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ABSTRACT 
 
 

The American University in Cairo 

Cloning, expression and preliminary characterization of a novel nitrilase from the Red Sea, 
Atlantis II Deep brine pool using a metagenomic approach 

 

Sarah Ali Ahmed Sonbol 

Supervisor: Dr. Ahmed Moustafa and Dr. Ari José Scattone Ferreira 

Summary: 

With the abundance of hazardous nitrile compounds in nature and with the extensive use of them 

in industries of fine chemicals, the attention towards nitrilases has profoundly increased as 

biocatalysts in different industries and in bioremediation. The use of nitrilases, which hydrolyze 

nitriles into carboxylic acids and ammonia, was introduced as a biological method superior to 

conventional chemical means. 

In contrast to conventional microbiological techniques using cultured microorganisms, and with 

the loads of genomic sequences available in the databases, identification of novel nitrilases using 

metagenomic approaches seems more promising.  

In this study, a nitrilase was isolated from the microbial metagenomic DNA obtained from the 

Lower Convective Layer (LCL) of Atlantis II Deep Brine Pool in the Red Sea.  Sequences of 

putative nitrilases were retrieved from the LCL database, followed by PCR amplification and gene 

synthesis of the chosen sequences. Amplified genes were cloned into pET SUMO expression 

vector, whereas a synthesized gene, with optimized codons for E. coli, was cloned into pET-28b+ 

vector flanked by SacI and HindIII restriction sites. The recombinant proteins were then 

expressed in Escherichia coli BL21 (DE3) cells. The His-tagged protein (Nitra-S), from the 

recombinant pET-28b+ transformed cells, was successfully purified using Ni-NTA affinity 

chromatography columns under native conditions. Preliminary studies on the induced cells, crude 

extracts and the purified enzyme showed that Nitra-S exhibited nitrilase activity towards dinitriles 

(succinonitrile and gluteronitrile) rather than other nitrile classes. The used quantitative activity 

assay was based on measuring the amounts of released ammonia upon the action of nitrilases 

on their nitrile substrates. Full characterization of the purified nitrilase is still to be done; however, 

the isolation of this protein from the LCL with its unique characteristics, increase the odds towards 

finding exceptional properties of the newly identified nitrilase.   
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CHAPTER 1: REVIEW OF LITERATURE AND STUDY OBJECTIVES 

1. Introduction: 

 
In this biotechnological era, it is hard to ignore the plethora of genomic data obtained 

from known and unknown organisms. The availability of different resources renders the task of 

identification of novel enzymes easier than before. Nitrilases have not received much attention 

except recently, after the realization of their potential uses in industry and bioremediation 

processes. The number of characterized nitrilases from cultured microorganisms is small, which 

makes it important to shift towards the uncultured world of microorganisms for the identification 

and isolation of new nitrilases. Exploring genes from extreme environments such as Atlantis II 

Deep brine pool in the Red Sea, and identification of the potential uses of the newly identified 

genes might be a step forward towards better understanding of the unique world of microbes and 

for better biotechnological future.   

2. Nitrilases and their nitrile substrates: 

2.1. Nitriles: 
 

Nitriles are organic compounds that contain a cyano (CN) functional group. These 

compounds are ubiquitous in the environment. Different nitriles are produced by certain plants 

and animals (1), in addition to some bacterial, fungal and algal species (2). Cyanoglycosides, 

cyanolipids,  aminonitriles, cyanohydrin and phenylacetonitrile are examples of naturally occurring 

nitrile compounds(1)(3).On the other hand, some nitriles are produced as industrial wastes or as 

valuable industrial products (1).  

 

The high toxicity of most nitriles has raised awareness towards the nitrile waste products 

discharged from different industries. Cyanide containing compounds can cause gastric 

disturbances, respiratory distress, skeletal deformities, convulsions and other CNS symptoms. In 

addition, CN
-
 ions released from nitriles could be lethal by binding to the cytochrome-c-oxidase in 

the respiratory chain resulting in inactivation of respiration (1). In spite of the hazards that cyanide 

containing compounds could cause to humans and ecosystem, they are considered of great 

value from an industrial point of view (1)(2)(4).Various nitrile compounds are synthesized as 

herbicides, plastics, polymers and solvents (5). Moreover, nitriles are used as starting materials 

or intermediates in fine chemicals, pharmaceuticals and other industries(1). 



 
 
 
 
 

2 
 

2.2. Nitrilases and related enzymes: 
  

Nitrilases (EC 3.5.5.1) are nitrile hydrolyzing enzymes that hydrolyze nitrile compounds 

(R-CN) directly into their corresponding carboxylic acids (R-COOH) and ammonia (NH3) (1)(4)(6). 

In this aspect, they differ from nitrile hydratases (NHases) that convert nitriles into amides, which 

could then be converted into ammonia by the action of amidases (1)(4). Nitrilases are a subgroup 

of the carbon-nitrogen (C-N) hydrolase superfamily. Members of this superfamily are classified 

into 13 subgroups that are involved in non-peptide C-N hydrolysis; thus, amidases, 

carbamylases, amidohydrolases and N-acetyltransferases are members of this superfamily as 

well (3). This superfamily was first classified by Brenner (2002) as the nitrilase superfamily, even 

though one branch only exhibited true nitrilase function (1). All members of the C-N hydrolase 

superfamily are characterized by the presence of a catalytic triad of glutamate-lysine-cysteine and 

α-β-β-α sandwich fold (3).Data concerning structure and active sites were mainly derived from 

two members of the superfamily. However,  a thermoactive nitrilase was crystallized recently by 

Raczynska et al (2011) confirming the previous findings (7). 

 

According to their substrate specificity, nitrilases are classified into three major classes: 

aromatic, aliphatic and arylacetonitrile nitrilases. Nevertheless, some nitrilases have broad 

substrate specificity; thus accepting nitriles from different classes as substrates (1)(4). 

 

2.3. Mechanism of action of nitrilases: 
 

As the number of known structures of nitrilase enzymes is relatively small, a detailed 

mechanism describing the catalytic function of nitrilases is still unavailable. However, several 

mechanisms were suggested to explain the activity of nitrilases. Putting into consideration that 

some nitrilases have minor nitrile hydratase and/or amidase activity beside their main function as 

nitrilases, some studies suggested that in a process that requires the addition of two molecules of 

water, the cysteine residue initiates a nucleophilic attack on the carbon atom of the cyano group, 

forming a tetrahedral intermediate through an enzyme-thioimidate pathway. With some nitrilases, 

a small percentage of the tetrahedral intermediate can breakdown forming an amide, while the 

majority is transformed into an acylenzyme complex when the ammonia group leaves being a 

better leaving group. Finally, carboxylic acid can be formed after the addition of another water 

molecule (figure1) (1). In this process, the lysine residue could be important for electrostatic 

stabilization of the tetrahedral intermediate, donating protons to the substrate, while the glutamate 

might act as a catalytic base for the hydrolytic water (7). Mutations at any residue of the catalytic 

triad lead to inactivation of the nitrilase function. Several studies have also confirmed that thiol 
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complexing agents inactivate nitrilases as they could bind to the catalytic cysteine thiol group, 

whereas, thiol reducing agents enhance the activity (8). Thus, using thiol reducing agents such as 

Dithiothreitol (DTT) or β-mercaptoethanol would be a necessity during the reactions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

2.4. Nitrilases applications and advantages: 
 

As nitrile compounds are extensively used in several industries and in the synthesis of a 

variety of fine chemicals and pharmaceutical compounds, interest towards the use of nitrilases 

has risen as a better alternative to conventional chemical methods. Chemical processing of nitrile 

intermediates necessitates the use of high temperatures, strong acidic or basic conditions and in 

some cases, the use of protective groups. Moreover, harmful byproducts such as toxic HCN 

could be produced during these processes (1)(9)(10)(11).  

 

On the other hand, the use of nitrilases offers a number of advantages. First, reactions 

could be carried in mild reaction conditions. Besides, no toxic byproducts are to be formed, which 

means a reduction in industrial pollution (1)(9)(10)(11). Furthermore, some nitrilases are stereo- 

and/or regioselective, allowing the synthesis of specific isomers that could not be synthesized 

using traditional chemical means. One of the interesting findings, which makes nitrilases superior 

to chemical methods, is the ability of some nitrilases to hydrolyze a single  cyano-group in 

dinitriles or polynitriles producing cyanocarboxylic acids that could be used in different industries 

(1) (11). Nitrilases isolated from Acidovorax facilis 72W and Rhodococcus rhodochrous K22 are 

examples of these highly selective nitrilases, which specifically hydrolyze single cyano-group in 

aliphatic dinitriles. According to their substrate specificity, nitrilases can accept substrates of 

Figure 1: Reaction mechanism of nitrilase catalysis. 
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different complexities and can hydrolyze nitriles without affecting other labile functional groups 

(11).  

 

Nitrilases are extremely useful catalysts in different industries. They were successfully 

utilized in manufacturing different types of polymers such as nylon-6, and other chemicals such 

as nicotinic and acrylic acids. They were also used in pharmaceutical industries as in the 

manufacturing of (S)-ibuprofen, a widely used non-steroidal anti-inflammatory drug. In a recent 

study done by Liu et al (2012), iminodiacetic acid was synthesized from immobilized nitrilase-

producing recombinant E. coli BL21 (DE3) cells that were entrapped in polyvinyl alcohol/sodium 

alginate (PVA/SA) copolymer (12). Moreover, nitrilases were found to be of extreme importance 

in bioremediation processes as they were utilized in detoxification of cyanide containing wastes 

and in nitrile herbicides degradation (1)(4). The nitrilase isolated from Klebsiella ozaenae was 

found to effectively degrade the nitrile-herbicide bromoxynil (13). Bioremediation using nitrilases 

is faster, more economical and more efficient than other physical and chemical methods(1) (2) 

(4). 

