._historyBestRuleAntecedents = 

this._currentAnt._currentRuleAntecedents.Clone() as int[]; 

} 

 

… 

 

The third important modification that is done on the code to use stubborn ants is in the 

CalculateNodeProbabilities() method in order to amplify the probability of 

selecting a node if its term exists in the current ant‘s _historyBestRule. The code is 

modified as follows: 

… 

 

for (attributeIndex = 0; attributeIndex < this._constructionGraph.Length 

- 1; attributeIndex++) 

{ 

for (valueIndex = 0; valueIndex < 

this._constructionGraph[attributeIndex].Length; valueIndex++) 

{ 

if (!ant.Memory[attributeIndex]) 

{ 

double value = 

this._constructionGraph[attributeIndex][valueIndex].HeuristicValue 

* 

this._constructionGraph[attributeIndex][valueIndex].Pheromone; 

 

if (ant.HistoryBestRule != null && ant.HistoryBestRule[attributeIndex] 

!= -1)   

{value += value * ant._historyBestRuleQuality;} 
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value = value / sum; 

                        

this._constructionGraph[attributeIndex][ValueIndex].Probability = value; 

} 

else 

                        

this._constructionGraph[attributeIndex][ValueIndex].Probability = 0.0; 

} 

} 

 

6.3.2 Execution Profiling and Analysis 

The following table exhibits the execution profile of Ant-Miner program after 

implementing the use of stubborn ants (as described in the previous subsection). The 

execution profile shows how such a modification has affected the running time of the 

program.  

Method Time 

(m.sec) 

Calls 

# 

Avg.  Time 

(m.sec) 

% to 

Parent 

% to 

Total 

Run() 5017.3 1 5017.3 100% 100% 

>ConstructRule() 652.249 907 0.719 13% 13% 

>>CalculateNodeProbabilitie() 87.03 4105 0.021 2% <1% 

>>SelectNodeProbablistically() 0.9 4205 0.0002 < 1 % <1% 

>PruneRule() 2358.131 907 2.599 42% 47% 

>>CalculateRuleQuality() 1705.882 2242 0.76 19% 34% 

>>DetermineRuleClass() 1053.633 2242 0.469 15% 21% 

>UpdatePheromone() 501.73 907 0.553 < 1 % <1% 

>IntializeNodeInformation() 702.422 7 100.346 15% 14% 

>IntializePheromone() 0.015 7 0.002 < 1 % <1% 

>BuildConstructionGraph() 1.02 1 1.02 <1% <1% 

Table 6.1 - Stubborn Ants Excution Profile. 

As shown in the previous execution profiling, the ConstructRule() running 

time increased than its original version with 3% because it calls the method 

CalculateNodeProbabilities() whose running time has increased. 
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Nonetheless, the overall running time of the algorithm, represented in the Run() method, 

is almost the same as the execution of the original Ant-Miner. This is because the number 

of overall iterations has decreased from 8 to 7 and the number of total trials has decreased 

from 1112 to 809. This compensated for the increase of running time of the 

aforementioned methods, which are called in each trial. 

6.4 Summary 

This chapter has presented the use of stubborn ants in the context of Ant-Miner 

classification rule discovery algorithm. The motivation is to introduce search diversity by 

giving identity to each ant in the colony. Each ant learns from its own history besides the 

experience of other ants in constructing classification rules. Each ant memorizes its own 

history best rule that it has constructed during its previous trials. When constructing a 

new rule, the probability of selecting a term for a rule is amplified by the quality of the 

memorized rule if this term exists in it. Imperial results have shown improvements in the 

classification accuracy of the generated rules. Moreover, the running time has not been 

damaged by applying such a modification on the program original of the Ant-Miner 

algorithm. 
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Chapter 7  

UTILIZING MULTI-PHEROMONE ANT SYSTEM  

 

7.1 Introduction 

Multi-pheromone is a new ACO system where multiple types of pheromone are 

used. In Ant-Miner, one type of pheromone for each permitted rule class can be 

deposited. In essence, an ant would first select the rule class and then deposit the 

corresponding type of pheromone. Unlike the original version of Ant-Miner where the 

class is selected after rule antecedents construction, in multi-pheromone system the ant 

chooses the terms that are specifically related to the classification of the previously 

selected class. Moreover, the ant constructing a rule labeled by    is only influenced by 

the pheromone corresponding to this class which was deposited by ants previously 

constructed rules labeled by   . Such a modification led to other changes in the algorithm 

in order to maximize the quality of the discovered rules in terms of comprehensibility and 

classification accuracy. A different heuristic function, which focuses on the confidence of 

the term to be selected given the pre-selected class, is used. An even more appropriate 

rule quality evaluation function is customized for evaluating rules constructed using such 

a system. A new proposed pheromone update strategy, named Quality Contrast 

Intensifier, is used. This aims to reward a rule whose quality is higher than a certain 

threshold by depositing more pheromone and penalizing a low-quality rule by removing 

pheromone from its terms in the construction graph. Finally, a new rule convergence test 
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is used to ensure that the produced rule satisfies a minimum quality threshold. Otherwise, 

this convergence should be ignored, re-initialize, and start looking for better rules.  

7.2 Multi-Pheromone Ant System 

In the original Ant-Miner, the consequent of a rule is chosen after its antecedents 

are selected by determining the class value with maximum occurrence in the cases 

matching the rule premises. Thus, a term is chosen for rule antecedents in order to 

decreasing entropy in the class distribution of cases that match the rule in construction 

However, selecting the rule class before constructing the rule antecedents allows choosing 

antecedent terms that are specifically related to the classification of the pre-selected rule 

class. The idea of selecting the rule consequent prior to rule construction was introduced 

in different flavors. These ideas are introduced in Chapter 4 - Ant-Miner Related Work. 

The following brief description on them: 

 J. Smaldon and A. Frietas in [23] introduced an algorithm that tries to construct rules 

for each class independently: an extra For-Each (class value) loop is added as an outer 

loop for the original algorithm. The consequent of the rule is known by the ant during 

rule construction and does not change. An ant tries to choose terms that will produce 

the rule predicting the class value in the current iteration of the For-Each loop with an 

optimum level of accuracy. This approach generates better rules in comparison with 

the original Ant-Miner where a term is chosen for a rule only in order to decrease 

entropy in the class distribution of cases matching the rule under construction. 

However, the entire execution (with the complete training set) is repeated separately 

for each class value until the number of positive examples (belonging to the current 

class) remaining in the dataset that have not been covered by the discovered rules is 
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less than or equal to max uncovered cases. This increases the algorithm running time. 

Moreover, the number of the generated rules by this version is increased, which 

damages the simplicity of the output. For a more detailed description of the algorithm, 

refer to [23]. 

 D. Martens introduced the same idea in Ant-Miner+ [18]. An extra vertex group is 

added at the start in the construction graph containing class values to allow the 

selection of class first. This is similar to considering the class as another variable. 

Rules with different classes can be constructed in the same iteration. Different 

heuristic values are applied according to the selected class in order to choose the term 

that is relevant to the prediction of the selected class. However, the pheromone is 

shared by all ants constructing rules with different consequents. In other words, any 

ant is influenced by the pheromone dropped by any other ant constructing similar or 

different labeled rules. This can negatively affect the quality of the constructed rules, 

as the terms that lead to constructing a good rule with class    as a consequent do not 

necessarily lead to constructing a good rule with    as a consequent for a 

classification rule. 

Unlike the version of Ant-Miner in [23], our proposed multi-pheromone Ant- 

Miner system executes the course of operations only once during the entire training 

process. Ants in the multi-pheromone system can construct rules with different 

consequent classes in the same iteration simultaneously. Nonetheless, the ant is only 

influenced by the ants that have constructed rules with the same consequent, using a 

multiple types of pheromone system. 
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First, an ant probabilistically selects the rule consequent prior to antecedents based 

on pheromone information as described below. Then, it tries to choose terms that are 

relevant to predicting this class. The rule is then evaluated and the pheromone is updated. 

But, unlike the version of Ant-Miner in [18], the ant drops different kinds of pheromone 

as many as the permitted classes. The next ant is only influenced by the amount of the 

pheromone deposited for the class for which it is trying to construct a rule. In this case, 

pheromone is not shared amongst ants constructing rules for different classes. This allows 

choosing terms that are only relevant to the selected class. The algorithm is shown in 

Algorithm 7.1 – Multi-pheromone Ant-Miner. 

Algorithm 7.1 - Multi-pheromone Ant-Miner. 

TrainingSet = {all training cases};  

DiscoveredRuleList = [ ]; /* initialize rule list with empty list */  

WHILE (TrainingSet < min_covered_cases)  

t = 1; /* ant index, and also rule index */ 

Is_convergence=false /* a flag for convergence test*/  

Initialize pheromone of class value nodes. 

Initialize pheromone type of the term nodes dedicated for the class of previously 

constructed rule, and leave the other pheromone types as they are. /* if it is the 

first iteration, all pheromone array elements are initialized in each node.*/ 

REPEAT  

     Probabilistically selects a rule consequent class according to the 

pheromone information associated to the class values. 
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     starts with an empty rule and incrementally constructs a classification rule     

by adding one  term at a time to the current rule. 

