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Abstract 

Biotechnology industry has experienced a massive development in the production of 

recombinant protein therapeutics over the past few decades. Stainless steel bioreactors have 

been considered the gold standards for the upstream processing for a long time. However, 

over the past decade, the single use technology has gained a big interest in the field 

especially with the mammalian and insect cell cultures. The single use based processes 

offered many advantages over the conventional ones. Disposable systems eliminated the 

need for cleaning in place (CIP), sterilization in place (SIP) and cleaning validation, 

reduced the risks of cross contamination, and they also offered less production turnaround 

times. In 2010, Rhein Minapharm Biogenetics, a leading company in biopharmaceutical 

production in the Middle East, presented the first single use technology based upstream 

process for recombinant human- follicle stimulating hormone (rh-FSH) production from 

Chinese hamster ovary (CHO) cells on the HyClone 50L single use bioreactor (SUB). The 

process was then scaled up to the BIOSTAT STR 200L bioreactor. However, although the 

BIOSTAT STR 200L bioreactor offered a higher cell density, the product concentration 

measured by ELISA was only two thirds, the concentration on HPLC was about 75% and 

the specific cell productivity was only about 50% when compared to the HyClone 50L 

SUB process. In the current study, the operational parameters that were observed to be 

different in the two processes were examined. The aim was to determine the critical 

cultivation parameters to be considered during the scaling of the process. Those parameters 

were tested at different operating values covering a wide but reasonable range. The 

experiments were run on the DASGIP lab scale bioreactor at a 750mL working volume. 

The tested parameters were the culture cell density, the carbon dioxide partial pressure 

(pCO2) and osmolality levels in the culture, and the effect of operating at as much as 10 

folds higher power input per unit volume (P/V), the parameter which was also tested on 

the 200L scale. The experiments on the lab scale showed that the lower cell density and 

the higher pCO2 and osmolality levels, being comparable to those of the 50L process 

yielded results comparable to the HyClone 50L SUB process. On the other hand, operating 
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at higher cell density and lower pCO2 and osmolality levels, being comparable to those of 

the 200L process, yielded results comparable to the BIOSTAT STR 200L process. No 

remarkable differences were observed either in the cell growth rate, the product titer or in 

the cell productivity when operating at P/V of ten folds difference. It was concluded that 

the cell density and the pCO2 and/or osmolality levels are the critical cultivation parameters 

in the lab scale experiments. These parameters are to be on focus and to be carefully 

optimized during scaling up of the process. 
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Chapter1: Introduction 

1.1 Biotechnology industry and single use technology 

Since 1982, when the first recombinant human insulin was introduced, the market of 

recombinant protein therapeutics has been growing. Until 2008 FDA approved more than 

130 molecules for clinical use and at present there are more than 170 proteins and peptides 

in use (Żerek & Rózga, 2012). This growth is partly attributed to the increase in reliable 

scale up technologies for culturing mammalian cells, where many issues have been 

resolved like cells adaptation to suspension culture, shear sensitivity and oxygen supply 

(Chu & Robinson, 2001). Nonetheless, cultures must be maintained at much larger volumes 

in order to produce the desired amount of product for industry. Cultivation of cells should 

be performed at large volumes, and while scaling up to these industrial large volumes is 

usually associated with changes in the geometric and physical conditions of the culture, 

such changes might lead to decreased yields and reduced consistency between batches 

(Schmidt, 2005).  

Conventional bioreactors in industry are typically stainless steel units. Several drawbacks 

for the use of such bioreactors were identified, of which are the need of continual 

resterilization, the reduction of the overall production time due to required cleaning time 

between batches, and the increased risk of cross contamination between different cell lines 

or proteins produced in the same bioreactor. These drawbacks have led to the increased use 

of single use technology over the past few years, especially with the increased need to 

deliver high quality products within strict timelines (Forgione &Van Trier, 2006). Single 

use bioreactors have been successfully scaled up to 2000L working volume for mammalian 

and insect cell cultures. While for microbial fermentations, disposable systems still pose 

significant engineering challenges. These challenges are attributed to the fact that in 

aerobic microbial fermentations, the oxygen demand and the rate of heat evolution are 25-

70 times higher than the mammalian and insect cell cultures. Thus, a much faster oxygen 

supply and heat removal from the culture is required. This was met by the glass and 
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stainless steel bioreactors but not yet fully met by the disposable plastics at large volumes 

(Galliher et al., 2011). 

However, there are still some key challenges facing the single use technology developers 

and end users. These challenges include the limitation in the scale to the current maximum 

of 2000L in the upstream process, the restricted diversity due to limited number of vendors 

offering single use equipment, the absence of universal regulations and standardization of 

the materials used in manufacturing, and hence the increased risk of leachables and 

extractables from the disposable plastics that could potentially contaminate the product 

intermediates (Shukla & Gottschalk, 2013). 

Single use bioreactors are plastic bags presterilized by their suppliers and thus, 

sterilization and cleaning are not required. This eliminates the need of large space and costs 

of cleaning in place (CIP) and sterilization in place (SIP) installations. In the mean time, 

these single-use systems reduce risks of cross contamination and production turnaround 

times as they allow companies to shift between cell lines and target proteins in a production 

process quickly and inexpensively (Genetic Engineering and Biotechnology News, 2006), 

and with less validation procedures this will definitely shorten time to market (De Wilde 

et al., 2009). 

The benefits of implementing the disposable technology were summarized by a 

development manager at Sartorius Stedim Biotech, a leading international supplier for 

single use bags and bioreactors: “Benefits of flexible bag containers include faster facility 

set‐up, reduction of down time, simplified validation, and more efficient use of plant floor 

space. Disposable bags greatly reduce the risk of cross contamination” (Genetic 

Engineering and Biotechnology News, 2006). 

The disposable systems are polyethylene bags designed to be inserted into stainless steel 

casings to serve as a bioreactor. After each batch, the bag is removed and a new 

presterilized bag can be installed for the next one. Two main types of single use bioreactor 

systems are currently available; wave reactors and stirred reactors. The wave disposable 
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bioreactors were developed in the 1970s (DiBlasi et al., 2007). They are pillow shaped 

bags that are placed on a platform. A rocking motion that creates waves provides mixing. 

Wave bags are more useful at the laboratory scale, while being awkward and space 

consuming at large scales. All the wave bag components are designed and manufactured 

to be single use and disposable, except for the control unit and the rocking platform. This 

includes the bag chamber, vent filters, probes, as well as other tubing and fittings that come 

in contact with the product. One of the drawbacks of these systems is that they lack the 

common geometry with the stirred tank reactors, which are the systems of choice in 

industry (Nienow, 2006). 

 

 
Figure 1: Stirred tank bioreactor: Steel jacket (a) and disposable bag insert (b). Where: (1) Impeller 

motor and drive shaft, (2) Air filter, (3) Integrated impeller, (4) Probe ports (5) Temperature sensor port 

and sample tubes, (6) Sparger port. Image from Thermo Fisher 

website:<http://www.thermoscientific.jp/hyclone‐bpc/catalog/single‐use‐bioreactor.html>. 

(a) (b) 

(6) 

(5) 

(4) 

(3) 

(2) 

(1) 
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The second type of single use bioreactors, the stirred bags, serves as a typical stirred tank 

bioreactor and was first introduced in 2006 by ThermoFisher Scientific (Selker & Paldus, 

2008). A disposable bag (Figure 1b) is used as a liner in a cylindrical steel tank (Figure 

1a). The bag has an integrated impeller for mixing, sampling ports, probe ports, vent filters, 

feed and harvest tubings, and a sparger system (Figure 1b).  

1.2 Scale-up parameters for bioreactors 

The biotechnology industry has continued to grow as new protein therapeutics are 

approved to enter the market (Chu et al., 2001). With the continuous growth of 

biotechnology industry, the need for a successful scale up strategies also increased. A 

quicker and more efficient transfer of the laboratory processes to the industrial scale is 

required. The difficulty with the scale‐up comes from the fact that large tanks are much 

more heterogeneous than small ones (Shuler & Kargi, 2002). And although similar 

geometry is recommended between the different scales for easier scaling, it remains 

impossible to maintain the same level of shear, mixing time, and mass transfer from the 

small to the larger bioreactor since power and aeration requirements do not scale linearly 

(Stoker, 2011). 

There are certain “rules of thumb” that are applied to the scale‐up of bioreactors 

(Catapano et al., 2009). These rules assume that some criteria, when optimized on the small 

scale, can also be considered optimal at the large scale. These criteria are concerned with 

either the mass transfer and mixing or the mechanical cell damage. It is impossible to keep 

all parameters constant across the scales. Maintaining a specific set of parameters constant 

will change another set of parameters, which can thus produce undesired effects on the 

behavior and the yield of the culture (Ju & Chase, 1992). So scaling up is often based on 

the combination of multiple cultivation characteristics. Given the various challenges 

involved, knowledge and experience are nearly as important as the scale up parameters 

(Ma et al. 2006). The operator should determine the most critical parameters in his small 

scale process to be kept constant during the scale up. 
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The main process parameters that have been suggested in literature to be maintained 

constant during scale‐up include: 

1. Reactor geometry 

2. Mixing time 

3. Impeller Reynolds number, (Re) 

4. Tip speed 

5. Power input per unit volume of liquid, (P/V) 

6. Volumetric gas flow rate per unit volume of liquid, (Qg/V) 

7. Superficial gas velocity, (v) 

8. Volumetric oxygen mass transfer coefficient, (kLa) 

1.2.1 Reactor geometry 

Reactor geometry can be described by the height to diameter ratio (h/D), also known as 

the aspect ratio, as well as the ratio of the impeller to vessel diameters (d/D) (Stoker, 2011). 

For stirred tank bioreactors, the aspect ratio is typically between 1:1 and 3:1 (De Wilde et 

al., 2009). 

Bioreactors with low aspect ratios offer a better gas transfer through the head space, while 

those of higher aspect ratios provide better dispersion and longer residence times for gas 

bubbles in the culture liquid which will improve gas transfer rates when direct sparging is 

applied for oxygenation (De Wilde et al., 2009). 

In general, tank geometry and hardware, like the impeller or sparger types for instance, 

are not subjected to change during scale-up. So, the focus is on defining appropriate 

agitation and gassing conditions to achieve consistent performance.  

1.2.2 Mixing time 

Mixing time is defined as the time required to reach 95% homogeneity in a mixed vessel 

upon addition of a substance like feed or base (Menisher et al., 2000). Mixing time is thus 

important to ensure that these additives mix in a timely manner. This way local regions of 
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high or low pH and/or nutrients are not formed (Langheinrich & Nienow, 1999; Bylund et 

al., 1998). Proper mixing time also ensures adequate oxygen delivery to the cells. 

Simplest methods to measure the mixing time in a bioreactor are the decolorization and 

the concentration methods (Noack et al., 2010b). The decolorization method requires a dye 

to be put into the liquid in the bioreactor in advance. Addition of a decolorizing agent 

makes the color change or even let it disappear. The time between the addition of the 

decolorization agent and the entire color change or decolorization is measured, and it 

represents the mixing time for an entirely mixed fluid. Another method is the concentration 

method where the conductivity of distilled water is measured following an addition of 

phosphate buffer at different positions, and the mixing time will be the time taken for the 

readings to become constant. 

