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ABSTRACT 

The American University in Cairo 
 

De novo metagenomic assembly of microbial communities from the 

lower convective layer of the Red Sea Atlantis II brine environment. 
 

by Osama Said Ali 
under the supervision of Dr. Hamza El Dorry 

              

The lower convective layer of the Red Sea Atlantis II brine pool (ATII-LCL) is an unexplored 
environment that is characterized by harsh conditions of high temperature (68 ºC), high salinity 
(26%), high concentration of heavy metals and very low oxygen content. Microbial communities 
inhabiting this extreme environment are expected to have unique structural and functional 
adaptations to survive such harsh conditions. These adaptations can be expressed by novel 
genes or new metabolic pathways. 
The recent advances in the next generation sequencing technologies have increased the size of 
the generated reads (500 bps in 454 pyrosequencing) and lowered the sequencing cost per 
gigabase. As a result, research efforts became more feasible to reveal the mystery of such an 
interesting environment and to discover novel proteins that might have a useful biotechnological 
application. 
This study is the first attempt to establish a metagenomic assembled dataset of the 
environmental sample taken from the ATII-LCL. Three successive runs of 454 random shotgun 
sequencing were performed producing a large size dataset of 1.5 Gbs and 4.4 million reads. 
This approach has been used to increase the sequence coverage of metagenomic datasets in 
order to overcome the high diversity of some microbial communities. De novo assembly of the 
pooled reads from all sequencing runs resulted in a 40,693 contigs with maximum contig size of 
350 kb. The comparison of different assembly versions of individual runs showed that we have 
not yet reached a complete coverage of the genomes contained in the metagenomic sample. 
Also, this metagenomic dataset has shown a high complexity concerning the community 
structure due to the absence of a dominant taxonomic classification. The taxonomic 
classification of the assembled dataset has been distributed between three major bacterial 
orders, Burkholderiales, Rhizobiales and Pseudomonadales and one Archaeal class 
Euryarchaeota. 
The newly established dataset has been used to annotate an operon for mercury resistance 

genes. The annotated Mercuric reductase gene (MerA) has been synthesized and expressed in 

the lab showing a high enzyme activity compared to its terrestrial peers. 
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1. Literature Review 

1.1 Introduction 

Earth is dominated by microbial life. It has been estimated that the total number of 

prokaryotic live cells on earth is 5X1030, comprising 106 to 108 separate species[1]. 

Moreover, microbes are a primary source of nutrients for other life forms and the main 

recyclers of dead organisms by hydrolyzing them into the essential organic substances. 

Bacteria and Archaea constitute the major component in many marine habitats 

especially those with harsh physical and chemical conditions of high temperature, 

pressure and anoxia. For example, some deep sea vents have high temperature that 

reach 340 ºC at which bacteria and archaea are the only form of life available[1].  

Early genomic studies started with sequencing the genomes of bacteriophages MS2; 

(3,569 nucleotides) long [2] and Phi-X174 (5,386 nucleotides) long [3]. In 1995, 

Haemophilus influenza was the first bacterial genome to be sequenced (1,830,137 base 

pairs)[4]. The microbial genomes of about 3,447 bacterial, 1,762 viral and 230 archaeal 

species are recorded in the GeneBank database release 192.0 till October 2012.  

However, the relationships among different species within the community and the 

interactions of the species with the surrounding environment have not been enough 

explained. This limitation results from the fact that only a very low percentage of 

microorganisms are cultivable (0.001-0.01% from sea water, 0.25% from fresh water or 

sediments and 3% from soil)[5]. Therefore, the clonal cultures prepared from any 

microbial community will reflect a biased image with regard to the abundance of the 

species in this community. Also, since microorganisms do not live as single species, the 

cultured clones will not be able to describe the impact of the surrounding environment 

and other species on the regulation of gene expression and the biological functions.  
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1.2 Red Sea Atlantis II Brine Pool, Lower Convective 
Layer 

Red Sea formation was suggested to have started 25 million years ago through the 

continuous separation of both the African and Arabian tectonic plates[6]. The topography 

of the Red Sea bottom is characterized by an axial rift that extends from the southern 

area where it is fully-formed to the northern area where it is in the form of scattered 

deeps[7]. It is believed that some of the deep basins of the rift were filled with high salty 

brines five million years ago due to the high volcanic activity of the submarine shallow 

layer. Brine water is characterized by hypersaline content, high temperature and lack of 

oxygen. Twenty-five brine pools were discovered in the Red Sea to date[7]. The Atlantis 

II deep is the largest deep-sea brine pool in the Red Sea and is located at 21o 21’N on 

the axial rift (Figure 1). Atlantis II deep is considered to be hydrothermally active due to 

the long term observations for the continuous increase in the maximum recorded 

temperature from 55.9 to 68.2°C over thirty years period[8]. Sediments of Atlantis II brine 

are cooler in temperature by 1.7 Co than the brine water and they have a high metal 

content especially, iron, copper, zinc and other heavy metals[8],[9]. Atlantis II deep is 

divided into three main distinctive layers, upper convective layer (UCL) that has a 

thickness of 46 meters, lower convective layer(LCL) of 135 meters thickness and a 

seawater-brine interface layer which is about 14 meters[7]. Atlantis II deep has a 

maximum depth of about 2194 meters with a sharp increase in both temperature of a 

maximum 68.2Co and salinity of a maximum 25.7% at the lower convective layer[9] 

(Figure 2). On the other hand, Oxygen content decreases to reach 0 mM at LCL layer 

which is considered highly anoxic.  

Harsh conditions represented by high temperature, hypersalinity and acidic pH of 

Atlantis II deep brines have attracted recent microbiological studies to explore this 

extreme environment looking for novel microbial species and identifying new taxonomic 

groups[10]. Due to the advances in sampling tools and molecular investigation 

technologies, the study of the biodiversity and functional analysis of the microbial 

communities inhabiting Red Sea brines became more feasible and opened a door for 

new discoveries regarding microorganisms that have not been cultured before. 
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Figure 1: Atlantis II Deep geographical location 

The Atlantis II deep is the largest deep-sea brine pool in the Red Sea and is located at 21
o
21’N 

38º04.61' E on the axial rift 
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Figure 2: Physical characteristics of the Atlantis II Brine Pool 
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1.3 Metagenomics 

The Metagenomics term has been used to describe a new research field that aims at 

direct analyzing the uncultured total genomic DNA extracted from microorganisms 

collected from environmental samples. Over the past decade, metagenomic research 

succeeded to shed light on understanding the diversity of microbes, their functions and 

evolution in different habitats such as water[11], soil[12] and the digestive systems of both 

humans[13] and animals[14].  

Metagenomics research can be divided into two major divisions; environmental gene 

surveys and random shotgun studies of genomes in an environmental sample[15]. The 

first division comprises targeted studies that use polymerase chain reaction techniques 

(PCR) to amplify a specific gene and sequence it to determine different orthologs of this 

gene in the studied community. The second approach, random shotgun metagenomic 

studies, deals with total DNA extracted from environmental samples. This DNA is then 

sequenced to create a catalog of genes present within the sample (Figure 3). 

Due to the high abundance of prokaryotes in the marine habitat, research efforts were 

drawn to discover the role of microbial organisms in establishing communities that 

inhabit the extreme life conditions of deep seas. What follows is an extensive review of 

the major marine metagenomic studies done in the last decade.  
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1.3.1 Literature review of marine metagenomic studies 

Research work for the marine microbial shotgun metagenomics use different 

approaches including establishing a metagenomic libraries in adequate vector (fosmid, 

cosmid, and bacterial artificial chromosome-(BAC) followed by random sequencing of 

recombined clones. In addition, direct sequencing approach of metagenomic DNA using 

next-generation sequencing techniques (NGS) to study the community structure and 

function as well as isolating individual genomes from assembled metagenomic 

datasets[15]. 

The isolation of the first marine microbial metagenomic DNA using BAC cloning vector 

was one of the early studies that provided an insight at marine Archaea[16]. Then, 

metagenomic fosmid libraries were used to describe the marine archaeal phylum 

Crenarchaeota from the temperate Pacific Ocean and the Antarctic Ocean[17]. Another 

fosmid-derived metagenomic study succeeded to isolate proteins from the coastal water 

of the Antarctic that are adapted to the extreme cold environments[18]. Also, 

environmental fosmid inserts have been used to indicate the taxonomy of their source 

genomes in addition to determine gene clusters produced as a result of horizontal gene 

transfer (HGT)[19]. 

A major fosmid study at the Hawaii Ocean Time-series (HOT) station in the Pacific 

ocean produced 64Mbp of DNA sequence[20]. One of the important findings of this study 

was that the variations in protein sequences of marine microbial communities reflected 

a vertical stratified distribution pattern of taxonomical groups, functional gene profiles 

and metabolic pathways. Also, the metadata of this study provided a valuable source of 

information about a well-studied environment for comparative metagenomic 

approaches. 

The first application of Sanger sequencing technology using small-insert clones was 

performed on metagenomic DNA from the Saragasso Sea was performed by Venter 

and colleagues[21]. The discovery of 1800 genomes, 48 unknown bacterial taxonomic 

groups as well as, 1.2 million novel genes was one of the essential outcomes of this 

study. Also, it is worth mentioning that new bioinformatic approaches were applied to 



 
 

7 
 

analyze the resulted dataset composed of one billion base pair. This study was the 

milestone for the coming metagenomic research since it was considered as a proof of 

concept for the feasibility for using genomic sequencing techniques in metagenomic 

samples. However, according to an estimation that one milliliter of seawater contains 

about one million bacterial cells with an average genome size of two million base pair, 

only 0.05% of genomic information was sequenced per one milliliter of seawater of the 

Saragasso Sea project [15]. The last hypothesis demonstrates the huge amount of 

required data if a full sequencing coverage of all the components of a microbial 

community would be expected. 

