
American University in Cairo American University in Cairo 

AUC Knowledge Fountain AUC Knowledge Fountain 

Theses and Dissertations 

6-1-2010 

Using minimal number of electrodes for emotion detection using Using minimal number of electrodes for emotion detection using 

noisy EEG data noisy EEG data 

Mina Mikhail 

Follow this and additional works at: https://fount.aucegypt.edu/etds 

Recommended Citation Recommended Citation 

APA Citation 
Mikhail, M. (2010).Using minimal number of electrodes for emotion detection using noisy EEG data 
[Master’s thesis, the American University in Cairo]. AUC Knowledge Fountain. 
https://fount.aucegypt.edu/etds/1200 

MLA Citation 
Mikhail, Mina. Using minimal number of electrodes for emotion detection using noisy EEG data. 2010. 
American University in Cairo, Master's thesis. AUC Knowledge Fountain. 
https://fount.aucegypt.edu/etds/1200 

This Thesis is brought to you for free and open access by AUC Knowledge Fountain. It has been accepted for 
inclusion in Theses and Dissertations by an authorized administrator of AUC Knowledge Fountain. For more 
information, please contact mark.muehlhaeusler@aucegypt.edu. 

https://fount.aucegypt.edu/
https://fount.aucegypt.edu/etds
https://fount.aucegypt.edu/etds?utm_source=fount.aucegypt.edu%2Fetds%2F1200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/1200?utm_source=fount.aucegypt.edu%2Fetds%2F1200&utm_medium=PDF&utm_campaign=PDFCoverPages
https://fount.aucegypt.edu/etds/1200?utm_source=fount.aucegypt.edu%2Fetds%2F1200&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:mark.muehlhaeusler@aucegypt.edu


The American University in Cairo
School of Sciences and Engineering

USING MINIMAL NUMBER OF ELECTRODES
FOR EMOTION DETECTION USING NOISY EEG

DATA

A Thesis Submitted to
The Department of Computer Science and Engineering

In Partial Fulfillment of the Requirements for
The Degree of Master of Science

By
Mina Mikhail

Graduate Diploma, Computer Science, The American University in Cairo
Bachelor of Science, Computer Science, The American University in Cairo

Under the Supervision of Dr. Khaled El-Ayat
April 2010



Abstract

Emotion is an important aspect in the interaction between humans. It is fundamental

to human experience and rational decision-making. There is a great interest for detecting

emotions automatically. A number of techniques have been employed for this purpose

using channels such as voice and facial expressions. However, these channels are not

very accurate and can be faked. Other techniques use physiological signals along with

electroencephalography (EEG) for emotion detection. However, these approaches are not

very practical for real time applications because they ask the participants to reduce any

motion and facial muscle movement, reject EEG data contaminated with artifacts and

rely on large number of electrodes. In this thesis, we propose an approach that analyzes

highly contaminated EEG data produced from a new emotion elicitation technique. We

also use a feature selection mechanism to extract features that are relevant to the emotion

detection task based on neuroscience findings.

Our main contribution is in the experimental methodology applied for building an au-

tomated system for emotion detection. First we experimented with a totally new emotion

elicitation technique that is very close to real life situations. Second, We generate differ-

ent feature sets from the prior art and compare the accuracies of different classifiers that

use such different feature sets. We experimented with two feature sets that are based on

some neuroscience findings. The first neuroscience fact is based on the finding the that

emotions are most obvious in the alpha band which ranges from 7 to 13 Hz [1]. The

second neuroscience finding is that positive emotions result in relatively greater left brain

activity and negative emotions result in greater right brain activity. Hence, we decided

to focus our experiments on the alpha band and making use of scalp asymmetries in case

of positive and negative emotions. Finally, we experimented with different number of

electrodes that were selected using two different methodologies. The first approach is to

include the frontal electrodes because the alpha rhythm is most obvious in the frontal

lobe. The second approach is not to include any frontal electrodes because EMG artifacts

may contaminate the frontal lobe and we want to make sure that our classification results

are mainly due to EEG and not EMG.

Our work extends existing research in four principal ways. First, we are the first in the

computer science field to use voluntary facial expression as a means for enticing emotions.



Although this contaminates EEG with noise, it helps to test our approach on unconstrained

environment where the users were not given any special instructions about reducing head

motions or facial expressions which makes our dataset close to a real time application.

Second, we used a new technique for selecting features that are relevant to the emotion

detection task that is based on neuroscience findings. Third, since one of the drawbacks

of emotion detection systems using EEG is the use of large number of electrodes, which

hinders the portability of such systems, we applied our approach on different number of

electrodes that range from 4 electrodes up to 25 electrodes using two methodologies for

selecting the electrodes to be eliminated. This can make our system more portable and

can be used in real application. Finally, we tested our approach on a large dataset of 36

subjects and we were able to differentiate between four different emotions with an accuracy

that ranges from 51% to 61% using 25 electrodes and we reached an average classification

accuracy of 33% for joy emotion, 38% for anger, 33% for fear and 37.5% for sadness using

4 or 6 electrodes only.
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Chapter 1

Introduction

An emotion is a mental and physiological state associated with a wide variety of feelings,

thoughts, and behavior. An emotion is a subjective experience which makes studying

emotions one of the most confused and still open fields of research in psychology [2]. There

are more than 90 definitions of ”emotion” and there is little consensus on the meaning

of the term. The reason why studying emotions is important is the fact that emotion

is an important aspect in the interaction between humans. Emotion is fundamental to

human experience, influencing cognition, perception, and everyday tasks such as learning,

communication, and even rational decision-making.

There are two models for theoretical emotion representation. The first model that is

proposed by Darwin [3] and followed after that by Plutchik [2] and Ekman [4], uses the

idea that all emotions can be composed of some basic emotions exactly like the white

color can be composed of primary colors. Plutchik [2] claims that there are eight basic

emotions which all other emotions can be derived from. These eight emotions are anger,

fear, sadness, disgust, surprise, curiosity, acceptance and joy. Ekman [4] has chosen other

emotions to be the basic emotions. He considered anger, fear, sadness, happiness, disgust

and surprise as the basic emotions.

The second model as shown in Fig. 1.1 [5] used to represent emotion is the dimensional

view model [6]. It describes each emotion on a multidimensional scale. The first dimension

is emotional valence, with positive emotions on one side and negative emotions on the other

side. The second dimension represents the arousal. Sometimes, there is a third dimension

which represents dominance. However, it is rarely used. The second model is used in

most of the studies because of its simplicity and universality and there is little controversy

1
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Figure 1.1: Two dimensional view of emotion [7].

about the two dimensions of the model.

There are a lot of studies to capture emotions automatically. Developing systems and

devices that can capture and process human emotions and making use of them is the

purpose of affective computing. Affective computing is related to, arise from or influence

emotion or other affective phenomena [8]. It is an interdisciplinary field that requires

knowledge in psychology, computer science and cognitive sciences.

Affective computing and emotion assessment are now growing fields because they

have many potential applications. For instance, emotion assessment can be integrated

in human-computer interaction systems that will lead to improve these systems by mak-

ing them get close to human-human interaction. This will enhance the usability of the

systems and improve the quality of life of disabled people who find difficulty in using the

interfaces provided to healthy people. Another type of emerging applications that make

use of capturing users’ emotions is quantifying customers’ experience. These types of

applications require an automated system to deduct customers’ emotions without having

them state it explicitly.

Quantifying customers’ experience using machine-aided techniques is becoming of great

interest to many companies. These companies often conduct market research to build

market share, competitive advantage and to predict how people would like their product.

The problem with predicting customer’s experience is that the current evaluation methods

such as relying on customers’ self reports are very subjective.

People are not always feeling comfortable revealing their true emotions. They may

inflate their degree of happiness or satisfaction in self reports. Participants report higher
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well-being in face-to-face interviews than they do in mail surveys or self-administered

questionnaires [9]. This is because participants are unwilling to reveal their true emotions

to strangers. In case of interviews, this interviewer effect disappears when the interviewer

is severely handicapped [10]. Participants would like to give positive feelings to others but

would rather not exaggerate when faced with another’s unfortunate situation. This can

show that self reports are very subjective and affected by external factors. Due to the

inaccuracy of self reports, market researchers are trying to find new channels by which

they can capture the users’ affective states without asking them for their direct opinion.

Another type of important applications is helping people who suffer from psychological

problems to interact and communicate easily with computers and humans by capturing the

person’s emotion and make the system self adapt based on the user’s current emotion. For

instance, people who are suffering from autism have difficulty in interacting with others in

social environment. An affective computing system can provide solution to those people.

One of these systems proposed in [11] captures the emotions of people interacting with

the person suffering from Asperger Syndrome, autistic spectrum. It then gives an advice

to the autistic patient of a good response.

Affective computing helps people to better interact with machines and computers and

have a wide variety of applications. The success of an affective computing or an emotion

assessment system is mainly based on the accuracy of detecting emotions from expressive

human channels. These expressive channels include facial expressions, voice and electroen-

cephalography (EEG). Affective computing, coupled with new wearable computers, will

also provide the ability to gather new data necessary for advances in emotion and cognition

theory [8].

There are two main approaches for eliciting participants’ emotions. The first method

presents provoking auditory or visual stimulus to elicit specific emotions. This method is

used by almost all studies in literature [12–18]. The second approach builds on the facial

feedback paradigm which shows that facial expressions are robust elicitors of emotional

experiences. In the famous Strack, Martin & Stepper’s study [19], Strack, Martin & Step-

per attempted to provide a clear assessment of the theory that voluntary facial expressions

can result in an emotion. Strack, Martin, & Stepper [19] devised a cover story that would

ensure the participants adopt the desired facial posing without being able to perceive

either the corresponding emotion or the researchers’ real motive. Each participant was

asked to hold a pen in his mouth in different ways that result in different facial poses.
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Participants who held a pen resulting in a smile reported a more positive experience than

those who held the pen in a position that resulted in a frown. This study was followed

by different psychologists including Ekman et al. [20] who found that emotions generated

with a directed facial action task results in a finer distinction between emotions. However,

this approach contaminates brain signals with facial muscle artifacts and that’s why this

approach is not conceived by computer scientists.

1.1 Emotion Detection Channels

There is much work done in the field of emotion and cognitive state detection by analyzing

facial expressions or/and speech. Some of these systems showed a lot of success such as

those discussed in [21] [22]. The system proposed in [21] uses an automated inference of

cognitive mental states from observed facial expressions and head gestures in video. The

system is based on a multilevel dynamic Bayesian network classifier which models cognitive

mental states as a number of interacting facial and head displays. The system proposed

in [22] makes use of multimodal fusion of different timescale features of the speech. They

also, make use of the meaning of the words to infer both the angry and neutral emotions.

Although facial and voice expressions are considered to be a very powerful means for

humans to communicate their emotions [3], the main drawback of using facial expressions

or speech is the fact that they are not reliable indicators of emotion because they can

either be faked by the user or may not be produced as a result of the emotion.

The other alternative for emotion and cognitive state detection is analyzing physio-

logical signals because they are not experiencing the same drawback of video and speech.

These types of signals cannot be faked due to the fact that they are produced from some

involuntary secretion glands as a result of specific stimulus. Some of the systems that rely

on detecting physiological signals make use of the signals generated from the peripheral

nervous system such as skin temperature variation, heart rate, blood pressure and skin

conductance. One of the systems that was able to classify four different emotions, anger,

sadness, stress and surprise, is proposed by Kim et al. [12]. In this system, Kim et al. [12]

made use of ECG and body temperature to recognize the four emotions. They tested their

hypothesis on large dataset generated from 50 subjects and were able to reach an accuracy

of 78.4% and 61.8% for three and four emotion categories respectively.

Based on the cognitive theory of emotion, the brain is the center of every human
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Figure 1.2: Different parts of the human brain

action [13]. Consequently, emotions and cognitive states can be detected through analyzing

physiological signals that are generated from the central nervous system such as EEG

signals. However, there is little work done in this area of research. Thanks to the success of

brain computer interface systems, a few new studies have been done to find the correlation

between different emotions and brain signals.

1.2 Emotions and the Human Brain

Some of the brain structures play an important role in the emotional brain. The different

parts of the brain are shown in Fig. 2.3. Some of these structures are:

1.2.1 Amygdala

The amygdalae is considered to be one of the most important regions of the brain that are

related to emotions. It is composed of two groups of neurons deep inside the human brain.

Whenever a person receives some emotional load, the amygdala is the part of the brain

that recognizes this emotional load. Amygdala is also responsible for long term emotional

memories. Also, the amygdala is responsible for learning the connections between some

stimulus and a threatening events [7].