1.2.3 Reynolds number (Re) 

The Reynolds number (Re) is used to describe the flow regime and turbulence 

phenomena in stirred bioreactors. A complete turbulent flow and hence an efficient mixing 

is achieved when Re >10000 (Armenante & Chang, 1998). 

Re is calculated by the equation: 

                                                       𝑹𝒆 = 𝛒𝐋 𝐍 𝐝𝟐 /𝐋                                                          Equation 1 

Where L is the density of the fluid in kg/m3, N is the impeller number of rotations per 

second s-1, d is the impeller diameter in m, L is the fluid viscosity in kg/m.s. Even at high 

cell densities the viscosity of the culture suspension media is close to water (Oh et al., 

1989). 

1.2.4 Tip speed 

Impeller tip speed is another agitation related parameter that can be correlated to 

maximum impeller shear rates. Mammalian cells are more liable to shear damage than 

microbial cells because they lack a cell wall. Therefore a constant tip speed has been 

suggested as a scaling criterion for mammalian cell culture agitation. Some guidelines 
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proposed to keep the tip speed value within the range of 1 and 2 m/s during scale-up (Fenge 

& Lüllau, 2006). However, many investigators reported that the shear rates required to 

cause cell damage are much higher than those commonly used in cell culture applications 

(Ma et al., 2002). As a result, tip speed is not recommended as a primary scaling parameter 

(De Wilde et al., 2009). 

Tip speed is calculated by the equation: 

                                                            𝐓𝐢𝐩 𝐬𝐩𝐞𝐞𝐝 = 𝛑𝐍𝐝                                            Equation 2 

1.2.5 Power input per volume (P/V) 

Power input per volume, also known as the mean specific energy dissipation rate, is the 

amount of power transferred to a volume of cell culture through the agitator shaft and 

impellers. It is the parameter more commonly used for scaling agitation. Mammalian and 

insect cells cannot handle a lot of power introduced into the culture media as it can shear 

the fragile cell membranes. The typical range of P/V for the animal cell cultures is 1-50 

W/m3, with a global average of 10 W/m3. This is 100-fold lower than the 1000 W/m3 

average P/V in microbial fermentations (Rathore et al., 2008). The power input per volume 

is measured using electrical devices that measure the torque inside the bioreactor (Holland 

and Chapman, 1966). 

 The empirical equation used for power input calculation is: 

                                                      𝐏 =  𝐏𝐨𝛒𝐋𝐍𝟑𝐝𝟓                                                  Equation 3 

Where impeller power numbers, Po (dimensionless), depend on the agitator type. They are 

essentially constant for any agitator type, regardless of its diameter relative to the 

bioreactor diameter, or its speed, and of the bioreactor size, provided geometric similarity 

is maintained across the scales (Nienow, 1998). 
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1.2.6 Volumetric gas flow rate per unit volume of liquid (Qg/V) and 

superficial gas velocity (vs) 

Volumetric gas flow rate per unit volume (Qg/V) of liquid means the volume of gas flow, 

usually measured in liters per minute (Lpm), per bioreactor volume, while superficial gas 

velocity (vs) is the volume of gas per cross-sectional area of the vessel. 

It is recommended to scale the overall gas velocity separately regarding the minimum 

and maximum sparger gas flows, where the minimum sparger rate is scaled on constant 

volumetric gas flow per unit volume per minute, while the maximum sparger rate is scaled 

on constant superficial velocity (vs) in order to minimize foaming (Seamans et al. 2008). 

For animal cell cultivation, the aeration rates should be kept lower than 0.1 vvm (Czermak 

et al., 2009). 

The superficial gas velocity can be calculated from the equation: 

                                                𝐬  =
𝐐 𝐠𝐚𝐬

𝐀𝐯
                                        Equation 4 

Where Av is the inside cross sectional area of the vessel. 

1.2.7 Volumetric oxygen mass transfer coefficient (kLa) 

The volumetric mass transfer coefficient is the most commonly applied scale up variable. 

It includes both agitation and gassing parameters that influence oxygen supply (Alam et 

al., 2005; Schmidt, 2005; Marks, 2003; Yawalkar et al., 2002). Animal cell cultures require 

oxygen for growth and formation of product from organic carbon sources. The dissolved 

oxygen (DO) level is a limiting factor in most fermentation and cell-culture processes. 

There is always a critical level of DO, above which the oxygen concentration no longer 

limits growth. Therefore it is always important to keep the DO levels above this critical 

value throughout the cultivation process. This can be achieved by sparging air or pure 

oxygen into the bioreactor. For this sparging to be effective, the mass transfer rate of 

oxygen to the liquid media should be greater or at least equal to the rate of oxygen 
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consumption by the growing cells. Measurements of kLa ensure that processing conditions 

are sufficient for an adequate supply of oxygen to the proliferating cells (Kane, 2012). 

The four approaches commonly used to measure kLa are the unsteady state, steady state, 

dynamic and sulfite methods (Shuler & Kargi, 2002). Filling the reactor with water or a 

culture medium without cells performs the unsteady state method. Then, the reactor is 

sparged with nitrogen to remove oxygen, which is reintroduced afterwards to the system, 

while monitoring its level, until it reaches saturation. Plotting the log of changes in oxygen 

concentration versus time results in a slope which is equal to kLa (Shuler & Kargi, 2002). 

The ease and simplicity of this method makes it the most commonly used. 

The steady state, although it is considered a highly reliable way to measure kLa (Shuler 

& Kargi, 2002), is difficult to be put into practice. It can be used only when the 

measurement techniques are highly accurate (Doran, 1995), as it needs the oxygen 

concentration within the system as well as in all gas exit streams to be measured precisely. 

This method assumes that the conditions in the culture are in a steady state, and a mass 

balance on oxygen can calculate the oxygen uptake rate. The kLa will be proportional to 

the oxygen uptake rate and inversely proportional to the difference of the oxygen 

concentration at saturation and within the system. 

The concept of the dynamic method is similar to the unsteady state method. The only 

difference is that the dynamic method is done in bioreactors with active cells, thus having 

the advantage of determining the kLa under actual culture conditions (Stoker, 2011). 

The last method, the sulfite method, is based on the idea that the sulfur in the sulfite ion 

(SO3
-2) is oxidized to sulfate (SO4

-2) in a zero order reaction, when O2 reacts with Na2SO3, 

using copper or cobalt ions as a catalyst. The rate of sulfate formation is directly 

proportional to the rate of oxygen consumption. However, it was noted that this method 

might overestimate kLa and therefore should be converted to the actual kLa of the system 

(Van't Riet, 1979). 
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The formula for calculating kLa is: 

                                                              𝐤𝐋𝐚 = 𝐊′(
𝐏𝐠

𝐕
)𝛂 𝒗𝜷                                              Equation 5 

Where Pg = PogLN3d5, Pog is the power number under aerated conditions. Pog is usually 

less than Po. However, in animal cell cultures where the air flow rates are very low, Pog is 

considered the same as Po (Langheinrich et al., 1998). kLa also depends directly on v. This 

equation applies independent of the impeller type and scale.  and  are usually about 0.5 

+/-0.1 whatever the liquid is. On the other hand, K′ is extremely sensitive to composition. 

In general, kLa in animal cell culture are in the range of 1-15 h-1 (Nienow, 2003). 

1.3 Follicle stimulating hormone therapeutic preparations 

Follicle stimulating hormone (FSH) is a complex heterodimeric glycoprotein secreted by 

the anterior pituitary gland. It consists of two non covalently linked, non identical protein 

subunits. The α subunit is composed of 92 amino acids and carries two carbohydrate 

moieties linked to Asn-52 and Asn-78; the β subunit is composed of 111 amino acids and 

carries two carbohydrate moieties linked to Asn-7 and Asn-24. The two subunits are not 

connected by intermolecular covalent bonds. However, each chain contains several 

intramolecular disulfide bonds which stabilize the molecule tertiary structure. The α 

subunit is also a part of leutinizing hormone and chorionic gonadotrophin, while the β 

subunit is specific and unique for this hormone. The FSH present within the anterior 

pituitary gland exists as a heterogeneous population of different isoforms. These isoforms 

are identical in their amino acid sequence of the two peptide subunits as well as the 

attachment points of the carbohydrate side chains. However, the difference between the 

isoforms lies in the composition of the carbohydrate side chains themselves. The chains 

can exist in many branched forms which may or may not be capped by sialic acid residues. 

The less acidic isoforms with few sialic acid residues have shorter half life as they are 

removed from circulation quickly by binding to the asialoglycoprotien receptor in the liver 

and kidneys. While the more acidic isoforms which have more sialic acid residues escape 

capture by the receptor and thus remain for longer periods in the circulation and have 

greater bioactivity. Due to its complicated tertiary and quaternary structure and 
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glycosylation this protein requires expression in a eukaryotic system in order to support 

correct folding and post translational modification. 

Human FSH therapeutic preparations are used widely for the treatment of infertility by 

ovarian stimulation. All pharmaceutical preparations of FSH were initially extracted and 

purified from urine donated by postmenopausal women. These preparations were proven 

to be effective and well tolerated. In 1990s recombinant gonadotrophins preparations were 

introduced and dominated since then (Bassett & Driebergen, 2005). Recombinant human 

FSH was developed in 1996. This was done by inserting the genes encoding α and β 

subunits of FSH into expression vectors which were transfected into a Chinese hamster 

ovary cell line afterwards (Howles, 1996). Later, recombinant FSH was demonstrated to 

be more cost effective than the urine extracted FSH (Daya, 2002). rh-FSH was also shown 

to have batch to batch consistency, higher purity, and the potential to overcome production 

limits (Zwart-van Rijkom et al., 2002). 

In 2010, Rhein Minapharm Biogenetics, a leading company for production of 

recombinant pharmaceutical proteins in Egypt and the Middle East, presented the first 

cultivation process for CHO cells expressing rh-FSH based on a complete disposable 

upstream pathway (El Taieb et al., 2010). Recently, the need for scaling up the process to 

the200L scale was raised in order to meet the increased market demand. 

1.4 Purpose of the study 

This study aims to define the critical cultivation and engineering parameters that are to 

be carefully considered and optimized for a successful scale up of the upstream process of 

rh-FSH production from the HyClone 50L SUB to the BIOSTAT STR 200L bioreactor. 

The differences in the in-house established operating parameters between the two 

bioreactors will be identified and considered as the potential critical parameters. The effect 

of these parameters on the process is examined on lab scale DASGIP bioreactor at a 750mL 

working volume by running experiments at a wide but a reasonable range of these 
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parameters. All runs are evaluated in terms of viable cell density (VCD), cell viability, 

product concentration and specific cell productivity. 

As a result of this study, it will be possible to identify some parameters, which are proven 

to have a remarkable impact on the process at the lab scale bioreactor. These parameters 

will be considered as the critical cultivation parameters that have to be on focus and to be 

optimized during the scale up of the process to the 200L scale. 
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Chapter 2: Materials and Methods 

2.1 Materials and reagents 

 Acetonitrile HPLC grade, (Merck) 

 CELLSTAR Filter Cap Cell Culture T-Flasks, (Greiner Bio-One) 

 Cell line CHO-DG44, clone number T6-3A7-2G7, MI-WCB#1, (ProBioGen 

AG, Berlin). 