Prune rule   ;   /* remove irrelevant terms from rule */  

Update the pheromone type of corresponding to     class value in the 

construction graph using Quality Contrast Intensifier; 

Update the pheromone of    class in the class value nodes /* this will affect the 

selection of the class for subsequent ants*/ 

Apply Convergence Test; 

UNTIL (i ≥ no_of_ants) OR (Is_convergence)  

Choose the best rule        among all rules    constructed by all the ants, add rule       

to DiscoveredRuleList;  

TrainingSet  = TrainingSet - {set of cases correctly covered by      };  

END WHILE 

 

As shown in Algorithm 7.1 – Multi-pheromone Ant-Miner, the idea of multi-

pheromone Ant-Miner is that each class has a different pheromone to be deposited on the 

terms in the construction graph. In essence, we are replacing the traditional two-

dimensional pheromone structure (attribute, value) by a new three-dimensional 

pheromone structure (attribute, value, class). The same applies as to the heuristic value 

structure; class-based structure. 

During rule construction, the rule class is already set and an ant is only influenced 

by the amount of pheromone in the pheromone array element dedicated to its rule class. 

Similarly in pheromone update, an ant deposits pheromone in the array element dedicated 
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to the current rule class in each node belonging to the trial. Class values are also 

represented in nodes in the construction graph, and pheromone can be deposited on them. 

This pheromone affects the probability of selecting the rule class for subsequent ants. The 

pheromone is initialized in the node of class values as follows: 

   
       

             
 (7.1) 

where: 

 As where         is the number of instances labeled with class  . 

               is the size of the training set. 

In pheromone update, the of pheromone level increases in the node of the 

constructed rule class according to the quality of the rule, as follows: 

   
       

         
         (7.2) 

 

where: 

    is the class of the constructed rule.   

    is quality of the constructed rule. 

The problem dependent heuristic function chosen is the Laplace-corrected 

confidence for each term as in [27], given by:  

      
             

                         
 (7.3) 

where:  

       is the heuristic value for        given that class   is selected. 
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 |      , k| is the number of training cases having        and the current selected 

class k. 

  |      | is the number of training cases having       .  

 No_of_classes  is  the  number  of  values  in  the  class  attribute‘s  domain. 

The probability of selecting        given that class   is chosen is calculated is follows:    

       
              

                  
  
   

 
   

 (7.4) 

where: 

 

       is the value of a problem-dependent heuristic function for value j-th in attribute i-

th for class k 

          is the  amount  of  pheromone  associated  with         for class k at iteration 

t.  

   is the total number of attributes. 

 br is the number of values in domain of the r-th attribute. 

The rule generated via multi-pheromone system is evaluated, to update the 

pheromone levels (as described in the following subsection), by a function that balances 

between the support and the confidence of the rule, as follows: 

                                 (7.5) 

where: 

                
  

         
  , represents the ratio of the number of cases that match 

rule   's premises and are labeled by its class to the total number of cases that match 

  's premises. 
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             
  

             
 , represents the ratio of the number of cases that match 

  's  premises and are labeled by its class to the total number of cases in the training 

set.  

After the best iteration rule is selected, the cases covered by this rule are removed 

from the training set and the pheromone is initialized but only in the pheromone array 

element dedicated to the class of this rule. Leaving the pheromone in the array element of 

other classes tends not to waste the wisdom that has been collected by the ants in the 

previous trails for the rest of the classes, leading to faster convergence in the next 

iterations.  

Note that for applying multi-pheromone Ant-Miner system with stubborn ants, 

each ant in the swarm should memorize the best rules it has generated, one for each class 

value. Hence, when an ant tries to select a term from the construction graph, knowing that 

the class is already set, the probability of selecting this term is amplified by the best rule 

that the ant memorizes for this current class if this term occurs in this rule. 

Multi-pheromone Ant-Miner system generates better rule sets in terms of 

predictive accuracy with a smaller number of rules, which improves the Ant-Miner 

performance as a classification algorithm in terms of efficiency and comprehensibility. 

The reasons that make multi-pheromone technique outperform the original one are 

summarized in the following points: 

1. The rule consequent (class) is chosen prior to rule antecedents (terms): this allows the 

ant to select terms that are relevant to the classification of the selected class, not to 

decrease entropy in the class distribution of cases matching the rule under 

construction. A better heuristic function is used in multi-pheromone (equation 7.3), 
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which is related to the confidence of a term given the selected class. Such a heuristic 

function leads to better terms that have classification relevance to the selected class. 

2.  A better rule evaluation function is used: the evaluation function used for multi-

pheromone Ant-Miner works better in determining the classification accuracy of the 

generated rule, as it evolves the rule support and its confidence. Such an evaluation 

function is suitable in multi-pheromone system as the rule is constructed to improve 

its confidence given the selected class. Unlike the original version, where the rule is 

constructed to reduce entropy of the class distribution in the cases of the dataset. 

Moreover, as the evaluation function balances between the coverage of the rule and its 

classification accuracy, the size of the output rule set is reduced. 

3. The pheromone in the construction graph is a three-dimensional structure (attribute, 

value, class). This is behind calling this system multi-pheromone. After rule 

construction, an ant deposits on the selected terms a specific type of pheromone 

corresponding to the rule class. Subsequently, the following ants that select the same 

class are only influenced by this type of pheromone in term selection. In other words, 

an ant constructing a rule labeled by    is not influenced by pheromone deposited by 

previous ants constructed rules labeled by     or    . An ant constructing a rule 

labeled by    is only influenced by pheromone deposited by previous ants 

constructing rules labeled by   . Such a technique prevents selecting irrelevant terms 

to the classification of the currently chosen rule class. This is unlike AntMiner+[18] 

where the pheromone is shared between all the ants constructing similar or different 

labeled rules.  
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4. The rule class is selected probabilistically, based on the heuristic information of the 

class: this allows constructing rules with different classes in the same algorithm 

iteration. Hence, best rules among all the available classes are constructed first, 

leading to a better classification accuracy rule set output with fewer rules to be 

generated, in comparison to the new Ant-Miner version proposed in [23], where the 

rule classes are selected iteratively. In latter versions, the whole algorithm is repeated 

for each class with entire training set. This produced an unordered rule set with more 

rules and terms per rule. 

The following is a sample output of the rules generated by both the original Ant-Miner 

and the multi-pheromone Ant-miner applied on Car Evaluation data set (see section 9.2 

Chapter 9). 

Original Ant-Miner Multi-pheromone Ant-miner 

Rule Sup. Conf. Rule Sup. Conf

. 

IF <Persons=2> Then 

<Class=unacceptable> 

0.33 1 IF <Safety=Low> Then 

<Class=unacceptable> 

0.33 1 

IF<Safety=medium> Then 

<Class=acceptable> 

0.15 0.46 IF <Persons=2> Then 

<Class=unacceptable> 

0.33 1 

IF <Buying=Very high> 

Then 
<Class=unacceptable> 

0.19 0.75 IF <Safety=high> Then 

<Class=acc> 

0.27 0.73 

IF <Buying=High> Then 

<Class=unacceptable> 

0.22 0.66 IF <luggage=Small> Then 

<Class=unacceptable> 

0.47 0.74 

IF <Safety=High> Then 

<Class=acceptable> 

0.24 0.47 IF <Safety=medium> Then 

<Class=unacceptable > 

0.55 0.5 

IF <Doors=2> Then 

<Class=unacceptable> 

0.25 1    

IF <Buying=medium> 

Then 
<Class=unacceptable> 

0.48 1    

IF <Persons=more> Then 

<Class=acceptable> 

0.51 1    

 Cov. 

97% 

Acc. 

77% 

 Cov. 

100% 

Acc. 

84% 
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As shown in the previous table, multi-pheromone Ant-miner has produced a rule set 

with a higher classification accuracy (84% compared to 77%) and with fewer rules (5 

rules compared to 8 rules). It has been noticed that about 85% of the runs of multi-

pheromone algorithm produce the first 2 rules, and 75% of the runs produce the first three 

rules in order. These top rules have a confidence of 100% and the highest possible 

support. Note that the rules constructed at first have a higher confidence than the rules 

constructed later on. This is unlike the original version, where better rules could be 

constructed first. This proves that multi-pheromone targets the best relevant terms to the 

classification accuracy of a given class. By constructing best rules first, the number of 

generated rules is reduced. Moreover, as the class with the value ―unacceptable‖ has the 

largest number of the cases, the multi-pheromone system tends to construct rules labeled 

by this class in order to generate rules with higher coverage and reduce the number of the 

generated rule set. 

7.3 Quality Contrast Intensifier 

In the pheromone update procedure for typical ACO algorithms, the amount of 

pheromone deposited is based on the quality of the trial. The idea is to intensify the 

contrast between bad solutions, good solutions and better ones as well as the unvisited 

solution. Quality contrast intensifier takes place as a new strategy for the pheromone 

update procedure. An ant that constructed a solution with good quality is rewarded by 

amplifying the amount of the pheromone to be dropped in its trail. By contrast, the ant 

that constructed a bad rule is penalized by removing pheromone from its trial according to 

the weakness of the constructed solution. 
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In order to apply such an idea in Ant-Miner, we consider the quality of the 

generated rule, which involves both support and confidence of the rule (see equation 7.5). 

If the confidence of the constructed rule exceeds an upper threshold   , the pheromone to 

be deposited for this rule is amplified. On the other hand, if the confidence of the rule gets 

below a lower threshold    , pheromone should be removed from the trial of this rule. 

This is shown as follows: 

          

                             

                                  

                            

  (7.6) 

where: 

         is the amount of pheromone to be deposited in iteration t. 

       is the quality of the rule    generated by the aforementioned  rule quality 

evaluation function (7.5). 

    and   are the upper and lower thresholds for the rule confidence at which the 

quality is contrasted. Typical used values are 0.85 and 0.35 respectively, given that 

both support and confidence values ranges from 0 to 1. 

Such a strategy comes with several advantages. First, higher quality rules get 

significantly more pheromone than other normal and low quality solution, which leads to 

faster convergence. Second, it ensures the balance in the quality of output between the 

number of the generated rules (which is affected by the rule support) and the 

classification accuracy of these rules (which is affect by the confidence of the rule). For 

example, some attribute values have a very high occurrence among the training set cases. 