The Global Ocean Sampling(GOS) expedition is an another example of an extensive 

metagenomic sampling efforts that produced a total of 6.3 billion base pairs from 7.7 

million sequenced reads[11]. Having these data uploaded in public databases opened 

the door for applying new bioinformatics tools in many independent research efforts. For 

example, Yutin et al.(2007) used GOS metagenomic datasets to study abundance and 

diversity of aerobic anoxygenic photosynthetic bacteria (AAnP) in different oceanic 

regions[22]. AAnP bacteria is a type of marine bacteria that utilize aerobic Oxygen in 

respiration and perform photosynthesis to fix CO2 but they do not produce oxygen 

(anoxygenic) as a by-product of the process[23]. The study indicated that AAnP groups 

have different relative abundance in the GOS datasets according to the difference in 

environmental conditions from open ocean, where AanP bacteria represent 1-5% of the 

total microbial community, to coastal regions, where they account for more than 10% of 

the microbes. Furthermore, they showed that the marine AAnP bacteria are essential 

component of the bacterioplankton assemblages in specific oceanic regions. 

The study of Wilhelm et al.(2007)[24] is another research work that benefited from the 

public  dataset of the Saragasso Sea metagenomic project[15]. A genome of marine 

alpha-proteobacterium SAR11 was isolated form coastal regions of Oregon, USA and 

used as a query sequence  to compare it with the metagenomic dataset of Saragasso 

Sea project aiming at studying genomic variations of SAR11 genomes found in different 

oceanic regions. It was concluded that although, natural selection maintains a common 

core features along all SAR11 genomes (71%) from different marine locations, a 
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significant variation in four hypervariable genomic regions was recorded. This 

suggested that different marine habitats can affect the selection of genomic content of 

microbial populations[24]. 

Since 2008 and due to advances in sequencing technologies that lowered the 

sequencing cost per gigabase, many marine metagenomic research studies have been 

performed in different marine habitat such as coastal pelagic ecosystems, marine 

hydrothermal vents, marine sediments, open ocean, host-associated communities as 

well as comparative metagenomic pyrosequencing studies[15]. 

Coastal pelagic ecosystem is the coastal shelf sea that is far from the shore by about 5 

kilometers. An example of recent research work of coastal pelagic ecosystem  is a 

major metagenomic study of the western English Channel L4 sampling site[25]. In this 

study, a novel combination of different techniques was used to study methylotrophic 

microbial communities which usually exist in low abundance due to lack of one-carbon 

substrates needed for their feeding. The first technique was isotope probing with13C-

labeled methanol to test for organisms that utilize methanol as a substrate. Then, 

multiple displacement amplification (MDA) was used to enrich the isolated picograms of 

13C-DNA into microgram quantities to construct fosmid library of about 10,000 clones. 

Finally, polymerase chain reaction (PCR) screening of 1500 clones of 13C-DNA fosmid 

library to find methanol metabolism genes and a shotgun Sanger sequencing of the 

screened insert were performed. The assembly of the data resulted in formation of 9Kb-

contig carrying a cluster of genes involved in methanol metabolism in this marine 

community. It was demonstrated that the dominant group involved in methanol 

metabolism, in this community, was closely related to Methylophaga genus. The study 

highlighted the role of using combined research methods to circumvent the challenge of 

isolating specific genes from low-abundant organisms in a marine microbial community. 

Palenik and colleagues performed another enrichment study using different strategy to 

raise the relative abundance of cells of the cyanobacterial genus Synechococcus from a 

metagenomic sample taken from surface seawater off the coast of California[26]. 

Targeted cells were enriched by sorting them out from the complex metagenomic 

sample using flow cytometry technology. DNA was extracted and pyrosequenced using 
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454 platform producing 370,000 reads. Reads were aligned to model Synechococcus 

reference genomes that were isolated from different marine locations except for two 

genomes. One of them was isolated from the same environment of the study and the 

other one was from a similar coastal area. It was indicated that sequence identity is very 

high with the genes of the two coastal model genomes while a significant difference in 

identity was noticed with genomes of other locations. This pattern suggested a role for 

horizontal gene transfer affecting the genetic structure in different environments and 

also among different strains. 

Although the hydrothermal vents represent an interesting marine ecosystem due to their 

extreme physical and chemical conditions, few metagenomic studies were performed. In 

a recent study, DNA was extracted from the metagenomic sample of the biofilm layer of 

the carbonate chimneys of the Lost City Hydrothermal Field on the Mid-Atlantic 

Ridge[27].The biofilm microbial community was dominated by one phylotype 

(Methanosarcinales) which represented more than 80% of the total community 

structure. DNA was cloned and randomly end-sequenced to obtain 46,316 shotgun 

reads of a total size 35 Mbp. It was found that transposases constituted more than 8% 

of the whole community which is ten times more than any other compared 

metagenome. Also, although the assembled contigs of transposases showed a very 

high coverage they were small in size. The previous results indicated that transposases 

were abundant in the community but they are located on small, extragenomic molecules 

such as plasmids or viruses. It was concluded that lateral gene transfer in low-complex 

communities that are dominated by few number of organisms plays an important role in 

determining the phenotypic diversity for the members of the community. 

An example of metagenomic studies of marine sediments is the study by Huang et al. 

(2009)[28]. Metagenomic samples were isolated from sediments at 1200 m, 1300 m and 

2900 m depths from the South China Sea. Environmental DNA was extracted and a 

fosmid library of 40,000 clones was prepared with an insert size ranging from 24-45 kb. 

Clone screening resulted in determining one specific clone, that was called, fss61, that 

was able to alter the phenotype of its Escherichia coli host. This alteration was 

represented by the ability of E. coli cells to produce melanin. The selected fosmid clone 
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was fully sequenced using Sanger method and the sequences were analyzed. 

Sequence analysis identified the open reading frame (ORF) responsible for melanin 

production. The deduced protein from this ORF was highly similar to 4-

hydroxyphenylpyruvate dioxygenase (HPPD) from deep-sea bacteria Idiomarina 

loihiensis. This study showed that the extracted metagenomic DNA can be a source of 

novel gene discoveries. 

The work of Siam and colleagues is one of the few recent comparative taxonomic 

studies on metagenomic sediment samples of three Red Sea brine pools including 

Atlantis II(ATII), Discovery Deep (DD) and Chain Deep (CD) as well as sediment 

samples from an adjacent brine-influenced site (BI)[29]. In this study, the environmental 

16S ribosomal RNA genes (16S rDNA) were isolated, amplified and pyrosequenced 

using 454 sequencing system. The analysis of the resulted datasets showed evidences 

for a distinctive structural difference in the microbial populations found in both ATII and 

DD sites compared to the other study sites. The most abundant bacterial and archaeal 

phyla in ATII and DD were Proteobacteria, Actinobacteria, Cyanobacteria, 

Deferribacteres, and Euryarchaeota. In addition, the 16S rDNA pyrotag analysis made it 

possible to classify the bacterial and archaeal communities into three major groups; 

group I which characterized the sulphur-rich ATII site, group II which was dominant in 

nitrogen-rich DD sample and group III which was found in the rest of sampling sites.   

An interesting study was performed in 2008 using a hybrid approach that combined both 

metagenomic and metatranscriptomic strategies to identify functional and taxonomic 

diversity in open ocean communities[30]. Metagenomic DNA was extracted from a 

sample taken from the North pacific. Cyanobacteria and unknown bacterial taxa were 

the most abundant gene transcripts. Also a significant number of transcripts came from 

genes located in the hypervariable regions of cyanobacterial genomes, confirming the 

notion that these genomic variations are essential for habitat differentian. This study 

showed the power of creating two complementary metagenomic and metatranscriptomic 

datasets to better understand the open ocean environment. 
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1.3.2 Challenges facing a metagenomic project 

The development in metagenomic studies is driven by the advances in sequencing 

technologies as well as the improvement in bioinformatics data analysis algorithms. A 

general framework structure of any metagenomic project can be summarized as 

sampling, sequencing and data analysis. Each one of these steps have some 

challenges which affect the expected final outcome of a metagenomic study.  

1.3.2.1 Sampling 

Sampling, being the first step, has a significant impact on the results of any 

metagenomic project. The extracted DNA from an environmental sample should be 

representative to all cells present in the sample and has enough amounts and a high 

quality yield for further library preparation and sequencing steps[31]. If the metagenomic 

study targets a certain part of the community, physical fractionation by a series of 

selective filtrations can be used to concentrate the targeted material and  to be sure that 

no contamination from the non-target parts of the community is available[21]. In case of 

low DNA yield, DNA amplification method can be used to provide sufficient amounts of 

genomic DNA for further sequencing step. However, amplification process is associated 

with some problems as a potential chimeric sequence formation and amplification bias 

towards the most abundant organism in the sample[32]. Hence, a careful assessment of 

how many rounds of amplification are needed and the proper amount of the starter DNA 

required has to be done prior applying any DNA amplification process. 

1.3.2.2 Sequencing 

Sequencing is the process determining the right order of the four building blocks 

thymine (T), adenine (A), guanine (G) and cytosine (C) that form any DNA strand of an 

organism. Metagenomic sequencing aims at studying community composition including 

taxonomic structure and abundance ratio of different species, functional analysis of 

genetic profile of community members and intra-species or, intra-population genetic 

relationships[33] . Sequencing platform has a crucial role in the results obtained from any 

metagenomic project. Metagenomic random shotgun sequencing can be classified into 

Sanger sequencing technology[34] and next generation sequencing(NGS) technology. 
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454/Roche and Illumina/Solexa systems are the most applied next generation 

sequencing technologies in metagenomic analysis.  

The principles of Sanger sequencing is based on chain termination of the replicated 

DNA fragments using dideoxy derivatives of the four nucleotides (ddNTPs)[34]. Sanger 

sequencing is characterized by a low error rate and long read length (>700bp). 

However, disadvantages of Sanger sequencing can be summarized as the high 

sequencing cost per  gigabase (approximately USD 400,000)[31] and the cloning bias 

against toxic genes for the host cells[35]. Accordingly, Sanger metagenomic sequencing 

approach suits better the reconstruction of complete genomes from low-diversity 

environmental samples[36].   

On the other hand, 454/Roche system uses emulsion polymerase chain reaction 

(ePCR) to amplify clones of random DNA fragments that are attached to microscopic 

beads located in the wells of a picotitre plate. The picotitre plate is subjected to a 

parallel pyrosequencing process in which the four dNTPs are added sequentially to all 

the template DNA strands. The incorporation of dNTP molecule in the new strand 

formation results in a release of a pyrophosphate molecule which is interpreted by the 

system into light signal. About 1.2 million light signals are emitted from polymerization 

reactions running on the picotitre plate. The strength of the emitted light signal 

determines the source nucleotide and the system will translate these signals into their 

comparable sequence[37].  454/Roche pyrosequencing is one of the most suitable next 

generation sequencing choices for metagenomic projects due to the low sequencing 

cost per a gigabase (about USD 20,000), good average read length between 300 to 600 

bps, low amount of genomic DNA needed for the run (few nanograms in single end 

sequencing) and multiplexing which allows simultaneous sequencing of up to 12 

samples in 500Mbp run[31]. However the artificial replicates and homopolymer error are 

the essential disadvantages of applying 454 system in metagenomic sequencing. 