1.2.2 Hypothalamus

The hypothalamus is the part of the brain that controls visceral functions in the body

such as body temperature, hunger and thirst. It is also responsible for certain responses

such as feeding, drinking and is involved in processing emotions and sexual arousal [7].
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Figure 1.3: Positron Emission Tomography scanning system. Image from
www.radiologyinfo.org

1.2.3 Prefrontal cortex

The prefrontal cortex (PFC) plays a role in reward processing. Neurons in the PFC can

detect changes in the reward value of learned stimuli. Furthermore, the PFC is involved

in planning, making decisions based on earlier experiences and working towards a goal.

The combination of functions of the PFC is described as the executive function [7].

1.2.4 Anterior cingulate cortex

This part of the brain is generally subdivided into a cognitive and an affective part. The

affective part is suggested to monitor disagreement between the functional state of the

organism and any new information, that might have affective consequences [7].

1.2.5 Insular cortex

The insular cortex is said to be associated with emotional experience and produces con-

scious feelings. It combines sensory stimuli to create a emotional context [7].

1.3 Methods for Measuring Brain Activity

As mentioned, the brain is the center of every human action [13]. Different technologies

have been developed for measuring the brain activity. The most commonly used techniques

are positron emission tomography (PET), functional magnetic resonance imaging (FMRI)

and electroencephalography (EEG).
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Figure 1.4: Functional Magnetic Resonance Imaging scanning system. Image from
www.ftcm.org.uk

1.3.1 Positron Emission Tomography (PET)

Positron Emission Tomography (PET) is a technique for measuring the brain activity.

It is a type of radiation during which a radioactive isotope is injected into someone’s

blood. The isotope emits positrons which are taken with the blood flow. The blood flow

is correlated with brain activity. The machine shown in Fig. 1.3 can show the blood flow

given the presence of positrons.

One advantage of PET is its high spatial resolution. However, there are three main

disadvantages for this approach. First, it has a very low time resolution and time delay

due to the time taken before the radioactive material arrives the brain. Second, this

methodology requires the person being subjected to a radiation which may not be very

safe for long time. Finally, it requires huge expensive devices which hinders the possibility

of using such approach in real life situations.

1.3.2 Functional Magnetic Resonance Imaging (FMRI)

Functional magnetic resonance imaging (FMRI) is another method that depends on the

blood flow. As mentioned before, blood flow is correlated with brain activity. This is

because active neurons consume oxygen that is carried by the blood hemoglobin. This

consumption of oxygen changes the magnetic properties of hemoglobin, and these magnetic

properties are measured by the FMRI system shown in Fig. 1.4. FMRI shares the same

advantages and disadvantages of PET. Both have high spatial resolution but low temporal

resolution. FMRI also requires huge expensive hardware which makes it impractical for

applications in real life situations.
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Figure 1.5: EEG cap and electrodes.

1.3.3 Electroencephalography (EEG)

Electroencephalography (EEG) uses the electrical activity of the neurons inside the brain.

When the neurons are active, they produce an electrical potential. The combination of

this electrical potential of groups of neurons can be measured outside the skull, which is

done by EEG. Because there is some tissue and even the skull itself between the neurons

and the electrodes, it is not possible to measure the exact location of the activity.

In order to record brain signals using EEG, a cap and electrodes as shown in Fig. 1.5

are used. The main advantage of using EEG is its portability and relatively inexpensive

hardware. However, it has low spatial resolution. That’s why researchers usually use huge

number of electrodes that are placed all over the scalp to overcome this drawback.

Most of the studies that tries to capture the user’s emotional state from the brain

signals combine both EEG signals with other physiological signals generated from the

peripheral nervous system [14] [15]. Although using both modalities require using large

number of electrodes scattered all over the body, it is done to provide better classification

accuracies. However, in this research, we will focus on inferring emotion from EEG signals

only because we are interested in a portable convenient approach with the least possible

number of electrodes.

1.4 Problem Definition

There is a great interest in developing automated systems for emotion detection. A lot

of emerging applications can rely on an accurate systems for emotion detection to achieve

their goal. These application include software adaptation, quantifying customers’ experi-

ence for product evaluation, building assistive technologies and monitoring safety critical

systems.
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A number of techniques have been employed for building automated systems for emo-

tion detection. These techniques included using channels such as voice and facial expres-

sions. However, these channels are not very accurate because they can be affected by

users’ intentions and they can be faked. Other techniques use physiological signals that

are produced from the peripheral nervous system such as heart beat, body temperature

and blood pressure. Although these signals cannot be faked, it requires the use of large

number of sensors that are scattered all over the body. This makes such approach neither

convenient nor portable for usage in real life situations.

Finally, current approaches for emotion detection using EEG are not very practical

for real life situations because the researchers either ask the participants to reduce any

motion and facial muscle movement or reject EEG data contaminated with artifacts. Also,

their approaches rely on using large number of electrodes which makes such systems not

portable.

1.5 Research Objective

Instead of using a visual or an auditory stimulus for emotion elicitation, we decided to use

voluntary facial expression based on the facial feedback paradigm which shows that facial

expressions are robust elicitors of emotional experience, as a means for eliciting emotions.

The reason we chose to use this elicitation technique is that although it contaminates EEG

with noise, it helps to test our approach on unconstrained environment where the users will

not be given any special instructions about reducing head motions or facial expressions.

We were also interested in using different ways for selecting features that are relevant

to the emotion detection task that is based on two main neuroscience findings. The first

neuroscience finding is the fact that emotions are most obvious in the alpha band which

ranges from 7 to 13 Hz [1]. The second neuroscience finding is that positive emotions

result in relatively greater left brain activity and negative emotions result in greater right

brain activity. So we decided to focus our experiments on the alpha band and making use

of scalp asymmetries in case of positive and negative emotions.

Finally, since one of the drawbacks of the current emotion detection using EEG work

is the use of large number of electrodes which hinders the portability of such systems, we

applied our approach on different number of electrodes that range from 4 to 25 electrodes.

This can make our system more portable and can be used in real applications. Our goal
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was to reach a reasonable accuracy with the fewest number of electrodes.

This thesis is organized as follows: chapter 2 gives an introduction about electroen-

cephalography, the different brain rhythmic activities and the types of artifacts that con-

taminate brain signals. Chapter 3 surveys related work on different channels used for

emotion detection, especially those that use EEG. Chapter 4 gives an overview of our

methodology for emotion detection using EEG. Experimental evaluation and results are

presented in chapter 5. Chapter 6 concludes the paper and outlines future directions in

the area of emotion detection using EEG.



Chapter 2

Electroencephalogram Primer

Electroencephalography (EEG) is a method used in measuring the electrical activity of

the brain from the cerebral cortex. This activity is generated by billions of nerve cells,

called neurons. Each neuron is connected to thousands of other neurons. When this sum

exceeds a certain potential level, the neuron fires nerve impulse. The electrical activity

of a single neuron cannot be measured with scalp EEG. However, EEG can measure the

combined electrical activity of millions of neurons [23].

There are two approaches for capturing EEG signals which differ in the brain layer

where the electrodes are placed to capture the signals. The first approach is the invasive

approach. In which very small electrodes are implanted directly over the cortex during

neurosurgery as shown in the Fig. 2.1. The advantage of this approach is that it gives a

very high quality EEG signals. However, it requires surgical operation.

The other approach is the non invasive approach in which electrodes are placed on the

surface of the scalp as shown in the Fig. 2.2. The problem with non invasive EEG recording

is the poor quality of the signals because the skull dampens the signals, dispersing and

Figure 2.1: Invasive BCI. The electrode is implanted directly over the cortex.

11
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Figure 2.2: Noninvasive BCI. The electrodes capture the signals from the surface of the
scalp.

Figure 2.3: Different parts of the human brain.

blurring the electromagnetic waves created by the neurons. Another problem of the non

invasive approach is that it has a low spatial resolution. It is very difficult to determine

the area of the brain that created them or the actions of individual neurons. Almost all

today’s EEG recordings are done non-invasively.

The semantic of the EEG signal depends mainly on the places where the signals are

captured. Each part of the brain has its own function. The brain has four main areas

as shown in the Fig. 2.3. The frontal lobe is responsible for body limb movements and

facial muscle movements. The parietal region is responsible for sensory information such

as taste, pressure, sound and temperature. The occipital region is the center of visual

processing. Finally, the temporal region is the center of auditory processing.

In order to allow EEG recordings performed in one laboratory be interpreted in another,

the 10-20 system, an international system of electrode placement, was introduced during

the 1950s. This system utilizes several distinctive landmarks to help researchers capture

EEG related to the tasks of interest. A top view is shown in the Fig 2.4.
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Figure 2.4: A top view of the brain that shows the locations for EEG recording according
to the 10-20 system.

Table 2.1: Different EEG Rhythms
Rhythm Frequency Range Location Reason
Delta (0-4) Hz Frontal lobe Deep sleep
Theta (4-7) Hz Midline, temporal Drowsiness and meditation
Alpha (8-13) Hz Frontal, Occipital Relaxing, closed eyes
Mu (8-12) Hz Central Contralateral Motor acts
Beta (13-30) Hz Frontal, central Concentration and thinking

Gamma (30- 100+) Hz Cognitive functions

2.1 Rhythmic Activity

EEG can be described in terms of the signal rhythmic activity. This rhythmic activity

can be divided into number of bands that differ in the range of the frequency they cover.

Table 2.1 gives an overview on the different rhythmic bands, their frequency range, the

brain location where they are most obvious and the reason why these signals are generated.

2.2 EEG Artifacts

One of the main problems that affect the accuracy of processing EEG is the large con-

tamination of the signals with artifacts. There are two main sources of noise that may

contaminate the recorded EEG signal which are technical artifacts and physiological arti-

facts.

The technical artifacts are usually related to the environment where the signals are

captured. One source of technical noise is the electrodes itself. if the electrodes are not

properly placed over the surface of the scalp or if the resistance between the electrode and

the surface of the scalp exceeds 5 kohm, this will result in huge contamination of the EEG.

Another source of technical artifact is the line noise. This noise occurs due to A/C power
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Figure 2.5: Contaminated EEG signal with line noise.

supplies which may contaminate the signal with 50/60 Hz if the acquisition electrodes are

not properly grounded. An example of the shape of EEG contaminated with line noise

can be shown in Fig. 2.5.

Another sources of noise are the physiological artifacts. Physiological artifacts are

related to the subject undergoing the EEG recording. Those physiological artifacts include

eye blinking, eye movements, Electromyography (EMG), motion, pulse and sweat artifacts.

The problem in eye blinking is that it produces a signal with a very high amplitude that is

usually much greater than the amplitude of the EEG signals of interest. Eye movements

are similar to or even stronger than eye blinks. The EMG or muscle activation artifact can

happen due to some muscle activity such as movement of the neck or some facial muscles.

This can affect the data coming from some electrodes, depending on the location of the

moving muscles. As for the motion artifact, it takes place if the subject is moving while

EEG is being recorded. The data obtained can be corrupted due to the signals produced

while the person is moving, or due to the possible movement of electrodes. Another

involuntary types of artifacts are pulse and sweat artifacts. The heart is continuously

beating causing the vessels to expand and contract; so if the electrodes are placed near

blood vessels, the data coming from them will be affected by the heart beat. Sweat

artifacts can affect the impedance of the electrodes used in recording the brain activity.

Subsequently, the data recorded can be noisy or corrupted.

These different types of noise make the processing of EEG a difficult task especially in

real time environment where there is no control over the environment or the subject.

2.3 Emotion and Rhythmic Activity

There has been number of approaches to infer emotions from EEG rhythmic activity.

Most emotions are found in the alpha band with different peak frequencies where the
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right hemisphere shows negative emotions such as fear, disgust and stress whereas the

left hemisphere shows positive emotions such as happiness. Shemyakina et al. [24] show

that significant differences in the local EEG power and spatial synchronization can be

observed with different emotions. Musha et al. [17] showed that cerebral blood Flow

(CBF) increases during sadness and decreases during happiness. The region that shows

the difference between sadness and happiness is the frontal pole with left CBF being higher

during sadness and lower during happiness.

Coan et al. [25] also showed that positive emotions are associated with relatively greater

left frontal brain activity whereas negative emotions are associated with relatively greater

right frontal brain activity. They also showed that the decrease in the activation in other

regions of the brain such as the central, temporal and mid-frontal was less than the case

in the frontal region.

Kostyunina et al. [1] showed that emotions such as joy, aggression and intention results

in an increase in the alpha power whereas, emotions such as sorrow and anxiety results in

a decrease in the alpha power. As for the valence and the arousal of emotions, Musha el

al. [17] showed that valence of emotion is associated with asymmetries in the frontal lobe

whereas, arousal is associated with generalized activation of both the right and the left

frontal lobes.