This increases the support value in the quality evaluation, which increases the quality of 

the rule in general, regardless of the rule confidence. Thus, this quality contrast intensifier 
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works in the favor of the rule confidence in order not to generate a significantly fewer 

rules with low classification quality. Finally, penalizing bad rules by removing 

pheromone from its trial gives opportunity to unvisited nodes to be selected in further 

iterations, as their pheromone amount probably gets higher than the already tried bad 

nodes. This enhances the exploration aspect of the algorithm.  

7.4 New Convergence Test 

In the Ant-Miner algorithm, the best rule in each iteration is selected to be added 

to the discovered rule list. This is done after a certain number trials per iteration, or when 

a convergence occurs. A convergence occurs when there no more better rules are being 

generated after a certain number iterations (no_rules_converg). Sometimes, an early 

convergence occurs and causes stagnation in the ant colony, while the best discovered 

rule yet has an insufficient quality, or at least, better rules could have been discovered if it 

was not for the early stagnation. 

The new proposed convergence test tries to overcome such a problem. The idea is 

to set a minimum threshold for the quality of the solution to be selected. If the algorithm 

converged on a solution that satisfies this threshold, then it is considered. Otherwise, re-

initialization with some sort of randomization occurs so that better solution could be 

discovered in the subsequent trials. As for Ant-Miner, if the best discovered rule yet has a 

confidence that is lower a certain threshold (0.5) then pheromone levels in the nodes in 

the construction graph should be re-initialized randomly, in order to introduce noise in the 

colony so that better rules could be discovered. The no_rules_converg counter for the 

convergence test is rest as well. If no rule with the sufficient confidence threshold is 

discovered after a certain number of iterations, a convergence is now considered for the 
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algorithm. Note that the convergence test threshold is set only on the confidence of the 

rule not on the overall quality of the rule. The idea behind that is to prevent selecting rule 

with high support and low confidence. A rule to be considered for selection should satisfy 

the confidence threshold (if possible), and then the rule with the best overall quality is 

selected. This tends not to sacrifice the discovered rule set classification accuracy in favor 

of its size. 

7.5 Multi-pheromone Implementation 

The program code implementation for the multi-pheromone Ant-Miner system is 

described in this section. Several modifications have been done on the data structure used 

in the algorithm as well as the operations in order to apply the multi-pheromone behavior. 

The quality contrast intensifier procedure for pheromone updating is described, along 

with the implementation of the new convergence test logic. Running time implication of 

these modifications is exhibited through an effective execution profiler. 

7.5.1 Data structure and Operations 

 Construction Graph Node Representation: The most significant modification in 

the Ant-Miner algorithm used data structure is in the construction graph. The attribute 

value node, which represents the decision component in the construction graph, has the 

pheromone represented in an array, where the length of this array is the number of 

permitted classes. Each element in the array contains the pheromone amount for each 

class value. And similarly, each node has an array of heuristic information, one array 

information element for each class. The following code shows the implementation of the 

node data structure in the multi-pheromone system. 

public struct Node 

{ 
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  public int AttributeIndex; 

      public int ValueIndex; 

      public int []ValueFrequency; 

      public double []PheromoneAmounts; 

      public double []HeuristicValues; 

      public double []Probabilities; 

      public bool UnusableValue; 

        

 } 

As shown in the previous code snippet, PheromoneAmounts represents the pehromone 

array for each node, HeuristicValue is the heuristic value array and 

Probabilities is the probability array where the probablity of selecting this node 

given a spcific class is calcualted and stored. 

 Class Value Node Representation: A new data structure has been added to the 

construction graph that represents the available classes in the domain of the current 

dataset. This data strucutre contains the current pheromone amount existing per each class 

value, which intialy set to the frequency of the occerance of the class value in the dataset. 

This data sturcture is used for calculating the probablity of selecting a class value  by an 

ant at the begineeing of an itration.  This data structure is a member in the AntColony 

class, and considered as a part of the whole construction graph. 

private int[] _classFreq; 

… 

this._classFreq = new int[numberOfClasses]; 

 Construction Graph Intialization: The procedure for intializing construciton 

graph nodes in the multi-pheromone system changed, as several attributes in the node 

data structure became 2-dimensional members (a pheromone value for each different 

class, and a heuristic value for each different class). Thus, the construciton graph nodes 

are intiliaization as follows: 

… 
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for (int attributeIndex = 0; attributeIndex < 

this._constructionGraph.Length; attributeIndex++) 

{ 

for (int valueIndex = 0; valueIndex < 

this._constructionGraph[attributeIndex].Length; valueIndex++) 

{ 

                    

this._constructionGraph[attributeIndex][valueIndex].Probabilities = new 

double[numberOfClasses]; 

                    

this._constructionGraph[attributeIndex][valueIndex].PheromoneAmounts = 

new double[numberOfClasses]; 

                    

this._constructionGraph[attributeIndex][valueIndex].HeuristicValues = 

new double[numberOfClasses]; 

                    

this._constructionGraph[attributeIndex][valueIndex].Frequency =  

new int[numberOfClasses]; 

} 

 

} 

… 

 Execution behaviour implementation: The Run() method is the main 

operation that executes the Ant-Miner. As for the multi-pheromone Ant-Miner system, 

the folowing code shows the modifications on the Run() operation to cope with the 

multi-pheromone logic. 

while (this._currentIterationNumber < MaxIterationsNumber && 

this._currentCoverage < this.MinCoveragePercentage) 

{ 

          

this.InitializePheromone(); 

this.InitializeNodeInformation(); //using laplace-corrected confidence 

 

… 

 

for (_currentIterationNumber = 0; _currentIterationNumber < 

this.AntsNumber && !convergence; _currentIterationNumber++) 

{ 

this._currentAnt = new Ant(); 

this.SelectRuleClass(this._currentAnt); //before rule construction 

this.CalculateProbabilities(this._currentAnt); 

this.ConstructRule(this._currentAnt); 

this.CalculateRuleQuality(this._currentAnt);//using support+confidence 

this._currentAnt = this.PruneRule(this._currentAnt); 

generatedAnts[_currentIterationNumber] = this._currentAnt; 

 

if (_currentAnt.RuleQuality > generatedAnts[bestAntIndex].RuleQuality) 

bestAntIndex = _currentIterationNumber; 
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this.UpdatePheromoneUsingQualityContrastIntensifier 

(this._currentAnt); 

 

convergence=ApplyNewConvergenceTest(this._currentAnt); 

 

… 

 

} 

 

this.OutputAntRules.Add(generatedAnts[bestAntIndex]);                    

this.RemoveCoverdCasesFromTrainingSet(generatedAnts[bestAntIndex]); 

 

… 

 

} 

 

As shown in the previous code, pheromone levels and heuristic information are intialized 

for each node in the construction graph at the begineeing of each iteraion. As for multi-

pheromone, the pheromone is intialized in PheromoneAmounts array elements that are 

corssponding to the available classes. The heuristic information is claculated using 

laplace-corrected function (see equation 7.3) for each attribute value-class and set in the 

HeuristicValues array. For each trial in an iteration, the ant first select the rule 

consquent class before constructing the rule antecedents terms. This selection is done 

probablistically according to the pheromone information in _classFreq data structure. 

After the class is selected, the ant constructs the rule antecedents, following only the 

pheromone amount and the heuristic information associated with the current selected 

class, as shown in the implementation of CalculateProbabilities()method as 

follows: 

private void CalculateProbabilities(Ant ant) 

{ 

double sum = 0.0; 

int attributeIndex = 0, valueIndex = 0; 

for (attributeIndex = 0; attributeIndex < 

this._constructionGraph.Length-1; attributeIndex++) 

//if the attribute has not been used... 

if (!ant.Memory[attributeIndex])  

for (valueIndex = 0; valueIndex < 

this._constructionGraph[attributeIndex].Length; valueIndex++) 
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sum += 

this._constructionGraph[attributeIndex][valueIndex]. 

HeuristicValues[ant.CurrentRuleClassIndex] * 

this._constructionGraph[attributeIndex][valueIndex]. 

PheromoneAmounts[ant.CurrentRuleClassIndex]; 

 

for (attributeIndex = 0; attributeIndex < 

this._constructionGraph.Length-1; attributeIndex++) 

{ 

for (valueIndex = 0; valueIndex < 

this._constructionGraph[attributeIndex].Length; valueIndex++) 

{ 

if (!ant.Memory[attributeIndex]) 

{ 

                        

this._constructionGraph[attributeIndex][valueIndex]. 

Probabilities[ant.CurrentRuleClassIndex]  

= 

this._constructionGraph[attributeIndex][valueIndex] 

.HeuristicValue[ant.CurrentRuleClassIndex] * 

this._constructionGraph[attributeIndex][valueIndex] 

.PheromoneAmounts[ant.CurrentRuleClassIndex / sum; 

  

} 

else                        

this._constructionGraph[attributeIndex][valueIndex]. 

Probabilities[ant.CurrentRuleClassIndex] = 0.0; 

} 

} 

} 

After the rule is constructed, its quality is evaluated using the fitness funciton discussed in 

the previous section (see equation 7.5). This evaluation function calculates the support in 

the confidence of the generated rule, as the sum of them represents the overall quality of 

the rule. The quality of the rule is then used in the pheromone update procedure, carried 

out by UpdatePheromoneUsingQualityContrast-Intensifier() method. 