1.3.2.3 Data analysis 

The typical goal of analyzing datasets of metagenomic samples is to reconstruct all 

genomes found in an environment. However, this is not feasible because of the 
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computational complexity of the available analysis solutions. Accordingly, the major 

approaches applied for the analysis of metagenomic datasets have fundamental 

limitations that challenge performing a thorough and complete study of environmental 

samples[33]. The first approach is to assemble reads resulted from metagenomic 

sequencing and carries out a contig-based taxonomic and functional analysis (Figure 3). 

Problems of this approach can be summarized as the high computer memory required 

for assembly due to the large size of metagenomic datasets, variable abundance of the 

genomes in a community will prevent the assembly of low-abundant organisms and the 

population heterogeneity will be a source of chimeric contigs. On the other hand, read-

based analysis is used as a second method to reconstruct both taxonomical and 

functional components of a metagenome. However, this approach faces some 

challenges of large number of reads resulted from NGS data which lead to long analysis 

time. Also, the size of the reads will add another source for errors. The next part will 

focus on the detailed overview of research achievements with regard to the assembly 

approach of metagenomic data analysis since it matches the scope of this study. 
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Figure 3: Data Analysis flow chart for metagenomic shotgun sequencing 
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1.3.2.3.1 Assembly of metagenomic datasets 

In general, a genomic assembly is a data structure of whole genome shotgun (WGS) 

reads that are sorted in a hierarchical arrangement so that all reads within a predefined 

identity percentage are aligned together and form a common contiguous sequence 

called contig. Contigs are, in turn, grouped into a larger structure called scaffolds which 

determine the order of the contigs and the size of the gap separating any two 

successive contigs to form a complete genome sequence [38]. Although there is no a 

definite measure of the assembly accuracy, N50 parameter can be used to indicate the 

quality of the assembled data. N50 is defined as the contig size; when contigs are 

sorted from the largest to the smallest, at which the percentage of the total number of 

bases contributing in the assembly equals to 50%[38].  

The development in algorithms of the assembly software is strongly tied to the 

advances of sequencing technologies. The Overlap/Layout/Consensus (OLC) and de 

Bruijn Graph (DBG) are the most widely used assembly algorithms for the next 

generation sequencing(NGS) assemblers [39]. Contig construction is the main target of 

both assembly algorithms. However, the main difference between them is the pattern 

which each algorithm uses to build contigs. OLC algorithm applies pairwise alignment 

among all reads and construct a graph layout which constitutes the aligned reads as 

nodes and the overlap links between reads as edges. The final step is the interpretation 

of the read graph into contigs by calling consensus sequences from multiple sequence 

alignment of the reads. It is worth mentioning that OLC graph construction is a CPU-

intensive process and it needs more efficient computational resources as the size of the 

sequenced reads dataset becomes larger. Accordingly, OLC algorithm is the preferred 

approach for lower-coverage and long reads (100-800bp) as in case of Roche/454 

sequencing platform.   

On the other hand, DBG algorithm does not have any pairwise alignment for the reads 

but instead it cuts each read into a predetermined number of bases called k-mer. The 

overlapped k-mers are linked together in a directed layout which has one entrance and 

one exit for each k-mer node. Since the resulted DBG graph does not use actual reads 

in its construction, it saves computational resources and allow for larger datasets. This 
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makes DBG algorithm more suitable for high-coverage short-reads (< 100 bp) as in 

case of Illumina or Solexa sequencing platforms[40]. Examples of assembly software that 

apply OLC algorithm are Newbler[41] which is the official Roche assembler and 

distributed by 454 life sciences and Celera[42]. On the other hand, Velvet[43] and 

ABySS[44] are the examples of assemblers using DBG algorithm. Regardless of the type  

of the applied algorithm, the main core of assembly steps can be classified into data 

preprocessing, contig construction, scaffold linkage and gap closure. Assembly software 

faces many challenges of repeat sequences of the assembled genomic regions, limited 

read length and sequencing errors which significantly affect the accuracy of the resulted 

datasets. Moreover in case of metagenomic assembly, a new level of complexity is 

added to the process due to high genomic diversity of the environmental samples, the 

abundance variability within populations, the high cost of efficient computational 

resources that can handle large datasets and finally, lack of specialized metagenomic 

assemblers that are able to separate the closely related species from microbial 

communities. However recently, few De novo metagenomic assemblers have been 

introduced as an approach to overcome the complexity issues of metagenomic 

samples. Meta-velvet[45] and Meta-IDBA[46] are examples of metagenomic assemblers 

that use DBG algorithm. Also, metagenomic assembly program (MAP)[47] is another 

application using OLC algorithm for 454 reads.  

The assembly of metagenomic datasets aims at studying either the reconstruction of 

genomes from environmental samples or, creating longer pieces of coding DNA 

sequences (CDs) for further characterization. In the last case, contigs are not an end 

product by themselves but they are used as a mean to understand the structure and 

function of the microbial community [48].   

Assembly approaches can be classified into a reference-based and De novo assembly. 

A reference-based assembly is applied when a closely related reference genome to the 

metagenomic dataset is found.  While in the De novo method the metagenomic reads 

are assembled from scratch without having any reference sequence due to the high 

complexity of the microbial communities especially at the level of species and strains. 

This is why the De novo assembly of a metagenome is the most commonly used 
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approach since it is difficult to find reference genomes for complex environmental 

samples. 

De novo assembly of metagenomic datasets can be a source of novel findings even in a 

previously well-studied habitats as in case of hypersaline Lake Tyrrell(LT) in Australia 

[49]. In this study, the deeply-sequenced libraries with both Sanger and 454 

pyrosequencing technologies were assembled either independently or, by using 

different combinations. The phylogenetic analysis of the assembled contigs resulted in 

the discovery of two new halophilic archaeal lineages that are highly abundant in the 

surface water of LT.  The reconstruction of these two novel uncultured genomes proved 

the promising capabilities of De novo metagenomic assembly.  

The construction of microbial community profiles from metagenomes is another 

interesting application of the De novo metagenomic assembly approach. As an 

example, a recent study succeeded to create a catalogue of the human gut microbial 

genes by using De novo illumina-based metagenomic sequencing, assembly and 

characterization of 3.3 million non-redundant human intestinal microbial genes [13].  

The possibility of getting draft genomes or even complete ones from a metagenomic 

sample increases when it is dominated by few number of organisms or the target 

species shows low interspecies variations. Early metagenomic studies on low 

complexity environment was able to isolate near-complete genomes of two 

leptospirillum group II and Ferroplasma type II bacteria from the acid mine 

drainage(AMD) biofilm of Rhichmond mine in California[50].. The metagenomic DNA 

sample of the AMD microbial community was dominated by few genomically distinctive 

species that were Leptospirillum groupII 75%, Liptospirillum groupIII 10%, Archaea 

10%, Euarkyotes 4% and sulfobacillus spp. 1%. The community structure of AMD 

metagenome facilitated the assembly process since about 85% of the shotgun reads 

were assembled into scaffolds of size larger than 2kb. This study was a milestone for 

further metagenomic studies since it shed light on the complexity of the environmental 

samples as a real challenge for the recovery of complete genomes.  Pelletier et al. was 

the first research group who was able to recover a draft genome of low abundant 

uncultured anaerobic bacterium ‘ Candidatus Cloacamonas acidaminovorans ’ from a 
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metagenomic sample from digester of wastewater treatment plant [51] . This study 

confirmed the possibility of reconstructing either partial or complete genomes from 

complex metagenomic sample. As an attempt to overcome the assembly difficulty of 

interstrain variations in complex environment, Iverson et al.[52] applied a massively 

parallel sequencing approach using Solid technology[53] to have a total of 58.5 

gigabases of 50-base mate-paired short reads of the surface seawater metagenome. A 

De novo assembly of the high-coverage mate-paired sequences was performed to 

isolate a nearly complete genome of an uncultured class of marine group II 

Euryarchaeota despite they were represented in the sequenced reads by 1.7% only. 

The recovered genome of group II Euryarchaeota describes a type of motile photo-

heterotrophic marine archaea that are specialized in lipids and protein degradation and 

explains the origin of proteorhodopsin which is considered as a beneficial source of 

energy for organisms moving long distances searching for food.  Similarly, the Cow 

rumen metagenome is another example of a recent research work that used massive 

sequencing of DNA extracted from a complex environmental microbial community to  

characterize the biomass degrading genes and genomes of the cow rumen microbes 

[54]. The study was able to predict 27,755 carbohydrate-active genes and assemble 15 

complete genomes of uncultured bacteria from 268 gigabases of metagenomic DNA. 

The data sets generated by this study represent a catalogue of both genes and 

genomes responsible for the degradation of cellulosic biomass. 

It was demonstrated that genomes of a distinctive genotype can be accurately 

assembled from a complex metagenome, if they have at least about 20x coverage [55]. 

Whereas at lower coverage, chimeric sequences are found to be in large quantities 

within the assembled contigs which explains the high number of hypothetical proteins of 

the annotated genes in case of metagenomic projects compared to those of genomic 

ones. The study also suggested a method for estimating error frequency and type of the 

assembled contigs and genes as well as detecting intrapopulation structure from 

complex metagenomic datasets. 

As previously mentioned, the De novo assembly of metagenomic DNA sequences is not 

only aimed at the recovery of genomes but also considered as the midway to study 
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target genes and metabolic pathways that determine the structure of the microbial 

community and to identify the taxonomic classification of the assembled contigs that 

explain the relation between a community members and their surrounding environment. 

A good example for a functional analysis of a De novo assembly is the metagenomic 

study on a new deep-sea hypersaline lake Thetis located in the Mediterranean sea [56]. 