Sammler et al. [26] showed that emotions elicited from musical stimulus resulted in an

increase of frontal midline theta power. They suggest that the new findings of the effect

of theta power on analyzing emotions in EEG is closely related to the interaction with

attentional functions.

To sum up, alpha band is the most distinctive range of frequencies by which we can

make use of to infer emotions from EEG signals and there might be some theta band

effect. Also, EEG signals acquired from the right hemisphere can be a good predictive

of negative emotions such as sadness, anger and fear whereas, EEG signals acquired from

the right hemisphere can be a good indicative if positive emotions such as joy.
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Related Works

Detecting users’ cognitive states and emotions are very useful in many different fields. One

of these areas is usability engineering. They can provide information about the efficacy

of the system interface and can provide information for system adaptation for better

usability. Cognitive states, emotions and working memory load are also, important to

show how hard the user is working to use an interface. This can be an important indicator

of potential user’s errors and a predictive way to know how well a user gets acquainted

with the system. Another important field which cognitive state and emotion detection

have a great effect on is monitoring the alertness state of the subject. This can help in

monitoring people while working on safety critical systems such as air traffic control and

nuclear power plants.

3.1 General Approach for Emotion/Cognitive State

Detection

The general approach for any system that rely on brain signals is a layered approach as

shown in Fig. 5.1. There are three main stages that the signals have to pass through

in order to reach a final decision which are signal preprocessing, feature extraction and

classification.

16
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Figure 3.1: Multistage approach for emotion detection using EEG.

3.1.1 Signal Preprocessing

Signal preprocessing is the stage during which the signal is passed through a number of

filters for artifact removal and for getting the signal ready for the next stages.

a. Artifact Removal

There are number of approaches followed for artifact removal. The easiest approach is to

manually reject highly contaminated EEG signals and do not pass them through the other

stages. However, the problem is that EEG studies do not have much data recorded so

rejecting part of the data will make researchers loose number of trials. The other problem

of this approach is that it means that only clean EEG data will be processed which make

it difficult to apply the same approach to real applications because EEG will usually be

contaminated with lots of artifacts as there will be no control on the environment of

recording.

Another approach is to use artifact subtraction. This is done by using sensors that will

record eye movements (EOG), facial muscles (EMG) and subtract these signals from EEG

signals. The problem with this approach is that it requires more electrodes which usually

placed on the face which will hinder the possibility of using them in real applications.

A third approach is to use low pass and high pass filters. Artifacts such as heart beats,

eye movements and eye blinks are found in low frequency less than 3 Hz. Subsequently, a

high pass filter can remove such artifacts. Also, line noise which are in the range of 50-60

Hz can be removed using a low pass filter. Although this is a very good technique for

artifact removal, some EEG information from 0-3 Hz and from 50-60 Hz is lost.

Another more sophisticated technique is to use blind source separation (BSS). A well

known method of BSS is Independent Component Analysis (ICA). ICA decomposes the

signal into independent components. For instance, if we passed contaminated EEG data,

we will get the EEG signal component and the artifacts signal component. One problem

of using ICA is that it gives the two components of the signal without specifying which
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component is the EEG and which component is the artifact. This requires either using

a manual technique to specify the EEG signal or to use a heuristic based approach to

automatically select the EEG component as described in [27] . Another problem of using

ICA is the time complexity. These two problems make it difficult to be applied in real

time applications.

b. Common Reference

A widely used method of referencing is the common reference technique. This method used

one common reference for all electrodes. The activity of the reference site is subtracted

from all the activities of all the other electrodes. Researchers usually select electrodes

placed on the right mastoid bone as a common reference.

c. Average Reference

Another method is the average reference. The average reference subtracts the average

of the activity at all electrodes from the measurements. This method is based on the

principle that the activity at the whole head at every moment sums up to zero. Therefore,

the average of all activity represents an estimate of the activity at the reference site.

3.1.2 Feature Extraction

After removing the artifacts, signals pass through the feature extraction stage. Feature

extraction is the process of selecting features that are representative to the specific cogni-

tive or emotion state and selective from other extracted features so that we will not suffer

from redundant features.

a. EEG Frequency Power Band

As previously explained, the brain signals have rhythmic activity and each rhythm can

be captured from a specific region of the brain. Also, different set of information can

be inferred from different rhythmic activities. One of the most commonly used methods

is to convert the signal into the frequency domain using Fast Fourier Transform (FFT)

or Power Spectral Density (PSD). After that features are extracted from the different

frequency bands described in the previous chapter.
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b. Spatial Domain Features

Other methods are used to extract features from the signal in the time domain. One of

these approaches is using Hjorth parameters [28]. Hjorth described three parameters that

can be extracted from EEG parameters which are activity, mobility and complexity.

• Activity, measures the mean power of the signal and it is measured as the standard

deviation.

• Mobility, represents the mean frequency in the signal. It is computed as the ratio

between the standard deviation of the slope and standard deviation of the amplitude.

• Complexity, is expresses as the number of standard slopes actually seen in the signa

during the average time required for one amplitude.

c. Heuristic Features

Information other than EEG power band is generated as features. This includes the peak

frequency in certain band as used by [1] or the number of electrodes whose power is greater

than zero. Another feature is the number of positive features and the number of features

above certain threshold.

3.1.3 Feature Reduction

Large number of features are generated during the feature selection stage that could ex-

ceed 100,000 features. This requires extracting relevant and distinctive features for the

classification task.

There are several methods used for reducing the number of features. One of the most

commonly used technique is principal component analysis (PCA). PCA is composed of a

set of mathematical procedures that converts a set of correlated variables into a smaller

set of uncorrelated variables. PCA starts with k training samples where each sample is

represented by a vector

X = (x1, x2, ...xm)

All training data are organized in a matrix X with each row as a vector Xi representing

sample (i). The sum of each attribute (j) over the (k) samples is given by:
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Sj =
k∑

i=1

Xij (3.1)

The mean M − j for a given attribute (j) over the (k) samples is given by:

Mj = X̄ =
1
k

k∑

i=1

Xij (3.2)

The vector of means will be

M = (M1,M2, ...Mm)

The standard deviation is then computed. The standard deviation (S.D.) is a measure of

the spread of the data around the mean. The S.D. of each attribute over the (k) samples

is given by:

σj =

√√√√1
k

k∑

i=1

(Xij − X̄j)2 (3.3)

The vector of S.D. for the m attributes is:

σ = (σ1, σ2, ...σm)

The covariance matrix is then computed. The covariance is a measure of the variability

of two variables with respect to each other. So the correlation between every two variables

is computed. If x and y are such two variables, then the covariance is defined as:

cov(x, y) =
1

k − 1

k∑

i=1

(Xi − X̄)(Yi − Ȳ ) (3.4)

Finally, the eigenvalues and eigenvectors are computed out of the covariance matrix.

Let C, covariance matrix, be an (m x m) data matrix and V an (m x n) transformation
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Emotional State

      Feature n      Feature 2      Feature 1

Figure 3.2: Bayesian Network DAG example. The emotional state node represents the
hidden state whereas feature 1, feature 2,... feature n nodes represent the observed nodes.
The edges represent the conditional dependencies between each feature and the emotional
state.

matrix. The eigenvalue problem of C is to find the solutions of the system:

C.V = λ.V

The scalar λ is an eigenvalue of C, and V is the corresponding eigenvector.

When we project the original samples of attributes on that axis, the resulting values

form a new variable. For the first eigenvector, the variance of this new variable is the

maximum and its share in the variances of all the data is given by the first eigenvalue.

The next maximum variance is given by the projection on the second eigenvector with

the share given by the second eigenvalue, and so on. So, we can select the most relevant

features by selecting those which have the highest eigenvalues.

3.1.4 Classification

After selecting distinctive uncorrelated features, the feature vector is passed to the classifier

which infers which type of emotion such a vector represents. A classifier is sort of a function

that is able to learn the relationship between feature vectors and their classes and given

a new feature vector, it can infer to which class it belongs. There are number of different

classifiers that are widely use.

a. Bayesian Networks

A Bayesian network [29], belief network, is a probabilistic graphical model that represents

a set of random variables and their independencies using a directed acyclic graph (DAG)

as shown in Fig 3.2. There are two types of nodes in the DAG, hidden nodes and observed

nodes. The observed nodes are the extracted features, whereas the hidden node is the
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node that we want the inference engine to predict its probability of occurrence.

Edges between the node represent the conditional dependencies between the two given

nodes connected to each other. Bayesian Networks are trained by given each node a prior

probability which is the probability of occurrence of such random variables. After that a

conditional probability table is constructed which gives the probability of each node given

each of its parents. Hence, if the parents are m variables then the conditional probability

table could be represented by a table of 2m entries, one entry for each of the 2m possible

combinations of its parents being true or false.

Efficient algorithms exist that perform inference and learning in Bayesian networks.

The probability of the hidden node is given by the following equation

P (E|F1, F2, F3, ...FN ) =
P (C)P (F1, F2, F3, ...FN |E)

P (F1, F2, F3, ...FN )

where E is the hidden node that could represent one of the emotions and F1, F2,...Fn

represent the extracted features. P (F1, F2, F3, ...FN |E) should be there because it is one

of the values of the conditional probability table. If the features are independent so the

value of P (F1, F2, F3, ...FN ) can be computed as

P (F1, F2, F3, ...FN ) =
n∏

i=1

Fi

where Fi is given in the prior probability of each feature observed node.

b. Support Vector Machines

A Support Vector Machine (SVM) [30] is a supervised learning technique that is able

to separate highly dimensional data. An SVM constructs a hyperplane that can have a

linear or radial or polynomial shape between the data points of different classes as shown

in Fig. 3.3. The hyperplane is constructed such that the separation between the points of

the different classes is maximal.

SVMs are very powerful classifiers. Even though they only search for a separating

hyperplane, They are able of finding very complex divisions between classes. The power

of this method lies in the fact that the data are transformed into a high-dimensional space,

using a kernel function. Using a proper transformation, it will be easier to separate the

points in this higher dimensional space. If the separating hyperplane is constructed in
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Figure 3.3: Support Vector Machines.

a N-dimensional space, where N is the number of training vectors, the data points can

always be perfectly separated. However, the memory and computational demands increase

dramatically with a larger training set.

3.1.5 Approaches of Eliciting Emotions

There are different psychological techniques for emotion elicitation. These techniques

include using a stimulus to produce the required emotion or using an imagination technique

or follow the facial feedback paradigm.

a. Presentation of Emotional Stimulus

Most of the approaches used in the literature use auditory or visual stimulus to entice

emotions ad in [14] [15] [1]. In these research, an image from the International Affective

Picture System (IAPS) [31] is shown to the participant for a number of seconds which

is enough to entice this emotion. These images are usually coded on the valence-arousal

scale.

Using images as a stimulus can be considered sort of event related potential on which

an event takes a place and as a result, certain brain signals are produced. An example of

joyful image from the IAPS database is shown in Fig. 3.4. This is the approach that is

used in almost all the computer science research we are aware of.
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Figure 3.4: An example of a joyful image from the IAPS database.

Other researchers use music or film excerpts as a stimulus. This technique is widely

used and very successful as the self reports following the stimulus are relevant to the

intended emotion.

b. Imagination Technique

The other approach is to ask the participant to remember or relive a situation where s/he

felt certain emotional state. For instance, a participant may think of an accident that s/he

saw which resulted in a negative emotional state.

Another imagination technique is using guided imagination. In guided imagination,

the participants usually listen to a story or a scene that is often acted by actors. The

participants might also, listen to a story on which the teller of the story inform the

participants of what to feel or think.

This technique is widely used by psychologist but only used by Kostyunina et al [1]

in computer science research. The major limitation of such technique is that it is not an

actual emotion, it is considered to be a relived emotional state.

c. Facial Feedback Paradigm

The idea behind the technique that is based on the facial feedback paradigm is to ask

participants to perform certain facial expressions that will result in the required emotion

at the end. This approach may be superior to the other forms of induction as Ekman

et al. [20] found that emotions generated with a directed facial action task results in a

finer distinction between emotions. However, this approach contaminates brain signals

with facial muscle artifacts and that’s why this approach is not conceived by computer

scientists. We decided to explore this approach because it was not used in the literature
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and because it helps making our system close to actual real time emotion detection systems

since there will be lots of facial muscle and other artifacts that will contaminate our EEG

data.

3.2 Cognitive State Detection using EEG

Cognitive state detection has been around for quite some time. There are some interesting

conclusions that were made by neuroscientists in this area. Kilmesch et al [32] found that

the decrease in the theta rhythm and the increase in the beta rhythm indicate the presence

of higher memory load. The problem is that these indicators are only valid when averaged

over large amount of time and over data captured from different number of users. This can

be considered a problem especially for real time applications. They also, use 32 electrodes

for experimentation which hinders integrating their approaches in real time system.