The following is its code implementation. 

private void UpdatePheromoneUsingQaualityContrastIntensifier(Ant ant) 

{ 

//update pheromone for class nodes 

             

this.classFreq[ant.CurrentRuleClassIndex] +=  

this. classFreq[ant.CurrentRuleClassIndex]*ant.CurrentRuleQuality; 

 

//normalize pheromone in class nodes 

 

… 
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//update pheromone for used terms 

for (int attributeIndex = 0; attributeIndex < ant.CurrentRule.Length; 

attributeIndex ++) 

{ 

if (ant.CurrentRule[attributeIndex] != -1) 

{ 

int valueIndex = ant.CurrentRule[attributeIndex]; 

double currentPheromoneValue = 

this._constructionGraph[attributeIndex][valueIndex]. 

PheromoneAmounts[ant.CurrentRuleClassIndex]; 

 

if (ant.CurrentRuleConfidence >= this._phi1) 

{ 

currentPheromoneValue += 2 * ant.CurrentRuleQuality; 

} 

else if (ant.CurrentRuleConfidence <= this._phi2) 

{ 

currentPheromoneValue -= ant.CurrentRuleQuality; 

} 

else 

{ 

currentPheromoneValue += ant.CurrentRuleQuality; 

  

} 

This._constructionGraph[attributeIndex][valueIndex]. 

Pheromone[ant.CurrentRuleClassIndex] = currentPheromoneValue;  

} 

} 

 

//normalize pheromone 

 

… 

 

} 

 

Where _phi1 and _phi2 are the variables that represent the user deifned thresholds 

for the quality contrast intensifier. These variables are data members in the AntColony 

class. 

The following code shows the implementation of the new convergence test procedure, in 

which the algorithm ensures that the discovered rule satisfies a minimum quality 

threshold before it is selected. Otherwise, the colony is considered to have an early 

stagnation and re-initialization with some randomization. 

… 

 

private int _ruleConvergenceCount; 
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private int _convergenceDeltaCount; 

private int _maxReintializationCount; 

private int _currentReinitlizationCount;  

private double _confidenceThreshold; 

 

… 

 

public bool ApplyNewConvergenceTest(Ant ant) 

{ 

 

bool convergence = false; 

 

if (ant.CurrentRuleQuality ==  

generatedAnts[currentTrialIndex-1].CurrentRuleQuality) 

_convergenceDeltaCount++; 

else 

_convergenceDeltaCount=0; 

 

if (_convergenceDeltaCount == _ruleConvergenceCount) 

{ 

if (ant.CurrentRuleConfidence > _confidenceThreshold || 

_currentReinitlizationCount == _maxReintializationCount) 

convergence = true; 

 

else                 

{ 

this.ReintializePheromoneLevelRandomly(ant); 

this._convergenceDeltaCount=0; 

this._currentReinitlizationCount++; 

  

} 

 

} 

           

return convergence; 

} 

 

7.5.2 Execution Profiling and Analysis 

This section shows the effect of the multi-pheromone system on the program 

execution time of Ant-Miner. Table 7.1 exhibits the running time of the algorithm after 

applying such an extension and how the behavior of this new technique along with the 

used functions for quality evaluation and heuristic information calculation have affected 

the execution of the algorithm. A detailed analysis for the execution profile is discussed 

in the table below.  
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Method Time 

(m.sec) 

Calls 

# 

Avg.  Time 

(m.sec) 

% to 

Parent 

% to 

Total 

Run() 3645.7 1 3645.7 100% 100% 

>ConstructRule() 546.855 617 0.8863 15% 15% 

>>CalculateNodeProbabilities() 47 2405 0.0195 2% <1% 

>>SelectNodeProbablistically() 0.9 2805 0.00032 < 1 % <1% 

>PruneRule() 1640.565 617 2.658 41% 45% 

>>CalculateRuleQuality() 1020.796 2242 0.455 18% 28% 

>UpdatePheromoneWith-

QualityContrastIntensifier() 

3.17 617 0.00513 < 1 % <1% 

>IntializeNodeInformation() 692.683 5 138.536 20% 19% 

>IntializePheromone() 0.107 5 0.0214 < 1 % <1% 

>BuildConstructionGraph() 1.94 1 1.94 <1% <1% 

Table 7.1 - Multi-pheromone Ant-Miner Execution Profile. 

As shown in the previous table, multi-pheromone Ant-Miner outperforms the 

original version of Ant-Miner in terms of execution time. The average running time is 

less than 70% of the running time of the original algorithm. Multi-pheromone system 

takes less running time because of two main reasons. The first reason is that the number 

of overall iterations that the algorithm takes is less than the original one. This is due to the 

high coverage of the generated rules besides its confidence. Thus, less number of rules is 

needed to cover a sufficient portion of the training set. Consequently, a fewer number of 

iterations the algorithm executes. The second reason of the reduced execution time using 

multi-pheromone system is the fact that the single ant trial takes less time. In each ant 

trial, ConstructRule(), PruneRule(), and pheromone update methods are 

called. The profilers show that both rule construction and pheromone update methods 

takes almost the same time in both algorithms. However, the most time consuming 

method, PruneRule()(47% of the execution time of the algorithm), takes less time in 
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the multi-pheromone algorithm than its corresponding method in the original Ant-Miner 

algorithm. This is caused by the fact that the CalculateRuleQuality() method , 

that is called each time by PruneRule(),takes less time in the multi-pheromone 

algorithm. As in the original Ant-Miner algorithm, the program has to scan the whole 

dataset cases in order to calculate the quality of the rule using equation 3.5 (  

                        . On the other hand, in the multi-pheromone system, the 

program only needs to scan the _instancesIndexList associated with the ant 

(which contains the indcies of the cases covred by the rule premises) in order to evaluate 

the rule quality using equation 7.5                       . Moreover, the 

DetermindRuleClass() method (which is also a time consuming method)  is no 

longer called in PruneRule()method. Such an improvement has given the multi-

pheromone algorithm an edge in the execution time, although the number of trials in the 

multi-pheromone system is more than the number of trials in the original algorithm due to 

the new convergence test.  

7.6 Summary 

This chapter has introduced a genuine Ant-Miner variation that leads to improve 

the quality of the output in terms classification accuracy and rule set size. Multi-

pheromone is a new version of Ant-Miner in which the ant selects the rule consequent 

class prior to rule antecedent construction. The typical two-dimensional structure for 

pheromone and heuristic information is replaced by a new three dimensional one 

(attribute, value, class). In rule terms selection, the ant is only influenced by the 

pheromone amount and the heuristic information values associated to the selected class 

for a given term. This leads to the choice of terms that are more relevant to the 
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classification of the selected class, instead of choosing terms that minimize entropy 

among the class values. Laplace-corrected is used as a heuristic function. New quality 

evaluation function, which balances between the support of the rule and its confidence, is 

used in rule evaluation. The quality value is used to update the pheromone on the 

construction graph, using the quality contrast intensifier procedure. This procedure 

rewards rules that exceed a certain level of confidence with more pheromone, and 

penalizes low confidence rules by removing pheromone. This helps in producing rules 

with higher confidence. A new convergence test was introduced to ensure the 

classification quality of the generated rule before it is added to the discovered rule list. 

Chapter 9 experimental results show that multi-pheromone Ant-Miner system 

outperforms the original Ant-Miner in the terms of output efficiency and 

comprehensibility, without compromising execution running time.  
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Chapter 8  

GIVING ANTS PERSONALITY 

8.1 Introduction 

Ants with personality were proposed in the future work section of [1]. The idea is 

to give each ant a personality so that each ant would have its own special behavior in 

selecting terms during the rule construction procedure. The aim is to introduce diversity 

in the search among the colony and empower the exploration aspect in the swarm 

behavior. One idea to apply this was the use of stubborn ants, introduced in Chapter 6. 

Another idea is to have each ant in the colony using its own weights for the social 

component and the cognitive component in the state transition rule (see equation 3.2). 

Applying such a modification should lead to discover new, and probably better, 

solution during the execution of the algorithm. Empirical results show enhancements in 

the quality of the output in terms of classification accuracy. However, such diversity has 

increased the number of trials needed per iteration to converge. 

8.2 Stagnation and Early Convergence 

One of the most important challenges that face the ACO systems is the problem of 

stagnation and early convergence. Stagnation occurs when several ant trials are done 

without change or increase in the quality of the solutions that are found. This results in 

converging on a solution that might not be good enough, or at least much better solution 
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could be found if there was more diversity in the search amongst the ants in the colony. 

One of the reasons of early convergence is that the exploration aspect is not empathized 

during the solution construction procedure. Ants would tend to exploit the best solution 

that has been discovered so far, following the intense pheromone trial, without trying to 

explore different solution.  

One idea to face such a challenge is to adapted the pheromone update procedure 

and introduce sophisticated evaporation strategies to avoid stagnation. This was 

introduced in many previous related works (see Chapter 4). Another idea is to give each 

ant a different behavior (or personality) in selecting decision components during solution 

construction. 

8.3 Ants with Personality 

For typical ACO systems, the probabilistic transition function is calculated as 

follows: 

    
  

    
    

    
    

      
 

 (8.1) 

 

As shown in the previous equation, the probability of an ant to select a node   

depends on two components. The firs is heuristic value component     , which represents 

the cognitive aspect to the ant, and the pheromone value component     ,which represents 

the its social aspect. The former represents the tendency of the ant to choose the node 

according to its quality. The later represents the tendency of the ant to choose the node 

according to the experience of the previous ants in selecting such a term. Both 

components are raised to the power of    and   respectivly. The exponents   and   are 
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used adjust the relative emphases of the pheromone and heuristic information terms. In 

the original Ant-Miner,   equals   equals to 1.0. 

The idea of giving personality to each ant refers to assign different   equals   

values for each ant in the colony. This was proposed in the future work section of [1].  