Two metagenomic samples from the brine and interface layers of the lake Thetis were 

sequenced using Roche 454 pyrosequencing technology and a De novo assembly was 

performed. As a result of the analysis of the assembled datasets, three co-existed 

autotrophic carbon dioxide fixation pathways were discovered in the interface layer 

which was the major finding of this study. Also in contrary to what was assumed before 

that autotrophy is not important in hypersaline environments, the genes for the reductive 

acetyl-CoA and reductive Tricarboxylic acid (TCA) pathways were found in the brine 

layer proofing that these pathways are functional at the hypersaline condition. Also, it 

was revealed that acidic amino acid residues are overrepresented in the proteins of 

brine layer compared to those of interface confirming the typical protein composition 

characterizing organisms that live in an extreme hypersaline habitat. This study is one 

of the first metagenomic surveys for a newly discovered lake Thetis which has the 

saltiest brine water ever reported (348%) [57].  

Recently, a single metagenomic sample of Mediterranean deep chlorophyll maximum 

(DCM) community was subjected to 454 pyrosequencing using both direct sequencing 

(DS)and fosmid cloning approaches[58]. The sequenced reads from both DNA libraries 

were assembled independently and the results were compared. Both DS and fosmid 

sequencing demonstrated the significant abundance of group II Euryarchaeota in this 

community. However, only DS results indicated the abundance of photosynthetic 

cyanobacteria Prochlorococcus marinus subsp. pastoris,Synechococcus sp. and  the 

heterotroph  alphaproteobacteria Canidatus pelagibacter.  Also, it was observed that 

fosmid library sequencing resulted in a bias against low GC-content organisms which 

are the most dominant according to DS estimations which suggested a novel method to 

isolate low abundant organisms from complex communities. 
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As an attempt to overcome the problem of complexity and limited knowledge of 

microbial communities, simulated Data studies played an important role in the 

assessment of the quality and reliability of the resulted datasets from De novo 

metagenomic assembly [59], [60]. As a result of these efforts, it was suggested that high 

sequencing will raise the coverage of the studied metagenome and accordingly can 

overcome the functional classification limitations due to metagenomic assembly. Also, 

although metagenomic assembly increases the possibility of getting chimeric contigs, it 

improves the annotation of more complete genes and operons. Moreover, it was shown 

that as the complexity of a metagenomic sample increases, the possibility of 

reconstructing non-chimeric contigs decreases. 

1.3.2.3.2 Annotation 

Annotation of metagenomic datasets can be classified into feature prediction and 

functional annotation[31]. Feature prediction is the process in which genes or genomic 

elements are identified in any DNA sequence. Although algorithms for the tools of the 

prediction of coding sequence (CDs) in complete genome sequences are well-

developed with accuracy percentage reach 95%[61], few tools were developed 

specifically for the gene prediction of metagenomic sequences. MetaGene Annotator 

(MGA)[62] is an examples of metagenomic annotation tools. MGA is a prokaryotic gene 

finding from environmental genome shotgun sequences using codon frequencies 

estimated from the GC content of the query sequence as an approach to detect putative 

coding sequences with 95% sensitivity. 

Functional annotation of metagenomic datasets faces a major computational challenge 

that affect the maximum annotated portion of the sequence to be between 20-50%. This 

leaves an average of 65% of genes of metagenomic sequences unrevealed by using 

this annotation method. The genes that cannot be mapped to any of the known 

reference genes or proteins in databases are called ORFans. Three hypotheses 

explaining the reasons for having ORFans are software algorithmic errors leading to 

wrong calls of coding sequences(CDs),  absence of comparable biochemical functions 

for the predicted genes and existence of structural similarity to known protein but 

accompanied by an absence of sequence similarity to any of the known genes[63]. 
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Protein structural analysis and biochemical characterization methods are recent 

approaches that can be used to improve annotation of ORFans. 

Due to the large size of metagenomic datasets, computational approaches are the most 

feasible procedures for sequence annotation and complete analysis. MG-RAST 

server[64] is a fully automated analysis pipeline for metagenomic datasets. Until 

November 2012, the total number of users on MG-RAST server is about 8000 and the 

whole number of datasets (private and public) submitted is 64,855 of a total base pairs 

of 18.46 Tbs and number of sequences 169.4 billion. The public metagenomic projects 

hosted by the server is 295 project covering 15 different environments and constituting 

11,381 metagenomes having 52,590 million sequences of a total number of base pairs 

5,326 Gbs. The huge size of data proves the move of scientific community towards 

centralizing resources and standardizing annotation methods.   

1.3.2.3.3 Taxonomic Binning  

Binning is defined as the process involving sorting DNA sequences into groups that 

belong to a single genome or a similar multiple genomes derived from closely related 

organisms[31]. Algorithms of binning software can be classified into compositional-based, 

similarity based approaches and hybrid algorithm involving both compositional and 

similarity approaches. Compositional-based binning uses the conserved nucleotide 

pattern of genomes, such as GC content and the specific distribution of k-mers, as a 

measure to compare all sequence fragments into reference genomes of known 

taxonomic classification. Examples of software using compositional binning are 

Phylopythia[65], S-GSOM[66] and TACAO[67]. This binning model is not reliable for short 

reads of NGS platforms since they do not carry enough information for accurate 

comparisons. On the other hand, homology-based algorithms compare the implicit 

genetic information in a DNA sequence to those of known genes in reference databases 

and based on the degree of similarity, a taxonomic group can be assigned to the 

unknown sequence. Further subdivisions of this algorithm can be found based on the 

search method applied. CARMA[68] is a similarity-based software relies on Hidden 

markov model (HMM) search method and MG-RAST[64] software is another similarity-

based software but it uses the basic local alignment search technology (BLAST) in the 
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taxonomic classifications of unknown sequences[69]. Despite using BLAST as a search 

method, MEGAN[70]software improves its results by using lowest common ancestor 

(LCA) strategy to filter the blast hits according to their bit scores and then selects the 

best hit species for the assignment of unknown DNA fragment. If redundant BLAST hits 

are found and MEGAN cannot assign the query sequence to a specific classification, 

higher taxonomic level (e.g. Phylum) will be used as an assignment for the unknown 

sequence. Binning of metagenomic reads faces a problem of chimeric bins which 

occurs when the metagenomic dataset contains two or more genomes that can be 

assigned to the same high level taxonomic classification [31]. 

In this study, we present the assembly of datasets comprised of 4.4 million 454 

pyrosequencig reads from the metagenomic sample of the lower convective layer of the 

Red Sea Atlantis II brine environment (ATII-LCL). Also, we evaluated the impact of the 

change in the assembler computational parameters on the size of the assembled 

contigs and the pattern of contig extension. In addition, we highlighted the functional 

and taxonomical classifications of the assembled contigs. Finally, we were able to 

completely annotate one of the important operons for heavy metal resistance (mercuric 

reductase) from our assembled dataset as an example of the novel gene discoveries 

that can be one of valued-outcomes of this research. 
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2. Materials and methods 

2.1 Sample collection 

Sampling from Red Sea Atlantis II lower convective layer of the brine pool (ATII-LCL) 

located at 21º 20.63' N, 38º04.61' E, was carried out during the KAUST/HMR Res Sea 

expedition onboard R/V Agaeo in April 2010. More than 100 liters of sea water from 

ATII-LCL were serially filtered through Nitrocellulose/Cellulose acetate filters of sizes 3 

µm, 0.8 µm and 0.1 µm respectively. Each filter captures specific range of organisms 

according to its mesh size. For example, 0.1-filter captures mainly bacteria and archaea 

which cannot pass through its pores. Filters were stored at -80 ºC in the American 

University in Cairo (AUC) laboratory until extraction of total DNA from the filters.   

 

2.2 DNA extraction and preparation for sequencing 

Metagenomic DNA extraction from ATII-LCL sample was performed at AUC-KAUST 

genomics lab by dividing the 0.1-filter into four quarters. One quarter was used to 

extract DNA using a modified protocol based on instructions mentioned in metagenomic 

DNA Isolation kit for Water from Epicentre (catalog number MGD08420). The 

membrane was cut into small pieces and placed in a 50 ml sterile conical tube and 5ml 

of TE buffer (pH 8) was added to the filter pieces. Then, 200 µl of Lysozyme solution 

(100mg/ml) and 30 µl of RNase A (10mg/ml) were added to the cell suspension. The 

tube was incubated at 37 ºC in shaking water bath for 1hour. After incubation, 5ml of 

Meta-Lysis solution (is that a solution from a KIT(2x) and 100 µl of protinase K enzyme 

(20mg/ml) were mixed by vortexing and incubated at 65 ºC for 2 hours. The cell mixture 

tube was left to cool in room temperature and placed on ice for 3 to 5 minutes. The 

supernatant has been transferred into a new falcon tube to which 6ml of protein 

precipitation reagent was mixed by vortexing for 10 seconds. The tube has been 

centrifuged for 10 minutes to pellet the debris. Then, the supernatant was transferred to 

a clean tube and 10 ml of isopropanol was mixed by inverting the tube several times. 

After centrifugation at 14000x g and 4ºC, the supernatant was discarded and 10 ml of 

70% ethanol was added to the DNA pellet. Another round of centrifugation was 
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performed using the previous parameters to pellet DNA once again and the pellet was 

left for air drying for about 8 minutes and then resuspended in 100 µl of TE buffer. The 

DNA library was prepared for sequencing using Roche GS-FLX Titanium Rapid Library 

Preparation Method, kit number 25890110 according to the manufacturer instructions. 

2.3 454-shotgun pyrosequencing 

Roche GS FLX Titanium 454 sequencing platform located in the AUC-KAUST genomics 

lab was used to sequence the ATII-LCL samples according to 454 pyrosequencing 

instruction. Three full 454 gaskets were used to generate the ATII-LCL dataset.  

2.4 Assembly  

Official Roche assembler, Newbler V.2.6, was used to make six assemblies of 454 

sequencing data resulted from three independent sequencing runs. A pilot assembly 

version was performed using all the reads resulted from the first sequencing run (1.3 

million reads) to adjust the computation parameters of the assembly program that can 

be applied for the other assembly series. This was achieved by gradually increasing the 

stringency of the assembly parameters including minimum identity percentage and 

minimum overlap length ranging from 90% / 40bp (default values), 90/50, 95/40, 95/50, 

98/40  up to 98% / 50bp. To test for the pattern of extension of the assembled contigs 

due to the change in stringency, three landmark genes were identified on the largest 

contig (contig 1) using a prokaryotic gene finding program Metagene Annotator 

(MGA)[71]. These landmark genes were selected such that one is located at the 

beginning of the contig, the second one is in the middle and the third one is at the end. 