Grimes et al [33] tried to devise a technique for reliable measurement of working mem-

ory load to be used in real time adaptable systems. They managed to reduce the number

of electrodes to only 8 electrodes, have their system trained on smaller datasets and exper-

iment with smaller window sizes so that their approach can be used in real time systems.

They managed to reach an accuracy of 99% in classifying between two levels of working

memory load and 88% in classifying between four levels of working memory loads which

differ in the mental effort the user has to exert in order to use the application. In order

to produce different memory workloads, Grimes et al [33] used the N-back task technique.

In their experiments, a sequence of images or letters will be viewed to the participant.

The participant will be given a letter or an image and asked whether this letter or image

appeared in the sequence N letters before. The variation in the value of N will result in

higher memory load.

For the signal processing, the authors down sampled the captured signals to only 256

Hz using a low pass filter. They divided the signal into overlapping widows and then

converted it into the frequency domain using power spectral density estimation (PSD). As

for feature generation, they divided the signal into three power bands. They collected the

values of signal power ranging from 4 Hz to 13 Hz in 1 Hz intervals. They also, collected the

values of signal power ranging from 14 Hz to 31 Hz in 2 Hz intervals. Finally, they collected

the values of signal power ranging from 32 Hz to 50 Hz in 4 Hz interval. The reason why

they made such choices is to have higher resolution estimates and more distinct features
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in these smaller power bands. Feature selection and dimensionality reduction is done by

selecting the most predictive and robust features using relative information gain criteria.

This is done by discrediting each feature into 15 equally spaced bins and calculating mutual

information based on Nave Bayes density model.

As for the classification, Grimes et al [33] propose using 24-fold cross validation. They

made sure that the selected training sets are drawn from blocks that are different from

those used for testing. The reason why they made such choice is to make sure that

the training data are not found close to the testing data which will overestimate their

accuracy of the system and will not be suitable for a real time HCI system. Grimes et

al [33] experimented with different number of EEG electrodes that range from only 1

electrode to 32 electrodes. They showed that 8 electrodes provide a good tradeoff between

accuracy and speed. They also, experimented with different window sizes that range from

2 seconds to 120 seconds and showed the tradeoff between the accuracy and the choice of

the window size which is considered to be a major factor on applying the approach in real

time systems.

Another approach for mental task classification was proposed by Lee and Tan [34].

The main purpose of their approach is to prove that they can detect mental states with

a low cost EEG data acquisition and amplifiers and with only 2 electrodes. The authors

were able to classify between three main mental tasks which are rest, mathematical cal-

culation and geometric rotation. The participants are asked to stay still and to perform

all the actions while their eyes are closed. These instructions were gives to the subjects in

order to minimize the motion and eye movement artifact. The participants are given the

instructions aurally and they are asked to perform the action within a given time period.

For the signal processing, Lee and Tan [34] suggests transforming the signal into the

frequency domain. They do that by slicing the EEG signal into small overlapping windows

and then take the Fourier Transform of the resulted signal. For each window, the authors

compute the signal power in each of the six frequency bands for each electrode, the phase

coherence in each band across the electrodes and each band power difference between the

two electrodes. In addition to these features, they compute the mean spectral power, peak

frequency, peak frequency magnitude, mean phase angle, mean sample value, zero crossing

rate, number of samples above zero and the mean spectral power difference. After that

they compute the product and division of each pair of features. The reason why they do

that is the fact that non linear manipulation of features is a common machine learning
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technique used to compensate for potential lack of expressiveness in the statistical model

used for classification. After feature extraction, the authors apply Weka’s VfsSubsetEval

operator for dimensionality reduction. This operator reduces the number of features to

only 51 features. They then applied a more computationally expensive feature selection

process that builds a classifier with an empty set. The algorithm stars to add or remove

features based on their effect on the overall accuracy. Finally, they used a Bayesian network

classifier to identify the three different tasks. The used 10 fold cross validation as in [33]

and reached an average accuracy of 84%. The major drawback of this approach is that it

is not suitable for real time application where there will be lots of motion and eye blinks.

Another type of cognitive tasks is alertness. An approach for measuring users’ alertness

is proposed by Jung et al [35]. In order to collect EEG data, the participants are seated in

front of a computer. The participants receive ten different visual and auditory stimuli per

minute. For each stimulus, the user has to press a button to show whether the stimulus

was visual or auditory. The time required by the user to press the button in response to

the stimulus defines how alert the user is.

After recording the signal, Jung et al [35] suggest using a heuristic based approach

for artifact removal. They suggest removing parts of the signals that are below or above

50 uV because they are produced due to eye blinks and muscle movement. After that a

median filtering using a moving a 5-sec window was used to further minimize the presence

of artifacts. After artifact removal, the signal is converted to a logarithmic scale. Due to

the variability of EEG signals from one subject to another, Jung et al [35] suggests using

artificial neural networks due to its flexibility and strong discriminative power. Principal

Component Analysis (PCA) was applied to the full EEG log spectral data on the subspace

formed by the eigenvectors corresponding to the largest eigenvalues. The authors found

that using only 4 principal components will result in accuracy of 89%.

The area of cognitive detection using EEG has captured the attention of researchers

working in the US market. One of the US application patents that describe a technique

of task classification and recognizing activity is proposed by Microsoft Corporation [36].

The main goal of this patent is to make use of users’ cognitive state to provide a better

user interface for better usability. Tan and Lee [36] propose a method for classifying brain

states using EEG signals. The captured data will be divided into a number of overlapping

windows. Each window is transformed to the frequency domain and then features are

generated from the data in the EEG power spectrum. More features will be generated using
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the EEG base features and then they propose applying a feature selection algorithm for

dimensionality reduction. The authors are suggesting similar techniques to that described

in [34]. There are number of mental states that are of great importance such as cognitive

workload, task engagement, communication mediation, interpreting and predicting system

response, surprise, satisfaction, and frustration. The goal of this patent is to distinguish

between at least two of these cognitive states and to determine the transition between the

different mental states.

3.3 Emotion Detection using EEG

One of the earliest attempts to prove that EEG signals can be used for emotion detection

is proposed by Chanel et al [14]. Chanel et al [14] were trying to distinguish among ex-

citement, neutral and calm signals. They compared the results of three emotion detection

classifiers. The first one was trained on EEG signals, the second classifier was trained

on peripheral signals such as body temperature, blood pressure and heart beats. The

third classifier was trained on both EEG and peripheral signals. In order to use EEG

signals, they used a bandpass filter to remove both technical and physiological artifacts.

In order to stimulate the emotion of interest, the user is seated in front of a computer

and is viewed an image to inform him/her which type of emotion s/he has to think of.

They then captured the signals from 64 different electrodes that cover the whole scalp.

The reason why they used 64 electrodes is to capture signals in all the rhythmic activity

of the brain neurons. As for feature extraction, they simply transformed the signal into

the frequency domain and use the power spectral as the EEG features. Finally, they used

a Naive Bayes Classifier which resulted in an average accuracy of 54% compared to only

50% for a classifier trained on physiological signals. The accuracy of combining both types

of signals resulted in a boost of accuracy that reached up to 72%.

The problem with the research done by Chanel et al [14] is the idea of using 64 elec-

trodes which results in large processing time which hinders the fact of using this system

in real time. They also, used simple feature extraction and classification algorithms which

resulted in the low 54% accuracy. Ansari et al [15] improved the work done by Chanel et

al [14]. They proposed using Synchronization Likelihood (SL) method as a multi-electrode

measurement which allowed them along with anatomical knowledge to reduce the number

of electrodes from 64 to only 5 with a slight decrease in accuracy and huge improvement
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in performance. The goal is to distinguish between three emotions which are exciting-

positive, exciting-negative and calm. For signal acquisition, they acquired the signal from

(AFz, F4, F3, CP5, CP6). For feature extraction, they used sophisticated techniques such

as Hjorth Parameters and Fractal Dimensions and they then applied Linear Discriminant

Analysis (LDA) as their classification technique. The results showed an average accuracy

of 60% in case of using 5 electrodes compared to 65% in case of using 32 electrodes.

Another approach was adopted by Kostyunina et al [1]. They used 10 different elec-

trodes located at F3, F4, C3, C4, T3, T4, P3, P4, O1, O2 in order to differentiate between

four emotions which are joy, anger, fear and sorrow. Kostyunina et al [1] applied a low

pass filter to reject all frequencies higher than 30 Hz. They applied FFT and focused on

getting the features from the range of [0-30] with resolution of 0.2 Hz. The interesting

thing about this research is that the authors used event related desynchronization in which

the subjects are asked to imagine a situation that will result in changing their emotion

to one of the four emotions of interest. Kostyunina et al [1] reached the conclusion that

joy and anger emotions result in an increase in the peak frequencies of the alpha band

whereas the case of fear and sorrow emotions result in a decrease in the peak frequencies

of the alpha band.

A different technique was taken by Musha et al [17]. They used 10 electrodes (FP1,

FP2, F3, F4, T3, T4, P3, P4, O1, and 02) in order to detect of four emotions which are

anger, sadness, joy and relaxation. They rejected frequencies lower than 5 Hz because

they are affected by artifacts and frequencies above 20 Hz because they claim that the

contributions of these frequencies to detect emotions is small. They then collected their

features from the theta, alpha and beta ranges. They performed cross correlation on

each electrode pairs. The output of this cross correlation is a set of 135 variables that is

linearly transformed to a vector of 1x4 using a transition matrix. Each value indicates the

magnitude of the presence of one of the four emotions. This means that any testing sample

will be a linear combination of the four emotions. After that they apply certain threshold

to infer the emotion of interest. Creating the transition matrix is done by collecting data

from 9 different subjects who were trained to make 4 emotions. The training data are

divided into two sets and the transition matrix was generated on one set and tested on

another.

Another research was done by Murugappan et al [37]. The purpose of this research was

to investigate whether using an audio-visual stimulus yields better induction of emotional
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states or using visual stimulus only. Murugappan et al [37] investigated the possibility

of using visual and audio visual stimulus for detecting the human emotion by measur-

ing electroencephalogram (EEG). They designed Visual and audiovisual stimulus based

protocols to acquire the EEG signals over five healthy subjects using 63 bio sensors that

were placed all over the surface of the scalp. They analyzed the EEG signals using dis-

crete wavelet transform and used neural networks for classification. EEG signals were

decomposed into five frequency sub-bands using ’db4’ wavelet function and two statistical

features were extracted from the alpha band. These statistical features were used as in-

put to the neural network for classifying five emotions (disgust, happy, surprise, sad and

anger). In the experiments of recognizing human emotions from visual and audiovisual

stimulus, they reached average recognition rate of 56.66% and 66.67% for the visual and

audiovisual stimulus respectively. They reached a conclusion that the audiovisual stimulus

based emotion recognition gives better classification accuracy over visual stimulus.

Another technique for feature extraction was proposed by Murugappan et al [38]. They

designed a competent acquisition protocol for acquiring the EEG signals. The brain signals

were produced as a result of audio-visual stimulus. The EEG data has been collected from

6 healthy subjects with in an age group of 21-27 using 63 bio sensors. Three emotions

have been identified with higher agreement. After preprocessing the signals, discrete

wavelet transform is employed to extract the EEG parameters. Murugappan et al [38]

wanted to prove that wavelet transforms can result in distinctive features. The feature

vectors derived from the wavelet transform on 63 biosensors form an input matrix for

emotion classification. They then used Fuzzy C-Means (FCM) and Fuzzy k-Means (FKM)

clustering methods for classifying the emotions. They also analyzed the performance of

FCM and FKM on reduced number of 24 biosensors model. Finally, they compared the

performance of clustering the discrete emotions using FCM and FKM on both 64 biosensors

and 24 biosensors. Their results showed the possibility of using wavelet transform based

feature extraction for assessing the human emotions from EEG signal.

Another EEG emotion detection system is proposed by Li et al [39]. Li et al [39]

proposed an emotion recognition system based on time domain analysis of the bio-signals

for emotion features extraction. Li et al [39] were trying to make use of the spatial domain

features to differentiae between three different types of emotions (happy, relax and sad).

Three selected videos from youtube were used as stimulus for each emotion. A survey

was conducted among 30 human subjects who did not participate in the experiments to
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evaluate the integrity of the videos to invoke the respective emotions. In order to gather

the EEG data, they showed the videos to five Chinese participants, 3 males and 2 females.

For feature extraction, they extracted six spatial domain features. They did not apply any

signal preprocessing tasks for noise removal. For classification, they used the relevance

vector machines (RVM) which share lots of characteristics with SVM.