 CultiBag RM10, (Sartorius Stedim Biotech) 

 CultiBag RM20, (Sartorius Stedim Biotech) 

 CultiBag RM50, (Sartorius Stedim Biotech) 

 CultiBag STR 200L, (Sartorius Stedim Biotech) 

 D-glucose, (Merck) 

 DO probe, (Hamilton) 

 EX-CELL® CHO DHFR-ACF media, (SAFC - Sigma) 

 FSH enzyme immunoassay test kit, (BioCheck, Inc.) 

 FSH in-house quantification reference no.4, (Reference code: CHO1-03-

12/OC01-R4) 

 FSH Standard Diluent, (BioCheck, Inc.) 

 Glass spinners, (Integral BioSystems) 

 Hyclone 50L SUB bioprocess container, (Thermoscientific) 

 International recombinant FSH standard for immunoassays, (NIBSC) 

 Jupiter C18 5 µm, 300 A poresize, 4.6 x 250 mm, (Phenomenex) 

 L-glutamine, (Merck) 

 pH probe, (Mettler Toledo) 

 Sodium bicarbonate, (Merck) 

 Trifloroaceticacid (TFA), HPLC grade, (Sigma-Aldrich) 
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2.2 Equipment 

 Bioprofile 400 analyser, (Nova biomedical) 

 BIOSTAT B-Plus control unit (Sartorius Stedim Biotech) 

 BIOSTAT CultiBag RM control unit (Sartorius Stedim Biotech) 

 BIOSTAT CultiBag RM20 rocker, (Sartorius Stedim Biotech)  

 BIOSTAT CultiBag RM50 rocker, (Sartorius Stedim Biotech) 

 BIOSTAT STR 200L outer support container with mixer drive and control unit, 

(Sartorius Stedim Biotech) 

 Centrifuge universal 5424R, (Eppendorf) 

 DASGIP 1L bioreactor control unit, (DASGIP, Eppendorf ) 

 FLUIDO 96 Washer, (Anthos, HVD) 

 HPLC LC-2010C HT, (Shimadzu) 

 HyClone 50L SUB outer support container with mixer drive and control unit, 

(Thermoscientific) 

 NucleoCounter NC-10, (Chemometec) 

 pH meter  SevenMulti, (Mettler Toledo) 

 Thermomixer comfort, (Eppendorf) 

 Zenyth 3100 spectrophotometer, (Anthos, HVD) 
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2.3 Methods 

2.3.1 Cell line 

A CHO cell line that is adapted to grow in suspension (CHO-DG44 clone), and 

transfected with the amplifiable gene construct dihydrofolate reductase (dhfr) was used for 

transformation with expression cassettes containing the genes encoding the 2 subunits of 

human follicle stimulating hormone (rh-FSH). This part was performed at ProBioGen AG 

(Berlin). Cells from a characterized working cell bank (MI-WCB#1) were used in all 

experiments. 

2.3.2 Upstream process 

For all scales, the cells were grown in EX-CELL® CHO DHFR-ACF media (SAFC - 

Sigma), supplemented with 3 mM glutamine (Sigma). The incubation period between 

every two passages (P) was 1-3 days. All passages were performed at starting inoculation 

viable cell densities between 0.30 and 0.60 x 106 cells/mL. T-flasks and glass spinners were 

incubated at 37°C in 5% CO2 atmosphere. Wave CultiBags were incubated at 37°C and air 

sparging at 1Lpm containing 2.5-10% CO2. In all final bioreactors, the following 

cultivation parameters were fixed: 

 Total batch running time: 9 days. 

 Temperature: 37°C reduced to 34°C after 3 days of cultivation. 

 Dissolved oxygen set point: 30%, controlled by percent of pure oxygen sparging 

and air sparger flow rate. 

 pH set point: 7.20 (+/- 0.1) controlled with 7.5% w/w sodium bicarbonate solution 

addition and CO2 sparging. 

 Addition of 30% glucose solution on demand to keep the glucose level in culture 

above 3 g/L 

2.3.2.1 BIOSTAT STR 200L bioreactor 

Revitalization of one vial from the characterized WCB was done in 25mL of media in a 

disposable T-flask. The following two passages were also done in disposable T-flasks 
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reaching 350-400mL total culture volume. Passages 3 and 4 were performed in CultiBag 

RM10 wave bag, Sartorius Stedim Biotech, at a culture volume of 1.2L and 4.5L 

respectively. One day prior passage 5 in the CultiBag RM50, Sartorius Stedim Biotech, 

15L of culture media were added to the CultiBag RM50for media conditioning polarization 

of the pO2 probe. On the passage day, a volume of 3.5L fresh media and4L cell suspension 

from the CultiBag RM 10L were used for the inoculation of the CultiBag RM50 with the 

final working volume reaching 22.5L. One day prior to inoculation of the BIOSTAT STR 

200L bag, Sartorius Stedim Biotech, 50L of media were added to the STR bag for 

polarization of the oxygen probe and media conditioning at 37°C for 24 hours. Afterwards, 

passage 6 was done by transferring the cell culture from the CultiBag RM50 to the 

BIOSTAT STR 200L bag. One day later, passage 7 was performed by adding fresh culture 

media to the BIOSTAT STR 200L bag to reach a final volume of 160-180L according to 

the cell density (Figure 2).  

Two batches were performed at agitation speeds starting with 110rpm and increased 

gradually till reaching 150rpm maximum from day 4 till the end of cultivation. Another 

batch was performed at agitation speed of maximum 70rpm. 

2.3.2.2 HyClone 50L SUB 

Revitalization of one vial from the characterized WCB was done in 20mL of media in a 

disposable T-flask. The following three passages were also done in disposable T-flasks 

reaching 700 mL total culture volume. Passages 4 and 5 were performed in CultiBag RM10 

and CultiBag RM20 wave bags at culture volumes of 2.8L and 8.8L respectively. One day 

prior to inoculation of the HyClone bag, 17L of media were added to the HyClone bag for 

polarization of the oxygen probe and media conditioning at 37°C for 24 hours. Afterwards, 

passage 6 was done by transferring the cell culture from the CultiBag RM20 to the HyClone 

bag. One day later, passage 7 was performed by adding fresh culture media to the HyClone 

bag to reach a final volume of 50L (Figure 2). Agitation speed was set at 90rpm and 

increased gradually every day to reach 120rpm on day 4 till the end of the process.   
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2.3.2.3 DASGIP 750mL bioreactor 

 Lab scale experiments on the DASGIP 750mL bioreactor were performed to examine 

the potential critical cultivation parameters that were identified to show a remarkable 

difference in their values between the HyClone 50L and the BIOSTAT STR 200L 

processes.  

Three experiments were performed on the DASGIP 750mL bioreactor. Eight vessels 

were operated in parallel for each experiment, two vessels operated at the normal operating 

conditions serving as controls, and two sets of triplicates for every test condition. 

Revitalization of one vial from the characterized WCB was done in a disposable T-flask 

in 25mL of media. The following three passages were also done in disposable T-flasks 

reaching a culture volume of 900mL. Passage 4 was performed in 4 glass spinners with 

600mL culture volume in each spinner. One day prior to inoculation of the DASGIP 

vessels, 500mL of media were added to each of the 8 DASGIP vessels for polarization of 

the oxygen probe and media conditioning at 37°C for 24 hours. Afterwards, Passage 5 was 

performed by inoculation of the 8 vessels from the glass spinners (Figure 2). 

Different parameters were tested in DASGIP 750mL bioreactor, which were the viable 

cell density, pCO2, osmolality in the culture, and P/V. A total of six vessels were cultivated 

as controls. The control conditions are the normal operating conditions of the DASGIP 

bioreactor in the plant. The inoculation of the control vessels was done at viable cell 

densities range of 0.41-0.47 x106 cells/mL. Normal air was sparged into the culture vessel 

throughout the whole run at the rate of 0.5 Lpm. CO2 was introduced when needed for pH 

control. And agitation speed was set in the range of 90-120 rpm reaching its maximum on 

day 4 of cultivation.  

Three vessels for each test parameter were processed. For testing the effect of viable cell 

density, the low cell density vessels were inoculated at 0.27-0.33 x106 cells/mL while the 

high cell densities were inoculated at 0.68-0.76 x106 cells/mL. Two test conditions were 

set for the effect of the pCO2. This was done by introducing a constant 5% and 10% of CO2 
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in the sparged air into the vessel starting from day 1 of the cultivation process till its end. 

Another set of test vessels were performed by combining the low inoculation cell density 

with the 10% CO2 containing sparged air. Processing 3 vessels at a P/V value ten times 

that of the controls performed testing the effect of high P/V, thus the agitation speed was 

set at 200 rpm on inoculation and increased gradually to reach 260 rpm on day 4 of the 

process. 
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Figure 2: Flow chart for the seed train of the upstream process in the HyClone 50L SUB, BIOSTAT 

STR 200L and DASGIP 750mL bioreactors. 
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2.3.3 Evaluating the engineering characteristics of the bioreactors 

Evaluation of the engineering characteristics of the mammalian cell bioreactors, HyClone 

50L SUB, and BIOSTAT STR 200L, was performed specifically for the geometrical and 

design aspects important for solving empirical formulas of some critical scale up 

parameters. These aspects include reactor height, reactor diameter, impeller diameter, 

impeller type, and power number.  

2.3.3.1 kLa measurement 

kLa values in the BIOSTAT STR 200L bag were published at different sparging rates and 

working volumes (De Wilde et al., 2009; Noack et al., 2010a; Noack et al., 2010b). Three 

of the published values were used to solve the three empirical constants K´, α, and β in 

equation 5. The calculated values were validated by substitution in the equation to verify 

the other published kLa values other than the three used for solving the constants. Then, the 

equation with the validated constants was used to calculate the kLa of the process at the 

different working agitation speeds during the production phase of the process. 

For the HyClone 50L SUB, the kLa was measured by using the unsteady state gassing 

out method (Wise, 1951). The bag was filled with WFI at 37°C and an agitation speed of 

120 rpm was initiated. The DO level was reduced to minimum by purging pure nitrogen 

gas into the bag. Afterwards oxygenation was performed either at the minimum or the 

maximum oxygen supply rate during the production phase of the process (from day 4 to 

day 9). The maximum oxygenation rate was at 60ccm pure oxygen sparging and the 

minimum oxygenation rate was 53ccm air sparging. The level of dissolved oxygen was 

monitored via a DO probe, Hamilton, until it reached saturation. kLa was computed by the 

following equation:  

                                                           
𝒅𝑪𝑳

𝒅𝒕
=  𝒌𝑳𝒂 (𝑪∗ − 𝑪𝑳)                                         Equation 6 

Where CL is the concentration of dissolved O2 in the fermentation broth, t is time, dCL/dt 

is the change in O2 concentration over a time period, kLa is the volumetric transfer 
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coefficient in reciprocal time (h-1), and C* is the saturated dissolved O2 concentration 

(100%).  