Distances in base pairs between the landmark genes were measured. The contig1 

resulted from each combination of computation parameters was compared to each 

other using the default parameters of NCBI BLASTN tool. Finally, the separation 

distance in base pairs among landmark genes of contig1 instances were measured and 

located. 

By using the best assembly parameters assessed from the previous step, six iterative 

assembly versions were done. The first assembly (Version 0.5) used the reads of only 

one sequence flowgram format (sff) file of the resulted two from the first 454 sequencing 



 
 

25 
 

run.  The other five assemblies (Versions 1.0, 1.5, 2.0, 2.5 and 3.0) were performed by 

adding one sff file each time to increase the number of reads incorporated in the 

assembly gradually until uploading all the six sff files of the three pyrosequencing runs.   

2.5 Annotation of the assembled contigs 

The gene finding process was applied to the largest assembled metagenomic data set 

version 3.0 using a prokaryotic gene finding program, Metagene Annotator (MGA)[71] 

Which is a Linux command line program to extract putative open reading frames (ORFs) 

from fasta sequences. MGA does not require any option adjustments for its running. 

Automatic annotation of these ORFs using MG-RAST server version 3.3.0.6 was 

performed using the default parameters. Also, NCBI Blastx tool was used to align ORFs 

against NCBI protein database and create a best hit file using E-value of 1e-5.  

 Artemis[72] is a java application for sequence annotation and visualization developed by 

Wellcome Trust Sanger Institute, release 13.2.0 has been used for the manual 

annotation of the genes on contig 287 that carried the operon for mercuric resistance.  

2.6 Functional and taxonomic analysis 

 MG-RAST server version 3.3.0.6 was used for functional and taxonomical analysis of 

the ORF sequences identified in AT-II LCL assembled dataset. M5nr database of MG-

RAST is an integrated collection of multiple databases in a single container that allows  

performing similarity search for any sequence from many protein databases at the same 

time. M5nr database has been updated February 22, 2011 including Greengenes;16S 

rRNA Gene Database, JGI;Joint Genome Institute, KEGG; Kyoto Encyclopedia of 

Genes and Genomes, NCBI; National Center for Biotechnology Information, RDP; 

Ribosomal Database Project, SEED; The SEED Project, SILVA; SILVA rRNA Database 

Project, UniProt; UniProt Knowledgebase, VBI; Virginia Bioinformatics Institute and 

eggnog;  evolutionary genealogy of genes Non-supervised Orthologous Groups. MG-

RAST program parameters were adjusted to match the application of assembled 

sequences by removing preprocessing and dereplication filters that are usually applied 

to reads.  
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All ORFs (87,357) from the assembled contigs were compared to NCBI nr database 

(version date December-2012) using BLASTX tool. Default parameters for BLASTX 

were applied and the number of best hits retrieved per sequence was set to 100.  

BLASTX results were uploaded to Megan as an input for the analysis process. Megan 

software version 4.69.4, built 5 Jul 2012 
[73] was used for both the functional and 

taxonomical analysis of the identified ORFs. The program parameters applied were 

minScore=50.0, topPercent=10.0, winScore=0.0, minSupport=5, minComplexity=0.0. 

Megan taxonomy database was downloaded from ftp://ftp.ncbi.nlm.nih.gov/pub/ 

taxonomy/taxdmp.zip on June 15, 2012.  Megan SEED tree was created on May 17,  

2010. Megan total reference classifications are KEGG (1,791 classes) SEED (2,607 

classes) and Taxonomy (658 classes).  
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3. Results 

Six standard flowgram format files (sff) were produced from the three independent 454 

sequencing runs, two files per run, from the single metagenomic DNA library of the Red 

Sea Atlantis II lower convective layer (ATII-LCL). More than one million reads were 

extracted from the two sff files of each run, (Table 1). A total of 4,104,994 reads 

constituting 1.5 Gbp were resulted from the three 454 pyrosequencing runs. The 

average read length is 560 bp and the average GC percentage of all the reads is 52%. 

 

Table 1: The impact of sequencing depth on the size of the largest twenty four assembled contigs. 

 

 

 

 

Sequencing Run Run 1 Run 2 Run 3 

Number of reads / sff file 655,292 682,314 579,504 475,690 871,020 841,174 

Number of reads / 
sequencing run (bp) 

1,337,606 1,055,194 1,712,194 

Summation of all reads 
(bp) 

1,337,606 2,392,800 4,104,994 

Number of bases / 
sequencing run (bp) 

524,204,317 351,848,418 672,581,733 

Summation of all bases 
(bp) 

524,204,317 876,052,735 1,548,634,468 

Average read length 
(before QC) 

560 576 555 

Average read length (after 
QC) 

310 255 295 

GC% 52 ± 7% 52 ± 7% 52 ± 7% 
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 3.1 Assessment of the best computation parameters 

applied in the assembly 

 The reads of the first 454 sequencing run of ATII-LCL (1.3 Mbp) were assembled using 

the default computation parameters of Newbler software producing 28,547 contigs with 

largest contig size of approximately 236 kb. To test for the impact of using more 

stringent computation parameters on the quality of the assembly results, different 

combinations of minimum overlap length and minimum identity percentages were 

applied. The best assembly results were obtained from the setup of 40 bp minimum 

overlap length and 98% minimum identity percentage where the largest contig size 

increased to about 350.9 kb and the total number of assembled contigs decreased to 

23,843, (Table 2).  

Table 2: The effect of modifying the assembly computation parameters on the quality of results 

obtained. 

 * Minimum identity percentage and minimum overlap length are the two computation parameters of 

Newbler assembler v.2.6 that have an impact on the assembly quality. Default setup is 90% for minimum 

identity and 40 bp of the minimum overlap length. 

 

 

Computation  parameters* 90/40 95/40 95/50 98/40 98/50 

Total number of reads 1,337,606 1,337,606 1,337,606 1,337,606 1,337,606 

Total number of assembled 
reads 

1,142,385 1,114,351 1,114,655 1,022,137 1,021,609 

Singletons 72,261 84,687 84,495 104,048 104,549 

Largest  contig Size (bp) 236,358 259,994 303,963 350,934 350,934 

Average contig size(bp) 1,912 1,831 1,825 1,838 1,837 

Total number of contigs 28,547 24,895 25,142 23,843 23,863 

N50 contig size 2,622 2,546 2,538 2,563 2,563 
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The results of the extension pattern evaluation for the assembled contigs due to the 

increase in stringency of the computation parameters are summarized in Figure 4. The 

distances in base pairs between landmark genes (100,341 bp and 130,043 bp 

respectively) remained unchanged regardless of the applied parameters. However, 

contig 1 has extended almost from only one edge according to the increase in the 

assembly stringency. This was confirmed by a pairwise alignment of contig1of default 

parameters with the other high stringent instances of the same contig which showed a 

100% similarity of the first version of contig1(shortest contig) with the comparable part in 

the extended version. 

 
Figure 4: the pattern of extension in contig1 due to the change in assembly computation 

parameters 

Lm1: Landmark gene1, Phosphatidate Cytidylyltransferase ( Blast hit data: Positives 86%,  e-value 1e-

147,  Query size 942 bp) 

Lm2: Landmark gene2,   Transketolase ( Blast hit data: Positives 84%, e-value 0.0, Query size 2025 bp) 

Lm3: Landmark gene3, FAD dependent Oxidoreductase (Blast hit data: Positives 87%, e-value 0.0 , 

Query size 1281 bp)  
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3.2  Analysis of the Assembly results 

Reads from the three independent pyrosequencing runs of ATII-LCL were assembled 

using the optimized computation parameters from the previous step and the resulted 

datasets were compared in (Table 3).   

Table 3: A comparison of the assembly results for the three ATII-LCL independent 454-sequencing 

runs. 

 

The table shows a slight increase in the percentage of assembled reads from about 

89% in version 1.0 to about 93% in version 3.0 which is accompanied by a raise in the 

average contig length from 1,838 bp to 2,185 bp. However, the largest contig size 

remained almost constant at size about 350 kb. Also, the total number of assembled 

contigs has dramatically increased with the addition of more reads in each assembly 

from 23,843 in assembly version 1.0 to 40,693 in  version 3.0. On the other hand, the 

percentage of singletons has decreased from 7.7% in the assembly of first 454-

sequencing run to 4.2% as the reads of the third run were added to the assembly. In 

addition, N50 value has showed an increase from contig size of 2,563 bps in the 

 Assembly Version V1 V2 V3 

Total number of reads  1,337,606 2,392,800 4,104,994 

Total number of assembled 
reads  

1,022,137 2,214,457  3,844,674  

% assembled 88.94% 92.55% 93.66% 

Total number of singletons  104,048 127,692  174,011  

% singletons 7.7% 5.3% 4.2% 

Largest contig size (bp) 350,934  351,272 350,936 

Average contig size(bp) 1,838 2,085 2,185 

N50 contig size  2,563 3,168 3,525 

Total number of contigs  23,843 32,885 40,693 
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assembly version1.0 to contig size 3,525 bps in version3.0. By comparing the 

distribution of the number of contigs in ten size ranges starting from 10 to 20 kb range to 

more than 100 kb (Table4 and Figure5), we found that the total number of contigs in all 

ranges increased from 237 contigs in V.1 assembly to 436 in V.3. However, the 

percentage of all bases constituting these contigs compared to the total size of the 

whole dataset only slightly increased from 28.55% in the first assembly version to 

29.65% in version three. The plot for the distribution of the number of contigs throughout 

the size ranges started at 10 kb showed that about 55% of the total number of contigs in 

each assembly versions fell in the smallest contig size range from 10-20 kb. The 

remaining 45% were distributed in a descending order among all other size ranges 

except for the one larger than 100 kb.  

Table 4: Number of contigs in different size ranges. 

 

 

 

 

 

 

 

 

 

 

 

 

Contig Size(Kb)* Assembly-V1 Assembly-V2 Assembly-V3 

10 – 20 124 171 245 

>20 41 51 78 

>30 24 21 36 

>40 11 10 21 

>50 11 14 8 

>60 7 9 8 

>70 5 7 9 

>80 3 4 5 

>90 3 2 2 

>100 8 17 24 

Total number 237 306 436 

Total bases in contigs>10Kb 7,281,862 9,793,161 13,640,785 

Total bases in all contigs 25,502,497 36,716,981 46,004,852 

%  bases of contigs >10Kb 28.55% 26.67% 29.65% 
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By comparing the number of contigs larger than 100 kb in the three assemblies, the 

results indicated that the number of contigs increased with the addition of more reads 

from only 8 contigs in assembly version 1.0 to 24 contigs in version 3.0 (Table 4) and 

(Figure 5). 