 

2.5. Distribution and physiological role of nitrilases: 
 

The presence of nitrilases is infrequent in nature. They are relatively rare in plants and 

fungi; however, their frequency is considered higher in the bacterial kingdom. Nitrilases were 

found in bacterial species from different genera such as Pseudomonas, Klebsiella, Nocardia, and 

Rhodococcus.  

 

Plant nitrilases were found to have a role in the production of Indole-3-acetic acid, which 

plays a role in the elongation and development of plants (14) (1). In addition, it was reported that 

these nitrilases are important in cyanide detoxification, as cyanide can be produced in plants as a 

by-product during the synthesis of ethylene hormone or by the degradation of cyanogenic 

glycosides (14).   

 

The role of nitrilases in bacterial metabolism is still unclear; however, some bacterial 

strains that possess nitrilases are able to utilize nitriles as a sole source of carbon and nitrogen. 

Other studies suggest roles in complex pathways which direct the production and degradation of 

cyanogenic compounds(1)(9).  Nitrilases are generally inducible enzymes(1)(15) that might have 

an important role in defense mechanisms and detoxification of xenobiotics or cyanogenic 

compounds produced by plants or other microorganisms(16). 
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2.6. Nitrilase gene family neighborhood: 
 

In bacterial genomes, genes are usually found in clusters such as operons. Generally, 

genes that are found in one cluster are involved in a common metabolic pathway. In a 

phylogenetic study done by Robertson et al (2004), nitrilase sequences from completed genomes 

and environmental samples were studied and clustered into 6 different clades (3). Studying the 

neighborhood of one of the major clades (subfamily 1) by Podar et al (2005) revealed that these 

nitrilase sequences are part of a conserved gene cluster (Nit1C) composed of seven genes. The 

gene cluster is composed of [1] hypothetical protein,[2] nitrilase, [3] radical SAM superfamily 

member, [4] acetyltransferase, [5]  AIR synthase, [6] hypothetical protein, and finally [7] a 

predicted flavoprotein which is either located at the end of the cluster or at the beginning but on 

the opposite strand. Slight variations in the arrangement of these genes in the cluster were 

observed which correlate with the taxonomic groups from which these genes were isolated 

(cyanobacteria, verrucomicrobia, beta and gamma-proteobacteria). The presence of Nit1C gene 

cluster in the virulence plasmid pLVPK of Klebsiella pneumoniae suggests a possible transfer of 

these genes to other bacterial species. For nitrilases that belong to other clades, conservation of 

the gene sequences in the neighborhood was found to be less prominent than that in Nit1C (16).  

2.7. Nitrilase subunit size and molecular structure: 
 

Sequencing and SDS-PAGE experiments studying different nitrilases have shown that 

most nitrilases have a molecular mass that range between 30-45 kDa (1)(17). Robertson et al 

(2004) have studied 137 nitrilase sequences reporting that sequences were between 304 and 

385 amino acids in length. These variations reflected the variation in the C-termini lengths rather 

than the N-termini (3).  

 

Different studies using gel filtration chromatography, light scattering or electron 

microscopy revealed that functional nitrilases form aggregates ranging from 6 to 26 subunits 

(1)(17). However, some were also found as smaller aggregates: dimers and trimers, as in 

nitrilases from Klebsiella ozaenae and Pseudomonas fluorescens DSM 7155, and in rare cases 

as monomers such as in Rhodococcus rhodochrous PA-34 (17). The activation and association 

of these subunits were found to be dependent on temperature, pH, substrate availability, 

concentrations of salt and organic solvents and the enzyme concentrations (1)(15). 

2.8. Limitations of the utilization of nitrilases: 
 

In spite of their presence as potential biocatalysts in the synthesis of a great number of 

fine chemicals; low activity, low stability and unsuitable substrate specificity of many available 
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nitrilases have limited their use (18). Substrate tolerance is another limitation as nitriles in high 

concentrations are toxic to nitrilases, limiting their activity. To date the number of characterized 

nitrilases is considered small and those already used in different applications are much smaller in 

number (19).  

 

Overcoming these limitations would open the locked gates in fine chemicals industry and 

other potential applications. The discovery of novel nitrilases with different substrate specificities, 

higher activities and stabilities could make myriads of applications possible. Interestingly, few 

studies have reported the isolation of thermophilic nitrilases that were found to be more stable 

than their mesophilic homologues(9)(15). This indicates the possibility of finding robust nitrilases 

that can withstand harsh conditions. 

 

2.9. Determination of nitrilase activity: 
 

Different methods were developed for determination of nitrilase activity by either 

measuring the amount of produced carboxylic acid or ammonia. HPLC and infrared spectroscopy 

could be used for direct estimation of the produced acid; however, these methods require long 

preparation time and special instruments that might not be available (1).  

 

A rapid, colorimetric method for the screening of nitrilase-producing strains were 

developed by Banerjee et al (2003); this method is based on the drop in pH due to acid formation, 

resulting in a change in the color of an acid-base indicator. The choice of the indicator is crucial 

and the difference between the pKa of the indicator and buffer should be within 0.1 units to 

ensure that the relative amount of protonated indicator to protonated buffer is constant, thus any 

change in the indicator color would reflect the number of protons released. This method is 

qualitative due to the presence of cells which interfere with spectrophotometric assays(20).  

 

Many other methods were developed, measuring the amount of produced ammonia. 

Ninhydrin and Nesslerization methods are no longer used because of their low sensitivity, large 

sample volumes needed and the interference of some organic solvents and inorganic ions. 

Berthelot assay is a precise, simple colorimetric assay which depends on the reaction of 

ammonia with sodium phenate and hypochlorite to produce a blue-colored complex, in presence 

of nitroprusside as a catalyst (21). Nevertheless, the use of corrosive reagents is considered a 

serious drawback of this method (1).  

 

A more sensitive, fluorometric assay method can be used which is based on the reaction 
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of ammonia with o-phthaldialdehyde and β-mercaptoethanol to form an isoindole derivative that 

emits fluorescence at 467nm when exited at 412nm (1)(22). The formed complex is colored, so it 

can also be measured spectrophotometrically at 410 with reliable results (23). 

 

Finally, a recent metal ion-based method was developed by Yazbeck et al (2006) for the 

screening of nitrilases. This method is also based on the amount of released ammonia, which can 

form a complex with cobalt ions changing the color from light pink to yellow which can be 

measured spectrophotometrically at 375nm. Unlike other fluorometric and colorimetric assays, 

the color develops instantly in this assay (24). 

3. Metagenomic approaches in the search of novel nitrilases:  
 

Conventional screening methods by culturing different microorganisms on selective 

media with nitrile substrates were the main used techniques to isolate and characterize nitrilases 

(19). In spite of being tedious and time consuming, different nitrilases were identified using this 

strategy. Some of these nitrilases have already been utilized in different industries as mentioned 

previously. However, as cultured and characterized microorganisms represent less than 0.1% of 

the microbial world (3), the trend towards studying the unfathomable world of uncultured 

microorganisms seems promising. Metagenomic studies have provided us with a plethora of 

microbial genomic sequences from which novel enzymes, with promising potential in different 

industries, could be characterized. Extracting microbial genomes from different environments 

increases the possibility of the identification of enzymes that can adapt to these environments. 

 

  Microbial metagenomic studies are based on studying the genomes of the uncultured 

microbial world by extracting the DNA directly from the environment, bypassing the steps of 

isolation and cultivation of individual microorganisms. Metagenomic libraries of environmental 

DNA sequences can be constructed after mechanical shearing or enzymatic digestion of the 

DNA. Gene-identification from these libraries is done using two different approaches, either 

functional-based or sequence-based screening. In the former approach, the library clones are 

screened for specific protein function or enzyme activity (19). Such strategy was used by 

Robertson et al (3) and Bayer et al (11) to identify novel nitrilases. In sequence-based screening, 

determination of putative nitrilases is based on sequence homology with available sequences in 

the existing databases. This strategy combines bioinformatics, sequence analysis, sequencing 

techniques, PCR amplification and/or DNA synthesis (19). As the number of available sequences 

in the databases over-exceeds the number of biochemically tested ones, determination of the 

exact functions of the majority of these sequences is still lacking. Most nitrilase sequences, as 

well as enzymes with different functions, retrieved from available databases are annotated based 
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on sequence similarities with their homologs. These homologs could be distantly related to 

experimentally tested enzymes, which sometimes make the available annotations misleading. 

Different softwares such as Pfam can determine known patterns in gene sequences and thus 

assign these sequences to groups with major functions. Nevertheless, specific functions and 

substrate specificity of different enzymes can only be determined by experimental testing (25). In 

a study done by Seffernick et al (2009), several nitrilases were identified based on sequence 

homology followed by expression of identified sequences in suitable bacterial hosts and 

characterization of purified nitrilases (25). 

4. Red Sea Atlantis II Deep brine pool: 
 

Studies on the Red Sea, which is located between Africa and the Arabian Peninsula, 

revealed the presence of about 25 brine pools in its depth (26). Those are geothermal salt-

enriched waters that are found in topographic depressions in the seafloor of the central and 

northern Red Sea (27). High density of these hypersaline waters stabilizes them and makes them 

poorly mixed with the above water (28). 