The values of    and   are drawn from a random number generator using Gaussian 

distribution function with a mean of 2 and standard deviation   value that ranges from 0 

to 1. Hence, some ants may tend to choose terms according to their predictive quality -

using heuristic value of the term - regardless of the selection of other previous ants. Other 

ants may tend to follow the experience of the previous ants - via pheromone trials - during 

rule construction.  The aim of such modification is avoid stagnation and early 

convergence by empowering the exploration aspect in the colony so that better rules 

could be found. Note that a higher standard deviation   value used, Note that a higher 

standard deviation value would introduce a higher range of diversity between ant 

behaviors in term selection. However, this could increase the number of trials needed in 

each iteration to converge on a rule. 

8.4 Ants with Personality Implementation 

This section discusses the modifications needed on the implementation on the 

original Ant-Miner program in order to enable the use of different values of   and   for 

each ant. Implications on the execution running time are discussed as well. 

8.4.1 Data Structure and Operations 

The only modification that should be done in the data structures of the Ant-Miner 

program is to add two double-value data fields representing values of   and   in the data 

structure representing the ant entity. The new ant structure is as follows: 



139 

 

public class Ant 

{ 

 

      private int _antNumber;        

 private double _alpha; 

 private double _beta; 

      private  int[] _ruleAntecedents;       

      private int _ruleclassIndex; 

      private double _currentRuleQuality; 

      private List<int> _instancesIndexList; 

private bool[] _memory; 

… 

} 

 

Both of the _alpha and _beta data fileds are set for the ant as it is created and 

intialized in its constructore using a Gaussian distribution function with mean of two and 

variable standard deviation, as show in the following code: 

//inside ant constructor 

… 

 
this._alpha = 

Utilities.RandomUtility.GetNextDoubleFromGaussianFunction(mean, stdv); 

this._beta = 3 - this._alpha; 

… 

 The last modification to be done is in calculating attribute value  probability in 

selecting a node during the rule construction. The change is to use the _alpha and 

_beta values of each ant when calculating node probability. The folowing exhibit the 

change of the method CalculateNodeProbabilities(): 

… 

for (attributeIndex = 0; attributeIndex < 

this._constructionGraph.Length-1; attributeIndex++) 

{ 

for (valueIndex = 0; valueIndex < 

this._constructionGraph[attributeIndex].Length; valueIndex++) 

{ 

if (!ant.Memory[attributeIndex]) 

{ 

 

double result =  

Math.Pow( 

this._constructionGraph[attributeIndex][valueIndex].HeuristicValue, 

ant._alpha)   
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*  

Math.Pow( this._constructionGraph[attributeIndex][valueIndex].Pheromone, 

ant._beta) / sum; 

                        

this._constructionGraph[attributeIndex][valueIndex].Probability = 

result; 

 

} 

else                        

this._constructionGraph[attributeIndex][valueIndex].Probability = 0.0; 

} 

} 

… 

 

8.4.2 Execution Profiling and Analysis 

The following table exhibits the execution profile of Ant-Miner program after 

implementing the use of values of    and   for each ant (as described in the previous 

subsection). Results of the output rules quality of the algorithm in terms of classification 

accuracy and comprehensibility are described in Chapter 9. The following execution 

profile shows how such a modification affects the running time of the program.  

Method Time 

(m.sec) 

Calls 

# 

Avg.  Time 

(m.sec) 

% to 

Parent 

% to 

Total 

Run() 9126.2 1 9126.2 100% 100% 

>ConstructRule() 1186.406 1779 0.6668 13% 13% 

>>CalculateNodeProbabilities() 62 6568 0.009 2% <1% 

>>SelectNodeProbablistically() 0.9 6702 0.0001 < 1 % <1% 

>PruneRule() 4289.314 1779 2.411 42% 47% 

>>CalculateRuleQuality() 3102.908 3587 0.8650 19% 34% 

>>DetermineRuleClass() 1916.502 3587 0.534 15% 21% 

>UpdatePheromone() 3 1779 0.0016 < 1 % <1% 

>IntializeNodeInformation() 1277.668 8 159.708 15% 14% 

>IntializePheromone() 0.07 8 0.0087 < 1 % <1% 

>BuildConstructionGraph() 0.6 1 0.6 <1% <1% 

Table 8.1 - Ants with Personality Execution Profile. 
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As shown in table 8.1, the average running time of each leaf method did not 

increased comparing to the original Ant-Miner methods running time. However, the 

number of trials in the execution of the algorithm increases as more diversity was 

introduced and led to late convergence. Consequently, the number of calls to 

ConstructRule() and PruneRule() methods increased which led to increase the 

overall running time to 60%. The increase of the number of trials was planned for, as 

more diversity was intentionally added to the colony. The advantage is that the output 

rules produced better results terms of accuracy. 

8.5 Summary 

The idea of giving ant personality was introduced in this chapter. The challenge 

was to overcome the problem of stagnation and early convergence. The proposed 

extension to avoid such a problem is to giving each ant its own values of the α and β 

parameters, different from those of the rest of the colony. In our experimental results, we 

use values of α and β drawn from a random number generator using a Gaussian 

distribution with a mean of 2 and a standard deviation (σ) that ranges from 0 to 1. 
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Chapter 9  

EXPERIMENTS AND RESULTS 

9.1 Introduction 

This chapter describes the experiments that were conducted to examine the 

performance of the Ant-Miner algorithm using the proposed extensions that have been 

presented in the previous chapters. Modifications were tested individually and together on 

several public-dmain datasets with different properties. The next section describes the 

datasets used for the experiments. Section 9.3 presents the experimental approach carried 

out for testing the new extensions. Used values for the algorithm parameters are shown in 

section 9.4. Section 9.5 exhibits the results of the experiments with analysis on each 

dataset. Section 9.6 summarizes the results and concludes the experiments. 

9.2 Datasets 

The performance of the extended Ant-Miner with the new modifications was  

evaluated  using eight  public-domain  data  sets  from  the  UCI (University of California 

at Irvine) dataset repository[26] – available from: 

 http://www.ics.uci.edu/~mlearn/MLRepository.html. 

The main characteristics of the datasets are shown in Table 9.1. The extended 

version of Ant-Miner does not deal directly with continuous attributes, as they should be 

discretized in pre-processing steps. The chosen datasets include only categorical attributes 

in order to avoid the interference of the quality of the discretization method on the 

experiment. 

 

 

http://www.ics.uci.edu/~mlearn/MLRepository.html
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Dataset Number of cases Number of 

attributes 

Number of 

classes 

Car Evaluation 1728 6 4 

Nursery 12960 8 5 

Tic-Tac-To 958 9 2 

Mushrooms 8124 22 2 

Dermatology 366 33 6 

Soybean 307 35 19 

Contraceptive Method Choice 1473 9 3 

BDS 1248 8 2 

Table 9.1 - Description of Dataset Used in the Experiments. 

As shown in Table 9.1, eight datasets are used for experimenting the new 

extensions. The number of cases for each dataset ranges from 958 to 12960 cases. Each 

dataset has a set of features containing from 6 to 35 attributes. Two datasets have 3 values 

for class attribute, namely Tic-Tac-To, Mushrooms and DBS datasets. The other five 

datasets, Car Evaluation, Nursery, Dermatology, Contraceptive Method Choice and 

Soybean datasets have more than 2 values for the class attributes. As was mentioned, all 

the attributes in the dataset contains only categorical values to avoid discretization before 

running the experiments. 

9.3 Experimental Approach 

Ten-fold cross validation was used to split the dataset into a training set and 

testing set with ratio of 90% and 10% respectively. Each pair of training and testing data 

was used for experimenting with each combination of modifications (original, using 

negative attributes, using stubborn ants and multi-pheromone) 10 times and the average 

was taken. The average of the ten folds was taken to conclude on cross validation run. 

The cross-validation experiment process was carried out 10 times for each dataset with 

different random partitioning of training\testing cases.  



144 

 

The number of rules generated (which represents the comprehensibility of the 

output), the average number of trials per iteration (number of ant trials needed to 

converge) and the accuracy of the generated rules were recorded to evaluate the quality of 

the experiment. 

For  ants  with  personality,  the  algorithm  has  been  executed  on  the  eight 

datasets with different values for the standard deviation parameter (σ). Each value of 

standard deviation is tried 10 times for each training/testing pair taken from each dataset. 

9.4 Algorithm Parameters 

The following fixed parameter values where used for all experimental runs: 

 

 Number of Ants (number_of_ants) =5. Note that each ant would do multiple trials. 

This is done to support Stubborn Ants.  

 Number of trials per Ant (number_of_trials per_ants) = 100. This represents the 

number of trials that the set of ants in the swarm would do per iteration. Thus, each 

ant in the swarm would do this exact number of trials. 

 Number of trials to converge (no_rules_converg) =10. This parameter is needed to 

test whether the whole swarm has converged to a specific rule or not.  If the same rule 

is discovered by 10 consequent ants, this is considered convergence, so the iteration is 

exited and the rule is extracted.      

 Maximum Uncovered Cases (max_uncovered_cases) =10%. This is the maximum 

percentage of cases are allowed to be left uncovered by the generated rules. If the 

number of uncovered cases is larger than this given parameter, the algorithm should 

continue discovering rules to cover more cases. 
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 Number of Global Iterations =50. This indicates the maximum number if global 

iterations needed to discover rules that can cover the minimum coverage of cases in 

the training set. 

 Quality Contrast Intensifier thresholds (     ): These are the upper and the lower 

thresholds for the rule confidence at which the quality is amplified and deducted 

respectively. Used values for the experiments are 0.75 and 0.35 respectively, given 

that both support and confidence values ranges from 0 to 1. 