A plot of ln(C*- CL) versus t was done producing a straight line where the slope is equal 

to kLa (Shuler & Kargi, 2002). Only DO values between 10% and 90% were considered 

(Noack et al., 2010b). 

2.3.3.2 Calculation of power input per unit volume (P/V) 

The power input per unit volume was calculated for both the HyClone 50L SUB and the 

BIOSTAT STR 200L bioreactor using equation 3. 

The power number (Po) of the HyClone 50L SUB impeller is 2.2 (Eibl & Eibl, 2009) and 

1.3 for the BIOSTAT STR 200L impeller (Noack et al., 2010a). The density, , was 

considered 1000 kg/m3 since the cells media suspension is considered water like (Oh et al., 

1989). The impeller diameter for the HyClone 50L SUB is 11.75cm (Thermo Scientific 

HyClone SUB 50L datasheet, website: https://fscimage.thermoscientific.com 

/images/D17255~.pdf) and 22.5cm for the BIOSTAT STR 200L (Noack et al., 2010a).  

The required agitation speed to operate the BIOSTAT STR at an equal P/V of the HyClone 

as well as that required to operate the DASGIP 750mL bioreactor at ten-fold its normal 

operating P/V were calculated using the same equation. 

2.3.4 Viability and viable cell density 

Viable cell densities and viabilities were measured by NucleoCounter® NC-100™, 

Chemometec. The device is an integrated fluorescence microscope designed to detect 

signals from the fluorescent dye, propidium iodide (PI) bound to DNA. 

Results from the NucleoCounter represent either total (the viable plus the non-viable 

cells) or non-viable cell concentration, depending on the sample preparation. For each 

sample, by measuring the total and the non-viable cell density, the device calculates the 

viable cell density and the viability percent. 
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2.3.5 Metabolites concentration, pH, pCO2, and osmolality analysis 

Samples were withdrawn from each cultivation system daily during the whole 9 days 

cultivation period. Samples were centrifuged and the supernatants were analyzed for pH, 

pCO2, Substrates (glucose and glutamine), and metabolites (ammonia and lactate) 

concentrations. Analysis was performed on Bioprofile 400 analyser, (Nova biomedical). 

2.3.6 FSH quantification via ELISA 

FSH concentration was determined using the FSH enzyme immunoassay test kit from 

BioCheck, Inc. The test was performed as instructed by the manufacturer.  

In short, the assay is based on using a mouse monoclonal anti-α-FSH antibody for solid 

phase (microtiter wells) immobilization and another mouse monoclonal anti-β-FSH 

conjugated with horseradish peroxidase enzyme. The test sample is allowed to react 

simultaneously with the antibodies, resulting in FSH molecules being sandwiched between 

the solid phase and enzyme-linked antibodies. Addition of the chromogen TMB (3,3′,5,5′-

Tetramethylbenzidine) leads to a color development that is directly proportional to the 

bound FSH. The spectrophotometric measurement was done on Anthos Zenyth 3100 

Microplate Multimode detector at 450nm.  

2.3.7 FSH quantification via HPLC 

Samples withdrawn on day 9 of cultivation were centrifuged, and aliquots of 100µL were 

analyzed on a Shimadzu LC-2010CHT RP-HPLC at a wavelength of 210 nm. Samples 

were separated on a Jupiter C18 300A pore size, 4.6 x 250 mm, 5 µm column, Phenomenex, 

at a temperature of 35C. Elution was performed with a gradient of buffer A [0.1% (v/v) 

TFA] and buffer B [0.1% (v/v) TFA in acetonitrile], over 40 minutes. The flow rate was 

adjusted to 1mL/min. This method completely dissociates FSH into its 2 chains, α and β, 

where the α chain elutes in the form of a sharp peak. Due to this complete dissociation, the 

alpha chain peak area is used as a quantitative representative of the total FSH concentration 

by profile comparison with an in-house FSH quantification reference (Reference code: 

CHO1-03-12/OC01-R4). 
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2.3.8 Calculation of specific cell productivity 

The cell specific productivity was calculated by dividing total quantity of the protein 

measured by ELISA in µg/mL produced during the production phase of the process by the 

average viable cell count during the same period multiplied by the production phase 

duration (5 days) to have the specific cell productivity in µg/cell/day (Equation 7). 

 

𝑺𝒑𝒆𝒄𝒊𝒇𝒊𝒄 𝒄𝒆𝒍𝒍 𝒑𝒓𝒐𝒅𝒖𝒄𝒕𝒊𝒗𝒊𝒕𝒚 = 

𝑭𝑺𝑯 𝒄𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏 (𝑫𝟗) − 𝑭𝑺𝑯 𝒄𝒐𝒏𝒄𝒆𝒏𝒕𝒓𝒂𝒕𝒊𝒐𝒏 (𝑫𝟒)
 𝑽𝑪𝑫 (𝑫𝟗) +  𝑽𝑪𝑫 (𝑫𝟒)

𝟐
⁄ × 𝟓 (𝒅𝒂𝒚𝒔) 

Equation 7 

2.3.9 Statistical analysis 

The ELISA and HPLC results on Day 9 (day of harvest) as well as the specific cell 

productivities for the HyClone 50L SUB, BIOSTAT STR 200L, DASGIP controls and the 

DASGIP operating at both low cell density and 10% CO2 containing sparged air were 

compared using one-way analysis of variance (ANOVA) followed by Tukey-Kramer 

multiple comparisons test using GraphPad Prism 5 software. P-values <0.05 were 

considered significant. 
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Chapter 3: Results 

3.1 Evaluating engineering parameters 

The engineering parameters (Table 1) showed that the HyClone 50L SUB bag had a 12% 

higher liquid height to diameter ratio and impeller to the bag diameter ratio than the 

BIOSTAT STR 200L bag. The impeller power number of the HyClone 50L SUB was 41% 

higher than that of the BIOSTAT STR 200L bioreactor.  

Table 1: Engineering parameters for the HyClone 50L SUB and the BIOSTAT STR 200L 

bioreactor. 

Parameter HC 50L bag STR 200L bag 

Reactor height/diameter ratio (h/D)  1.9:1 1.8:1 

Liquid height/diameter ratio (h1/D) 1.5:1 1.34:1 

Impeller/bag diameters (d/D) 0.38 0.34 

Impeller diameter (d) m 0.1175 0.225 

Bag diameter (D) m 0.349 0.585 

Impeller type 
2 x 3-blade 

segment impeller 

3-blades Pitched 

blade impeller 

Impeller power number (Po) 2.2 1.3 

3.2 Power input per unit volume (P/V) 

The P/V results for both the HyClone 50L SUB and the BIOSTAT STR 200L bioreactor 

result at their in-house established operating conditions (Table 2), indicated that the 

BIOSTAT STR 200L bioreactor was operating at approximately 10 times higher P/V than 

the HyClone 50L SUB. 

Table 2: Calculated P/V values of the HyClone 50L SUB and the BIOSTAT STR 200L 

bioreactor at their in-house established operating conditions. 

P/V W/m3 

Days D1 D2 D3 D4-D9 

HyClone 50L bag 3.33 4.59 6.03 7.88 

BIOSTAT STR 200L bag 30.6 40.0 56.9 78.1 

Ratio STR/HyClone 9.19 8.71 9.43 9.91 
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3.3 Mass transfer coefficient (kLa) 

Calculating the slopes of the two curves in Figure 3 resulted in the kLa values at both the 

maximum and minimum sparging rates in the HyClone 50L SUB during the production 

phase of the process. The values were 0.79 h-1 and 0.73 h-1. Those values were only about 

35% of the 2.27 h-1 kLa calculated for the BIOSTAT STR 200L bioreactor at its in-house 

established operating conditions. However, they were about 90% of the 0.86 h-1 computed 

for the BIOSTAT STR 200L bioreactor at an equivalent P/V to the HyClone 50L SUB. 

 

 

Figure 3: A plot for the change in DO versus time for measuring the kLa in the HyClone 50L SUB at 

the maximum and the minimum oxygenation rates during the production phase of the process. 
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3.4 Viability and viable cell density 

For three batches performed on the HyClone 50L SUB, the maximum viable cell density 

reached in any batch was 4.31 x106 cells/mL with an average of 3.96 x106 cells/mL. The 

average viability percent on the day of harvest was 86.7% ±1.4.  

While for the BIOSTAT STR 200L bioreactor, the two batches performed on the in-

house established working conditions, those conditions representing a P/V value 

approximately 10 times more than that of the HyClone 50L bioreactor, the maximum cell 

densities reached for the two batches were 5.35 and 4.70 x106 cells/mL. The viabilities on 

the day of harvest were 62.0% and 71.0%. This represented a marked increase in the 

maximum cell density achieved in the BIOSTAT STR 200L bioreactor compared to the 

HyClone 50L SUB whose average maximum cell density was only 79% of that reached in 

average in the BIOSTAT STR 200L. However, the viability percent started to decrease 

sharply in the BIOSTAT STR 200L batches on day 5 (Figure 4) reaching 20.2% lower 

values at the day of harvest when compared to the HyClone 50L SUB batches.  

 

Figure 4: Average VCD and viability percent of the HyClone 50L batches and BIOSTAT STR 200L 

batches performed at a P/V ten folds that of the HyClone. 
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The third batch performed on the BIOSTAT STR 200L bioreactor at P/V equivalent to 

that of the HyClone SUB showed a higher growth rate with an increase in the maximum 

cell density reaching 5.73 x106 cell/mL on day 4 of cultivation. The viability percent was 

highly comparable to the average of the other two BIOSTAT STR batches throughout the 

process except for the last day of cultivation where the lower P/V resulted in less cell death 

which was reflected in a 10% higher viability on the day of harvest compared to the average 

of the two batches operated at the10 folds P/V (Figure 5). 

 

 

Figure 5: Average VCD and viability percent of the BIOSTAT STR 200L batches performed at ten 

folds and at equivalent P/V of the HyClone 50L bioreactor. 

For the DASGIP 750mL bioreactor, the average of the six control vessels showed a 

maximum viable cell density of 5.17 x106 ±0.43 cells/mL and a viability percent on the last 

day of cultivation of 66.2% ±7.1.  

When starting the cultivation at a higher cell density of 0.68-0.76 x106 cells/mL, a higher 

average maximum cell density 5.72 x106 ±0.26 cells/mL was achieved, while the viability 

on the day of harvest was less than the controls, 61.5% ±1.6. On the other hand, inoculation 

of the bioreactor at a lower cell density of 0.27-0.33 x106 cells/mL than the established 
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inoculation density of 0.41-0.47 x106 cells/mL lead to a lower average maximum cell 

density of 3.81 x106 ±0.12 cells/mL, which is less than the controls by 1.36 x106 cells/mL, 

and a viability of 76% ±0.75 with approximately 10% increase than the controls (Figure 

6). 

 

Figure 6: Average VCD and viability percent of the DASGIP 750mL batches performed at different 

starting cell densities. At the in-house established working conditions (Controls, n=6), at a lower starting 

cell density, n=3, and at a higher starting cell density (n=3). 