 

The largest and one of the most interesting brine pools in the Red Sea is Atlantis II Deep. 

It is 2,194 m deep from the seawater surface (28), and located at latitude 21° 20’ N and longitude 

38° 04’ (29) near the central rift of the Red Sea. This brine pool is a unique ecosystem which is 

characterized by elevated temperatures, salinity and pressure (26).  Studies at different time 

intervals revealed that Atlantis II Deep is still dynamic and considered a part of an active 

hydrothermal system, as its temperatures have elevated since 1966 until recent years from 

56.5°C (30) to 68°C (26). 

 

Atlantis II Deep is characterized by four brine layers, which differ in a steep gradient in 

their temperatures, salinity and O2 content. Those are three upper convective layers (UCL1, 

UCL2, UCL3) and one lower convective layer (LCL) which shows the highest temperature (68°C) 

and salinity (250 part per thousand or 7.5 times that of the normal sea water)(26)(27). 

 

The anoxic conditions, elevated temperature, salinity and pressure of the LCL (26), 

increase the likelihood of finding unique novel enzymes that are produced by extremophiles 

which inhabit the LCL. Nitrilases are not an exception; nitrilases with higher stability and different 

substrate specificities could be discovered in the LCL. Extracting microbial DNA of the LCL 

inhabitants allows further investigations and retrieval of valuable genes from the extracted 

environmental DNA. 
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5. Study objectives and experimental design: 
 

The first objective of this study was to identify a novel nitrilase from the LCL of Atlantis II 

Deep brine pool in the Red Sea, using a sequence-based metagenomic approach. To achieve 

this goal, extensive bioinformatics and computational work was done on the LCL microbial 

sequences database. Confirmation of the presence of the identified putative nitrilase gene 

sequences required amplification from environmental DNA using specific primers. The obtained 

amplicons were then sequenced to verify the sequences retrieved from the database. 

 

The second objective was to express the identified nitrilase. In accordance with this aim, 

the amplified sequences were cloned into a proper expression vector and the same sequence 

was synthesized with optimization of codon usage before being cloned into another expression 

vector. The used expression vectors were chosen to express the desired sequence with either a 

C or an N-terminal His-tag to allow easier purification of the protein in later steps. The 

recombinant expression vectors were transformed into Escherichia coli BL21 (DE3) host cells and 

expression was induced by adding IPTG to the medium followed by visualization of the induced 

protein on SDS-PAGE gels. 

 

The third objective was the purification of the expressed protein. This was done using Ni 

affinity chromatography columns, where the His-tagged protein can bind to the Ni
+
 ions, followed 

by elution of the bound protein with a suitable elution buffer that contains high concentrations of 

imidazole. 

 

The fourth objective was activity determination of the purified potential nitrilase. Both 

qualitative and quantitative assays were done. The qualitative colorimetric assay was dependant 

on the change of color of the acid base indicator, bromothymol blue, upon the decrease in pH due 

to the release of acid. In contrast, in the quantitative assay, the amount of released ammonia was 

measured, based on its reaction with a buffered o-phthaldialdehyde/β-mercaptoethanol reagent, 

forming a colored complex that can be quantified spectrophotometrically. 

The final objective was to preliminary characterize the purified nitrilase in terms of 

thermal stability and halotolerance. This was done by incubating the enzyme for a definite time 

interval at different temperatures and salt concentrations before measuring the residual activity of 

the enzyme. 
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CHAPTER 2: MATERIALS AND METHODS 
 

1. Sampling:  
 

On board the R/V Aegaeo research vessel, water samples were obtained during the King 

Abdullah University of Science and Technology (KAUST) expedition on the spring of 2010. 

Samples were taken from the four Atlantis II Deep layers including the LCL, in a rosette of Niskin 

bottles, supplied with CTD (Conductivity, Temperature and Depth) meter.  

2. DNA extraction and sequencing:  

 
Water samples were filtered through mixed cellulose ester filters of pore sizes of 3µm, 

0.8µm and 0.1µm sequentially and the prokaryotic DNA was extracted from the cells retained on 

the 0.1µm filter. Extracted DNA was sequenced using 454 shotgun sequencing approach with GS 

FLX Titanium pyrosequencer (454 Life Sciences), creating an enormous database with raw 

sequences for all obtained reads. The expedition team and other lab-mates performed these 

steps. 

3. Computational analysis: 
 

  A sequence-based metagenomic approach was used for finding new genes in the LCL 

database. The Pfam (PF00795) for the desired functional domain (Carbon-Nitrogen hydrolase) 

was obtained from Pfam 26.0 (31) and used to extract reads with this domain from the LCL 

database using an HMM scan. The reads were assembled and visualized using the Phred-Phrap-

Consed tool (32)(33)(34)(35)(36) followed by BLASTing the consensus sequence of the contig, 

with the greatest number of reads, against a database of assembled LCL contigs with annotated 

open reading frames (ORF’s). This step was done to identify the ORF of the desired gene, its 

regulatory elements and neighboring ORFs. The promoter region was then identified using the 

bprom tool (37) and the Shine Dalgarno sequence was detected manually. The sequence of the 

ORF of interest was BLASTed (BLASTx) (38) against the non redundant protein database in the 

National Center for Biotechnology Information (NCBI) for identification of the new nitrilase. 

4. Amplification of the complete gene of interest:  
 

Forward primer Nitr1_F (GATACCTGGACGGTTTAAGG) and reverse primer Nitr1_R 

(GAAAGCTGATGTTCGCAAT) were designed using Primer3Plus software (39) to amplify the 

desired sequence from the environmental DNA using an annealing temperature (Ta) of 54°C.  

The amplified sequence (A:1336bp fragment) included the desired ORF plus 76 bp upstream and 
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243 bp downstream. Another primer Nitr6_F (CAGATCGAAGTCACCATCC) with Nitr1_R were 

used to amplify part of the gene (D: 665bp fragment) from the environmental DNA using a Ta of 

54°C. The amplified sequences were then extracted from the agarose gel using QIAquick
®
 gel 

extraction kit (Qiagen).  

 

5. Sequencing of the amplified sequence: 
 

TA cloning was used to clone the amplicons into pGEM
®
-T Easy cloning vector 

(Promega).  Recombinant plasmids were transformed into E. coli Top10 strains, which were 

grown on LB agar containing 0.5mM IPTG, 40ug/ml X-gal and 100ug/ml ampicillin. Colony PCR 

was performed for several positive white clones using the same primers used in amplification to 

confirm the presence of the amplified sequences. Plasmids were extracted from cultures obtained 

from colonies with positive results using PureYield 
TM

 Plasmid Miniprep System (Promega). 

Extracted plasmids were then sequenced in ABI 3730xl DNA Analyzer using the BigDye® 

Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems
®
) with the vector T7 forward and Sp6 

reverse primers in addition to Nitr1_F, Nitr1_R and Nitr6_F primers. Direct sequencing of the 

purified amplicons using the amplicon primers was done as well. Sequencing results were 

visualized using BioEdit Sequence Alignment Editor version 7.1.3.0 (40). 

 

6. Amplification and sequencing of the regulatory elements and 
upstream parts of the operon: 

 

Several primers were designed to sequence the upstream part of the operon containing 

the ORF of interest with its regulatory elements. Five different PCR reactions were done using the 

following pairs of forward and reverse primers, all with a Ta of 54°C: Nitr3_F 

(GTCTCAGGCTACCACAATGA) and Nitr3_R (GTGATGAGCGACATATCCAG), Nitr3_F and 

Nitr4_R (TCGGTATCAAAGATGAGCTG), Nitr7_F (CAACAAGCAGATCACCAAGT) and Nitr3_R, 

Nitr4_F (ATCAGGTAAGCGGGTTTG) and Nitr4_R, and finally Nitr4_F and Nitr5_R 

(CTGCTTGTTGAAGTTGAGATG). Positions of used primers in reference to the assembled 

contig (contig00026) are shown in figure2.  The amplified sequences were extracted from the 

agarose gel using QIAquick
®
 gel extraction kit. Direct sequencing was done for all purified 

amplicons using the same primers used in amplification. 

 



 
 
 
 
 

12 
 

7. Amplification of the putative nitrilase gene using pET SUMO and 
pET-28b+ expression vectors: 

 

In a PCR reaction at a Ta of 58°C, the expression primers Nitr_exp1_F 

(CGCGGATCCGGCATCACCATGTCACAGAA) and Nitr_exp2_R 

(CCCAAGCTTTCGGTCCGAAGCTCAGTTAC), with BamHI and HindIII restriction sites, 

respectively, were used for the amplification of the desired ORF. Positions of the primers are 

shown in figure 2. 