 

Figure 5: The number of contigs larger than 10 kb found in different size ranges of each assembly 
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The plot for the effect of sequence depth on the length of the largest 24 assembled 

contigs (figure 6) indicated a significant increase in the length of all the studied contigs 

per assembly round, except for contig 1. Interestingly, only contig1 has deviated from 

the pattern of extension of the assembled contigs by reaching its maximum length of 

about 350 kb after the addition of just the first two sff files. In other words, a depth of 

one sequencing run was enough for contig 1 to get its maximum length. Generally 

speaking, the largest twenty four assembled contigs gained an average length of 

approximately 30 kb at each sequencing depth starting from an average length of about 

110 kb in assembly version 1 to an average length of 170 kb in version 3. 

Although the absolute number of reads assembled in the largest twenty four contigs 

increased from one assembly to another (Appendix A), their relative percentages from 

the total assembled reads only slightly increased from 9.02% in assembly V 0.5 to 

10.78% in V 3.0 with up and down fluctuations of these percentages throughout 

different assemblies (Figure 7).  The relative percentage of reads assembled in contig 1 

moved from 0.69% in assembly V0.5 to 1.76% at V1.0 and remained almost constant at 

such value for the other four assemblies (Table 5). Figure 8 indicates that although  

contig1 remained almost at size 350 kb from assembly version 1 to version 3 the 

number of reads incorporated in each assembly continued to increase. 

 Table 5: The relationship between contig1 length and its assembled reads. 

 

 

 

Assembly version V0.5 V1.0 V1.5 V2.0 V2.5 V3.0 

Contig1 Size (bp) 112,239 350,934 350,937 351,272 350,934 350,936 

Number of 
Reads/contig1 

4,523 23,540 33,595 41,865 57,160 72,122 

Total Number of 
Reads 

655,289 1,337,597 1,917,096 2,392,780 3,263,795 4,104,966 

% Reads 0.69 1.76 1.75 1.75 1.75 1.76 



 
 

34 
 

 

 

Figure 6: The impact of sequencing depth on the size of the largest twenty four assembled contigs. 
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Figure 7: The percentage of reads incorporated in the largest 24 contigs in different assembly versions. 

Details for the number of reads incorporated are listed in AppendixB. 

 

 

Figure 8: Comparison of Contig1 size(bp) and the Number of reads incorporated  in each assembly 

run.  
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3.3 Annotation 
The number of ORFs resulted from the metagenomic assembled dataset v3.0 using 

MGA program was 87,357 DNA sequences of putative genes. MGA lists a summary for 

each contig at the top of the ORF table including contig number, its length, number of 

reads, average GC%, average score for ribosomal binding site (RBS) and the model 

used for comparison either bacteria (b) or archaea (a) (Table 6). The table created from 

MGA sequence file lists each ORF start and end positions on the contig, a confidence 

score for the predicted gene, RBS start and end positions if they are found and another 

confidence score for the identified RBS. (example in Table 6).  

Table 6: Contig1as an example of ORFs identified from the assembled contigs. 

 

 

 

 

GeneID Start 
Position 

End 
Position 

Gene Score RBS start RBS End RBS Score 

gene_1 11 436 30.6199 444 449 2.94686 

gene_2 436 1716 142.957 1722 1727 3.90458 

gene_3 1726 2661 86.557 2666 2671 3.79324 

gene_4 2658 3395 78.7786 3405 3410 5.2284 

gene_5 3413 4747 82.1636 0 0 0 

gene_6 4744 6222 118.115 6234 6239 0.279796 

gene_7 6443 6898 36.1892 6909 6914 8.39031 

gene_8 7066 7965 80.8288 7055 7060 6.74128 

gene_9 8071 8274 22.7255 8057 8062 7.01345 

gene_10 8319 9554 122.104 9562 9567 0.802451 

gene_11 9700 11256 156.572 9685 9690 5.82891 

gene_12 11273 11872 53.7414 11880 11885 -2.04487 

gene_13 11977 13074 150.469 13083 13088 9.20518 

gene_14 13071 14333 142.015 14342 14347 7.02112 

gene_15 14480 15988 157.721 14470 14475 7.84855 

gene_16 15989 17053 144.608 15974 15979 1.46408 

gene_17 17114 18166 149.786 17102 17107 7.57462 

gene_18 18224 20278 258.648 20285 20290 7.57462 

gene_19 20356 21321 111.3 21328 21333 2.52163 

gene_20 21490 23172 204.993 23179 23184 -2.02056 

# contig00001 length=350936 numreads=72122

# gc = 0.571352,rbs=0.78852

# self: b 
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The plot of the distribution of different GC% ranges for all 40,693 contigs in the dataset 

shows a number of 31,266 (77.8%) contigs fall into 40-60 GC% range(Figure 9).  

 

Figure 9: Number of contigs in each GC% range. 
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3.4 Functional classification  
The results of the automatic annotation using MG-RAST server showed that 84,050 

ORFs (about 96%) produced 58,162 predicted protein coding regions. Only 22,923 

(39.4%) of the predicted features were successfully annotated to at least one protein of 

the M5NR (non-redundant multi-source protein annotation database) of MG-RAST 

server. The remaining number of features 35,230 (60.6%) had no hits in the protein 

database and were considered as orfans. Of the 22,923 annotated features, 18,262 

(20.9%) were assigned to functional categories (Figure 10). The top ten categories of 

the plot represent about 60% of the total functional assignments. 

 

Figure 10: Functional profile for the ORFs of ATII-LCL using Subsystems classification of MG-RAST 

server. The data was compared to Subsystems using a maximum e-value of 1e-5, a minimum identity of 
60 %, and a minimum alignment length of 15 amino acids. See Appendix C for detailed Assignments.  
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The results of the functional analysis of Megan using Seed subsystems showed that 

only 11,609 (13%) hits were assigned to functional classifications. The total number of 

both functional classifications of not assigned and no hits was 75,748 representing 

about 86% of the whole size of data submitted (87,357). The assigned hits using Megan 

were significantly less than those of MG-RAST (by 6,653). The functional profile by 

Megan, shown in Figure 11, lists the most abundant functions assigned to ATII-LCL. 

The first ten categories of the plot represent about 69% of the assigned functional 

categories.  

 

Figure 11: Functional profile of ATII-LCL ORFs using Seed system of Megan software. See Appendix 

D for the detailed functional assignments using Megan 
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The results of the functional analysis of the BLASTX hits for the assembled contigs 

using KEGG (Kyoto Encyclopedia of Genes and Genomes) classification of enzymes 

and pathways included in Megan indicated that only 9,161sequences (11.4%) were 

assigned to a KEGG functional category. Figure12 showed that the highest percentage 

of assignments occurred in the metabolism-related category (60.84%) and in 

environmental information processing category (18.76%).  

 

Figure 12: the percentage of KEGG terms identified for ATII-LCL Orfs using Megan   
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3.5 Taxonomy profile  
Megan results showed that only 31,196 (35.7%) ORFs were successfully assigned to 

different taxonomic nodes from the total number of compared ORFs (87,357). However, 

the remaining ORFs are distributed between unassigned 24,873 (28.4%) and no hits 

31,288 (35.8%) taxonomic categories Figure13. With respect to the phylogenetic tree 

drawn in Figures13, the distribution of the assigned ORFs to a specific taxonomic 

category indicated that Proteobacteria and Euryarchaeota are the most dominant phyla 

in the sample with total hits of 17,925 (57.4%) and 2,236 (6.9%) representing 64.5% of 

the assigned sequences to cellular organisms. The remaining percentage of the 

assigned hits (35.5%) was distributed insignificantly among other taxonomic 

classification (data were not included in Figure 13). The low level tree drawn in Figure14 

indicated good recruitments at species level for bacterial strains from Rhizobiales 

Phyllobacterium sp. YR531 with 1,902 hits representing about 42% of the percentage 

hits assigned to the order (4072). Also, order Burkholderiales showed two 

representatives at species level Cupriavidus basilensis and Ralstonia pickettii with 

3,013 and 590 assigned hits respectively representing a percentage of 36% of the hits 

assigned to this order. While in case of Pseudomonadales, the assignment resolution 

has been stopped at the order level and no hits could be mapped to any lower 

taxonomic level. The distribution of the hits assigned to different taxa, presented in 

Figure15, showed high abundance of sequences belonging to the orders 

Burkholderiales, Rhizobiales and Pseudomonadales with 9,890, 4,072 and 937 hits, 

respectively.  

MG-RAST results showed that 47,747 (54.6%) sequences have been assigned to 

different taxonomic levels from the total 87,357 uploaded ORFs. Proteobacteria, 

Firmicutes and Euryarchaeota are the most abundant phyla with percentage 

assignments of 73.9%, 4.4% and 4.2%, respectively (Figure 16). By comparing results 

presented in Figures 13 and 14, for the taxonomical classification at the order level 

using either MG-RAST or Megan, we can clearly observe the similarity in the pattern for 

the first three most abundant orders in both analysis programs.  
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Figure 155: Phylogenetic diversity of the most abundant twenty taxa at the order level of the ORFs 

identified in the assembled contigs of ATII-LCL dataset based on Megan taxonomical analysis. The 

detailed table of the number of hits assigned to different taxonomic classifications is shown in Appendix 

F. 

 

Figure 166: Phylogenetic diversity of the most abundant twenty taxa at the order level of the ORFs 

identified in the assembled contigs of ATII-LCL based on MG-RAST server taxonomical analysis. The 
detailed table of the number of hits assigned to different taxonomic classifications for the whole dataset is 
shown in Appendix E . 
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3.6 Application of the established dataset in a novel gene 

discovery, Mercuric reductase operon 
 

BLASTX search was performed for mercury reductase gene (MerA) in the established 

metagenomic dataset. Unexpectedly, only one instance of MerA gene was retrieved 

from a small-sized contig (8000 bp). The annotation of this contig (Figure17) showed 

that it constitutes a complete operon for mercury detoxification process characterizing 

organisms live in environments with high concentration of heavy metals as in the case 

of ATII-LCL. The operon consists of 8 successive genes on the forward strand. The 

promoter area of the operon was located between the nucleotide number 474 and 510 

including -10 and -35 sequences located at nucleotide numbers 496 and 474, 

respectively.  