For examining the effect of high CO2 concentration in the culture on the process, purging 

5% CO2 containing air constantly in the culture did not show a remarkable difference in 

the maximum cell density from the controls, 5.04 x106 ±0.2 cells/mL, while increasing the 

percentage of CO2 in the sparged air to 10% led to a decline in the maximum cell density 

to an average of 4.52 x106 ±0.09 cells/mL. The behavior of the viability percent curve was 

nearly the same with both 5% and 10% CO2 concentrations in the sparged air. The viability 

reached 75.5% ±3.8 and 76.4% ±1.4 on the day of harvest in the two conditions, 
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respectively. This is about 10% higher than the controls, which showed a sharper decline 

in the viability starting from day 6 of cultivation (Figure 7). 

 

Figure 7: Average VCD and viability percent of the DASGIP 750mL batches performed at different 

CO2 concentrations. At the normal working conditions (Controls), n=6, at a 5% CO2 containing sparged air, 

n=3, and at 10% CO2 containing sparged air, n=3. 

Combining both conditions of low inoculation density and 10% CO2 in the sparged air 

resulted in 3.51 x106 ±0.14 cells/mL maximum cell density which is the least maximum 

cell density reached in all tested conditions on the DASGIP bioreactor and also the least 

viable cell density on the day of harvest. However, the average viability on the day of 

harvest was 77.8% ±2.22, which is highly comparable to that observed when each 

parameter (10% CO2 and Low cell density) was tested alone (Figure 8). 
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Figure 8: Average VCD and viability percent of the DASGIP 750mL batches performed at the in-house 

established operating conditions (Controls), n=6, at a lower cell density, n=3, at 10% CO2 containing 

sparged air, n=3, and at both conditions combined (Low starting cell density and 10% CO2 containing 

sparged air), n=3. 

The effect of increasing P/V ten times more than the normal operating conditions of the 

DASGIP bioreactor was a slight decrease in the viable cell density starting from day 2 of 

cultivation till the end of the process. The viability percent was highly comparable except 

for the last day where a sharper decline by 6.9% was observed at the higher P/V (Figure 

9). 
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Figure 9: Average VCD and viability percent of the DASGIP 750mL batches performed at the in-house 

established operating conditions (Controls), n=6, and at P/V ten folds higher, n=3. 

3.5 FSH quantification via ELISA 

For the HyClone 50L SUB batches, the daily ELISA analysis showed a continuous 

gradual increase in the average concentration of FSH till the day of harvest. The maximum 

average concentration measured by ELISA was 407 ±66 IU/mL on day 9. For the two 

BIOSTAT STR 200L batches performed at 10 times higher P/V than that of the HyClone 

50L SUB, the product concentrations also increased gradually and where highly 

comparable to the HyClone 50L SUB batches except for the last 2-3 days of cultivation. In 

those late days, the increase in the product concentration was minimal if any. This resulted 

in an average concentration from the two BIOSTAT STR 200L batches of 275±16 IU/mL, 

which represented only two thirds of the average concentration produced from the HyClone 

50L SUB batches on the day of harvest.  

Reducing the P/V in the BIOSTAT STR 200L bioreactor to the operation value of the 
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continued till day 9. However the final concentration was nearly the same, 273 IU/mL 

(Figure 10). Comparing the analysis results of day 9 between the three HyClone 50L SUB 

runs and the three BIOSTAT STR 200L runs revealed a significant difference with P-value 

<0.001. 

 

Figure 10: Average FSH concentration measured by ELISA the HyClone 50L bioreactor, n=3, the 

BIOSTAT STR 200L bioreactor at its normal working conditions with ten folds P/V more than that of 

the HyClone (STR 10x P/V), n=2, and at P/V equivalent to that of the HyClone (STR 1x P/V), n=1. 

For the DASGIP 750mL bioreactor, the controls showed a daily gradual increase in the 

product concentration average except for the last day were the concentration was nearly 

the same as that measured on day 8, a behavior which is very similar to that observed in 

the BIOSTAT STR 200L bioreactor operated at high P/V value. The average concentration 

on the last day of cultivation was 258±19 IU/mL which is also highly comparable to that 

produced from the BIOSTAT STR 200L bioreactor (Figure 11). Statistical analysis 

revealed that the controls analysis results on day 9 were significantly different from the 

HyClone 50L SUB runs with P-value <0.001, but no significant difference from the 
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BIOSTAT STR 200L results was shown. At higher inoculation cell densities this 

concentration was reduced to 217 ±20 IU/mL. The daily increase in the product 

concentration did not continue beyond day 6 of the process under those conditions. On the 

other hand, when starting the cultivation at a lower viable cell density (Figure 11), the 

average product concentration continued to rise daily throughout the whole process and the 

final concentration was 304 ±20 IU/mL, with an 18% increase versus the controls. 

 

 

Figure 11: Average FSH concentration measured by ELISA on the DASGIP 750mL bioreactor at 

different starting cell densities. At normal working conditions (controls) n=6, at higher inoculation VCD 

(High Density), n=3, and at lower inoculation VCD (Low Density), n=3. 

 

Sparging air containing 5% CO2 into the culture produced 278 ±11IU/mL of FSH on the 

last day of cultivation. Although the value was comparable to the controls, the 

concentration was further increased to 325 ±20 IU/mL when the CO2 percentage was 

increased to 10% in the sparged air. This represented a 26% increase in the product 
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concentration in the first 8 days at both CO2 concentrations, no increase in the 

concentration was observed in the last day of the process (Figure 12). 

 

 

Figure 12: Average FSH concentration measured by ELISA on the DASGIP 750mL bioreactor 

different CO2 concentrations. At normal working conditions (controls) n=6, at a 5% CO2 containing 

sparged air, n=3, and at 10% CO2 containing sparged air, n=3. 

 

The cultivation at both a 10% CO2 containing sparged air and a lower cell density than 

the control showed a gradual increase in the average product concentration till the last day 

of the process. It yielded an average FSH concentration on the day of harvest of 345 ±19 

IU/mL. This is 6% higher than the cultivation at 10% CO2 with normal operating cell 

density, 12% higher than cultivation at lower viable cell density while sparging normal air, 

and 34% significantly higher than the controls (P-value <0.05) (Figure 13). Also, this 

concentration represented 85% of the average concentration produced in the HyClone 50L 

bioreactor on the last day of cultivation with no significant difference in between (Figure 

14).  
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Figure 13: Average FSH concentration measured by ELISA on the DASGIP 750mL bioreactor, at in-

house established operating conditions (controls) n=6, at a lower inoculation cell density than the 

controls, n=3, at 10% CO2 containing sparged air, n=3, and at both conditions combined (Low starting 

cell density and 10% CO2 containing sparged air), n=3. 

 

 

Figure 14: Average FSH concentration measured by ELISA on the day of harvest at the DASGIP 

bioreactor controls, n=6, the BIOSTAT STR 200L bioreactor operated at 1X and 10X P/V values, n=3, 

the DASGIP bioreactor at 10% CO2 containing sparged air and low inoculation cell density, n=3, and 

at HyClone 50L SUB bioreactor at its normal working conditions, n=3. 
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Increasing the P/V of the DASGIP 750mL process by ten folds produced an average FSH 

concentration of 249 ±36 IU/mL on day 9 with no remarkable difference from the controls 

throughout the whole process. Only in the first few days the operation at high P/V produced 

slightly higher amounts of protein (Figure 15). 

 

Figure 15: Average FSH concentration measured by ELISA for DASGIP 750mL batches performed 

at the in-house established operating conditions (Controls), n=6, and at P/V ten folds higher, n=3. 

3.6 FSH quantification via HPLC 

The HPLC analysis on the day of harvest showed an average of 36.6 ±3.34µg/mL in the 

HyClone 50L SUB. This represented about 128% of the average product concentration 

from the two BIOSTAT STR 200L batches performed at ten times higher P/V than that of 

the HyClone SUB. The third STR batch with adjusted P/V equivalent to that of the 

HyClone produced 26.8µg/mL, which was only 6% less than the average concentration of 

the other two BIOSTAT STR batches (Figure 16). Comparing the results between the three 

HyClone 50L SUB runs and the three BIOSTAT STR 200L runs revealed a significant 

difference with P-value <0.001. 
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Figure 16: Average FSH concentration measured by HPLC on day of harvest for HyClone 50L, n=3, 

BIOSTAT STR 200L operated at P/V ten folds greater than that of the HyClone bioreactor, n=2, at 

P/V equivalent to that of the HyClone, n=1, and DASGIP controls, n=6. 

For the DASGIP 750mL bioreactor, the controls produced an average of 27.8±0.64 

µg/mL, which is highly comparable to the BIOSTAT STR 200L batches with no significant 

difference in between, while it represented a significant decrease to only 76% of the 

average concentration from the HyClone 50L SUB batches (P-value <0.001).  

Higher and lower inoculation densities affected the product concentration inversely. The 

higher inoculation density yielded an average product concentration of 25.2 ±0.75 µg/mL, 

while the lower viable cell density yielded an average of 31.86 ±0.75 µg/mL which 

represented a 15% increase from the controls (Figure 17). 
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Figure 17: Average FSH concentration measured by HPLC on the day of harvest for the DASGIP 

750mL bioreactor at different starting cell densities. At normal working conditions (controls) n=6, at 

higher inoculation VCD, n=3, and at lower inoculation VCD, n=3. 

Increasing the percent of CO2 in the air introduced into the cell culture at the DASGIP 

750mL bioreactor resulted in an average concentration of 29.8 ±0.9 µg/mL with 5% CO2, 

and a further increase to 34.46 ±0.66 µg/mL with increasing the CO2 percentages to 10%. 

This represented a 124% of the average concentration of the controls (Figure 18), and only 

6% less than the average concentration of FSH from the HyClone 50L SUB batches. 

 

Figure 18: Average FSH concentration measured by HPLC on the day of harvest for the DASGIP 

750mL bioreactor at different CO2concentrations. At in-house established working conditions (controls) 

n=6, at 5% CO2 containing sparged air, n=3 and at 10% CO2 containing sparged air, n=3. 
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Cultivation at both 10% CO2containing air and a lower cell density than the normal 

operating conditions yielded an average product concentration of 33.13 ±2.25 µg/mL. This 

result was comparable to the results from the batches where each parameter was tested 

separately (Figure 19). This was significantly different from the results of both the 

DASGIP controls and the BIOSTAT STR 200L runs with P-value <0.05, but not from the 

HyClone 50L SUB results. 

 

 

Figure 19: Average FSH concentration measured by HPLC on day 9 of the cultivation process for the 

DASGIP 750mL bioreactor, at in-house established operating conditions (controls) n=6, at a lower 

inoculation cell density than the controls (Low Cell Density), n=3, at 10% CO2 containing sparged air, 

n=3, and at both conditions combined (Low starting cell density and 10% CO2 containing sparged air), 

n=3. 