 

 

8. Expression of the gene of interest using pET SUMO expression 
vector: 

 
The amplified sequences obtained from the PCR reaction with the expression primers 

(Nitr_exp1_F and Nitr_exp2_R) were extracted from the agarose gel using QIAquick
®
 gel 

extraction kit (Qiagen). The purified amplicons were then cloned into the pET SUMO expression 

vector, which has an N-terminal His-tag, using pET SUMO TA Cloning
®
 Reagents provided with 

the Champion™ pET SUMO Protein Expression System (Invitrogen™). The recombinant 

plasmids were transformed into E.coli Top10 by Electroporation. Transformed cells were allowed 

to grow on LB agar plates with kanamycin (50ug/ml). For determination of the clones with inserts 

in the correct direction, a number of colonies were subjected to colony PCR using the vector 

Sumo_F (AGATTCTTGTACGACGGTATTAG) primer with Nitr3_R primer and Nitr6_F with the 

vector T7_R (TAGTTATTGCTCAGCGGTGG) primer using a Ta of 55°C.  Plasmids were 

Figure 2:  Schematic diagram showing the positions of all primers used in contig00026. 
Rectangles represent the putative nitrilase ORF, surrounding ORFs and the promoter region with 
numbers indicating their positions in the contig. Arrows represent forward and reverse primers. 
Numbers next to each primer indicate the position of the primer’s first base in the contig. 
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extracted from cultures obtained from a colony with positive results using PureYield 
TM

 Plasmid 

Miniprep System (Promega) followed by their transformation into E.coli BL21 (DE3) for 

expression and sequencing. Ten millilitres of LB broth with kanamycin (50ug/ml) were inoculated 

with a transformed colony and incubated for an overnight at 37°C and 225 rpm. A proper volume 

of the overnight culture was added to a fresh LB broth with kanamycin. Cultures were allowed to 

grow at 37°C and 225 rpm to an OD600 of about 0.6 and then induction of expression started at 

37°C with different IPTG concentrations (0.1-0.8mM) and for different time intervals. Cultures 

were centrifuged and pellets were preserved at   -80°C for analysis. All cell lysates were analyzed 

using Coumassie-stained 12% SDS-PAGE according to the method of Laemmli (1970) (41). Any 

further analysis was done using pellets obtained from 25 ml cultures, which were induced for 2 

hours using 0.1mM IPTG. 

9. Expression using a codon-optimized putative nitrilase gene in pET-
28b+ expression vector:  

 
For optimized expression into E. coli BL21 (DE3), a synthesized gene (based on the 

sequence amplified from the metagenomic DNA) with optimized codons for E.coli expression, 

was obtained from GenScript in pET-28b+ with a C-terminal His-tag. The gene sequence was 

synthesized into pUC57 with SacI and HindIII restriction sites, and the sequence was then cloned 

into the expression vector between the previously mentioned restriction sites. This process was 

done by GenScript, Inc.  The recombinant plasmids were transformed into E. coli Top10 that were 

kept as glycerol stocks and from which the plasmids were extracted using PureYield 
TM

 Plasmid 

Miniprep System (Promega) to be transformed into E. coli BL21 (DE3). All transformed colonies 

were cultured on LB agar plates with kanamycin (50ug/ml). Transformation and induction of 

protein expression were performed as described in section 8 except for using a range of IPTG 

concentrations from 0.1 to 1 mM and temperatures of either 16°C or 37°C. Culture volumes of 25 

or 50 ml, induced by 0.1mM IPTG for 2 hours at 37°C were used for further analysis.  

10. Protein purification: 

 
Pellets of induced cells were subjected to freezing (in ice cold ethanol) and thawing 

(42°C) 3 times, followed by re-suspension in binding buffer, pH 8 (20mM sodium phosphate 

buffer, 20mM or 40mM imidazole, 500mM NaCl and 5% glycerol). Lysozyme (1mg/ml) and 1mM 

of phenylmethylsulfonyl fluoride (PMSF) were added and the suspension was incubated on ice for 

30 minutes with occasional shaking. Cells were subjected to sonication followed by centrifugation 

for 25 minutes to separate the supernatant from the cell debris. The protein (Nitra-S) was purified 

using Ni-NTA affinity chromatography with Ni-NTA Purification System (Invitrogen™). Purification 
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was done according to manufacturer’s native condition specifications at 4°C. The His-tagged 

Nitra-S was eluted with 20mM Sodium phosphate buffer (pH 8) containing 500mM imidazole, 

500mM NaCl and 50% glycerol. DTT (1mM) was added to the eluted fractions. Coumassie-

stained 12% SDS-PAGE gel was used to visualize the protein during different purification stages 

according to the method of Laemmli (1970) (41).  

11. Determination of protein concentration: 

 
Protein concentration was determined using the Pierce™ BCA Protein Assay Kit (Thermo 

Scientific). The purified Nitra-S was 10-fold diluted in binding buffer, pH 8 (20mM imidazole,  

500mM NaCl and 5% glycerol) before measuring its concentration. A standard curve was 

obtained using known concentrations of standard Bovine Serum Albumin (BSA) in the same 

buffer (figure 3) and the color produced was measured at 595nm using the FLUOstar OPTIMA 

microplate reader (BMG LABTECH). All measures were done at least in triplicates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12. Nitrilase activity assay: 
 

A preliminary colorimetric activity assay, developed by Banerjee et al (20) was done with 

minor modifications. Harvested cells from a 25ml overnight culture of transformed cells (both 

induced and uninduced) were washed with 10mM phosphate buffer (pH 7.2), and suspended in 

Figure 3: Standard curve of a standard BSA concentration vs absorbance at 595nm. 
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the same buffer according to its OD (cultures with OD~1 were re-suspended in 1ml buffer). In a 

230ul reaction, 6ul of nitrile substrate (from 1M stock solution) and 23ul of prepared cell 

suspension were added to 201ul of phosphate buffer (10 mM, pH 7.2) containing 0.01% 

bromothymol blue. The reaction mixture was incubated at 50°C for 6 hours. A color change of the 

bromothymol blue indicator from bluish-green to yellow was considered a positive result for 

nitrilase due to liberation of acid into the media. As a positive control for the assay, I used induced 

cells, transformed with recombinant pET-28a+ that carries a nitrilase gene from Rhodococcus 

rhodochrous ATCC 33278 (obtained from Dr. Oh D-K, Konkuk University, Korea). Unlike all other 

experiments, testing the activity of Nitra-S qualitatively with benzonitrile, glutaronitrile and 

succinonitrile was done only in one biological experiment with three technical replicates.  

 

For quantitative activity assay, a spectrophotometric-based method was exploited in 

assaying the nitrilase activity (23). The method is based on measuring the amount of liberated 

ammonia by the action of the nitrilase on its substrate. In a 100ul reaction, 10ul of cell or debris 

suspension (in binding buffer), cell free extract (supernatant) or purified protein (100ug/ml) were 

added to 50mM potassium phosphate buffer (pH 8), 2mM DTT and 400mM substrate. The 

reaction was kept at 30°C/100rpm for 30 minutes, and then it was stopped with an equal volume 

of 100mM HCl. Centrifugation of the stopped reaction mixture was done at 5000rpm for 10 

minutes. To detect liberated ammonia, 10ul of the reaction mixture were added to 140ul of 

buffered alcoholic o-phthaldialdehyde/β-mercaptoethanol reagent. The isoindole derivative was 

allowed to develop for 30 minutes at 30°C/100rpm, and the color intensity was measured at 

405nm using the FLUOstar OPTIMA microplate reader (BMG LABTECH).  

 

The reagent used in the assay was prepared one day before the assay as described by 

Banerjee et al (2003) (22). For the preparation of alcoholic o-phthaldialdehyde, 100mg 

o-phthaldialdehyde were dissolved in 10ml of absolute ethanol, while alcoholic 

β-mercaptoethanol was prepared by adding 50ul of β-mercaptoethanol to 10ml of absolute 

ethanol. For preparing the working reagent, 2.25ml of both alcoholic o-phthaldialdehyde and 

alcoholic β-mercaptoethanol were added to 45.5ml of 200mM potassium phosphate buffer 

(pH7.4). A standard curve using NH4Cl was utilized for determination of the ammonia 

concentration (figure 4). Negative controls were done using non-transformed and uninduced cells. 

 

13. Substrate specificity: 
 

For determination of substrate specificity, the assay was done using several nitrilases: 

acetonitrile, glutaronitrile, succinonitrile, mandelonitrile and benzonitrile (Sigma-Aldrich). In 
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addition, for the detection of any possible amidase activity, acetamide and benzamide (Sigma-

Aldrich) were used as substrates as well.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14. Enzyme characterization: 

14.1. Enzyme kinetics: 

 
For determination of Nitra-S kinetics for succinonitrile, the initial reaction rate was 

determined in a 10-minute reaction with a fixed concentration of the purified protein (100ug/ml) 

and different concentrations of succinonitrile (0-066mM). Trials were done to calculate the kinetic 

parameters, Km and Vmax to determine whether Nitra-S obeys Michaelis-Menten kinetics. 

14.2. Enzyme thermal stability and thermosensitivity: 

 
For determination of the enzyme thermal stability, the purified enzyme (Nitra-S) was 

incubated for an hour at different temperatures (30-70°C) before assaying the residual activity as 

mentioned previously in the quantitative spectrophotometric assay. For determination of the 

thermosensitivity of the enzyme, the activity assay was hold at different temperatures (30-70°C) 

as described before. 

Figure 4: Standard curve for standard NH4
+
 concentrations vs absorbance at 405nm. 
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14.3. Enzyme halotolerance: 
 

For examination of the salt tolerance for the identified nitrilase, the Nitra-S enzyme was 

incubated at 30°C for an hour at different NaCl concentrations (0.167-3.5M) before assaying the 

residual activity spectrophotometrically using 66.7ug/ml as final protein concentration.  