 

Figure 17: Complete annotation of Mercury resistance operon located on contig 287 of ATII-LCL    

assembled dataset 
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MerA gene is the most important component of the mercury detoxification process since 

it is the gene responsible for converting divalent mercury molecules (HgII) into a volatile 

reduced form (Hg0) which can be easily eliminated (Figure18). Interestingly, a 

trnasposase gene (TnpA) was found at position 5027 as part of the mercury resistance 

operon. Having this mercury transposon and a single copy of the mercury operon in the 

whole assembled dataset suggests that horizontal gene transfer has a role in the 

polymorphisms expected of the mercury resistance operons in different organisms 

inhabiting this environment. Also, it explains the assembly of the closely related MerA 

genes from different species in one contig despite of using high strigency identity 

percentage (98%). 

 

 

Figure 18: Diagram Showing the role of Mercuric resistance operon in the heavy metal detoxification 

process in the cell. 
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4. Discussion: 

This is the first study for establishing an assembled metagenomic dataset from the 

lower convective layer of the Red Sea Atlantis II deep. The constructed dataset can be 

used as a tool to facilitate finding novel genes and operons for specific functions or even 

a partial genome assembly from such a unique and unexplored environment.   

In an attempt to increase the sequence coverage to overcome the known challenge of 

undetermined relative abundance and variable species composition in complex 

metagenomic samples[50], we performed multiple independent pyrosequecing runs from 

the environmental DNA of the ATII-LCL. The budget limitation was the major constraint 

for the number of random shotgun sequencing rounds generated. However, we were 

able to reach a considerable total base pair count of 1.54 billion base pairs which is 

larger than the data size (1.045 billion base pairs) of a milestone study regarding 

metagenomic assembly[21].  

In this study, the evaluation of the quality of the assembled metagenomic dataset was a 

challenging step because of the complexity of the community structure and the absence 

of reference genomes. Accordingly, we started by testing the effect of different 

computation parameters of the assembly program on the contig length. It was indicated 

that the more stringent computation parameters used, the better the assembly results 

with regard to the contig size. This finding agrees with previously described results[50] 

that at low coverage the assembly settings have a significant effect on the quality of the 

results [74] .However, the number of singletons increased dramatically with the elevation 

of stringency, what can be interpreted as the disassembly of reads with lower minimum 

overlap and minimum identity values from the assembled contigs due to the increase in 

confidence of overlaps. As a result, a minimum overlap length of 40 bp and a minimum 

overlap identity percentage of 98% were selected as the best assembly parameters to 

be applied since they generated the longest assembled contigs. Also, it was important 

to have an insight on the pattern of contig extension due to the change in the assembly 

computation parameters. Our results showed that contig1 was extended from the 

edges, indicated that assembly affected only the extremities of the contig not the middle 

part. In other words, the reassembled contigs are not completely rearranged when the 
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assembly parameters are modified and the changes occur mostly at the edges of the 

contigs. 

 As it was demonstrated from the simulated data studies[59], [60] with regard to the 

enhancing effect of sequencing depth on metagenomic assembly , we performed three 

rounds of 454 shotgun sequencing which were used to build six cumulative assembled 

datasets from AT II-LCL sample. The growth in the average contig size and N50 value 

throughout different assembly versions confirmed the improvement of assembly quality 

with increasing the sequence depth. Also, the reduction in the number of singletons 

which was associated with a raise in the percentage of assembled reads indicated that 

the sequence coverage improved as more reads were added. Furthermore, the number 

of the assembled contigs increased with the increase in the read depth which suggested 

that a full coverage was not reached reached and more sequencing would be required.   

Although all the contigs larger than 10 kb maintained an extension pattern as 

sequencing depth increased, the largest contig (contig 1) reached its maximum 

unchanged length of 350 kb after adding all the reads of the first sequencing run. The 

phenomenon can be explained by the accumulation of many repeat sequences from the 

most abundant genomes of the metagenomic dataset in the largest contig (contig 1) 

creating a barrier of chimeric sequences that prevented any further growth of the contig. 

This also was confirmed from our inspection of the reads incorporated in contig1 at 

each assembly version which showed an increase in the number of reads without an 

effect on the contig size indicating that these reads are accumulated duplicates. The 

estimated percentage of the reads in contig1 with reference to the total assembled 

reads showed an almost the same percentage (1.67%) starting from assembly version 1 

to version 3 confirming our hypothesis.  Moreover, the previously published work for the 

assembly of metagenomic simulated data showed that Newbler software has a 

percentage of forming chimeric contigs ranges from 3.88% to 12.57% of the total 

assembled reads depending on the degree of complexity of the metagenome[59]. Also, it 

was demonstrated that chimericity is more concentrated in short contigs of low complex 

metagenomes and occurs more in larger contigs as the community structure becomes 

more complex[59]. 
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The GC% of most of the assembled contigs fall in the same range as those of 

sequenced reads (52% ± 7) which means that assembly does not alter sequence 

composition and maintains sequence characteristics of the reads incorporated. The 

large number of identified open reading frames (87,357) from the assembled contigs 

reflects the structural complexity of the community forming the studied metagenomic 

sample.  

The low percentage of sequences incorporated in the functional analysis either based 

on MG-RAST 18,262 (20.9%) or, Megan 11,609 (13%) can be interpreted as the lack of 

enough reference sequences in databases to compare with and suggests a high novelty 

in the genomes of this community. Also, it can be explained as the insufficient sequence 

coverage for all the community members that resulted in inaccurate ORF prediction of 

the assembled contigs which in turn leads to wrong or missing assignments to different 

functional classifications. The difference between MG-RAST and Megan in the amount 

of sequences assigned to a functional category is expected to be due to the difference 

in size of reference databases used by each program where M5NR of MG-RAST is a 

multisource protein database expected to have more records than those of NCBI-NR 

database used by Megan.  

In case of taxonomical classification of our dataset, the pattern of both programs 

showed similar abundance level in most cases regardless of the number of assigned 

hits where Burkholderiales, Rhizobiales and Pseudomonadales are the most abundant 

orders. This confirms the correctness of the resulted distribution and also, highlights the 

high complexity of our dataset. It is worth mentioning here that the presence of large 

volume of the studied sequences in the “not assigned” and “no hits” categories suggests 

the lack of reference taxa to compare with, in case of “no hits”, but it recommends the 

need of more sequencing to improve the alignment of the not assigned hits. 
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5. Conclusion and Future prospects 

In conclusion, we succeeded in this study to establish an assembled metagenomic 

dataset of the Red Sea Atlantis II deep lower convective layer. The work is considered 

the first step towards the establishment of a large database of assembled datasets from 

a novel and unexplored environment which will provide a tool for further studies 

regarding the community structure, function, and mechanisms that adapt microbial 

community to survive in these exceptional harsh conditions. 

We used deep sequencing approach trying to overcome the problem of undetermined 

coverage and relative abundance of the genomes forming this community. Also, we 

attempted to standardize computation parameters that can be used to produce high 

quality assembly. Unfortunately, we couldn’t reach enough contig length to assemble 

potential partial genome of the most abundant organism.   

We gave an insight to the functional and taxonomic structure of the microbial community 

inhabiting this environment which showed a high diversity and structure complexity. 

Also, large portion (more than 60%) of our data could not be assigned to any protein 

coding features in any of the protein databases available which points to a high 

probability of novel genes that have not been studied before. Moreover, we were able to 

classify the assembled data to the order level only due to high chimericity of the 

assembled contigs. 

In addition, our dataset contributed in a practical application by providing a complete 

annotation of an interesting operon for the metabolism of heavy metals (mercuric 

reductase) which have an important biotechnological application in bioremdiation. The 

protein coded by the mercuric reductase gene was expressed and functionally 

characterized proving that it has a high activity compared to those of terrestrial origin. 

For the future work, I suggest to have an assembly pipeline consisting of high 

computation resources in addition to a series of different assembly software Metavelvet, 

MAP, in addition to Newbler. Having different assembly software will help in gaining 

benefits of each and all the results can be pooled together to have the best assembled 
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dataset. Also, it was demonstrated that paired-end sequencing helps dramatically in 

improving metagenomic assembly and in genome construction. Moreover, having more 

samples from the same site ATII-LCL will facilitate the extraction of more DNA and 

performing deeper sequencing that allow more coverage of this complex community. 
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Appendix  A  the size change of the largest twenty four assembled contigs in all assembly 

versions 

Contig number 
Assembly version 

V0.5 V1.0 V1.5 V2.0 V2.5 V3.0 

Contig 1 112239 350934 350937 351272 350934 350936 

Contig 2 105706 178318 213209 250930 313985 283798 

Contig3 90356 151167 202718 202719 257364 270569 

Contig4 86968 123717 200946 200884 245729 228226 

Contig5 86109 112365 162814 157914 232274 217427 

Contig6 84467 102909 157876 145417 225556 207406 

Contig7 81862 102835 151173 142631 217427 205618 

Contig8 65427 101490 142506 139445 208162 204528 

Contig9 60054 99797 120971 135535 202718 193681 

Contig10 56509 98038 116762 132539 199980 177188 

Contig11 54261 93159 115465 127921 185616 177119 

Contig12 53127 88064 112650 126308 177188 145513 

Contig13 53005 83382 103059 120972 163273 140280 

Contig14 52597 81268 98258 111561 126305 134578 

Contig15 51715 75201 85828 103072 124387 129834 

Contig16 47753 74664 83965 101967 115248 126306 

Contig17 46381 73387 82648 101652 111678 114143 

Contig18 45573 71708 80949 99462 109070 111417 

Contig19 43336 70928 80757 98482 103060 111382 

Contig20 42841 66076 78748 84462 100605 103059 

Contig21 41178 65529 77977 83971 100602 102216 

Contig22 39136 64553 75201 83817 100145 101034 

Contig23 37507 64455 74657 82649 94983 100848 

Contig24 37154 64288 70875 77983 92101 100606 
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Appendix  B   Number of reads incorporated in the largest 24 contigs in all assemblies 

   