 

Operating the DASGIP bioreactor on P/V, which is ten-fold higher than its normal 

operating conditions yielded an average FSH concentration of 28.40 ±2.48 µg/mL, which 

showed no remarkable difference from the average results of the controls which measured 

27.8 ±0.64 µg/mL. 
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3.7 Cell specific productivity 

The average cell specific productivity calculated for the three HyClone 50L SUB batches 

was 1.61 x10-6 ±0.44µg/cell/day. The two BIOSTAT STR 200L batches operated at a high 

P/V which was approximately ten times that of the HyClone 50L SUB bioreactor resulted 

in cell specific productivities of 0.81 x10-6µg/cell/day and 0.78 x10-6 µg/cell/day which 

were nearly half the average cell specific productivity in the HyClone 50L SUB batches. 

The third BIOSTAT STR 200L batch operated at low P/V equivalent to that of the HyClone 

50L SUB showed no effect on the cell specific productivity, which was calculated to be 

0.82x10-6 µg/cell/day (Figure 20). Comparing the results between the three HyClone 50L 

SUB runs and the three STR runs revealed a significant difference with P-value <0.01. 

 

Figure 20: Average cell specific productivity for HyClone 50L, n=3, BIOSTAT STR 200L operated at 

P/V ten folds greater than that of the HyClone bioreactor, n=2, at P/V equivalent to that of the 

HyClone, n=1, and DASGIP controls, n=6. 

The DASGIP 750mL experiments performed at the in-house established operating 

conditions showed an average productivity of 0.86 x10-6 ±0.10 µg/cell/day, which was 

highly comparable with no significant difference from the productivity of the cells 

observed in the BIOSTAT STR 200L bioreactor batches, and still representing 

significantly only 53% of the average cell specific productivity in the HyClone 50L SUB 

(P-value <0.01). 
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Operating the DASGIP bioreactor at higher cell density resulted in a further decline in 

the cell productivity. Only 0.55 x10-6 ±0.06 µg/cell/day were observed. This represented 

64% of the cell productivity in the controls. On the other hand, the DASGIP vessels 

operated with a lower cell density than the controls showed an average productivity of 1.46 

x10-6 ±0.07µg/cell/day. This sharp increase in productivity represented a 70% increase in 

the productivity from the controls (Figure 21), and about 91% of the average cell 

productivity in the HyClone 50L SUB bioreactor. 

 

Figure 21: Average cell specific productivity calculated for the DASGIP 750mL bioreactor at different 

starting cell densities. At in-house established working conditions (controls) n=6, at higher inoculation 

VCD, n=3, and at lower inoculation VCD, n=3. 

Although increasing the percentage of CO2 in the air sparged in to the culture to 5% 

showed only a very slight increase in the cell productivity versus the controls, a further 

increase of the CO2 percentage to 10% raised the cell productivity by 38%. The averages 

of the results for the 5% CO2 were 0.91x10-6 ±0.04 µg/cell/day and 1.19 x10-6±0.12 

µg/cell/day for the 10% CO2 (Figure 22). 
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Figure 22: Average cell specific productivity on the DASGIP 750mL bioreactor at different CO2 

concentrations. At normal working conditions (controls) n=6, at 5% CO2 containing sparged air, n=3 and at 

10% CO2 containing sparged air, n=3. 

Combining both parameters that sharply increased the cell productivity (low cell density 

and 10% CO2) in the same run led to an average specific cell productivity 1.69 x10-6 ±0.10 

µg/cell/day, which was significantly almost double that of the DASGIP controls (P-value 

<0.001), 42% higher than the average of the batches cultivated at 10% CO2 alone, and 16% 

higher than the average of those cultivated at lower inoculation cell density alone (Figure 

23). This was also significantly nearly double the specific productivity from the BIOSTAT 

STR 200L batches (P-value <0.01), and is even slightly higher than the average 

productivity in the HyClone 50L SUB batches with no significant difference (Figure 24). 

Operating the DASGIP vessels at a P/V which is ten times its normal working parameters’ 

P/V led to a cell specific productivity of 0.78x10-6 ±0.13 µg/cell/day, which was very close 

to the productivities observed in the DASGIP controls as well as the BIOSTAT STR 200L 

at its both operating parameters. 
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Figure 23: Average specific cell productivity at in-house established operating conditions (controls) 

n=6, at a lower inoculation cell density than the controls (Low Count), n=3, at 10% CO2 containing 

sparged air, n=3, and at both conditions combined (Low starting cell density and 10% CO2 containing 

sparged air), n=3. 

 

 

Figure 24: Average cell specific productivity for the DASGIP 750mL bioreactor, at in-house 

established operating conditions (controls) n=6, at both low cell density and 10% CO2 containing 

sparged air, n=3, for the HyClone 50L SUB, n=3, and for the BIOSTAT STR bioreactor, n=3. 
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3.8 pCO2 level analysis 

The pCO2 level analysis in the culture showed a comparable level on the production phase 

between the BIOSTAT STR 200L and the DASGIP controls on one side, the HyClone 50L 

SUB and the DASGIP operating at 10% CO2 containing air on the other side. 

During the growth phase of the process, the average pCO2 in the DASGIP controls was 

between 40 and 50 mmHg, while in the BIOSTAT STR between 70 and 80 mmHg. 

However, this difference did not last for long. Since in the production phase the pCO2 

levels became highly comparable in the range between 25 and 40 mmHg. 

On the other hand, for the HyClone 50L SUB and the DASGIP experiments operated at 

10% CO2, the levels were varying between 80 and 110 mmHg in the growth phase. On the 

production phase, the levels were decreasing gradually starting from about 90 mmHg on 

day 4 of the cultivation process till reaching about 60 mmHg on the day of harvest (Figure 

25). 

 

Figure 25: Average pCO2 level in the BIOSTAT STR, n=3, DASGIP controls, n=6, HyClone SUB, and 

DASGIP operated at 10% CO2 containing sparged air, n=6. 
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For osmolality, the levels were highly comparable in the BIOSTAT STR 200L and the 

DASGIP controls throughout the whole run. The osmolality level increased gradually 

during the growth phase till it reached 380-400 mOsm/kg on day 3. During the production 

phase the level was always between 390 and 410 mOsm/kg.  

For the HyClone 50L SUB and the DASGIP experiments operated at 10% CO2 containing 

sparged air, the highest level in the production phase was between 410 and 425 mOsm/kg 

on day 3 being slightly higher in the HyClone 50L SUB, while on the production phase the 

level was in the range of 420-460 mOsm/kg with about 10-20 mOsm/kg higher levels in 

the DASGIP runs (Figure 26). 

 

Figure 26: Average Osmolality in the BIOSTAT STR (n=3), DASGIP controls (n=6), HyClone SUB, 

and DASGIP operated at 10% CO2 containing sparged air (n=6). 
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Chapter 4: Discussion 

Bioreactors do not operate identically at different scales, and it is not possible to scale up 

a process based on a single engineering parameter because other parameters will change 

accordingly. Thus, the most important thing is to identify the critical process parameters 

and to set up the scale up strategy based on those identified critical parameters. 

Taking the scaling up of the production process of rh-FSH from HyClone 50L SUB to 

the BIOSTAT STR 200L bioreactor as an example, the process was first operated on the 

200L bioreactor at its in-house established operating conditions. A big difference was 

observed in the achieved cell density, cell viability, product concentration as well as the 

cell specific productivity when compared to those observed in the 50L process. Different 

cultivation and engineering parameters were tested if they represent potential critical 

parameters for a successful scale up process and the results are discussed herein. 

4.1 Effect of common engineering scale up parameters 

The most used criteria for scale up are based on the empirical relationships that correlate 

P/V and kLa (Vilaca et al., 2000). This relationship accounts for agitation and aeration 

parameters, which directly influence gas-liquid mass transfer (Yawalkar et al., 2002). 

In this study, the calculations revealed that at the in-house established operating 

conditions, the BIOSTAT STR 200L bioreactor operated at approximately 10 times P/V 

and 3 times kLa higher than the HyClone 50L SUB. The high value of P/V reaching 78.1 

W/m3 was considered as a probable reason for the higher death rate and hence the lower 

protein concentration produced from the BIOSTAT STR 200L bioreactor (Langheinrich et 

al., 1998; Junker, 2004). This consideration was due to the fact that P/V in animal cell 

culture processes is kept at much lower values than that in microbial cultures because of 

the higher fragility of the mammalian and insect cells. A global average of 10 W/m3 and a 

range of 1–50 W/m3 were suggested in animal cell culture (Rathore et al., 2008). 

Operating the BIOSTAT STR 200L at lower agitation speeds that account for a P/V 

equivalent to that of the HyClone 50L SUB bioreactor and consequently a kLa about 10-
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18% higher than that of the HyClone50L SUB did not result in higher productivity nor 

better viabilities. Such results are also confirmed by lab scale experiments operated at a 10 

folds difference in P/V. Thus, the study was directed to search other factors that might be 

the possible causes of the different behavior in cell growth, cell death and the protein 

production. 

4.2 Effect of cell density 

The main objective of fermentation in industry is to increase productivity (Lee, 1996; 

Riesenberg & Guthke, 1999). Productivity is a function of cell density and the amount of 

product formed by each cell per unit time, what is called the specific cell productivity. 

Thus, increasing the productivity requires increasing the cell density in the culture as well 

as the specific productivity for the cell. Cultivation at high cell densities can be a powerful 

tool for production of recombinant proteins. A recent study has reached a cell density of 

1.5-1.8 x107 cells/mL in fed batch culture and 1.27x108 cells/mL for a perfusion culture in 

a wave bioreactor. Both showed an average specific cell productivity of MAb between 9 

and 13 pg/cell/day (Clincke et al, 2013). 

However, the results of this study showed an inverse relation between the cell density in 

culture and the overall productivity. This was attributed to the sharp decline in specific cell 

productivity with increased cell culture density. It was also observed in experiments of this 

study that the higher the cell density the faster is the cell death and the lower cell viability 

at the end of the cultivation. This negative effect of high cell density on the productivity 

was confirmed by the results from the DASGIP 750mL bioreactor experiments.  

The main problems that could arise from high density cell culture include limited 

availability of  DO at high cell densities, accumulation of carbon dioxide to the levels that 

can decrease growth rates, reduced mixing efficiencies in the fermentor (Lee, 1996), 

limitation and/or inhibition of substrates essential for growth and accumulation of 

metabolic by-products to a growth-inhibitory level (Riesenberg & Guthke, 1999). 
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Concerning the above-mentioned potential reasons for decreased productivity at high cell 

densities, substrate inhibition or limitation as well as formation of growth inhibitory 

byproducts are difficult to discover. This is due to the complexity of the used culture media 

and the inability to monitor the concentration of every single nutrient or byproduct. 

However, the levels of glucose and glutamine, being agreed as the main carbon and energy 

sources in cell culture (Altamirano et al., 2000), together with their byproducts, lactate and 

ammonia, were monitored throughout the cultivation process. No remarkable differences 

in glucose, glutamine, lactate and ammonia levels were observed between the BIOSTAT 

STR 200L and the HyClone 50L SUB bioreactors (Data not shown). 

Reduced mixing efficiency was refuted by the fact that the Reynolds number at all 

operating conditions for both the HyClone 50L SUB and the BIOSTAT STR 200L 

bioreactors were above 10000, which represents the threshold of turbulent flow 

(Armenante & Chang, 1998). 