Note that total trials per iteration equals to number_of_ants multiplied by 

number_of_trials_per_ant, which equals to 500. Also note that it is the maximum 

number of trials per iteration as any iteration can stop execution if the no_rules_converg 

was met. 

9.5 Experimental Results 

The following is the results produced by testing the performance of the Ant-Miner 

with the new extensions on the chosen datasets. Results for each dataset are presented in a 

separate subsection. Each dataset subsection has tree items: 1) a table for experimental 

results summary of applying each extension individually and with other ones, for both 

multi-pheromone system and the original Ant-Miner system, 2) analysis of the results, 

and 3) detailed results used for the test of statistical significance (ANOVA) of each 

extension compared to the original one, along with the generated F-value and the 

significance type. Note that the critical F-value for 10 runs to indicate normal significance 

is 4.41. This means that there is a probability of 95% that the difference in results is 

significant and did not occur randomly. In other words, the hypothesis of difference in 

algorithm performance can be accepted by confidence of 95%. The F-value for 10 runs 
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that indicates strong significance is 8.29. This means that there is a probability of 99% 

that the difference in results is significant and did not occur randomly. Similarly, this tells 

that the hypothesis of difference in the algorithm performance can be accepted with 

confidence of 99%. 

Ant with personality has a separate table of results which contains the results for 

each dataset using different values of standard deviation parameter given to the Gaussian 

distribution function used to generate the  values for α and β  for each ant. 
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9.5.1 Car Evaluation Dataset Results 

9.5.1.1 Results Summary 

  Original Multi-Pheromone 

Rules 

Number 

Trials/ 

Iteration 

Accuracy 

(%) 

Rules 

Number 

Trials/ 

Iteration 

Accuracy 

(%) 

None 

 

8.46 

±0.09 

87 

 

76.75 

±0.38 

5.98 

±0.18 

154 80.03 

±0.31 

Logical 

Negation 

 

5.96 

±0.37 

105 77.62 

±0.54 
3.06 

±0.05 

169 76.61 

±0.20 

Stubborn 

Ants 

 

8.47 

±0.11 

68 78.01 

±0.63 

6.02 

±0.19 

91 80.74 

±0.35 

Negation & 

Stubborn 

 

6.35 

±0.15 

84 77.88 

±0.49 

4.2 

±0.21 

114 81.62 

±0.12 

Table 9.2 - Car Evaluation Dataset Experimental Results Summary. 

9.5.1.2 Results Analysis 

As shown in Table 9.2, using logical negation reduced the average number of 

rules generated by the algorithm, as the generated rules have a higher coverage of the 

training cases. Stubborn ants improved the average accuracy of the generated rules and 

reduced the average number of trials per iteration. Multi-pheromone system improved the 

average accuracy with most of the scenarios compared to the original version. Using 

multi-pheromone system along with stubborn ants and logical negation operator produced 

the best average accuracy with a reduced number of rules and a smaller number of trials 

per iteration. 
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9.5.1.3 Test of Statistical significance 

 Original Negation Stubborn Multi-pheromone 

Run Rules Acc. Rules Acc. Rules Acc. Rules Acc. 

1 8.44 76.90 5.74 77.27 8.26 78.84 5.86 79.93 

2 8.30 76.66 5.68 77.75 8.50 77.13 6.10 80.42 

3 8.46 76.29 6.08 77.04 8.56 77.10 5.96 80.30 

4 8.44 77.15 5.24 77.65 8.52 78.21 6.24 80.00 

5 8.58 76.73 6.26 78.53 8.34 78.02 5.61 79.96 

6 8.60 77.48 6.36 77.76 8.58 78.26 6.22 79.78 

7 8.52 76.81 5.73 77.63 8.60 77.64 5.94 79.39 

8 8.48 76.82 6.32 78.03 8.48 78.95 5.86 80.31 

9 8.34 76.37 6.38 78.00 8.34 78.28 6.02 79.88 

10 8.46 76.23 5.85 75.68 8.54 77.71 5.98 80.32 

F- Value 414.11 7.3 0.015 29.27 1386.4 430.37 

Significance Type Strong Normal - Strong Strong Strong 

Table 9.3 - Car Evaluation Dataset Detailed Results for ANOVA Test.  



149 

 

 

9.5.2 Tic-Ta-To Dataset Results 

9.5.2.1 Results Summary 

  Original Multi-Pheromone 

Rules 

Number 

Trials/ 

Iteration 

Accuracy 

(%) 

Rules 

Number 

Trials/ 

Iteration 

Accuracy 

(%) 

None 

 

6.63 

±0.32 

89 70.1 

±0.20 

5.8 

±0.13 

148 69.9 

±0.22 

Logical 

Negation 

 

5.3 

±0.20 

120 71.6 

±0.25 
3.1 

±0.24 

109 70.8 

±0.19 

Stubborn 

Ants 

 

6.9 

±0.25 

59 71.9 

±0.75 

5.9 

±0.27 

83 70.3 

±0.55 

Negation & 

Stubborn 

 

4.9 

±0.11 

97 72.4 

±0.34 

3.2 

±0.21 

99 71.8 

±0.29 

Table 9.4 - Tic-Tac-To Dataset Experimental Results Summary. 

9.5.2.2 Results Analysis 

In the Tic-Tac-Toe dataset (Table 9.4), the class attribute has two values. Multi-

pheromone did not improve the accuracy of the generated rules. However, it produced a 

smaller rule set. Using logical negation reduced the average number of generated rules. 

Stubborn ants enhanced the average accuracy of the rules. Using logical negation with 

stubborn ants in the original version produced the best average accuracy while using 

multi-pheromone with logical negation produced the least number of rules. 
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9.5.2.3 Test of Statistical significance 

 Original Negation Stubborn Multi-pheromone 

Run Rules Acc. Rules Acc. Rules Acc. Rules Acc. 

1 7.03 70.1 5.61 71.76 7.2 72.4 6.04 70.42 

2 7.00 70.51 5.33 71.68 7.24 73.12 6.01 69.82 

3 6.44 70.32 5.42 71.65 7.11 72.13 5.83 70 

4 6.84 70.2 5.37 71.81 6.73 72.1 5.84 69.74 

5 6.75 70.00 5.14 71.88 6.74 72.03 5.72 69.79 

6 5.98 70.06 5.85 71.57 7.08 71.87 5.65 69.71 

7 6.32 69.93 5.23 70.98 6.44 71.88 5.81 70 

8 6.80 70.22 5.41 71.61 6.92 72.1 5.66 70.21 

9 6.55 69.85 5.38 71.65 6.70 70.67 5.73 79.87 

10 6.67 69.87 5.21 71.45 6.93 70.6 5.72 69.85 

F- Value 122.78 206.59 4.2 5.2 56.77 2.88 

Significance Type Strong Strong - Normal Strong - 

Table 9.5 - Tic-Tac-To Dataset Detailed Results for ANOVA Test. 
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9.5.3 Mushrooms Dataset Results 

9.5.3.1 Results Summary 

  Original Multi-Pheromone 

Rules 

Number 

Trials/ 

Iteration 

Accuracy 

(%) 

Rules 

Number 

Trials/ 

Iteration 

Accuracy 

(%) 

None 

 

6.20 

±0.29 

51 91.04 

±0.54 

4.28 

±0.18 

143 91.79 

±0.9 

Logical 

Negation 

 

4.60 

±0.30 

69 90.8 

±0.60 

3.68 

±0.14 

287 91.02 

±1.07 

Stubborn 

Ants 

 

6.34 

±0.18 

48 92.14 

±0.8 

4.28 

±0.25 

97 92.88 

±0.62 

Negation & 

Stubborn 

 

4.97 

±0.34 

49 90.25 

±0.9 
3.50 

±0.08 

139 91.70 

±0.41 

Table 9.6 - Mushrooms Dataset Experimental Results Summary. 

9.5.3.2 Results Analysis 

The Mushrooms dataset (Table 9.6) has a two-valued class attribute, as in Tic-

Tac-Toe. However, multi-pheromone system produced better results in terms of average 

accuracy. Stubborn ants performed well in enhancing the average accuracy of the 

generated rules. Using logical negation produced the least number of rules with a low 

number of trials, but the average accuracy of the rules declined. Multi-pheromone with 

stubborn ants produced the best average accuracy with an appropriate number of 

generated rules. 
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9.5.3.3 Test of Statistical significance 

 Original Negation Stubborn Multi-pheromone 

Run Rules Acc. Rules Acc. Rules Acc. Rules Acc. 

1 6.32 90.51 4.76 91.13 6.48 92.07 4.08 92.10 

2 6.64 91.38 4.40 89.73 6.40 92.17 4.20 91.63 

3 5.96 90.67 4.20 90.31 6.34 91.26 4.16 91.65 

4 6.28 91.03 4.56 91.79 6.56 91.35 4.60 91.98 

5 6.48 90.92 4.16 91.28 6.52 92.48 4.44 92.33 

6 6.52 91.08 4.92 90.27 6.40 92.08 4.16 92.60 

7 5.92 90.98 4.60 91.29 5.96 92.17 4.56 92.98 

8 6.20 90.78 5.00 90.55 6.26 92.44 4.08 91.56 

9 5.92 90.26 4.96 90.65 6.38 91.37 4.28 89.33 

10 5.80 91.19 4.52 90.96 6.14 93.03 4.24 91.76 

F- Value 144.33 0.911 1.64 16.68 304.9 4.48 

Significance Type Strong - - Strong Strong Normal 

Table 9.7 - Mushrooms Dataset Detailed Results for ANOVA Test. 
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9.5.4 Nursery Dataset Results 

9.5.4.1 Results Summary 

  Original Multi-Pheromone 

Rules 

Number 

Trials/ 

Iteration 

Accuracy 

(%) 

Rules 

Number 

Trials/ 

Iteration 

Accuracy 

(%) 

None 

 

8.11 

±0.11 

115 79.98 

±0.73 

6.48 

±0.29 

215 81.44 

±1.09 

Logical 

Negation 

 

5.16 

±0.18 

110 76.04 

±0.7 
3.5 

±0.11 

253 76.94 

±0.47 

Stubborn 

Ants 

 

8.14 

±0.06 

95 80.93 

±0.66 

6.72 

±0.30 

147 82.08 

±0.82 

Negation & 

Stubborn 

 

5.13 

±0.15 

90 76.00 

±0.57 

4.15 

±0.13 

237 77.60 

±0.45 

Table 9.8 - Nursery Dataset Experimental Results Summary. 