A new emotion elicitation technique is proposed by Mikhail et al [40]. Mikhail et al [40]

proposed using an approach builds on the facial feedback paradigm which shows that facial

expressions are robust elicitors of emotional experiences. 36 subjects (10 males and 26

females) were asked to make certain facial expressions that correspond to four different

emotions: anger, fear, joy and sadness. For feature extraction, they focused on extracting

features from the alpha band only and making use of the changes between the voltages of

the right and left hemisphere relative to positive and negative emotions. They succeeded

in reducing the number of features from 145000 features to only 3654 features. Finally,

they were able to reach an average accuracy of 51% for joy emotion, 53% for anger, 58%

for fear and 61% for sadness.

Other research implies a multimodal technique for emotion detection. One of these

studies was done by Savran et al [16]. They propose using EEG, functional near-infrared

imaging (fNIRS) and video processing. fNIRS represents a low-cost, user-friendly, practical

device for monitoring the cognitive and emotional states of the brain. fNIRS detects the

light that travels through the cortex tissues and is used to monitor the hemodynamic

changes during cognitive and/or emotional activity as shown in Fig. 3.5. Savran et al [16]

combined EEG with fNIRS along with some physiological signals in one system and fNIRS

with video processing in another system. They decided not to try video processing with

EEG because facial expressions result in much in noise in the EEG signals. Also, when

they recorded both EEG and fNIRS, they excluded the signals captured from the frontal

lobe because of the noise produced by the fNIRS recordings. For experimentation, they

showed the participant images that will induce the emotion of interest and then recorded

fNIRS, EEG and video after showing these images. The most difficult part of this research

is making an accurate synchronization mechanism for making the different recordings at

the same time especially because every device was made to be used alone so they managed

to run each system on a different computer and send a trigger to all computers at the

time of showing the stimulus. The fusion among the different modalities is done on the

decision level and not on the feature level.
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Figure 3.5: The figure shows how FNIRS detects the light that travel through the cortex.

Figure 3.6: Emotiv headset with 16 electrodes to cover the different parts of the brain.

There are a number of products that are currently available in the US market and

are based on detecting emotions using EEG. One of these products is Emotiv Systems

headset. The researchers at Emotiv developed a methodology for detecting and classifying

mental states [41]. They developed a headset with up to 16 electrodes shown in Fig. 3.6.

This headset covers the four main regions of the brain. After capturing the signal, a

signal preparation is performed. This includes noise filtering and artifact removal using

techniques such as Independent Component Analysis (ICA). After that they start buffering

the captured EEG signals and then they transform the buffered data to the frequency

domain and extract features based on the different power bands. Due to the large number

of extracted features, they apply some techniques for feature refinement and then they

apply a method for detecting and classifying mental states which include emotions such as

instantaneous excitement, long term excitement and boredom/engagement. The authors

claim that different mental states and emotions result in the change and the increase of

the signal power of one or more than one bio-signal representations [41].

In order to make sure that Emotiv system works for new users, Emotiv system allows
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the new user to train the system on his/her signals so that the classification accuracy

increases. This is done by a method of calibrating the signature for use in the method of

detecting and classifying the mental state [41].

3.4 The Problem of Emotion Detection using EEG

As we have seen from the related works, the area of emotion detection using EEG is

relatively new. There is much work that can be done to enhance the current state of

the art. The available systems have two main drawbacks. The main disadvantage of the

previously mentioned research is the use of constrained environment to capture emotion

related EEG data in which the participants are asked to reduce their facial expressions

and head motions. Moreover, highly contaminated EEG data with noise are rejected and

removed from the analysis. This affects the possibility of integrating such approaches into

real applications where there are no constraints on the participants.

Another disadvantage is that some of the previously mentioned systems [14] [16] [1] [17]

are using large number of electrodes to acquire EEG signals or EEG and physiological

signals. The number of such electrodes range from 10 to 32 electrodes which affects the

portability of such systems and hinders the possibility of making these systems run in

real time. Moreover, as the number of electrodes increase, the processing time increases

as each electrode will pass through all the stages of the different approaches. Another

problem with large number of electrodes is that it will require sophisticated headset which

will again affect the portability of such systems.

In order to provide better solutions to the drawbacks of the prior work, we focused

our research on applying different experiments that were not applied before. First, since

the main problem with prior art is the use of constrained environment which makes such

approaches difficult to be applied in real life situation, we thought of experimenting with

a totally new elicitation technique that depends on using voluntary facial expression as a

means for enticing emotions. Hence, instead of using a database that is free from artifacts

such as head motions, eye blinks and facial expressions, we used a database that is highly

contaminated with noise produced from facial expression. This can make our experiments

be applied on a dataset that is close to real life situations where there will be no control

over the user.

Also, instead of applying PCA or any algorithm for dimensionality reduction, we
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thought of experimenting with feature sets that were reduced based on some ideas that

we gathered from neuroscience findings. So we focused on inferring some equations for re-

ducing the number of features that were fed into the classifier. We generated two different

feature sets and applied different classifiers to such feature sets.

Finally, in order to solve the other problem of the prior work which is the use of large

number of electrodes, we experimented with different number of electrodes that range from

4 up to 25 electrodes. We used two different techniques for selecting the electrodes to be

eliminated. Our main goal was to reach a reasonable accuracy with the fewest possible

number of electrodes so that our approach can be easily integrated in real life situations

since the fewer the number of electrodes the more convenient the system will be for the

user.
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Methodology

One of the problems of the current emotion detection systems using EEG is the use of

constrained environment to capture emotion related EEG data in which the participants

are asked to reduce their facial expressions and head motions. Moreover, highly contam-

inated EEG data with noise are rejected and removed from the analysis. This affects

the possibility of integrating such approaches into real applications where there are no

constraints on the participants.

Another disadvantage is that some of the previously mentioned systems [14] [16] [1] [17]

are using large number of electrodes to acquire EEG signals or EEG and physiological

signals. The number of such electrodes range from 10 to 32 electrodes which affects the

portability of such systems and hinders the possibility of making these systems run in

real time. Moreover, as the number of electrodes increase, the processing time increases

as each electrode will pass through all the stages of the different approaches. Another

problem with large number of electrodes is that it will require sophisticated headset which

will again affect the portability of such systems.

Given the problems of the previously mentioned state of art, the goal of this research

is to extend existing research in three principal ways.

1. Instead of using a visual or an auditory stimulus for emotion elicitation, we decided

to use voluntary facial expression based on the facial feedback paradigm which shows that

facial expressions are robust elicitors of emotional experience, as a means for eliciting

emotions. We asked professor John J.B. Allen from the psychology department in the

university of Arizona to share his database of EEG signals with us. The reason we used

this database is because the signals are recorded by highly trained people who have been

35
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working in the field for more than 10 years. Also, studying emotions is mainly done by

psychologists, so they are very experienced in recording EEG signals relate to different

emotions. Finally, they used sophisticated data acquisition devices which is not available

to us. Although this contaminates EEG with noise, it helps to test our approach on

unconstrained environment where the users will not be given any special instructions

about reducing head motions or facial expressions.

2. We used a new technique for selecting features that are relevant to the emotion

detection task that is based on two main neuroscience findings. The first neuroscience

finding is the fact that emotions are most obvious in the alpha band which ranges from 7

to 13 Hz [1]. The second neuroscience finding is that positive emotions result in relatively

greater left brain activity and negative emotions result in greater right brain activity. So we

decided to focus our experiments on the alpha band and making use of scalp asymmetries

in case of positive and negative emotions. We experimented with different sets of features

and showed how the classification accuracy changes with each set of features.

3. Since one of the drawbacks of the previous work is the use of large number of

electrodes which hinders the portability of such systems, we applied our approach on

different number of electrodes that range from 4 to 25 electrodes. This can make our

system more portable and can be used in real applications. Our goal was to reach a

reasonable accuracy with the fewest number of electrodes especially because UCSD has

devised a new cap with only seven wireless electrodes that can be used in real systems [42].

So our goal was to reach a reasonable accuracy with only seven electrodes.

4.1 Research Method

4.1.1 EEG database

In this research, we used the database of EEG signals collected in the university of Arizona

by Coan et al. [25].

4.1.2 Participants

This database contains EEG data recorded from thirty-six participants (10 men and 26

women) [25]. All participants were right handed. The age of the participants ranged from

17 to 24 years, with a mean age of 19.1. The ethnic composition of the sample was 2.7%
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(a)

(b)

(c)

(d)

Figure 4.1: Muscle movements in the full face conditions: (a) joy, activating AUs 6 (cheek
raiser), 12 (lip corner puller), and 25 (lips part); (b) sadness, activating AUs 1 (inner brow
raiser), 6 (cheek raiser), 15 (lip corner depressor), and 17 (chin raiser); (c) anger, activating
AUs 4 (brow lowerer), 5 (upper lid raiser), 7 (lid tightener), 23 (lip tightener), and0or 24
(lip pressor); (d) fear, activating AUs 1 (inner brow raiser), 2 (outer brow raiser), 4 (brow
lowerer), 5 (upper lid raiser), 15 (lip corner depressor), and 20 (lip stretch) [25].

African American, 2.7% Asian, 18.9% Hispanic, and 75.7% Caucasian.

4.1.3 Procedure

According to Coan et al. [25], the experimenter informed participants that they were taking

part in a methodological study designed to identify artifacts in the EEG signal introduced

by muscles on the face and head. Participants were further told that accounting for these

muscle movement effects would require them to make a variety of specific movements

designed to produce certain types of muscle artifact. The presence of such muscle artifacts

make the problem of emotion detection using EEG very difficult because the EEG signals

will be contaminated with muscle artifacts which gets it close to real time applications

where there will be no control over the facial muscles or other sources of noise.



Chapter 4: Methodology 38

Participants were led to believe that they were engaged in purposely generating error-

muscle artifact. It was hoped that although participants might detect the associations

between the directed facial action tasks and their respective target emotions, they would

not think of the target emotions per se as being of interest to the investigators. After

participants were prepared for psychophysiological recording with EEG and facial EMG

electrodes , participants sat quietly for 8 min during which resting EEG was recorded

during a counterbalanced sequence of minute-long eyes-open and eyes-closed segments.

For the facial movement task, participants were seated in a sound-attenuated room,

separate from the experimenter. The experimenter communicated with participants via

microphone, and participants faces were closely monitored at all times via video monitor.

Participant facial expressions were recorded onto videotape, as were subsequent verbal

self-reports of experience. The experimenter gave explicit instructions to participants

concerning how to make each facial movement, observing participants on the video monitor

to ensure that each movement was performed correctly.

Participants were asked to perform relatively simple movements first, moving on to

more difficult ones. For example, the first movement participants were asked to perform is

one that is part of the expression of anger. This movement engages the corrugator muscle

in the eyebrow and forehead drawing the eyebrows down and together. Subjects were

asked to make the movement in the following manner: ”move your eyebrows down and

together.” This was followed by two other partial faces, making three partial faces in all.

No counterbalancing procedure was used for the control faces, as they were all considered

to be a single condition.

One of the approaches that describes facial movements and their relation with different

emotions is the Facial Action Coding System (FACS) [43], a catalogue of 44 unique action

units (AUs) that correspond to each independent motion of the face. It also includes

several categories of head and eye movements. FACS enables the measurement and scoring

of facial activity in an objective, reliable and quantitative way. Expressions included joy

(AUs 6 + 12 + 25), anger (AUs 4 + 5 + 7 + 23/24), fear (AUs 1 + 2 + 4 + 5 + 15 + 20),

sadness (AUs 1 + 6 + 15 + 17) and disgust (AUs 9 + 15 + 26) can be shown in Fig 4.1.

These kinds of action units are used to entice such emotions.
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Signal Preprocessing

Bandpass �lter [3-30] HzDownsampling to 256 HzO�ine Average Reference

Classi�cationFeature Extraction

Figure 4.2: Three stages for analyzing the signal, preprocessing, feature extraction and
classification. In the signal preprocessing stage, three filters are used.

4.1.4 Signal Preprocessing

Fig. 4.2 shows the three stages that EEG data are passed through during the signal

preprocessing stage which are offline average reference, downsampling and bandpass filter.

4.1.4.1 Offline Average Reference and Downsampling

Our EEG data is referenced online to Cz.

• offline average reference, According to the recommendation of Reid et al [44] who

pointed out that this online referencing scheme did not correlate particularly well,

an offline average reference is performed for the data by subtracting from each site

average activity of all scalp sites.

• downsampling, After that our data are downsampled from 1024 Hz to 256 Hz to

reduce the amount of data.