Interestingly, Kou et al. described a study in which the specific productivity of 

recombinant Tumor Necrosis Factor Receptor:Fc Fusion Protein (TNFR-Fc) in CHO cells 

at cell density of 6×106 cells/mL was 68% less than that at cell density 2×106 cells/mL. 

It was revealed that the mRNA level of the recombinant protein at the lower cell density 

culture was almost twice the level than in the higher cell density culture. It was also proved 

that the rate of protein assembly and transport from the endoplasmic reticulum to the Golgi 

were significantly lower at the high cell density culture. Thus, the reduced productivity of 

the recombinant protein at the high cell density was shown to be correlated with the 

reduction in both mRNA level and post-translational processing rate (Kou et al., 2011). 
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4.3 pCO2 and osmolality 

pCO2 and osmolality are highly correlated in cultures where pH is maintained by base 

addition. Base addition at elevated pCO2 increases bicarbonate concentration and hence 

increases osmolality. At equilibrium, [CO2(aq)], pH, and [HCO3
-] are related by the 

Henderson-Hasselbach equation for CO2 dissociation: 

                                      pH = pK + log([HCO3
-]/[CO2(aq)])                              Equation 8 

The [CO2(aq)] is directly proportional to pCO2 at equilibrium. Therefore, the bicarbonate 

concentration, and hence the osmolality, will be proportional to pCO2 at constant pH 

(Kimura & Miller, 1996). Typically, a cell culture medium is designed to have an 

osmolality in the range of 260-320 mOsm/kg, to mimic the osmolality of serum 

(290mOsm/kg) (Ozturk & Palsson, 1991). 

In the current study, the aim was to examine if the difference in cell growth rate and 

product titer between the HyClone 50L SUB and the BIOSTAT STR 200L bioreactors can 

be correlated to the difference in the pCO2 and osmolality observed throughout the process 

performed in the two bioreactors. This was tested on the lab scale DASGIP bioreactor 

where comparable pCO2 and osmolality values between the DASGIP controls and the 

BIOSTAT STR 200L bioreactor yielded a comparable growth rate and product titer. While 

on the other hand, the higher pCO2 and osmolality in the DASGIP units with 10% CO2 

containing sparged air yielded also a comparable growth rate and product titer to the 

HyClone 50L SUB. This suggests that one reason for the difference in the rate of cell 

growth and the protein production between the HyClone 50L and the BIOSTAT STR 200L 

bioreactor may be the difference in the culture pCO2 and osmolality. The pCO2 in the 10% 

CO2 DASGIP experiments was about 90 mmHg on the growth phase and 60-80 on the 

production phase compared to 50 mmHg and 30-40 mmHg for the controls. While the 

osmolality was 400-410 mOsm/kg at the growth phase and 430-445 mOsm/kg at the 

production phase compared to 390 mOsm/kg and 400-410 mOsm/kg for the controls. Such 

small differences of only 10 or 20 units resulted in differences as big as 26% increase in 

the product titer on ELISA, 24% on HPLC, a decrease by 0.65 million viable cells/mL in 
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the maximum viable cell density and around 10% increase in viability at the end of the 

process. The results of reduced cell growth rate and increased productivity match the 

findings from the previous literature (Kurano et al., 1990; Kimura & Miller, 1996; Oyaas 

et al., 1994; Lee & Park, 1995) where high levels of osmolality as well as pCO2 were found 

to be detrimental to mammalian cell culture in terms of cell growth rate and productivity.  

One study showed that the specific growth rate in hybridoma culture was reduced by 

about 50% when osmolality increased from 360 to 450 mOsm/kg (Kurano et al., 1990). 

Another study showed that a combination of elevated pCO2 and osmolality reduced 

specific growth rate up to 45%, while it had no effect or even increased productivity of 

tissue plasminogen activator (tPA) producing CHO cells (Kimura & Miller, 1996). A third 

study reported a decrease in cell growth and an increase in antibody production from 

hybridoma cells at high osmolarities (Oyaas et al., 1994). And a fourth study showed that 

for CHO cells producing antibody fusion protein B1, the combined effect from high pCO2 

(140-160 mmHg) and elevated osmolality (400-450 mOsm/kg), as compared to elevated 

osmolality alone, caused more decrease in viable cell density, and it has also increased the 

specific cell productivity (Zhu et al., 2005). It was also reported that the magnitude of the 

increase of antibody productivity from hyperosmotic stress is cell line dependent (Lee & 

Park, 1995). 

However, the observation of enhanced viability at the end of the process at high 

osmolality and pCO2 from the current study is conflicting to the reported negative effect of 

elevated pCO2 and osmolality on the cell viability. Thus, it can be concluded that the high 

cell density was the major cause of the reduced viabilities of the culture, and this effect is 

achieved through another mechanism rather than the accumulation of CO2 as a waste 

product in the culture medium. 

Although many studies reported the relation between elevated pCO2 and/or osmolality on 

the growth and the productivity behaviors of mammalian cell culture, none of them 

identified the real mechanism of such an effect. Some studies declared that the high pCO2 

levels reduce intracellular pH (pHi), even when the medium pH is controlled (Krapf et al., 
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1988). This was attributed to the fact that CO2 can readily diffuse across the cell membrane, 

where it can hydrate and then dissociate into H+ and HCO3
- (Alberts et al., 1989). These 

pHi changes can affect the activity of cytosolic enzymes, it can alter the cell metabolism 

(Madshus, 1988), and it can also change the pH in the endoplasmic reticulum and/or the 

Golgi apparatus which could alter protein processing and secretion (Thorens & Vassalli, 

1986). 

A very interesting finding was reported for the addition of sodium propionate to CHO 

cell culture which resulted in suppression in the cell growth rate, but enhanced the FSH 

production (Yoon & Ahn, 2007). Propionic acid is a weak acid, which is membrane 

permeable. Exposing animal cells to propionic acid as well as other weak organic acids 

like butyric or benzoic acid has been a classical approach to reduce the intracellular pH 

(Roos & Boron, 1981). The enhanced production of rh-FSH from CHO cells with both 

propionate addition and elevated pCO2 suggests that lowering the intracellular pH is a 

probable cause of such an effect.  

The reason for the difference in pCO2 levels between the HyClone 50L SUB and the 

BIOSTAT STR 200L is assumed to be correlated to their different sparger types and pore 

size. HyClone 50L SUB has a porous frit gas microsparger with pores size of 25 µm 

(Thermo Scientific HyClone Single-Use Bioreactor (S.U.B.) 50 L datasheet, website: 

https://fscimage.thermoscientific.com/images/D17255~.pdf), while the BIOSTAT STR 

200L bioreactor incorporates a classical ring sparger with 0.8mm holes (Noack et al., 

2010b). Microspargers significantly increase the gas-medium interfaces and hence provide 

higher O2 mass-transfer coefficients (Fenge & Lüllau, 2006). Further, microspargers have 

a lower efficiency in CO2 removal. This was attributed to the fact that the smaller bubbles 

are more easily saturated with CO2 than the larger ones (Czermak et al., 2009). 
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Chapter 5: Conclusions and Future Recommendations 

5.1 Conclusions 

Experiments on the lab scale DASGIP bioreactor revealed that the critical parameters in 

the upstream process for production of rh-FSH from CHO cells were the cell density and 

pCO2 and/or osmolality levels in the culture. These parameters can be considered as the 

major potential factors causing the differences in the maximum cell density, cell viability, 

product formation and cell productivity between the HyClone 50L SUB and the BIOSTAT 

STR 200L bioreactors. 

The high cell density was shown to reduce the specific cell productivity as well as the 

total product concentration. The higher pCO2 and osmolality levels in the culture were 

shown to increase the specific cell productivity and the total product concentration. They 

were also shown to exert a slight reduction in the cell growth rate. 

Commonly used scale up parameters like the P/V and kLa are not critical factors to be 

kept constant during the scaling of this process at least at the ranges tested in this study. 

5.2 Future Recommendations 

It is recommended to adjust the operating parameters of the BIOSTAT STR 200L 

bioreactor, by reducing the inoculation cell density, and introducing higher levels of CO2 

in the sparged air in order to achieve pCO2 levels comparable to those of the HyClone 50L 

SUB. 

It is further recommended to carry out lab scale experiments to study the individual 

effects of raising pCO2 and osmolality levels on the process. This can be done by changing 

one parameter and keeping the other constant in order to identify the exact process critical 

parameter.  

To further assess the reason for reduced productivity at high cell density, experiments 

can be performed to assess the level of mRNA and the rate of protein processing at different 

culture cell densities. Also, a detailed nutrients and metabolites analysis can reveal some 
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essential nutrients or inhibitory byproducts that might exceed their critical limits at high 

cell densities  

In addition it is recommended to test whether the enhanced FSH production is associated 

with low intracellular pH values by adding different reagents to the culture that alter the 

intracellular pH. 

  



54 
 

References 

Alam, Z., Muhd, N. H., Razali, F., (2005). Scale‐up of stirred and aerated 

bioengineering bioreactor based on constant mass transfer coefficient.  J. Teknologi., 43, 

95‐110. 

Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., & Watson, J. D. (1989).Molecular 

biology of the cell. 2nd edition. Garland, New York. 

Altamirano, C., Paredes, C., Cairo, J. J., &Godia, F. (2000). Improvement of CHO cell 

culture medium formulation: simultaneous substitution of glucose and glutamine. 

Biotechnol.Prog., 16, 69-75. 

Armenante, P. M. & Chang, G. M. (1998). Power Consumption in Agitated Vessels 

Provided with Multiple-Disk Turbines. Industrial & Engineering Chemistry Research, 37, 

284-291. 

Bassett, R. M. &Driebergen, R. (2005). Continued improvements in the quality and 

consistency of follitropinalfa, recombinant human FSH.Reprod.Biomed.Online, 10, 169-

177. 

Bylund, F., Collet, E., Enfors, S. O., & Larsson, G. (1998). Substrate gradient formation 

in the large-scale bioreactor lowers cell yield and increases by-product formation. 

Bioprocess Engineering, 18, 171-180. 

Catapano, G., Czermak, P., Eibl, R., Eibl, D., &Portner, R. (2009). Bioreactor Design 

and Scale-Up. In Cell and Tissue Reaction Engineering (pp. 173-259). Springer Berlin 

Heidelberg. 

Chu, L. & Robinson, D. K. (2001).Industrial choices for protein production by large-

scale cell culture.Curr.Opin.Biotechnol., 12, 180-187. 

Clincke, M. F., Mölleryd, C., Samani, P. K., Lindskog, E., Fäldt, E., Walsh, K., 

&Chotteau, V. (2013). Very high density of Chinese hamster ovary cells in perfusion by 



55 
 

alternating tangential flow or tangential flow filtration in WAVE bioreactor™—part II: 

Applications for antibody production and cryopreservation.Biotechnology progress, 29(3), 

768-777. 

Czermak, P., Portner, R., & Brix, A. (2009). Special Engineering Aspects. In Cell and 

Tissue Reaction Engineering (pp. 83-172). Springer Berlin Heidelberg. 