9.5.4.2 Results Analysis 

Experiments on the Nursery dataset (Table 9.8) have shown similar results to the 

Mushrooms dataset. Using logical negation reduced the number of generated rules, but 

came with a negative effect on the accuracy. Stubborn ants improved the average 

accuracy of the generated rules, especially when used with multi-pheromone system, as 

this combination produced the best average accuracy.   
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9.5.4.3 Test of Statistical significance 

 Original Negation Stubborn Multi-pheromone 

Run Rules Acc. Rules Acc. Rules Acc. Rules Acc. 

1 8.14 80.29 5.25 75.98 8.14 81.57 6.70 81.02 

2 7.88 78.14 4.82 75.91 8.17 80.32 6.64 83.20 

3 8.00 80.13 5.11 77.14 8.17 80.57 6.85 81.49 

4 8.02 80.26 5.28 76.06 8.20 80.76 6.14 80.50 

5 8.14 80.37 5.22 75.48 8.05 79.98 6.44 81.84 

6 8.14 80.08 5.14 77.00 8.11 80.82 6.58 81.64 

7 8.14 79.31 5.11 75.80 8.17 81.91 5.85 79.33 

8 8.25 80.53 5.28 75.55 8.14 81.54 6.61 81.69 

9 8.22 80.51 4.91 74.63 8.25 81.57 6.58 82.73 

10 8.17 80.19 5.42 76.54 8.05 80.29 6.41 80.96 

F- Value 1938.43 78.2 0.72 8.25 270.47 12.30 

Significance Type Strong Strong - Normal Strong Strong 

Table 9.9 - Nursery Dataset Detailed Results for ANOVA Test. 
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9.5.5 Dermatology Dataset Results 

9.5.5.1 Results Summary 

  Original Multi-Pheromone 

Rules 

Number 

Trials/ 

Iteration 

Accuracy 

(%) 

Rules 

Number 

Trials/ 

Iteration 

Accuracy 

(%) 

None 

 

8.72 

±0.26 

 

94 74.72 

±0.49 

10.39 

±0.22 

170 82.77 

±0.64 

Logical 

Negation 

 

7.31 

±0.14 

59 80.84 

±0.43 

7.68 

±0.15 

120 86.47 

±0.39 

Stubborn 

Ants 

 

8.80 

±0.28 

79 74.80 

±0.49 

10.33 

±0.43 

159 83.01 

±0.43 

Negation & 

Stubborn 

 

7.32 

±0.16 

53 81.56 

±0.41 

7.54 

±0.18 

107 86.06 

±0.41 

Table 9.10 - Dermatology Dataset Experimental Results Summary. 

9.5.5.2 Results Analysis 

Experiments on Dermatology dataset have shown superiority in results when 

using logical negation operator. As shown in Table 9.10, using logical negation operator 

produced less number of rules, compared to the original version. Moreover, the accuracy 

of the generated rule was enhanced significantly with the help of the logical negation 

operator in rule construction. Stubborn ants did not improve the quality of the output in 

terms of classification accuracy. However, they reduced the number of trials. Multi-

pheromone system produced better results in terms of classification accuracy. Using 

multi-pheromone with logical negation operator produced the best classification accuracy, 

while using logical negation with the original version of Ant-Miner produced the lowest 

number of rules with good classification accuracy. 
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9.5.5.3 Test of Statistical significance 

 Original Negation Stubborn Multi-pheromone 

Run Rules Acc. Rules Acc. Rules Acc. Rules Acc. 

1 8.64 75.18 7.24 81.15 8.82 74.27 10.46 82.32 

2 9.2 74.29 7.36 80.27 8.82 75.13 10.22 83.62 

3 8.68 75.43 7.06 80.72 9.22 74.91 10.06 82.59 

4 8.76 74.62 7.3 81.56 8.62 74.9 10.5 83.35 

5 8.38 75.24 7.38 81.16 8.88 74.31 10.28 81.40 

6 8.56 74.43 7.54 80.24 8.74 75.94 10.42 83.35 

7 8.4 74.21 7.56 80.54 8.92 74.54 10.48 82.54 

8 8.82 74.67 7.24 80.72 9.18 74.89 10.78 82.91 

9 8.7 74.02 7.24 80.78 8.24 74.59 10.1 82.48 

10 9.12 75.17 7.32 81.24 8.56 74.43 10.56 83.13 

F- Value 207.6 890.15 0.35 0.11 226.5 970.7 

Significance Type Strong Strong - - Strong Strong 

Table 9.11 - Dermatology Dataset Detailed Results for ANOVA Test.  
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9.5.6 Soybean Dataset Results 

9.5.6.1 Results Summary 

  Original Multi-Pheromone 

Rules 

Number 

Trials/ 

Iteration 

Accuracy 

(%) 

Rules 

Number 

Trials/ 

Iteration 

Accuracy 

(%) 

None 

 

11.15 

±0.17 

181 48.00 

±0.30 

11.30 

±0.19 

327 56.13 

±0.46 

Logical 

Negation 

 

9.23 

±0.19 

251 45.62 

±0.40 

10.79 

±0.16 

 

434 54.28 

±0.29 

Stubborn 

Ants 

 

11.08 

±0.16 

141 48.08 

±0.5 

 

11.50 

±0.3 

317 56.84 

±0.47 

Negation & 

Stubborn 

 

9.26 

±0.22 

167 46.87 

±0.68 

10.9 

±0.2 

425 54.27 

±0.23 

Table 9.12 - Soybean Dataset Experimental Results Summary 

9.5.6.2 Results Analysis 

As shown in the Table 9.12, utilizing multi-pheromone system improved the 

accuracy of the generated rules from the Ant-Miner algorithm when experimented on 

Soybean dataset.  Using logical negation operator made its expected effect on the output, 

which is reducing the number of rules, generated, thus improving the comprehensibility 

of the output. Stubborn ants did not improve the quality of the output in terms of 

classification accuracy very much. However, they needed fewer trials to produce the 

better output rules than the original algorithm in terms of simplicity and accuracy. Using 

logical negation with the original Ant-Miner version produced the least number of rules. 

While using multi-pheromone with stubborn ants produced the highest classification 

accuracy. 
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9.5.6.3 Test of Statistical significance 

 Original Negation Stubborn Multi-pheromone 

Run Rules Acc. Rules Acc. Rules Acc. Rules Acc. 

1 11.54 47.79 8.86 45.35 11.13 47.51 11.30 55.82 

2 11.28 47.89 9.21 45.23 10.84 47.89 11.45 55.87 

3 10.97 48.31 9.26 45.77 11.17 48.44 11.25 56.35 

4 11.15 48.52 9.30 45.17 10.93 48.33 11.56 56.34 

5 11.00 47.78 9.45 46.42 11.26 48.87 11.07 56.20 

6 11.04 47.71 9.10 45.17 10.97 47.77 11.54 55.80 

7 11.00 47.65 9.17 45.93 11.36 47.49 11.06 56.68 

8 11.19 47.96 9.28 45.93 10.93 47.54 11.45 55.18 

9 11.17 48.03 9.54 45.51 11.17 48.47 11.04 56.40 

10 11.21 48.38 9.08 45.67 11.04 48.54 11.32 56.68 

F- Value 565.34 220.9 0.966 0.19 3.33 2146.3 

Significance Type Strong Strong - - - Strong 

Table 9.13 - Soybean Dataset Detailed Results for ANOVA Test.  



159 

 

9.5.7 Contraceptive Method Choice Dataset Results 

9.5.7.1 Results Summary 

  Original Multi-Pheromone 

Rules 

Number 

Trials/ 

Iteration 

Accuracy 

(%) 

Rules 

Number 

Trials/ 

Iteration 

Accuracy 

(%) 

None 

 

9.01 

±0.18 

94 43.45 

±0.37 

4.94 

±0.19 

330 45.97 

±0.32 

Logical 

Negation 

 

6.93 

±0.29 

60 43.53 

±0.38 
3.01 

±0.12 

490 45.60 

±0.50 

Stubborn 

Ants 

 

9.18 

±0.27 

87 44.08 

±0.35 

4.96 

±0.17 

303 45.79 

±0.43 

Negation & 

Stubborn 

 

6.96 

±0.29 

57 45.07 

±0.38 

4.25 

±0.13 

417 46.24 

±0.38 

Table 9.14 - Contraceptive Method Choice Dataset Experimental Results Summary. 

9.5.7.2 Results Analysis 

Table 9.14 shows the results of testing the Ant-Miner extensions on the 

Contraceptive Method Choice dataset. Logical negation operator produced fewer rules 

compared to the original version. Using logical negation with multi-pheromone produced 

the least number of rules. Stubborn ants have improved the quality of the output in terms 

of classification accuracy. Similarly, using multi-pheromone system improved the 

classification accuracy of the generated rules. The best accuracy was produced form this 

dataset by using logical negation with stubborn ants in the multi-pheromone system. 
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9.5.7.3 Test of Statistical significance 

 Original Negation Stubborn Multi-pheromone 

Run Rules Acc. Rules Acc. Rules Acc. Rules Acc. 