4.1.4.2 Noise Reduction using Bandpass Filter

One of the main problems that affect the accuracy of processing EEG is the large con-

tamination of the signals with artifacts. There are two main sources of noise that may

contaminate the recorded EEG signal which are technical artifacts and physiological arti-

facts.

a. Technical Artifacts

The technical artifacts are usually related to the environment where the signals are cap-

tured. One source of technical noise is the electrodes itself. If the electrodes are not

properly placed over the surface of the scalp or if the resistance between the electrode and

the surface of the scalp exceeds 5 kohm, this will result in huge contamination of the EEG.
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Another source of technical artifact is the line noise. This noise occurs due to A/C power

supplies which may contaminate the signal with 50/60 Hz if the acquisition electrodes are

not properly grounded.

b. Physiological Artifacts

Another sources of noise are the physiological artifacts. Physiological artifacts are related

to the subject undergoing the EEG recording. Those physiological artifacts include eye

blinking, eye movements, Electromyography (EMG), motion, pulse and sweat artifacts.

The problem in eye blinking is that it produces a signal with a high amplitude that is

usually much greater than the amplitude of the EEG signals of interest. Eye movements

are similar to or even stronger than eye blinks. The EMG or muscle activation artifact can

happen due to some muscle activity such as movement of the neck or some facial muscles.

This can affect the data coming from some electrodes, depending on the location of the

moving muscles. As for the motion artifact, it takes place if the subject is moving while

EEG is being recorded. The data obtained can be corrupted due to the signals produced

while the person is moving, or due to the possible movement of electrodes. Another invol-

untary types of artifacts are pulse and sweat artifacts. The heart is continuously beating

causing the vessels to expand and contract; so if the electrodes are placed near blood

vessels, the data coming from them will be affected by the heartbeat. Sweat artifacts can

affect the impedance of the electrodes used in recording the brain activity. Subsequently,

the data recorded can be noisy or corrupted. These different types of noise make the

processing of EEG a difficult task especially in real time environment where there is no

control over the environment or the subject.

Our dataset is largely contaminated with facial muscle and eye blink artifacts. More-

over, there are segments that are highly contaminated with artifacts and are marked for

removal. Instead of rejecting such segments, we included them in our analysis so that

our approach can be generalized to real time applications. Since most of the previously

mentioned artifacts appear in low frequencies, we used a band pass finite impulse response

filter that removed the frequencies below 3 Hz and above 30 Hz.

4.1.5 Feature Extraction

Feature extraction is the process of selecting relevant features from the EEG data for

training and classification. Each feature should be distinctive from other features and
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representative of the class. We used three different techniques for selecting the features.

First, our analysis started by taking the whole 30 seconds and divide them into 2-second

window with a 1-second overlap. Each window is converted into the frequency domain

using Fast Fourier Transform (FFT) as shown in Fig. 4.3.

The frequency descriptors of the power bands, theta, alpha and beta rhythms, were

extracted. This resulted in a huge feature set of 145000 features that is computed as

# of features = (# windows x # electrodes x # features per window)

• # windows, taking the whole 30 second epoch and dividing it into a 2 second window

with 1 second overlap, will result into 29 windows.

• # electrodes, we used the whole 25 electrodes that are placed over all the regions of

the scalp.

• # features per window, we extracted 100 frequency descriptors that represent the

power band of the delta, theta, alpha, beta and gamma rhythms. We also, extracted

100 phase angle features that represent the same bands. we also extracted 5 heuristic

features such as mean power, mean phase angle, peak magnitude, the frequency with

the highest magnitude and number of frequency descriptors that are more than zero.

This will result in 205 features per window which resulted in approximately 145000

features.

4.1.5.1 Feature Reduction using Domain Knowledge

We used two main techniques for reducing the number of extracted features which are

using the alpha band only and making use of the scalp asymmetries that take place during

positive and negative emotions.

a. Alpha Band

We made use of the study made by Kostyunina et al. [1] in order to reduce our feature

set. Kostyunina et al. [1] showed that emotions such as joy, aggression and intention

results in an increase in the alpha power whereas, emotions such as sorrow and anxiety

results in a decrease in the alpha power. As a result of this conclusion, we focused our

feature extraction on the alpha band only which ranges from 7Hz to 13 Hz for the 25

electrodes. This helped in decreasing the number of features from 145000 to 10150 features,
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Figure 4.3: Applying FFT to overlapping windows.

14 (feature/window) x 29 (window/electrode) x 25 (electrodes) = 10150. The 14 features

in each window include the 7 FFT frequency descriptors and 7 phase angles in the alpha

band only.

b. EEG Scalp Asymmetries

Another important research that we made use of in order to reduce our feature set is the

research done by Coan et al. [25]. Coan et al. [25] showed that positive emotions are

associated with relatively greater left frontal brain activity whereas negative emotions are

associated with relatively greater right frontal brain activity. They also showed that the

decrease in the activation in other regions of the brain such as the central, temporal and

mid-frontal was less than the case in the frontal region. This domain specific knowledge

helped us in decreasing the number of features from 10150 to only 2233 features, 7 (fea-

ture/window) x 29 (window/electrode) x 22 (electrodes) / 2 (asymmetry) = 2233. The

7 features include the alpha descriptors only without the phase angle. The reason why

we used 22 electrodes only because we need to include symmetric electrodes only. For

instance, F7 and F8 are symmetric with resect to the center of the brain. So There are

not symmetric electrodes for 3 out of the 25 electrodes.

4.1.6 Training and Classification

As for training and classification, we used K-fold cross validation in order to select the

best training set for our classifier. For the classification, we decided to use support vector

machines.

4.1.6.1 K-Fold Cross Validation

In K-fold cross-validation, the dataset is divided into two partitions, the training set and

the testing set. The classifier is trained using the training set and then is tested against



43 4.1 Research Method

the testing set. The cross-validation process is then repeated K times (the folds), with

each of the training and testing set are used exactly once.

The results from the different folds can then be averaged to produce an estimate of

the classification accuracy. We selected the training and testing set randomly in which we

held out 10 % of the samples to be used for testing and the rest of the samples were used

for training.

4.1.6.2 Support Vector Machines (SVMs)

As mentioned earlier, Support Vector Machine (SVM) is a supervised learning technique.

Given a training set of feature vectors, SVMs try to find a hyperplane such that the two

classes are separable and given a new feature vector, SVMs try to predict to which class

this new feature vector belongs to. So given the extracted features, the SVM classifier

would predict which emotion these features represent.

We experimented with different kernels, linear, polynomial and radial. for the SVMs.

We built four different binary classifiers, one for each emotion. For instance, we trained

the joy classifier with feature vectors representing joy as one class and feature vectors

representing all other emotions as the other class.

4.1.7 Tools

4.1.8 MATLAB

MATLAB is a numerical computing environment and fourth generation programming lan-

guage. Developed by The MathWorks, MATLAB allows matrix manipulation, plotting of

functions and data, implementation of algorithms, creation of user interfaces, and interfac-

ing with programs in other languages. The availability of large number of filters, feature

extraction and classification toolbox is the main reason why we decided to use MATLAB

as our development environment.

EEGLAB

EEGLAB [45] is an interactive MATLAB toolbox for processing continuous and event-

related EEG, MEG and other electrophysiological data incorporating independent com-

ponent analysis (ICA), time/frequency analysis, artifact rejection, event-related statistics,

and several useful modes of visualization of the averaged and single-trial data.
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EEGLAB provides an interactive graphic user interface (GUI) allowing users to flexibly

and interactively process their high-density EEG. EEGLAB offers a wealth of methods

for visualizing and modeling event-related brain dynamics, both at the level of individual

EEGLAB ’datasets’ and/or across a collection of datasets brought together in an EEGLAB

’study set.’

4.1.9 LIBSVM

LIBSVM [46] is a library for Support Vector Machines available in many programming lan-

guages including MATLAB. LIBSVM is an integrated software for classification, regression

and distribution estimation (one-class SVM). It supports multi-class classification.
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Experimental Evaluation

5.1 Approach For Emotion Detection Using EEG

As shown in Fig. 5.1, we use a multilevel approach for analyzing EEG to infer the emotions

of interest. First, the signal preprocessing stage was activated in which a number of filters

were applied on the EEG signals for adjusting the signals, reducing the amount of recorded

data and for noise removal. After that relevant features were extracted from the signals

and finally we used support vector machines for classification.

5.1.1 Signal Preprocessing

Fig. 5.1 shows the three stages that EEG data is passed through during the signal prepro-

cessing stage. Our EEG data are referenced online to Cz.

• offline average reference, According to the recommendation of Reid et al [44] who

pointed out that this reference scheme did not correlate particularly well, an offline

average reference is performed for the data by subtracting from each site average

activity of all scalp sites.

• downsampling, After that our data are downsampled from 1024 Hz to 256 Hz to

reduce the amount of data.

• bandpass filter, our dataset is largely contaminated with facial muscle and eye blink

artifacts. Moreover, there are some segments that were inspected manually were

found to be highly contaminated with artifacts and were marked for removal. Instead

45
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Figure 5.1: Multistage approach for emotion detection using EEG.
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of rejecting such segments, we included them in our analysis so that our approach

can be generalized to real time applications. Since most of the previously mentioned

artifacts appear in low frequencies and because line noise appear in 50-60 Hz, we

used a band pass finite impulse response filter that removed the frequencies below 3

Hz and above 30 Hz.

5.1.2 Feature Extraction and Reduction

Feature extraction is the process of selecting features that are representative to the emotion

detection task. We started by extracting large number of features and then we started

reducing such features in the feature reduction stage by selecting more distinctive features

for the emotion detection task.

5.1.2.1 Feature Extraction

Our approach divides each 30 sec data epoch into 29 windows, 2 seconds wide with a

sec overlapping window. Each window is converted into the frequency domain using Fast

Fourier Transform (FFT). The frequency descriptors of the power bands, theta, alpha and

beta rhythms, were extracted. This resulted in a huge feature set of 145000 features that

is computed as

# of features = (# windows x # electrodes x # features per window)

• # windows, taking the whole 30 second epoch and dividing it into a 2 second window

with 1 second overlap, will result into 29 windows.

• # electrodes, we used the whole 25 electrodes that are placed over all the regions of

the scalp.

• # features per window, we extracted 100 frequency descriptors that represent the

power band of the delta, theta, alpha, beta and gamma rhythms. We also, extracted

100 phase angle features that represent the same bands. we also extracted 5 heuristic

features such as mean power, mean phase angle, peak magnitude, the frequency with

the highest magnitude and number of frequency descriptors that are more than zero.

This will result in 205 features per window which resulted in approximately 145000

features.



Chapter 5: Experimental Evaluation 48

5.1.2.1 Feature Reduction

After the feature extraction stage, we found out that our feature vector was of size 145000.

We used two techniques for feature reduction a. using the alpha band only and b. making

use of the scalp asymmetries that are associated with positive and negative emotions.

a. Feature Reduction Using Alpha Band

We made use of the study made by Kostyunina et al. [1] in order to reduce our feature set.

Kostyunina et al. [1] showed that emotions such as joy, aggression and intention result

in an increase in the alpha power whereas, emotions such as sorrow and anxiety results

in a decrease in the alpha power. As a result of this conclusion, we focused our feature

extraction on the power and phase of the alpha band only which ranges from 8 Hz to

13 Hz for the 25 electrodes. We used other features such as the mean phase, the mean

power, the peak frequency, the peak magnitude and the number of samples above zero.

Making use of the study made by Kostyunina et al. [1] helped in decreasing the number

of features from 145000 to 10150 features, 14 (feature/window) x 29 (window/electrode) x

25 (electrodes) = 10150. The 14 features in each window include the 7 feature descriptors

and 7 phase angles in the alpha band only.

b. Feature Reduction Using EEG Scalp Asymmetries

Another important research that we made use of in order to reduce our feature set is the

research done by Coan et al. [25]. Coan et al. [25] showed that positive emotions are

associated with relatively greater left frontal brain activity whereas negative emotions are

associated with relatively greater right frontal brain activity. They also showed that the

decrease in the activation in other regions of the brain such as the central, temporal and

mid-frontal was less than the case in the frontal region. This domain specific knowledge

helped us in decreasing the number of features from 10150 to only 2233 features, 7 (fea-

ture/window) x 29 (window/electrode) x 22 (electrodes) / 2 (asymmetry) = 2233. The

7 features include the alpha descriptors only without the phase angle. The reason why

we used 22 electrodes only because we need to include symmetric electrodes only. For

instance, F7 and F8 are symmetric with resect to the center of the brain. So There are

not symmetric electrodes for 3 out of the 25 electrodes.

The asymmetry features between electrodes i and j at frequency n are obtained using
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Figure 5.2: A comparison of the classification accuracy of joy emotion using a linear SVM
kernel on two different feature selection criteria.

the following equation

c(n, i, j) = Xi(fn)−Xj(fn)

in which Xi(fn) is the frequency power at electrode i and the nth bin. This equation is

applied to scalp symmetric electrodes only such as (C3, C4), (FP1, FP2)...etc.