Daya, S. (2002).Updated meta-analysis of recombinant follicle-stimulating hormone 

(FSH) versus urinary FSH for ovarian stimulation in assisted reproduction. Fertil.Steril., 

77, 711-714. 

De Wilde, D., Noack, U., Kahlert, W., Barbaroux, M., & Greller, G. (2009). Bridging 

the gap from reusable to single-use manufacturing with stirred, single-use bioreactors. 

BioProcessInt, 7(4). 

Diblasi, K., Jornitz, M. W., Gottschalk, U., &Priebe, P. M. (2007). Disposable 

biopharmaceutical processes-myth or reality?. Biopharm international, (OCT), 19-24. 

Doran, P. M. (1995). 9 - Mass Transfer. In P.M.Doran (Ed.), Bioprocess Engineering 

Principles (pp. 190-217). London: Academic Press. 

Eibl, R. &Eibl, D. (2009). Application of disposable bag bioreactors in tissue 

engineering and for the production of therapeutic agents.Adv.Biochem. EngBiotechnol., 

112, 183-207. 

El Taieb, S., Bauer, I., Rohde, J., & Mueller, F. (2010). Disposable pilot scale process 

for the production of a CHO derived recombinant follicle stimulating hormone. Poster 

presented at Biotech 2010, Wädenswill, Switzerland. 

Fenge, C., &Lüllau, E. (2006). Cell Culture Bioreactors. In Cell Culture Technology 

forPharmaceutical And Cell-Based Therapies (pp. 155-224).CRC  Press. 

Forgione, P. & Van Trier, M. (2006).The end for stainless steel.BioProcess Int., 4, 58‐

62. 



56 
 

Galliher, P. M., Hodge, G., Guertin, P., Chew, L., &Deloggio, T. (2011). Single-Use 

Bioreactor Platform for Microbial Fermentation. Single-Use Technology in 

Biopharmaceutical Manufacture, 241-250 

Genetic Engineering and Biotechnology News. (2006). Disposable Bioreactors Gaining 

Favor 26,1.<http://www.genengnews.com/articles/chitem.aspx?aid=1807>. 

Holland, I. A. & Chapman, F.S. (1966).Liquid Mixing and Processing in Stirred 

Tanks.Reinhold: New York. 

Howles, C. M. (1996).Genetic engineering of human FSH (Gonal-

F).Hum.Reprod.Update., 2, 172-191. 

Ju, L. K. & Chase, G. G. (1992). Improved scale-up strategies of bioreactors.Bioprocess 

Eng., 8, 49-53. 

Junker, B. H. (2004). Scale-up methodologies for Escherichia coli and yeast 

fermentation processes.J.Biosci.Bioeng., 97, 347-364. 

Kane, J. (2012). Measuring kLa for Better Bioreactor Performance.BioProcess Int., 

10,46-49.  

Kimura, R. & Miller, W. M. (1996). Effects of elevated pCO2 and/or osmolality on the 

growth and recombinant tPA production of CHO cells. Biotechnology and Bioengineering, 

52, 152-160. 

Kou, T. C., Fan, L., Ye, Z. Y., Zhou, Y., Liu, X. P., Zhao, L. et al. (2011). Process 

analysis of reduced specific productivity of TNFR-Fc in Chinese hamster ovary cells at 

high cell density. Process Biochemistry, 46, 1492-1499. 

Krapf, R., Berry, C. A., Alpern, R. J., & Rector, F. C., Jr. (1988). Regulation of cell pH 

by ambient bicarbonate, carbon dioxide tension, and pH in the rabbit proximal convoluted 

tubule.J.Clin.Invest, 81,381-389. 



57 
 

Kurano, N., Leist, C., Messi, F., Kurano, S., &Fiechter, A. (1990). Growth behavior of 

Chinese hamster ovary cells in a compact loop bioreactor. 2. Effects of medium 

components and waste products. J.Biotechnol., 15, 113-128. 

Langheinrich, C. &Nienow, A. W. (1999). Control of pH in large-scale, free suspension 

animal cell bioreactors: alkali addition and pH excursions. Biotechnology and 

Bioengineering, 66, 171-179. 

Langheinrich, C., Nienow, A. W., Eddleston, T., Stevenson, N. C., Emery, A. N., 

Clayton, T. M. et al. (1998). Liquid Homogenization Studies in Animal Cell Bioreactors 

of up to 8 m3 in Volume. Food and Bioproducts Processing, 76, 107-116. 

Lee, G. & Park, S. (1995). Enhanced specific antibody productivity of hybridomas 

resulting from hyperosmotic stress is cell line-specific. BiotechnolLett, 17, 145-150. 

Lee, S. Y. (1996).High cell-density culture of Escherichia coli.TrendsBiotechnol., 14, 

98-105. 

Ma, N., Koelling, K. W., & Chalmers, J. J. (2002). Fabrication and use of a transient 

contractional flow device to quantify the sensitivity of mammalian and insect cells to 

hydrodynamic forces.Biotechnology and Bioengineering, 80, 428-437. 

Ma, N., Mollet, M., & Chalmers J.J. (2006). Aeration, Mixing and Hydrodynamics in 

Bioreactors.InCell Culture Technology forPharmaceutical And Cell-Based Therapies (pp. 

225-248). CRC  Press. 

Madshus, I. H. (1988).Regulation of intracellular pH in eukaryotic cells.Biochem.J., 

250, 1-8. 

Marks, D. M. (2003). Equipment design considerations for large scale cell culture. 

Cytotechnology, 42, 21-33. 

Menisher, T., Metghalchi, M., &Gutoff, E. B. (2000). Mixing studies in bioreactors. 

Bioprocess Engineering, 22, 115-120. 



58 
 

Nienow, A. W. (2006). Reactor engineering in large scale animal cell culture. 

Cytotechnology, 50, 9-33. 

Nienow, A. W. (1998). Hydrodynamics of Stirred Bioreactors.Applied Mechanics 

Reviews, 51, 3-32. 

Nienow, A.W., (2003). Aeration-biotechnology. In Kirk Othmerencyclopaedia of 

chemical technology, 5thedn.Wiley Interscience, New York. 

Noack, U., Brandt, S., De Wilde, D., &Greller, G. (2010a). Evaluation of the BIOSTAT 

CultiBag STR family in terms of scalability. Poster presentedatBiotech 2010, Wädenswill, 

Switzerland. 

Noack, U., De Wilde, D., Verhoeye, F., Balbirnie, E., Kahlert, W., Adams, T. et al. 

(2010b). Single-Use Stirred Tank Reactor BIOSTAT CultiBag STR: Characterization and 

Applications. In Single-Use Technology in Biopharmaceutical Manufacture (pp. 225-240). 

John Wiley & Sons, Inc. 

Oh, S. K. W., Nienow, A. W., Al-Rubeai, M., & Emery, A. N. (1989). The effects of 

agitation intensity with and without continuous sparging on the growth and antibody 

production of hybridomacells. Journal of Biotechnology, 12, 45-61. 

Oyaas, K., Ellingsen, T. E., Dyrset, N., & Levine, D. W. (1994). Hyperosmotic 

hbridoma cell cultures: Increased monoclonal antibody production with addition of glycine 

betaine. Biotechnology and Bioengineering, 44, 991-998. 

Ozturk, S. S. &Palsson, B. O. (1991). Growth, metabolic, and antibody production 

kinetics of hybridoma cell culture: 1. Analysis of data from controlled batch reactors. 

Biotechnol.Prog., 7, 471-480. 

Rathore, A. S., Green, K., Hashimura, Y., & Nyberg, G. (2008). Modeling of 

Biopharmaceutical Processes&mdash; Part 1: Microbial and Mammalian Unit Operations. 

BioPharm International, 21(6). 



59 
 

Riesenberg, D. &Guthke, R. (1999). High-cell-density cultivation of 

microorganisms.Appl.Microbiol.Biotechnol., 51, 422-430. 

Roos, A., & Boron, W. F. (1981). Intracellular pH.Physiological Reviews, 61, 296-434. 

Schmidt, F. R. (2005). Optimization and scale up of industrial fermentation processes. 

Appl.Microbiol.Biotechnol., 68, 425-435. 

Seamans, T. C., Fries, S., Beck, A., Wurch, T., Chenu, S., Chan, C., ... &Chartrain, M. 

(2008). Cell Cultivation Process Transfer and Scale-Up. BioProcess International. 

Selker, M. &Paldus, B. (11-6-2008). Disposable bioreactor system.   Google Patents. 

Ref Type: Generic 

Shukla, A. A., & Gottschalk, U. (2013). Single-use disposable technologies for 

biopharmaceutical manufacturing. Trends in biotechnology, 31(3), 147-154. 

Shuler, M. L., &Kargi, F. (2002).Bioprocess engineering (pp. 120-133). ^ eUpper 

Saddle River. Upper Saddle River.: Prentice Hall. 

Stoker, E. B. (2011). Comparative studies on scale-up methods of single-use 

bioreactors. 

Thorens, B. &Vassalli, P. (1986). Chloroquine and ammonium chloride prevent 

terminal glycosylation of immunoglobulins in plasma cells without affecting secretion. 

Nature, 321, 618-620. 

Van'tRiet, K. (1979). Review of Measuring Methods and Results in Nonviscous Gas-

Liquid Mass Transfer in Stirred Vessels. Industrial & Engineering Chemistry Process 

Design and Development, 18, 357-364. 

Vilaca, P. R., Badino, J., Facciotti, M. C. R., &Schmidell, W. (2000).Determination of 

power consumption and volumetric oxygen transfer coefficient in bioreactors.Bioprocess 

Engineering, 22, 261-265. 



60 
 

Wise, W. S. (1951). The measurement of the aeration of culture 

media.J.Gen.Microbiol., 5, 167-177. 

Yawalkar, A. A., Heesink, A., Versteeg, G. F., &Pangarkar, V. G. (2002). Gas—Liquid 

Mass Transfer Coefficient in Stirred Tank Reactors. The Canadian Journal of Chemical 

Engineering, 80(5), 840-848. 

Yoon, S. &Ahn, Y. H. (2007). Application of sodium propionate to the suspension 

culture of Chinese hamster ovary cells for enhanced production of follicle-stimulating 

hormone. Biotechnol.Bioprocess Eng., 12, 497-501. 

Żerek, B., &Rózga, P. Recombinant Protein Therapeutics–The future is here. 

Zhu, M. M., Goyal, A., Rank, D. L., Gupta, S. K., Vanden, B. T., & Lee, S. S. (2005). 

Effects of elevated pCO2 and osmolality on growth of CHO cells and production of 

antibody-fusion protein B1: a case study. Biotechnol.Prog., 21, 70-77. 

Zwart-van Rijkom, J. E. F., Broekmans, F. J., &Leufkens, H. G. M. (2002). From HMG 

through purified urinary FSH preparations to recombinant FSH: a substitution 

study. Human Reproduction, 17(4), 857-865. 

 


	Identification of the critical cultivation parameters for scaling up the upstream process of recombinant human Follicle Stimulating Hormone production from Chinese Hamster Ovary cells
	Recommended Citation
	APA Citation
	MLA Citation


	tmp.1592580242.pdf.DsrH9