 

All experiments in this study were done at least in triplicates. 
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CHAPTER 3: RESULTS AND DISCUSSION 
 

1. Identification of nitrilase sequences in the LCL database: 
 

 Sequences containing the Pfam functional domain CN_hydrolase (PF00795) were 

extracted from the LCL database using an HMM scan to 8,025,636 reads. The obtained 

sequences were assembled giving rise to 15 contigs from which the contig with the largest 

number of reads (contig15: 40 reads, 1209bp) was chosen for further analysis. Upon aligning the 

obtained consensus sequence with assembled LCL contigs, with annotated ORFs, it aligned 

perfectly with one of the assembled contigs (contig00026: 66.091Kb) with a query coverage and 

fraction identity of 99.9%. The alignment of contig15 with contig00026 covered the bases starting 

from 42805 to 44011 positions in the later contig. Contig00026 with its ORFs was visualized using 

Artemis Release 13.2.0 (42). The results revealed that the sequence of interest was part of an 

operon of 9 ORFs (figure5). Regulatory regions, identified by bprom tool (37), were found 

upstream to the first ORF; a CGCAATGAT sequence was identified as the -10 box, while a 

TTAAAG sequence comprised the -35 box (figure6).  In addition, using the same tool (37), two 

binding sites for two known transcriptional factors were found upstream: purR: CGTTTTTT and 

rpoD15:  TTTTGTTT. The ORFs in the operon were annotated, after being BLASTed (BLASTx) 

using NCBI blast2.2.27+ (38), as follows: conserved hypothetical protein, putative nitrilase, 

putative radical SAM-domain containing protein, putative acetyltransferase, selenophosphate 

synthetase-related protein (AIR synthetase related protein), conserved hypothetical protein, 

putative FAD-dependant oxidoreductase, conserved hypothetical protein and putative methyl 

malonyl Co-A mutase. Analysis of the different ORFs of the operon, revealed that in a study done 

by Podar et al (2005), the first seven ORFs were found with the same arrangement in several 

bacterial phyla and in microorganisms that inhabit diverse environments in a cluster known as 

Nit1C (16). The study was done on previously characterized nitrilase genes, obtained from 

different environments (3). Different bacterial species belonging to beta and gamma 

proteobacteria have the same arrangement, while in some cyanobacterial species the 7
th
 ORF 

which is a putative FAD-dependant oxidoreductase involved in K
+
 transport, is found on the other 

end of the cluster on the opposite strand (16). The high conservation of this cluster suggests its 

involvement in a conserved metabolic pathway; however, the lack of biochemical testing of the 

genes in this cluster and the presence of hypothetical proteins with unknown activities hinder the 

prediction of the function of this operon. Comparing the identified nitrilase sequence with 

sequences used by Podar et al  (16) revealed that some sequences were closely related to the 

sequence identified herein. One of the genes which were studied by Podar et al, 1B7 nitrilase 

gene (Genbank accession number: AY487530.1) was found to be in a cluster with the same 
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arrangement mentioned before. By aligning the amino acid sequences for both 1B7 protein and 

the putative nitrilase under study, which was named “Nitra-S”, I found 77% identity with 85% 

coverage. In the study done by Robertson et al (2004), 1B7 nitrilase was found to be active 

towards S- nitrile enatiomers (3). In this study, however, no experiments were done to study 

selectivity towards different isomers. 

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5: Artemis visualization of the ORFs in the operon at which the putative nitrilase gene is the 
second ORF. ORFs are shown as cyan arrows at different reading frames in the forward strand. The 
promoter region is indicated with a green arrow starting from 42250 position, while the putative 
nitrilase gene starts from 43126 position and ends at 44142 position. 
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Figure 6: DNA sequence of the putative nitrilase gene within its genomic context 
and showing its regulatory elements. 
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The encoded protein sequence of the putative nitrilase gene consists of 338 amino acids. 

Pfam (31) identified a catalytic triad of glutamate, lysine and cysteine at positions 47, 129 and 

163, respectively (figure 7). This catalytic triad is conserved among all nitrilases. This high 

conservation is shown by aligning the putative nitrilase under study (Nitra-S) with several 

identified nitrilases using ClustalW2 tool (43) as shown in figure 8. The presence of upstream 

regulatory regions in addition to the catalytic triad, which is characteristic to all nitrilases, 

increases the possibility for this gene to encode for an active nitrilase. Using the BLASTp tool (38) 

to compare the identified protein sequence to the non-redundant protein database in the NCBI, 

hits with high identities were found; all were annotated as carbon-nitrogen hydrolases or aliphatic 

nitrilases. Although the best hit (carbon-nitrogen hydrolase in Cupriavidus basilensis OR16) was 

found to have 98% identity with the submitted sequence, this hit and all hits with high identities 

were annotated based on sequence similarities rather than experimental testing.  

 

In an attempt for determination of the 3D structure of Nitra-S, the amino acid sequence 

was submitted to Swiss-Model tool (44)(45)(46); however, I did not succeed in obtaining a reliable 

3D structure of the nitrilase under study. The obtained QMEAN Z-Score was -5.705 and the 

sequence identity to the used template (2uxy) was 20.455%.  The QMEAN Z-score measures the 

quality of the studied protein model compared to a template formed from reference structures 

obtained by x-ray crystallography (46). The obtained QMEAN Z-score means that the obtained 

model deviates from the template by 5.705 standard deviations, rendering this model unreliable. 

As these results are based on a fully automated mode, the target and the template should have at 

least 50% identity for the results to be reliable. Such a result was expected due to the scarcity of 

available nitrilase crystal structures.  

 

 

 

Figure 7: Amino acid sequence of the native Nitra-S with the catalytic triad of glutamate, lysine and 
cysteine shown in red. 
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Figure 8: Multiple sequence alignment of Nitra-S with different nitrilases 
(identified by their NCBI accession numbers on the left panel). Residues 
of the catalytic triad are shown in rectangles. 
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2. Amplification and sequencing of the putative nitrilase gene and 
regulatory elements: 

 

Different primers were used to amplify the nitrilase ORF and surrounding regions. The 

position of different primers used and the expected amplicon sizes were shown in figure 2. Either 

direct sequencing or sequencing of the recombinant pGEM vectors with the amplified sequences 

were done as mentioned in the materials and methods. Ligation into pGEM vector was based on 

TA cloning. In this type of cloning, the amplicons with the 3’-A overhangs, which is a 

characteristic of the used taq polymerase, can bind to the 3’-T overhangs in the open vector. The 

LCL microbial DNA was used in different PCR reactions with the following sets of primers: 

Nitr1_F with Nitr1_R, Nitr6_F with Nitr1_R, Nitr3_F with Nitr3_R, Nitr3_F with Nitr4_R, Nitr7_F 

with Nitr3_R, Nitr4_F with Nitr4_R or Nitr4_F with Nitr5_R.  Amplicons of 1336bp (A fragment) 

and 665bp (D fragment) were obtained using the first two sets of primers as shown on 0.8% 

agarose gels (figures 9 &10). Figure 11 shows recombinant pGEM plasmids with either A or D 

fragments on 0.8% agarose gel before sequencing. Using the other sets of primers, amplicons of 

1739bp, 1268bp, 1085bp, 1405bp and 801bp were obtained, respectively, as shown in figure 12. 

Sequencing confirmed the consensus sequence of the nitrilase ORF and regulatory regions 

obtained from the LCL database. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: PCR amplification of the putative nitrilase gene and neighboring regions from 
environmental DNA. lane1: GeneRuler

TM
 1Kb plus DNA ladder (Thermo Scientific), lane2: 

gene amplification of the 1336 bp fragment (A) of the putative nitrilase gene using Nitr1_F 
and Nitr1_R primers, lane3: Negative control using Nitr1_F and Nitr1_R primers, lane4: 
positive control SOD with E.coli genomic DNA, lane5: GeneRuler

TM
 1Kb plus DNA ladder 

(Thermo Scientific), lane6: gene amplification of the 665 bp (D) fragment of the putative 
nitrilase gene using Nitr6_F and Nitr1_R primers, lane7: negative control using  Nitr6_F and 
Nitr1_R primers. 
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Figure 10: Colony PCR from 5 E.coli Top10 colonies transformed with either the (A: 1336bp) 
fragment or the (D: 665bp) fragment cloned in pGEM vector. lane1: GeneRuler

TM
 1Kb plus 

DNA ladder (Thermo Scientific), lanes 2-6: (A) amplified fragment using Nitr1_F and Nitr1_R 
primers, lane7: negative control using Nitr1_F and Nitr1_R primers, lane8: gap, lanes 9-13: 
(D) amplified fragment using Nitr6_F and Nitr1_R primers. 

Figure 11: Purified recombinant pGEM plasmid with (A) insert or (D) insert. lane1: 
GeneRuler

TM
 1Kb plus DNA ladder (Thermo Scientific), lanes 2-6: recombinant 

pGEM plasmid with (A: 1336bp) insert, lanes 7-11: recombinant pGEM plasmid 
with (D: 665bp) insert. 
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3. Expression of Nitra-S from the recombinant pET SUMO vector and 
optimization of the expression conditions: 

 
In order to express the putative nitrilase, Nitr_exp1_F and Nitr_exp2_R primers were 

used to amplify the complete ORF using the recombinant pGEM-insert (A) purified plasmid as a 

template. An amplicon of 1058bp was obtained (figure 13), and subsequently ligated to the 

pET SUMO vector by TA cloning, followed by transformation into E. coli Top10. After overnight 

culturing of the transformed cells, 24 clones were subjected to colony PCR using both Sumo_F 

with Nitr3_R and Nitr6_F with T7_R primers to identify clones with the proper orientation of the 

insert. Sumo_F with Nitr3_R were used to amplify the 5’ fragment (953bp), while Nitr6_F with 

T7_R were used to amplify the 3’ fragment (581bp). Bands at the expected size (953bp with the 

first set of primers and 581bp with the second set) were obtained with only one colony among the 

colonies screened (figure 14). The corresponding recombinant plasmid was extracted, sequenced 

and transformed into E. coli BL21 (DE3) for expression.  