5.1.3 Classification

For classification, we used support vector machines (SVMs). In case of a joy classifier, for

instance, the samples are divided into two sets of samples, samples representing joy and

samples representing not joy. The SVM classifier is trained on the extracted and reduced

features. SVM will construct a separating hyperplane in that space that maximizes the

margin between the two data sets, the set that represents joy and the set that represents

not joy. A good hyperplane will be the one that has the highest distance to different points

in different classes [47].

We built six different binary classifiers. For each emotion, we used

• two Linear SVM classifiers, one Linear classifier trained on the alpha band only and

the second Linear classifier is trained on the scalp asymmetries features.

• two polynomial SVM classifiers, one polynomial classifier trained on the alpha band

only and the second polynomial classifier is trained on the scalp asymmetries features.

• two radial SVM classifiers, one radial classifier trained on the alpha band only and

the radial second classifier is trained on the scalp asymmetries features.
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Figure 5.3: Classification accuracy of the joy classifier. True positive, True Negative and
overall classification accuracy of the joy classifier on 20 different runs using a linear SVM
kernel on the (alpha band + asymmetry) feature set.

5.2 Experimental Results

Using the database collected by [25], the experiment included 36 participants with 265

samples (66 samples representing joy, 64 samples representing sadness, 65 samples repre-

senting fear and 70 samples representing anger). Our experiments started by trying to

detect the four different emotions, anger, fear, joy and sadness. After succeeding in this

task, we started to investigate the process of reducing the number of electrodes against

the detection accuracy of the for emotions.

5.2.1 Detecting Four Different Emotions

We started by building a joy emotion classifier on which all the samples representing joy

are considered positive samples and all other samples represent negative samples. Six

different classifiers were built, two classifiers with linear kernel for each set of features, two

classifiers with radial kernel for each set of features and two classifiers with polynomial

features for each set of features. The SVM classifiers with polynomial did not converge

whereas the classifiers with radial kernel resulted in a very low accuracy of almost 0 %. To

test our classifiers, we used 20-fold cross validation in which we divided our 265 samples

into testing samples (10%) and training samples (90%) which means that the samples we

used for training are different from those used for testing. We repeated this approach

20 times during which the testing and training samples were selected randomly and we

made sure that the training and testing samples are different in the 20 trials. Fig. 5.2

compares the true positive of the joy emotion classifier using a linear SVM kernel on two

different feature selection criteria. We found out that the use of the alpha band combined



51 5.2 Experimental Results

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

True Nega!ve

True Posi!ve

Run number

Percentage

Overall Accuracy

Figure 5.4: Classification accuracy of the anger classifier. True positive, True Negative
and overall classification accuracy of the anger classifier on 20 different runs using a linear
SVM kernel on the (alpha band + asymmetry) feature set.

with EEG scalp difference resulted in a better detection accuracy than using the alpha

band only. This again proves that using neuroscience findings in feature selection helps in

decreasing the size of the feature set and results in better classification accuracies. Also,

we found out that the radial kernel for both types of features resulted in 0 % accuracy

for joy and in a very high classification accuracy of almost 100% for the not joy emotion.

This can show that our samples are linearly separable. The average detection accuracy is

51% and 83% for the presence of joy and not joy emotion respectively using linear kernel.

Fig. 5.3 shows the overall classification accuracy, average detection accuracy of the

presence of the joy, true positive, and the average detection accuracy of the absence of the

joy emotion, true negative, using a linear SVM kernel. The overall classification accuracy

represents the number of correctly classified samples that represent joy or not joy divided

by the total number of testing samples which is 27 samples, 10% of the total number

of samples. The true positive of joy is the number of correctly classified samples that

represent joy divided by the total number of joy samples in the testing set. Finally, the

true negative is the number of correctly classified samples that represent not joy divided by

the total number of not joy samples in the testing set. Table 5.1 represents the confusion

matrix for the joy emotion classifier. The upper left cell represents the true positive,

the upper right cell represents the false positive, the lower left cell represents the false

negative and the lower right cell represents the true negative. From Table 5.1, we can find

that the precision is 65/(65+63) = 50.7 %, recall is 64 / (65+79) = 45.13% and accuracy

is (65+333)/(65+63+79+333) = 73.7%. Precision is a measure of exactness or fidelity,

whereas Recall is a measure of completeness. Precision for a class is the number of true
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Table 5.1: Confusion Matrix for the joy emotion classifier using (alpha + asymmetry)
feature set.

Actual
True False

Predicted True 65 63
False 79 333

Table 5.2: Confusion Matrix for the anger emotion classifier using (alpha + asymmetry)
feature.

Actual
True False

Predicted True 65 57
False 81 337

positives or the number of items correctly labeled as belonging to the positive class divided

by the true positive plus the false positive. Recall is the number of true positives divided

by the total number of elements that actually belong to the positive class or the sum of

true positives and false negatives, which are items which were not labeled as belonging

to the positive class but should have been. Accuracy is the sum of true positive and

true negative divided by the sum of true positive, true negative, false positive and false

negative.

We applied the same approach for building classifiers for anger, fear and sad emotions.

Fig. 5.4, Fig. 5.5, Fig. 5.6 shows the classification accuracies of the linear SVM kernel for

the (alpha + asymmetry) feature sets for anger, fear and sad emotions respectively. From

table 5.2, table 5.3 and table 5.4, we can find out that the precision values are 53.3%,

53.3%, 50%, the recall values are 44.5%, 39%, 45.8% and accuracy values are 74.5%, 71%,

77.8% for anger, sadness and fear respectively.

The reason why the accuracies of anger, fear, joy and sadness range from 30% to 72.6%

can be explained by the fact that voluntary facial expressions may affect the emotional

state of people differently and with different intensities. Coan and Allen [48] who experi-

mented on the same dataset, reported that the dimensions of experience vary as a function

of specific emotions and individual differences when compared self reports against the in-

tended emotions to be elicited with certain facial expressions. Table 5.5 shows the report

rates for different emotions. Table 5.5 can show that self reports were different from the

Table 5.3: Confusion Matrix for the sad emotion classifier using (alpha + asymmetry)
feature set.

Actual
True False

Predicted True 64 56
False 101 319
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Table 5.4: Confusion Matrix for the fear emotion classifier using (alpha + asymmetry)
feature set.

Actual
True False

Predicted True 55 55
False 65 365

Table 5.5: Self Report Rates by Emotion. The rate column reflects the percentage that
self reports were the same as the target emotion.

Emotion Rate
Anger 65.7%
Fear 61.8%
Joy 50.0%
Sadness 30.6%
Overall Average 52.0%

intended emotions in 48% of the samples. In this work, we did not ignore the samples for

which self reports did not match the elicited emotions. It may have increased the accuracy

if we used the samples for which the participants have felt and reported the same emotion

as the intended one. Also, the accuracy may be affected if the samples used are the ones

that the participants reported the emotions with high intensities. Table 5.6 shows a

comparison of the average detection accuracy for the four emotions. For each emotion,

we are reporting the results of the linear SVM kernel on two feature sets, using the alpha

band only and using the alpha band along with scalp asymmetries. For each feature set,

the percentage of presence of joy, for instance, is computed as:

(
N∑

i=1

F (i)) ∗ 100/N

where F(i) is 1 if the joy sample number i was correctly classified and 0 otherwise. N is

the number of all the joy samples in the 20 different runs. The overall accuracy is the
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Figure 5.5: Classification accuracy of the fear classifier. True positive, True Negative and
overall classification accuracy of the fear classifier on 20 different runs using a linear SVM
kernel on the (alpha band + asymmetry) feature set.
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Table 5.6: Results of emotion classification using linear SVM kernels on two different
feature sets: using the alpha band only and using scalp asymmetries.

Emotion Alpha Alpha + asymmetry
presence absence overall presence absence overall

Anger 38% 83% 73% 53% 81% 74%
Fear 58% 87% 79% 38% 87% 77%
Joy 38% 87% 73% 51% 81% 74%
Sadness 48% 78% 77% 61% 75% 79%
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Figure 5.6: Classification accuracy of the sadness classifier. True positive, True Negative
and overall classification accuracy of the sadness classifier on 20 different runs using a
linear SVM kernel on the (alpha band + asymmetry) feature set.

number of samples whether it is joy or not joy that are correctly classified divided by the

total number of samples in the 20 different runs.

It is observed that the accuracy of the linear kernel for the second feature set (alpha

+ asymmetry) is higher than the linear kernel for the first feature set (alpha band only)

in joy, anger and sad emotions. Whereas, the detection accuracy for the linear kernel for

the first feature set (alpha band only) is higher in the fear emotion than the linear kernel

of the second feature set (alpha + asymmetry).

5.2.2 Reducing the Number of Electrodes Vs Accuracy

All the previous experiments for detecting the four emotions made use of 25 electrodes

that are spread all over the scalp which are O1, P3, T5, T3, C3, F7, F3, FP1, FZ, A1,

PZ, FP2, F4, F8, C4, T4, T6, P4, O2, A2, OZ, FTC1, FTC2, TCP1 and TCP2 except for

the experiments that made use of scalp asymmetries for dimensionality reduction in which

we used only 22 electrodes, O1, P3, T5, T3, C3, F7, F3, FP1, A1, FP2, F4, F8, C4, T4,

T6, P4, O2, A2, FTC1, FTC2, TCP1 and TCP2. The problem with using large number

of electrodes is that it becomes not convenient for integration in real life situations and

results in huge processing time.

For more convenience, better usability and easier integration in real life applications,

we decided to explore the possibility of decreasing the number of electrodes against the
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Table 5.7: Selected electrodes while applying our approach with fewer number of elec-
trodes.

# of electrodes electrodes with frontal included electrodes with frontal not included # of features
16 electrodes F3, F4, FP1, FP2, F7, O1, O2, P3, P4, C3, C4,

F8, FTC1, FTC2, C3, C4, T3, T4, T5, T6, TCP1, TCP2, 1624
O1, O2, T3, T4, P3, P4 FTC1, FTC2, F3, F4

12 electrodes F3, F4, FP1, FP2, F7, F8, FTC1, O1, O2, P3, P4, C3, C4, 1218
FTC2, C3, C4, O1, O2, T3, T4 T3, T4, T5, T6, TCP1, TCP2

8 electrodes F3, F4, FP1, FP2, O1, O2, P3, P4, 812
F7, F8, FTC1, FTC2 C3, C4, T3, T4

6 electrodes F3, F4, FP1, FP2, F7, F8 O1, O2, P3, P4, C3, C4 609
4 electrodes F3, F4, FP1, FP2 O1, O2, P3, P4 406

detection accuracies of the four emotions. According to Kostyunina et al [1], emotions

are most obvious in the alpha band and the alpha band is most obvious in the frontal

and occipital lobes. Also, emotions may be obvious in central and temporal regions. So,

our priority was selecting the electrodes placed on the frontal lobe then the occipital

then the central-parietal and finally the temporal lobe. However, noise resulting from

facial expressions affect the EEG signals captured from the frontal lobe. Consequently,

we decided to use two different approaches in reducing the number of electrodes. The

first approach is to select the electrodes while including those placed on the frontal lobe.

The second approach is to ignore the electrodes placed on the frontal lobe to see whether

the noise resulting from the facial expressions affect the classification accuracies. We

experimented with 16, 12, 8, 6 and 4 electrodes.

Table 5.7 shows the selected electrodes on both approaches. The second column shows

the electrodes selected when using frontal lobe electrodes. The third column shows that

all the selected electrodes do not include any frontal electrodes. For example, in the last

row when we included frontal electrodes, the whole four electrodes were selected from the

frontal lobe, F3, F4, FP1 and FP2. On the contrary, when we decided not to include

frontal lobe electrodes, the four selected electrodes were from the occipital and parietal

regions, O1, O2, P3 and P4. The last column of Table 5.7 shows the number of feature

set used in the classifier that uses both the alpha and scalp asymmetries. The number of

features is computed as

# of features = (29 (windows) x num of electrodes x 7 features) / 2 (for asymmetry)

We experimented with the two feature sets. However, since using the alpha band

along with scalp asymmetries resulted in higher detection accuracies of the four emotions

and fewer features than using alpha band only, we decided not to include some relevant

electrodes such as Fz or Oz because these electrodes are placed on the center of the scalp

and there are no electrodes that are symmetric with such electrodes.
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Figure 5.7: A comparison of the classification accuracy of joy emotion while changing the
number of electrodes while not including the frontal electrodes.
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Figure 5.8: A comparison of the classification accuracy of joy emotion while including the
frontal electrodes.

We used the same 20 training and testing sets used in our previous experiments while

using 25 electrodes. We computed the average detection accuracy of both the presence of

joy and absence of joy. Fig. 5.7 and Fig. 5.8 shows the average classification accuracies

of the presence and absence of joy using the two feature sets using different number of

electrodes.