1 8.88 43.66 7.12 43.47 9.14 43.89 4.82 45.40 

2 9.18 43.68 6.92 43.62 8.74 43.85 5.20 46.10 

3 9.24 43.71 6.98 43.17 8.98 44.14 5.02 45.85 

4 8.80 42.87 7.06 43.24 9.74 43.80 5.20 45.74 

5 9.16 42.93 6.82 43.18 8.98 43.93 4.06 46.48 

6 8.70 43.74 6.76 43.82 9.24 44.02 4.98 46.17 

7 9.20 43.67 7.00 43.28 9.36 44.37 4.86 46.35 

8 9.02 43.70 6.68 43.75 9.14 44.55 4.72 45.98 

9 8.92 42.94 7.10 44.40 9.38 43.97 5.04 45.64 

10 9.02 43.64 6.90 43.37 9.18 44.33 5.04 46.01 

F- Value 2275.9 2.23 289. 19.43 778.1 285.52 

Significance Type Strong - - Strong Strong Strong 

Table 9.15 - Contraceptive Method Choice Dataset Detailed Results for ANOVA Test  
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9.5.8 BDS Dataset Results 

9.5.8.1 Results Summary 

  Original Multi-Pheromone 

Rules 

Number 

Trials/ 

Iteration 

Accuracy 

(%) 

Rules 

Number 

Trials/ 

Iteration 

Accuracy 

(%) 

None 

 

11.34 

±0.07 

147 69.53 

±0.70 

10.98 

±0.10 

66 77.13 

±0.52 

Logical 

Negation 

 

4.58 

±0.13 

166 64.89 

±0.50 

3.38 

±0.08 

105 71.45 

±0.26 

Stubborn 

Ants 

 

11.26 

±0.28 

107 71.07 

±0.36 

11.03 

±0.05 

62 77.85 

±0.36 

Negation & 

Stubborn 

 

4.62 

±0.15 

152 65.77 

±0.86 
3.37 

±0.04 

99 71.47 

±0.97 

Table 9.16 - BDS Dataset Experimental Results Summary. 

9.5.8.2 Results Analysis 

The last dataset, BDS, exhibited similar behavior to the previous dataset when 

experimenting the Ant-Miner extensions on it. Results in Table 9.16 show that using 

logical negation reduced the number of rules generated by the algorithm. However, the 

accuracy of the generated rules was reduced as well. Stubborn ants increased the accuracy 

level of the generated rules without producing lager number of rules compared to the 

original version. Multi-pheromone on the other hand improved the quality of the 

generated rule in terms of classification accuracy noticeably, as well as reducing size of 

the generated rule set, especially when used with logical negation operator. The highest 

classification accuracy was produced when using multi-pheromone with stubborn ants. 

While the lowest number of rules was generated when using logical negation operator 

with multi-pheromone and stubborn ants. 
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9.5.8.3 Test of Statistical significance 

 Original Negation Stubborn Multi-pheromone 

Run Rules Acc. Rules Acc. Rules Acc. Rules Acc. 

1 11.32 69.17 4.80 64.31 11.36 70.88 10.94 77.68 

2 11.38 69.96 4.46 64.09 11.35 71.01 10.86 77.33 

3 11.28 69.42 4.56 64.57 1

11.24 

70.76 11.04 77.33 

4 11.28 70.22 4.64 65.53 11.95 71.80 11.04 77.17 

5 11.4 70.92 4.46 65.33 11.00 71.23 10.98 77.09 

6 11.24 69.07 4.80 64.60 11.02 70.70 10.92 76.80 

7 11.26 68.76 4.44 65.47 11.14 70.76 11.14 76.15 

8 11.36 69.58 4.56 64.96 11.00 71.34 11.04 77.84 

9 11.38 69.68 4.54 64.76 11.38 71.38 11.1 77.46 

10 11.5 68.57 4.62 65.269 11.25 70.81 10.78 76.50 

F- Value 227.9 287.7 0.58 37.45 68.2 751.42 

Significance Type Strong Strong - Strong Strong Strong 

Table 9.17 - BDS Dataset Detailed Results for ANOVA Test  



163 

 

9.5.9 Ants with Personality Experimental Results 

 Rules Number Trial\Iteration Accuracy 

Dataset                               

Car Evaluation 9.00 

±0.18 

8.85 

±0.010 

156 302 76.2 

±0.31 

77.03 

±0.42 

Tic-Tac-To 6.22 

±0.30 

6.50 

±0.21 

198 634 71.64 

±0.27 

71.89 

±0.31 

Mushrooms 6.40 

±0.22 

6.20 

±0.17 

167 538 92.72 

±0.55 

91.44 

±0.38 

Nursery 8.11 

±0.18 

8.21 

±0.25 

230 876 80.32 

±0.73 

80.82 

±0.64 

Dermatology 8.69 

±0.16 

8.64 

±0.11 

197 307 75.50 

±0.45 

75.57 

±0.52 

Soybean 11.12 

±0.18 

11.21 

±0.22 

361 815 48.60 

±0.28 

48.42 

±0.31 

CMC 8.99 

±0.10 

9.01 

±0.12 

142 296 43.26 

±0.42 

43.66 

±0.35 

BDS 11.30 

±0.14 

11.24 

±0.12 

301 640 70.02 

±0.77 

69.74 

±0.82 

Table 9.18 - Ants with Personality Experimental Results 

The pervious table shows the results of using Ant with personality – where each 

ant has its own values for α and β drown from a Gaussian distribution random generator 

with mean of 1 and standard deviations of 0.5 and 1. Average rules number did not 

change significantly when using different standard deviation for all datasets. However,   

average accuracy and trials number has different values for each value of standard 

deviation. 0.5 produced better average accuracy comparing to the original version of Ant-

Miner but with higher trials per iteration. Standard deviation of one produced even better 
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average accuracy than the results produced by using standard deviation of 0.5. However, 

number of trials needed to converge per iteration has increased significantly when using 

standard deviation of 1. 

9.6 Summary 

This chapter presented the experiments that were used to test the performance of 

the proposed modifications on the original version of Ant-Miner. The proposed 

modifications are: Using Negative Attributes, Stubborn Ants, Quality Contrast Intensifier, 

Multi-pheromone Ant System and Ants with Personality. Each modification was test 

alone and with other modifications on four public datasets. The results shown the effect 

of each these modification on the performance of the algorithm in terms of number of 

rules generated, number of trials needed for each iteration to converge and the accuracy 

of the generated rules. The next chapter concludes the outcomes of the research and 

mentions some future work on the field of Ant Colony Optimization in general and Ant-

Miner in specific. 
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Chapter 10  

CONCLUSION AND FUTURE WORK 

10.1 Conclusion 

Ant-Miner is an Ant Colony algorithm for discovering classification rules. It has 

been introduced in 2002 and proved to produce competitive results to the well-known 

classification algorithm. Since then, a lot of modification has been applied to the 

algorithm in order to develop its efficiency. This thesis proposes five new extensions to 

Ant-Miner. First, we proposed using logical negation in rule antecedents' construction. 

The aim was to discover rules with higher coverage in order to reduce the overall number 

of the generated rules, which in turn improves the comprehensibility of the output. 

Second, we proposed the use stubborn ants with Ant-Miner. Stubborn ants are variation 

of ACO in which an ant can use its own past experience in rule constructing besides the 

shared experience in the colony. The aim is to add individuality and promote search 

diversity. Third, we proposed a new Ant-Miner system; multi-pheromone. In multi-

pheromone, the ant selects the class prior to constructing the rule antecedents. Each ant 

can drop different type of pheromone as many as the permitted class, and it can only 

follow the pheromone dedicated the class of the current rule being constructed. The aim is 

to select terms that are more relevant to the classification of the selected class, so that 

better rules in term of predictive accuracy are discovered. Fourth, we propose a new 

strategy for pheromone update, aims to intensify the contrast between the quality of the 

decision components i.e. rewarding good rules by amplifying  the pheromone to be 

dropped and penalizing bad rules by removing pheromone amounts. Finally, we proposed 
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the use of different values of α and β in term selection formula for each ant. The aim is to 

give personality to each ant and promote search diversity. 

10.2 Results Summary 

In summary, experimental results indicate that using logical negation tends to 

produce a lower number of rules. However, since the number of nodes in the construction 

graph increases, the number of trials per iteration increases. Using logical negation does 

not sacrifice the accuracy of the generated rules. On the other hand, using stubborn ants 

reduces the number of trials needed per iteration to generate a rule and enhances the 

accuracy of the rules. Multi- pheromone increases rule quality in terms of accuracy. 

Furthermore, it produces a smaller rule set because of the evaluation function that 

balances between a rule‘s classification accuracy and its coverage. As for ants with 

personality, using σ = 1.0 produces better results in terms of accuracy than using σ = 0.5. 

Nonetheless, the algorithm needs less trials using σ = 0.5. Note that a standard deviation 

of 0.5 produces better results in terms of generated rules accuracy compared to the 

original version of Ant-Miner. 

10.3 Future work 

Experimental results on four popular datasets indicate that these extensions are 

promising and worthy of further exploration (see Chapter 9). In the future, we would like 

to explore using a weight coefficient for stubbornness when using stubborn ants, which 

may start at a small value and increase gradually over time. When using ants with 

personality, we would like to explore gradually decreasing over time the value of the 

standard deviation of the Gaussian distribution function used to generate the individual 

α‘s and β‘s.  
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