 

 

Figure 12: PCR amplification products from environmental DNA using different sets of 
primers for the region surrounding the nitrilase ORF. lane1: GeneRuler

TM
 1Kb plus 

DNA ladder (Thermo Scientific), lane2: 1739bp product using Nitr3_F and Nitr3_R 
primers, lane3: 1268bp product using Nitr3_F and Nitr4_R primers, lane4: 1085bp 
product using Nitr7_F and Nitr3_R primers, lane5: 1405bp product using Nitr4_F and 
Nitr4_R primers, lane6: 801bp product using Nitr4_F and Nitr5_R primers, lane7: 
negative control. 
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Figure 13: Amplified nitrilase ORF sequence using expression primers (Nitr_exp1_F and 
Nitr_exp2_R). lane 1:  GeneRuler

TM
 1Kb plus DNA ladder (Thermo Scientific), lane2: 1058bp 

product amplified with Nitr_exp1_F and Nitr_exp2_R primers using recombinant pGEM with the 
previously amplified (A) fragment as a template. 

Figure 14: Colony PCR for colonies transformed with recombinant pET SUMO with Nitra-S gene [insert 
amplified by Nitr_exp1_F and Nitr_exp2_R], showing positive results with only one colony (lanes 7 & 
16). lanes 1 & 20: GeneRuler

TM
 1Kb plus DNA ladder (Thermo Scientific). lanes 2-10: PCR reaction using 

Nitr6_F  and T7 reverse (581bp expected size at lane 7).  lanes 11-19: PCR reaction using Sumo_F  and 
Nitr3_R (953bp expected size at lane 16). 
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Coumassie-stained 12% SDS-PAGE gels were used to visualize over-expressed Nitra-S, 

at 37°C for different time intervals, using IPTG concentrations of 0.1mM (figure 15), 0.2mM (figure 

16), 0.4mM (figure 17) and 0.8mM (figure 18). Although the native Nitra-S size should be 

37.12kDa, calculated using Expasy Compute pI/Mw tool (47)(48)(49), the over-expressed band 

had an apparent molecular mass of 51kDa. This is because of the attached SUMO fusion protein, 

which helps in the solubilisation of the recombinant protein, in addition to the His-tag sequence.   

From the results shown, it can be inferred that Nitra-S is highly over-expressed when incubated 

with IPTG for 2 hours, and that any increase in induction time, does not result in a considerable 

increase in the amount of the over-expressed protein. Preliminary observations revealed that the 

amount of induced protein increases with the increase in IPTG concentration figures 15-18. 

However, after cell lysis of the 2-hour-induced cell pellets, the increase in induction, accompanied 

with the increase in IPTG concentration, had shown that most of the over-expressed Nitra-S is 

preferentially precipitated with the cell debris (insoluble fraction) (figure 19) without an increase in 

its amount in the supernatant (soluble fraction) (figure 20). Figure 21 shows a 12% SDS-PAGE 

gel of both the supernatant and cell debris after 2 hours of induction with different IPTG 

concentrations. These results strongly suggest that any increase in the IPTG concentration, 

increases the expression of Nitra-S as inclusion bodies. Accordingly, it was concluded that, at 

37°C, induction for 2 hours with 0.1mM IPTG is the best condition for the expression of the 

protein under study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 15: Analysis of the cell lysate of E. coli BL21 (DE3) transformed with pET 
SUMO-Nitra-S induced at 37°C with 0.1mM IPTG at different time intervals. 12% 
SDS-PAGE of: lane1: ProSieve

®
 Colour Protein Markers (Lonza), lane2: uninduced 

cell lysate, lane3: 1 hour induction, lane4: 2 hours induction, lane5: 3 hours 
induction, lane6: 4 hours induction, lane7: 5 hours induction. 
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Figure 16: Analysis of the cell lysate of E. coli BL21 (DE3) transformed with pET 
SUMO-Nitra-S induced at 37°C with 0.2mM IPTG at different time intervals.12% SDS-
PAGE of: lane1: ProSieve

®
 Colour Protein Markers (Lonza), lane2: uninduced cell 

lysate, lane3: 1 hour induction, lane4: 2 hours induction, lane5: 3 hours induction, 
lane6: 4 hours induction, lane7: 5 hours induction. 

Figure 17: Analysis of the cell lysate of E. coli BL21 (DE3) transformed with pET 
SUMO-Nitra-S induced at 37°C with 0.4mM IPTG at different time intervals. 12% SDS-
PAGE of: lane1: ProSieve

®
 Colour Protein Markers (Lonza), lane2: uninduced cell 

lysate, lane3: 1 hour induction, lane4: 2 hours induction, lane5: 3 hours induction, 
lane6: 4 hours induction, lane7: 5 hours induction. 
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Figure 18: Analysis of the cell lysate of E. coli BL21 (DE3) transformed with pET 
SUMO-Nitra-S induced at 37°C with 0.8mM IPTG at different time intervals. 12% 
SDS-PAGE of: lane1: ProSieve

®
 Colour Protein Markers (Lonza), lane2: 

uninduced cell lysate, lane3: 1 hour induction, lane4: 2 hours induction, lane5: 
3 hours induction, lane6: 4 hours induction, lane7: 5 hours induction. 

Figure 19: Analysis of the debris of E. coli BL21 (DE3) 
transformed with pET SUMO-Nitra-S after 2 hours induction. 
12% SDS-PAGE of: lane1: ProSieve

®
 Colour Protein Markers 

(Lonza), lane2: uninduced cells’ debris, lane3: 0.1mM IPTG 
induction, lane4: 0.2mM IPTG induction, lane5: 0.4mM IPTG 
induction, lane6: 0.8mM IPTG induction. 
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Figure 20: Analysis of the supernatant of E. coli BL21 (DE3) 
transformed with pET SUMO-Nitra-S after 2 hours induction. 12% 
SDS-PAGE of: lane1: ProSieve

®
 Colour Protein Markers (Lonza), 

lane2: uninduced cells’ supernatent, lane3: 0.1mM IPTG, lane4: 
0.2mM IPTG, lane5: 0.4mM IPTG, lane6: 0.8mM IPTG. 

Figure 21: Analysis of the supernatant and debris of E. coli BL21 (DE3) transformed with pET SUMO-
Nitra-S after 2 hours induction. 12% SDS-PAGE of: lane1: ProSieve

®
 Colour Protein Markers (Lonza), 

lane2: uninduced cells’ supernatant, lane3: supernatant 0.1mM IPTG, lane4: debris 0.1mM IPTG, lane5: 
supernatant 0.2mM IPTG, lane6: debris 0.2mM IPTG, lane7: supernatant 0.4mM IPTG, lane8: debris 
0.4mM IPTG, lane9: supernatant 0.8mM IPTG, lane10: debris 0.8mM IPTG. 
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4. Expression of Nitra-S from the recombinant pET-28b+ vector and 
optimization of the expression conditions: 

 
A synthesized gene (based on the sequence amplified from the metagenomic DNA) with 

optimized codon usage was obtained from GenScript in pET-28b+ with a C- terminal His-tag. The 

His-tag was chosen to be in the C-terminus to lower the possibility of any effect on the activity, as 

the active site was found to be towards the N-terminus. The recombinant plasmid was 

transformed into E. coli BL21 (DE3) for expression. The apparent molecular mass of the induced 

protein is 38.83KDa, calculated using Expasy Compute pI/Mw tool (47)(48)(49). This small 

increase in size than the native protein is due to the extra histidine residues at the C- terminus 

and 2 extra methionine and glycine  residues at the N-terminus that were added to put the gene 

sequence in frame in the expression vector between SacI and HindIII restriction sites.  

 

Expression was first done at 16°C with longer induction times (15, 18 and 21 hours) as 

shown in most studies using the pET system for expression. IPTG concentrations of 0.1mM, 

0.2mM (figure 22), 0.5mM and 1mM (figure23) were used. From the results obtained, it was clear 

that an IPTG concentration of 0.1mM was adequate to yield a satisfactory level of Nitra-S 

over-expression. It was also observed that the amount of expressed protein has decreased after 

21-hour-induction. Perhaps, this is due to degradation of part of the protein after long incubation 

times. However, most of the expressed protein was found in the cell debris (figure 24) and the 

solubilised percentage was very low (figures 25 & 26). Using 0.1mM IPTG at 37°C, different 

induction times were studied as done previously with transformed cells with pET SUMO-Nitra-S 

(figure 27). The highest amount of induced protein was observed after 2 hours of induction. In 

addition, a great improvement and a higher percentage of the soluble protein were observed 

when the induction was done at 37°C for few hours (figure 28). These conditions did not eliminate 

the presence of most of the expressed protein in the insoluble fraction; however, a considerable 

amount of soluble protein that could be purified under native conditions was found as well. Thus, 

induction for 2 hours at 37°C  were considered the best expression conditions and were used to 

obtain the highest possible amount of protein to be purified and further characterized. 
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Figure 23: Analysis of the cell lysate of E. coli BL21 (DE3) transformed with pET-
28b+ Nitra-S induced at 16°C with 0.5mM IPTG & 1mM IPTG  at different time 
intervals. 12% SDS-PAGE of: lanes 1 & 10: ProSieve

®
 Colour Protein Markers 

(Lonza), lane2: uninduced cell lysate, lane3: 15 hours 0.5mM IPTG, lane4: 18 hours 
0.5mM IPTG, lane5: 21 hours 0.5mM IPTG, lane6: uninduced cell lysate, lane7: 15 
hours 1mM IPTG, lane8: 18hours 1mM IPTG, lane9: 21 hours 1mM IPTG. 