It was predicted that as the number of electrodes decreases the detection accuracy

decreases. However, there is a slight decrease in the detection accuracies among the

16, 12 and 8 electrodes in both Fig. 5.7 and Fig. 5.8. This can show that temporal

lobe electrodes such as TCP1, TCP2, T5 and T6 have little effect on the classification

accuracy. Also, it can be observed from Fig. 5.8 that using four electrodes results in a

slight increase in the detection accuracy more than 6 and 8 electrodes when using the

alpha and scalp asymmetries as feature set. This is because the only four electrodes used

are all fontal lobe electrodes. Consequently, we can deduce that EMG has a little effect on

our reported accuracy because part of this increase in accuracy is because alpha rhythm is

more obvious in the frontal lobe. On the other hand, In case of Fig. 5.7, using 6 electrodes

results in a slight increase in the accuracy more than using 8 electrodes. So we can deduct
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Figure 5.9: A comparison of the classification accuracy of anger emotion while not includ-
ing the frontal electrodes.
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Figure 5.10: A comparison of the classification accuracy of anger emotion while including
the frontal electrodes.

that temporal lobe electrodes are less effective in the classification task than the central,

parietal and occipital lobes since the experiments using 8 electrodes contained the same

electrodes as the 6 electrodes experiments plus two temporal electrodes which are T3 and

T4.

We applied the same approach to anger, sad and fear emotions. Fig. 5.9 and Fig. 5.10

shows the classification accuracy versus number of electrodes for anger emotion. Fig. 5.11

and Fig. 5.12 shows the classification accuracy versus number of electrodes for sad emotion.

Fig. 5.13 and Fig. 5.14 shows the classification accuracy versus number of electrodes for

fear emotion.

Fig. 5.9 and Fig. 5.10 show the same trend as Fig. 5.7 and Fig. 5.8 in which there is

a slight improvement in the classification accuracy when 6 electrodes are used with the

absence of frontal lobe electrodes than 8 electrodes. Also, using only 4 frontal electrodes

results in a better classification accuracy as shown in Fig. 5.10.

Fig. 5.11 and Fig. 5.12 also show a similar trend as Fig. 5.7 and Fig. 5.8 in using only
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Figure 5.11: A comparison of the classification accuracy of sad emotion while not including
the frontal electrodes.
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Figure 5.12: A comparison of the classification accuracy of sad emotion while including
the frontal electrodes.
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Figure 5.13: A comparison of the classification accuracy of fear emotion while not including
the frontal electrodes.
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Figure 5.14: A comparison of the classification accuracy of fear emotion while including
the frontal electrodes.

4 frontal electrodes results in a better classification accuracy as shown in Fig. 5.12.

Finally in Fig. 5.13 and Fig. 5.14, we found out that using alpha band only results in

a better classification accuracy than using both the alpha band and scalp asymmetries. it

is observed from Fig. 5.13 and Fig. 5.14 that using only 4 frontal electrodes results in a

better classification accuracy than using 6 or 8 electrodes which is the same observation

for the other three emotions.

The most reasonable number of electrodes is 6 electrodes in case the electrodes placed

on the frontal lobe are not included and 4 electrodes in case the electrodes placed on

the frontal lobe are included. This is because 4 or 6 electrodes are convenient, results in

acceptable classification accuracy around 34 % using the (alpha + asymmetry) feature set

for sad, joy and anger emotions and using the first feature set in case of fear.

We tried to acquire EEG data using the available g.Mobilab hardware from g.tech.

However, the acquisition device is not advanced enough for this task and the environment

was not great for acquiring emotion related EEG data. So we were not able to get quality

EEG signals. Also, we used BCI2000 as an acquisition software as it implements the
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driver for the g.Mobilab hardware. The problem we faced is that BCI2000 does not offer a

technique for starting the acquisition at a desired time. For instance, we want to start the

software and give it an automated trigger from our application on when to start acquiring

EEG data from the hardware. This is not the case which means that we do not have

any log at the time during which the emotional state started which hinders using such

software.

Our main contribution is shown to be in the experimental methodology applied for

building an automated system for emotion detection. First we experimented with a totally

new elicitation technique that is very close to real life situations. Second, We are also

generating totaly different feature sets from the prior art and comparing the accuracies

of different classifiers that use such different feature sets. Finally, we experimented with

different number of electrodes that were selected using two different methodologies.

Our main contributions are that we are the first in the computer science field to use

voluntary facial expression as a means for enticing emotions. Although this contami-

nates EEG with noise, it helps to test our approach on unconstrained environment where

the users were not given any special instructions about reducing head motions or facial

expressions which makes our dataset close to a real time application.

Also, we used a new method for selecting features that are relevant to the emotion

detection task that is based on neuroscience findings. Third, since one of the drawbacks

of emotion detection systems using EEG is the use of large number of electrodes, which

hinders the portability of such systems, we applied our approach on different number of

electrodes that range from 4 electrodes up to 25 electrodes using two methodologies for

selecting the electrodes to be eliminated. The first of which was to include the frontal

and occipital electrodes because the scalp asymmetries are most obvious the frontal lobe

whereas, the alpha band is most obvious in the occipital region. The second approach is to

avoid using the frontal lobe electrodes because the EMG produced from facial expressions

affect the frontal EEG recordings. So we wanted to make sure that the results we are

getting are mainly because of the EEG and not EMG.

Using fewer number of electrodes with reasonable accuracy can make our system more

portable and can be used in real application. We tested our approach on a large dataset

of 36 subjects and we were able to differentiate between four different emotions with an

accuracy that ranges from 51% to 61% using 25 electrodes and we reached an average

classification accuracy of 33% for joy emotion, 38% for anger, 33% for fear and 37.5% for
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sadness using 4 or 6 electrodes only.



Chapter 6

Conclusion and Future

Directions

6.1 Conclusion

The goal of this research is to study the possibility of classifying four different emotions

from brain signals that were elicited due to voluntary facial expressions. We proposed an

approach that is applied on a noisy database of brain signals. Testing on large corpus of

36 subjects and using two different techniques for feature extractions that rely on domain

knowledge, we reached an accuracy of 53%, 58%, 51% and 61% for anger, fear, joy and

sadness emotions respectively.

Studying emotions is important because emotions are fundamental to human experi-

ence, influencing cognition and affecting rational decisions. Researchers are trying to build

systems that can detect emotions automatically to be integrated into various applications

such as software adaptation in which the software user interface can change and provide

help to users based on their emotional state. Another important application is monitoring

safety critical systems. For instance, monitoring the emotional state of pilots and astro-

nauts can help providing them with support during periods of stress where their decision

may be negatively affected by their emotional state.

Building automated systems for capturing humans’ emotional states have been the

focus of computer scientists during the last two decade. Scientists tried to use different

channels for emotion detection. Channels such as facial expressions and voice processing
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have showed a great success. However, the main drawback of using facial expressions

or speech recognition is the fact that they are not reliable indicators of emotion because

they can either be faked by the user or may not be produced as a result of the detected

emotion. Scientists started to use new channels such as involuntary physiological signals

such as heart beats, temperature, skin conductance and blood pressure to infer emotions.

The problem with such channel is that it requires using sensors in various parts of the

body which makes it not comfortable.

Another channel for emotion detection is using brain signals recorded using EEG. Few

research have been done to make use of EEG as a new channel for emotion detection.

The problem with most the previous research is that they used large number of electrodes

that range from 32 to 64 electrodes which increase the processing time and make it not

comfortable for users to be used in real applications. Also, researchers use auditory or

visual stimulus for emotion elicitation while asking the users to reduce any motion and

facial expressions in order not to contaminate EEG signals with noise. This is problematic

because in real applications there are no constraints on the users’ environment which result

in highly contaminated EEG signals.

Instead of using a visual or an auditory stimulus for emotion elicitation, we are the

first in the computer science field to use voluntary facial expression as an elicitor for four

emotions, anger, fear, joy and sadness. Voluntary facial expressions are based on the facial

feedback paradigm which shows that facial expressions are robust elicitors of emotional

experience. Although this contaminates EEG with noise, it helps to test our approach on

unconstrained environment where the users will not be given any special instructions about

reducing head motions or facial expressions. We used 25 electrodes that are scattered on

different regions on the surface of the scalp for EEG recording.

We used a new method for selecting features that are relevant to the emotion detec-

tion task that is based on neuroscience findings. We made use of the findings made by

Kostyunina et al. [1]. Kostyunina et al. [1] showed that emotions such as joy, aggression

and intention result in an increase in the alpha power whereas, emotions such as sorrow

and anxiety results in a decrease in the alpha power. As a result of this conclusion, we

focused our feature extraction on the power and phase of the alpha band only which ranges

from 8 Hz to 13 Hz for the 25 electrodes. We are also, making use of the findings made

by Coan et al. [48]. Coan et al. [48] showed that positive emotions are associated with

relatively greater left frontal brain activity whereas negative emotions are associated with
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relatively greater right frontal brain activity. They also showed that the decrease in the

activation in other regions of the brain such as the central, temporal and mid-frontal was

less than the case in the frontal region. This domain specific knowledge helped us in

decreasing the number of features in our feature set dramatically.

Finally, since one of the drawbacks of the previous work is the use of large number

of electrodes which hinders the portability of such systems, we applied our approach on

different number of electrodes that range from 4 electrodes up to 25 electrodes. This can

make our system more portable and can be used in real applications.

Our approach analyzes highly contaminated EEG data produced from a new emotion

elicitation technique. We make use of two new feature selection mechanisms that help to

extract features that are more relevant to the emotion detection task. We reached a true

positive of 51% for joy emotion, 53% for anger, 53% for fear and 50% for sadness. The

overall classification accuracy is 73.7% for joy emotion, 75.4% for anger, 71% for fear and

77.8% for sadness. Also, we tested the same approach on a fewer number of electrodes

from 25 electrodes down to 4 electrodes only.

We used two techniques for reducing the number of electrodes. In the first technique,

we kept the electrodes in the frontal lobe because the alpha band is most obvious in the

frontal lobe. In the second technique, we removed the electrodes that were placed in the

frontal lobe in order to make sure that the results we are getting are not affected by EMG

signals due to facial expressions. We found out that as the number of electrodes decreases

the accuracy decreases. This was expected but we reached a reasonable accuracy at only 4

and 6 electrodes. We reached an average accuracy of 33% for joy emotion, 38% for anger,

33% for fear and 37.5% for sadness. We also, found out that the accuracy of using frontal

lobe electrodes is slightly higher than the accuracy without them. This can be explained

by the fact that the alpha band is most obvious in the frontal lobe and the noise due to

the facial expressions may have a very slight effect on the classification accuracy.

Finally, we would recommend our approach to be used in real life situations. The

training phase is most time consuming as SVM training requires time between O(N2 +

N*D) and O(N3 + N*D) where N is the number of support vectors and D is the number of

dimensions. The testing time complexity is the time for O (signal preprocessing + feature

extraction + selecting relevant features + SVM classification). Although finite impulse

response filters usually take O(k*M2), an implementation of the signal preprocessing pro-

vided in [49] requires only O(k*M) where M is the length of the batch and k is the number
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of electrodes. FFT requires O(n*lgn) where n is the number of points which is 29 windows

* 2 seconds * 256 samples, selecting relevant features requires O(c). SVM classification

requires O(N) where N is the number of support vectors. So the overall time complexity

for the testing is the maximum of O(n*lgn) and O(k*M).

6.2 Future Directions

One way to achieve a better classification results is to improve our preprocessing stage.

This can be done by using Independent Component Analysis (ICA). ICA is a computa-

tional model that can extract the different components of the signals. For instance, ICA

can separate EEG and physiological noise from the recorded signals. The problem with

ICA is that it separates the two signals without showing which signal represents the noise

and which signal represents the EEG recording. Scientists usually use heuristic based

approaches to infer which signal represents the EEG recording.

Another important area of research that this thesis opens is how to modify the elic-

itation technique to help the participants better feel the desired emotion. It would be

interesting to remove the samples that have different self reports from the desired emotion

and study that effect on the classification accuracy. The problem with our dataset is the

presence of only 265 samples. If we removed the samples with different self reports, we

will end up with only 150 samples.

It would be also, important to apply the same technique on a database of emotion

elicited using both the stimulus and imagination techniques. This will help us make sure

that our approach generalizes on different elicitation technique which is important to

ensure that our approach can run successfully in real life situations.

Finally, our approach needs to be tested on real situations using the 7 electrode cap

of UCSD or the 16 electrode cap from Emotiv. If it worked with reasonable accuracy,

this may open the door for integrating emotion detection using EEG in lots of important

applications.
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