Assembly 
Version 

V0.5 V1.0 V1.5 V2.0 V2.5 V3.0 

Contig 1 4523 23540 33595 41865 57160 72122 

Contig 2 3243 11629 15788 11481 20959 24963 

Contig3 2194 8042 17423 21622 31850 21264 

Contig4 6797 9895 17161 21272 17391 18478 

Contig5 2186 4550 6515 10109 27814 22272 

Contig6 5906 4365 8216 16916 17657 20578 

Contig7 4013 2948 11395 9229 17638 14872 

Contig8 1689 4486 7502 9323 12474 15559 

Contig9 3598 4804 6590 7080 29806 18353 

Contig10 3041 6386 12867 9564 11059 11791 

Contig11 1452 12332 11942 4773 10885 27748 

Contig12 2368 7884 4448 7091 9336 10201 

Contig13 2350 3521 6346 8168 24672 10626 

Contig14 2102 1751 6540 10286 9729 12074 

Contig15 1206 2587 3392 7854 11246 7005 

Contig16 1807 2261 5034 4263 20380 12322 

Contig17 1280 2043 3136 4399 7404 20479 

Contig18 1372 5485 3015 8372 7388 10324 

Contig19 1063 3865 3017 10544 10898 8364 

Contig20 1501 3847 3545 24095 9170 13774 

Contig21 1661 2243 2862 6246 7258 26800 

Contig22 1236 1572 3709 3509 3468 10453 

Contig23 1542 4347 16189 3938 10727 20520 

Contig24 957 1633 11208 3532 7040 11493 

Total 
number of 
reads /24 
contigs 

59087 136016 221435 265531 393409 442435 

Avgerage 
number of 

reads 
2,462 5,667 9,226 11,064 16,392 18,435 

Total 
number of 
all reads 

655,289 1,337,597 1,917,096 2,392,780 3,263,795 4,104,966 

% reads / 24 
contigs 

9.02% 10.17% 11.55% 11.10% 12.05% 10.78% 
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Appendix  C   Functional abundance of ATII-LCL using  MG-RAST Subsystems  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Function description Percentage Number 
of hits 

Miscellaneous    10.26% 3265 

Clustering-based subsystems      9.77% 3109 

Protein Metabolism       7.59% 2414 

Membrane Transport       5.63% 1792 

RNA Metabolism   5.53% 1759 

Carbohydrates    4.82% 1533 

Respiration      4.81% 1531 

Phages, Prophages, Transposable elements, 
Plasmids       

4.39% 1397 

Stress Response  4.25% 1353 

Amino Acids and Derivatives      4.17% 1328 

Regulation and Cell signaling    4.02% 1280 

Virulence, Disease and Defense   3.88% 1234 

Nitrogen Metabolism      3.87% 1230 

Nucleosides and Nucleotides      3.62% 1151 

Cofactors, Vitamins, Prosthetic Groups, Pigments         3.38% 1077 

Metabolism of Aromatic Compounds         3.29% 1048 

DNA Metabolism   2.61% 830 

Cell Wall and Capsule    2.35% 747 

Potassium metabolism     2.02% 643 

Fatty Acids, Lipids, and Isoprenoids     2.02% 642 

Sulfur Metabolism        1.46% 464 

Motility and Chemotaxis  1.41% 448 

Cell Division and Cell Cycle     1.30% 413 

Phosphorus Metabolism    1.20% 382 

Secondary Metabolism     1.00% 318 

Photosynthesis   0.67% 213 

Iron acquisition and metabolism  0.60% 190 

Dormancy and Sporulation         0.09% 28 
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Appendix   D  Functional profile for ATII-LCL ORFs using Seed classification of    Megan 

software 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Seed Classification  No. of 
hits 

Not assigned 40.41% 6709 

No hits 22.82% 3788 

Carbohydrates 4.63% 769 

Virulence 4.29% 712 

Amino Acids and Derivatives 3.32% 552 

Cofactors, Vitamins, Prosthetic Groups, Pigments 2.29% 381 

Protein Metabolism 2.20% 365 

Cell Wall and Capsule 2.07% 343 

Respiration 1.89% 313 

DNA Metabolism 1.81% 301 

Metabolism of Aromatic Compounds 1.50% 249 

Stress Response 1.46% 242 

RNA Metabolism 1.33% 221 

Regulation and Cell signaling 1.28% 212 

Fatty Acids, Lipids, and Isoprenoids 1.28% 212 

Motility and Chemotaxis 1.26% 210 

Clustering-based subsystems 1.05% 174 

Nucleosides and Nucleotides 1.01% 168 

Membrane Transport 0.91% 151 

Sulfur Metabolism 0.86% 142 

Cell Division and Cell Cycle 0.75% 125 

Phosphorus Metabolism 0.49% 82 

Miscellaneous 0.39% 64 

Nitrogen Metabolism 0.36% 60 

Secondary Metabolism 0.22% 36 

Phages, Prophages, Transposable elements 0.06% 10 

Potassium metabolism 0.05% 8 

Photosynthesis 0.02% 3 

Dormancy and Sporulation 0.01% 1 

  16603 
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Appendix E  MG-RAST Taxonomic classification at the order level of the ATII-LCL  assembled 

dataset  

Taxonomic Order Assigned ORFs 

Burkholderiales 18151 

Rhizobiales 8918 

Pseudomonadales 2346 

Actinomycetales 1148 

Clostridiales 851 

Enterobacteriales 798 

Halobacteriales 768 

Nitrosopumilales 666 

Bacillales 571 

Chlorobiales 547 

Rhodobacterales 516 

Desulfuromonadales 395 

Methanosarcinales 341 

Alteromonadales 340 

Thermoanaerobacterales 332 

Rhodospirillales 315 

Bacteroidales 314 

Chroococcales 312 

Caudovirales 300 

Xanthomonadales 297 

Myxococcales 287 

Bacteroidetes Order II. 
Incertae sedis 

270 

Rickettsiales 247 

Nostocales 244 
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Cont.  Appendix E 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Flavobacteriales 225 

Methanococcales 215 

Thiotrichales 203 

Desulfovibrionales 196 

Caulobacterales 192 

Sulfolobales 192 

Lactobacillales 185 

unclassified (derived 
from Bacteria) 

183 

Planctomycetales 177 

Oscillatoriales 176 

Thermococcales 175 

Vibrionales 175 

Rhodocyclales 166 

Desulfobacterales 157 

Diptera 153 

Chromatiales 148 

Chloroflexales 143 

Campylobacterales 140 

Cytophagales 140 

Neisseriales 127 

Syntrophobacterales 127 

Archaeoglobales 119 

Thermoplasmatales 119 

Thermotogales 117 

Methanobacteriales 110 

Aquificales 104 

Total 43438 
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Appendix  F   Megan Taxonomic classification at the order level of the ATII-LCL  assembled 

dataset based on BLASTX comparison of 87,357 ORFs against the NCBI-NR database. 

 

Taxonomic order ORFs assigned 

Burkholderiales 9890 

Rhizobiales 4072 

Pseudomonadales 937 

Halobacteriales 773 

Nitrosopumilales 685 

Actinomycetales 325 

unclassified phages 315 

Nanohaloarchaea 274 

Caldithrix 228 

Clostridiales 221 

environmental samples 
<Bacteria> 

215 

Ignavibacteriales 179 

Bacillales 165 

Methanosarcinales 156 

Archaeoglobales 147 

Methanomicrobiales 132 

Desulfurococcales 125 

Caudovirales 110 

Thermococcales 106 

Bacteroidales 84 

Methanococcales 82 

Mariprofundales 82 

Chroococcales 81 

Enterobacteriales 79 

Chlorobiales 77 

Planctomycetales 72 

candidate division OP1 70 

Spirochaetales 67 

Flavobacteriales 67 

unclassified sequences 62 

Bacteroidetes Order II. 
Incertae sedis 

58 
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Myxococcales 57 

Methanobacteriales 57 

SAR406 cluster 56 

Nitrososphaerales 55 

Cytophagales 55 

Lactobacillales 51 

Desulfobacterales 51 

Syntrophobacterales 47 

environmental samples 
<Archaea> 

44 

Sphingobacteriales 44 

Methylococcales 44 

Desulfuromonadales 44 

Xanthomonadales 41 

Thermoanaerobacterales 41 

Rhodospirillales 36 

Dehalococcoidetes 35 

Thermoplasmatales 34 

Alteromonadales 32 

Thermoproteales 31 

Aquificales 30 

Acidithiobacillales 29 

unclassified Acidobacteria 28 

Chromatiales 27 

Rhodocyclales 25 

unclassified 
Gammaproteobacteria 

24 

candidate division NC10 24 

Sphingomonadales 24 

Rhodobacterales 24 

Nostocales 24 

unclassified Archaea 23 

Nitrospirales 22 

Campylobacterales 22 

Legionellales 21 

unclassified Euryarchaeota 20 

Thermales 20 

unclassified 
Deltaproteobacteria 

19 

Desulfovibrionales 19 

Thermotogales 18 
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Neisseriales 18 

Poribacteria 17 

Oscillatoriales 17 

Acidilobales 17 

Solibacterales 16 

Chloroflexales 16 

Caulobacterales 16 

Bdellovibrionales 16 

Thiotrichales 15 

Selenomonadales 15 

Sulfolobales 14 

Malpighiales 13 

Korarchaeota 13 

Halanaerobiales 13 

Candidatus Brocadiales 13 

Spartobacteria 12 

Methanopyrales 12 

Herpetosiphonales 12 

unclassified 
Alphaproteobacteria 

11 

Oceanospirillales 11 

Synergistales 10 

Methanocellales 10 

Caldilineales 10 

Vibrionales 9 

Thermomicrobiales 9 

Aureococcus 9 

unclassified Thaumarchaeota 8 

Fusobacteriales 8 

Enteropneusta 8 

unclassified 
Epsilonproteobacteria 

7 

candidate division WWE1 7 

Verrucomicrobiales 7 

Thermodesulfobacteriales 7 

Opitutales 7 

Haemosporida 7 

Eutheria 7 

Deferribacterales 7 

Kinetoplastida 6 
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Hypocreales 6 

Endopterygota 6 

Anaerolineales 6 

environmental samples 
<Green non-sulfur bacteria> 

5 

environmental samples 
<Euryarchaeota> 

5 

Prochlorales 5 

Pasteurellales 5 

Ophiostomatales 5 

Magnetococcales 5 

Ktedonobacterales 5 

Desulfurellales 5 

Deinococcales 5 

Acidobacteriales 5 

Total 21732 
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