Figure 22: Analysis of the cell lysate of E. coli BL21 (DE3) transformed with pET-28b+ Nitra-S 
induced at 16°C with 0.1mM IPTG & 0.2mM IPTG  at different time intervals. 12% SDS-PAGE of: lanes 
1 & 10: ProSieve

®
 Colour Protein Markers (Lonza), lane2: uninduced cell lysate, lane3: 15 hours 

0.1mM IPTG, lane4: 18 hours 0.1mM IPTG, lane5: 21 hours 0.1mM IPTG, lane6: uninduced cell lysate, 
lane7: 15 hours 0.2mM IPTG, lane8: 18 hours 0.2mM IPTG, lane9: 21 hours 0.2mM IPTG. 
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Figure 25: Analysis of the supernatant of E. coli BL21 (DE3) transformed 
with pET-28b+ Nitra-S after 15 hours induction at 16°C.12% SDS-PAGE 
of:  lane1: ProSieve

®
 Colour Protein Markers (Lonza), lane2: uninduced 

cells’ supernatent, lane3: 0.1mM IPTG, lane4: 0.2mM IPTG, lane5: 0.5mM 
IPTG, lane6: 1mM IPTG. 

Figure 24: Analysis of the cell debris of E. coli BL21 (DE3) transformed 
with pET-28b+ Nitra-S after 15 hours induction at 16°C. 12% SDS-PAGE 
of: lane1: ProSieve

®
 Colour Protein Markers (Lonza), lane2: uninduced 

cells’ debris, lane3: 0.1mM IPTG, lane4: 0.2mM IPTG, lane5: 0.5mM 
IPTG, lane6: 1mM IPTG. 



 
 
 
 
 

34 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 27: Analysis of the cell lysate of E. coli BL21 (DE3) transformed 
with pET-28b+ Nitra-S induced at 37°C with 0.1mM at different time 
intervals. 12% SDS-PAGE of: lane1: ProSieve

®
 Colour Protein Markers 

(Lonza), lane2: uninduced cell lysate, lane3: 1 hour induction, lane4: 2 
hours induction, lane5: 3 hours induction, lane6: 4 hours induction. 

Figure 26: Analysis of the supernatant and debris of E. coli BL21 (DE3) transformed with pET-28b+ 
Nitra-S after 15 hours induction at 16°C. 12% SDS-PAGE of: lane1: ProSieve

®
 Colour Protein Markers 

(Lonza), lane2: uninduced supernatant, lane3: supernatant 0.1mM IPTG, lane4: debris 0.1mM IPTG, 
lane5: supernatant 0.2mM IPTG, lane6: debris 0.2mM IPTG, lane7: supernatant 0.5mM IPTG, lane8: 
debris 0.5mM IPTG, lane9: supernatant 1mM IPTG, lane10: debris 1mM IPTG. 
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5. Purification of C-terminal His-tagged Nitra-S obtained from the 
expression of the synthesized gene: 

 
Purification was done to the C-terminal His-tagged protein only. A stretch of 6 histidine 

residues is able to bind strongly to the Ni
+2

 ions immobilized on the column matrix with NTA. 

Elution was done with a high concentration of imidazole (500mM) which has higher affinity to Ni
+2

, 

so it can displace the bound protein easily (50). Although the effect of the pH on the activity of 

Nitra-S was not examined, the pH of all used buffers was adjusted to 8, as the calculated 

isoelectric point (pI) of the protein was 6.41; thus, it was preferable to use a pH far away from its 

pI to prevent any possible precipitation of the protein.  

 

First purification trials were done using binding buffer containing 20mM imidazole (figure 

29). The concentration of imidazole was then raised to 40mM to decrease contamination with 

other proteins (figure 30). The protein (Nitra-S) was eluted in an elution buffer with 50% glycerol 

to be preserved at -20°C; and eluates with high protein concentration, from different purifications, 

were pooled together for further analysis of the protein. The elution buffer did not affect the 

activity assays; however, for determination of protein concentration, 10-fold diluted protein was 

used as the high concentrations of imidazole and glycerol were found to interfere with the BCA 

assay method. This assay depends on the reduction of Cu
+2

 to Cu
+1

 by the protein in alkaline 

medium. Cu
+1 

can be detected by the use of a reagent which contains bicinchoninic acid (BCA), 

Figure 28: Analysis of the supernatant and debris of E. coli BL21 (DE3) transformed with 
pET-28b+ Nitra-S after 2 hours induction with 0.1mM IPTG at 37°C. 12% SDS-PAGE of: lane1: 
ProSieve

®
 Colour Protein Markers (Lonza), lane2: uninduced cells’ supernatant, lane3: 

induced cells’ supernatant, lane4: uninduced cells’ debris, lane5: induced cells’ debris. 
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where 2 molecules of BCA chelate with one Cu
+1  

ion producing a purple color that can be 

measured spectrophotometrically (51).  The highest protein concentration that I got was 2mg/ml.  

 

 
 
 
 
 
 
 
 
 

 

 

 

Figure 29: Analysis of eluates (500ul each) of Nitra-S protein from E.coli BL21 (DE3) transformed 
with pET-28b+ Nitra-S using Ni-NTA column under native conditions and 20mM imidazole in 
binding/ washing buffer and elution buffer with 500mM imidazole and 50% glycerol. 12% SDS-
PAGE of: lane1: ProSieve

®
 Colour Protein Markers (Lonza), lane2: supernatant before purification, 

lane3: eluate fraction 1, lane4: eluate fraction 2, lane5: eluate fraction 3, lane6: eluate fraction 4, 
lane7: eluate fraction 5, lane8: eluate fraction 6, lane9: eluate fraction 7.  

Figure 30: Purification of Nitra-S protein from E.coli BL21 (DE3) transformed with pET-28b+ 
Nitra-S using Ni-NTA column under native conditions and 40mM imidazole in binding/ washing 
buffer and elution buffer with 500mM imidazole and 50% glycerol. 12% SDS-PAGE of: lane1: 
ProSieve

®
 Colour Protein Markers (Lonza), lane2: non-transformed cells’ supernatant, lane3: 

Uninduced cell’s supernatant, lane4: induced supernatant before purification, lane5: flow-
through, lane6: wash 1, lane7: wash 2, lane8: eluate fraction 1, lane9: eluate fraction 2, lane10: 
eluate fraction 3. 
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6. Nitrilase activity and substrate specificity of Nitra-S: 

 
Nitrilases are characterized by one-step reaction at which nitriles are hydrolysed into their 

corresponding carboxylic acid and ammonia. Different assays were developed for determination 

of the nitrilase activity; most are based on determination of the amount of released ammonia. 

Some assays depend on measuring the increased acidity in the medium upon the hydrolysis of 

nitriles. In a simple, qualitative, colorimetric assay, bromothymol blue was used as an acid base 

indicator where its color changes from green to yellow after incubating the induced transformed 

cells with the reaction mixture for 6 hours at 50°C (20). To ensure the validity of this assay, the 

nitrilase activity of induced E. coli BL21(DE3) cells, transformed with recombinant pET28a+ which 

carries a previously characterized nitrilase gene(6), was assayed using acetonitrile and 

mandelonitrile as substrates. A yellowish green color was observed with the induced cells rather 

than the uninduced ones. The difference in color between the positive and negative controls was 

observed with both substrates (figure 31).  

 

 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

The same assay was used as a preliminary test for nitrilase activity using non 

transformed E. coli BL21 (DE3) cultures, induced and uninduced cultures transformed with either 

recombinant pET SUMO or pET-28b+ (figure 32). Negative results were obtained with 

acetonitrile, mandelonitrile and benzonitrile, while positive results were only observed with 

glutaronitrile and succinonitrile. While the non-transformed cells yielded a dark green color, 

transformed cells – both induced and uninduced – showed yellowish discoloration indicating the 

presence of basal level of expression of the recombinant protein and a leakage in the T7lac 

promoter in E. coli BL21 (DE3). In case of cells transformed with recombinant pET-28b+, a drop 

in the pH was more prominent with the induced cells as observed from the color of the indicator. 

Figure 31. Qualitative detection of nitrilase activity on acetonitrile using cultures 
of E.coli BL21 (DE3) transformed with a recombinant pET28a+ with a nitrilase 
gene obtained from Dr. Oh D-K, Konkuk University, Korea. A: Yellow color 
obtained with induced culture. B: Green color obtained with uninduced culture.  
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However, the difference in color between transformed and non-transformed cells was clearer with 

succinonitrile than glutaronitrile. In case of cells transformed with recombinant pET SUMO, an 

equal drop in the pH was observed with induced and uninduced transformed cultures compared 

to the non-transformed cultures; this drop was more prominent with succinonitrile. The absence of 

a clear difference in color between the induced and the uninduced cells was surprising, since a 

considerable amount of the induced protein was found to be soluble as shown in the SDS-PAGE 

results (figure 21). This could be attributed to the presence of the SUMO peptide, which could 

result in improper folding of the expressed protein, thus lowering the activity of Nitra-S. These 

explanations can never be conclusive, being based on a qualitative assay. However, from the 

previous results, it could be suggested that the specificity of Nitra-S is towards dinitriles. Figure 

33 shows the chemical structures of nitriles used in this study. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 32. Qualitative detection of nitrilase activity on succinonitrile (A) & glutaronitrile 
(B) substrates using cultures of E.coli BL21 (DE3) transformed with recombinant pET-
28b+  and recombinant pET SUMO. 1: induced pET-28b+ transformed cells, 2: 
uninduced pET-28b+ transformed cells, 3: non-transformed cells, 4: induced pET 
SUMO transformed cells, 5: uninduced pET SUMO transformed cells. 

Figure 33: Chemical structures of nitriles used as substrates in 
studying substrate specificity. 
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For quantitative analysis of the nitrilase activity of Nitra-S, a spectrophotometric assay, 

which measures the amount of released ammonia, was utilized. The enzyme was incubated with 

different nitriles for 30 minutes before being inactivated by the addition of HCl. DTT (2mM) was 

added to the reaction mixture to ensure that all cysteine residues are in their reducing form. 

Although, the DiANNA 1.1 web server (52)(53)(54) has detected a possible disulfide bond in 

Nitra-S with a high score of 0.99659, one of the cysteine residues involved in this bond was found 

to be in the catalytic triad. The scores obtained by the DiANNA 1.1 web server range from 0 to 1; 

and the higher the score, the higher prediction reliability. Thus, based on the high possibility of 

the oxidation of the active cysteine and formation of a disulfide bond and from the previous 

knowledge that thiol complexing agents inactivate nitrilases (8), the necessity of DTT addition 

emerged.  After the reaction termination, 10ul of the reaction mixture were added to a buffered 

alcoholic o-phthaldialdehyde/β-mercaptoethanol reagent. O-phthaldiladehyde reacts with 

ammonia in presence of β-mercaptoethanol to form an isoindole derivative (figure 34). The 

formed product could be assessed either colorimetrically or fluorometrically. In this study, the 

color intensity was measured at 405nm and the amount of released ammonia was calculated 

based on the standard curve, which was done using a standard NH4Cl solution (figure 4). A more 

sensitive assay was to measure the fluorescence of the isoindole derivative at 467nm when 

exited at 412nm; however, the lack of suitable filters hindered the use of the fluorometric assay. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The activity was measured for whole cell suspensions (recombinant pET SUMO and 

pET-28b+ transformed cells), crude extracts (supernatants) and cell debris. Positive results were 

only obtained with glutaronitrile and succinonitrile when used as substrates, confirming the 

previous results of the dinitrile specificity of the nitrilase under study. The enzyme was more 

Figure 34. Reaction of ammonia with o-phthaldialdehyde and β-mercaptoethanol 
to form an isoindole derivative. 
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active towards succinonitrile than glutaronitrile. The cell suspensions of both transformed cells 

showed that the activity towards glutaronitrile is about 13.24% of that towards succinonitrile. For 

the purified protein, nearly similar results were obtained, as the activity towards glutaronitrile was 

about 12.85% of that towards succinonitrile. 

 

In contrast to the observation found in the qualitative colorimetric activity assay, the 

nitrilase activity of the induced recombinant pET SUMO transformed cells was greater than the 

uninduced cells. The later showed 42.6% of the activity shown by the induced cells. The 

discrepancy between the results of the two assays might be due to the qualitative nature of the 

first assay or it could be of lower sensitivity. However, this does not explain the difference 

observed between both induced and uninduced recombinant pET-28b+ transformed cells in both 

assays. 

 

When the nitrilase activity was assayed for the cells’ debris, after cell lysis of induced 

cultures of both recombinant pET SUMO and pET-28b+ transformed cells, low activity was 

observed with succinonitrile in both types of cells. This means that the used cell lysis technique 

was not sufficient for complete cell lysis, thus part of the soluble protein was still entrapped in 

undisturbed cells, or that part of the protein in the inclusion bodies is active. For proper 

explanation of these results, further analysis is to be done. 

 

As some nitrilases have shown amidase activity beside their main function as nitrilases 

(1), acetamide and benzamide were used to test this possibility. No activity towards these amides 

was observed whatsoever; however, we cannot confirm the absence of any amidase activity 

without further analysis using other amides as substrates.  

7. Enzyme characterization: 

7.1. Enzyme kinetics: 
 

Many attempts were done to determine the kinetic parameters of Nitra-S using 

succinonitrile as a substrate. However, the activity continued to increase proportionally with the 

substrate concentration, although very high concentrations of succinonitrile were used in the 

study (up to 600mM). Lowering the protein concentration to less than 100mg/ml or doing the 

reaction for less than 10 minutes resulted in non-measurable activity at low substrate 

concentrations. Perhaps, this protein does not obey the Michaelis-Menten equation rendering its 

kinetic study a problematic issue (figure 35) or perhaps, a more sensitive assay is needed such 

as measuring the fluorescence of the isoindole derivative instead of the absorbance. The specific 
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activity of the enzyme towards succinonitrile was calculated and was found to be 0.22 umol 

NH4
+
/min/mg using 400mM succinonitrile in the reaction (figure 36). The very low specific 

activities and the apparent high Km values observed indicate that succinonitrile is not the best 

substrate for studying the enzyme kinetics. A wide range of nitriles is to be used for better 

understanding of the protein and for a proper kinetic experiment; however, the use of 

succinonitrile in this study was because the enzyme activity towards it had been the highest 

among the nitriles available in the lab.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 35. “Nitra-S” initial velocity (Vo) vs different substrate concentrations. 

Figure 36. “Nitra-S” specific activity vs different substrate concentrations 
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7.2. Enzyme thermal stability and thermosensitivity: 

 
Although it was highly expected that the isolated enzyme (Nitra-S) is to be thermostable, 

the activity of the enzyme decreased as the incubation temperature of the enzyme increased until 

it lost all remaining activity at 60°C as shown in figure 37.  Upon examination of thermosensitivity, 

a sharp decrease in activity was observed as the reaction temperature increased (figure 38). 

Perhaps some components in the surrounding intracellular environment stabilize Nitra-S, thus it 

loses this gained thermal stability once purified or when it is no longer within the microorganism 

from which it was isolated. Another possibility is that native Nitra-S might be only expressed for a 

very short period to perform a specific function in a certain metabolic pathway. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 37. Evaluation of “Nitra-S” thermal stability. “Nitra-S” was incubated for one hour 
at different temperatures ranging from 30-70°C. The residual activity was determined and 
compared to the residual activity after 1-hour incubation at 30°C  (assigned as 100%). 
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7.3. Enzyme halotolerance: 
 

Examination of the stability of Nitra-S at different salt concentrations revealed that the 

activity of Nitra-S kept deceasing upon increasing the salt concentration as shown in figure 39. As 

the activity decreased with the increase in salt concentration, we can conclude that the identified 

protein is non-halophilic; however, the enzyme has shown a degree of halotolerance as its 

residual activity after 1-hour-incubation at 3.5M was 46.8% of that after incubation for the same 

time at 0.167M NaCl. Nevertheless, some studies reported different behaviour for some enzymes 

with different salts (55); thus, for thorough understanding of the halotolerance and halophilicity of 

the enzyme, different salts and higher molarities could be used in upcoming studies. Still, there is 

a possibility that Nitra-S might be derived from a halophilic microorganism, which can survive at 

high salt concentrations by accumulating organic osmolytes in the cytoplasm instead of the 

salting in mechanism. The later mechanism is a characteristic of extremely halophilic 

microorganisms, at which potassium ions accumulate inside the cell; and in this case, all the 

machinery within the microorganism should adapt to the high salt concentration in the internal 

environment. On the other hand, for halophilic microorganisms, which adapt to hypersaline 

environments by accumulating uncharged organic osmolytes, the enzymatic machinery could be 

as that observed in non-halophilic microorganisms (56).  

Figure 38. Evaluation of “Nitra-S” thermosensitivity. The activity assay was held at 
different temperatures ranging from 30-70°C. “Nitra-S” activity was assessed and 
compared to the activity at 30°C (assigned as 100%). 
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Figure 39. Evaluation of “Nitra-S”halotolerance. “Nitra-S” was incubated 
for one hour in different salt concentrations (0.167-3.5M). The residual 
activity was determined and compared to the residual activity after 1-hour 
incubation with 0.167M NaCl  (assigned as 100%). 
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CHAPTER 4: CONCLUSIONS AND RECOMMENDATIONS 
 

Identification of new nitrilases is of utmost importance due to the promises they hold in 

lots of applications. Mining the available metagenomic databases is an opportunity that has to be 

grasped by many researchers for the identification of such useful enzymes. Myriads of 

uncharacterized enzymes are pending on these databases, waiting for a chance to be studied 

and characterized. In this study, a nitrilase (Nitra-S) gene was identified, sequenced and cloned 

followed by expression and purification of the protein. Preliminary functional studies using a 

limited number of substrates revealed that the enzyme is active towards dinitriles. In addition, in 

contrast to our expectations, Nitra-S did not show tolerance towards high temperatures but it was 

halotolerant to some extent. Nevertheless, full characterization of Nitra-S is yet to be done. A 

larger number of substrates is needed to identify more specifically the substrate specificity of this 

enzyme. Besides, different nitrile isomers could be used to recognize the stereo- and 

regioselectivity of the identified nitrilase. Moreover, effect of the pH on Nitra-S activity is another 

important step that was not done in this study and needs to be analysed. Further investigation on 

salt tolerance using higher salt concentrations and other salts is an additional step that is to be 

studied. In this study, no attempts were done to identify the number of subunits of the active 

protein; size exclusion chromatography and native PAGE could help in that point. Generally, a lot 

of work and effort are needed to fully understand and characterize this newly identified nitrilase. 
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