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Abstract 

We propose a simply yet flexible framework for the analysis of optimal monetary policy 

rules that produces the type of non-linear responses derived in the literature as 

special cases.  Perhaps more importantly, our framework suggests a richer set of non-

linear responses than have been considered yet and thus may prompt further work in 

this area. 

 

 

1) Introduction 
Recent models of optimal monetary policy rules have allowed for non-linearity in the 

response of interest rates to inflation and output.  In some of these models, non-

linearity arises because the standard assumption of quadratic preferences has been 

amended to allow for asymmetry (eg Cukierman and Gerlach, 2003) or for zone-like 

preferences that might match the features of some inflation targeting regimes 

(Orphanides and Wieland, 2000). In other models, non-linearity arises because the 

aggregate supply or Phillips curve is non-linear (eg Nobay and Peel, 2000).  In this 

paper, we propose a simple yet flexible framework that produces the type of non-

linear responses derived in the literature as special cases.  Perhaps more importantly, 
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our framework suggests a richer set of non-linear responses than have been 

considered yet and thus may prompt further work in this area. 

 The paper is structured as follows. The canonical linear Taylor rule model is 

briefly derived in section 2) as a benchmark.  Section 3) considers a general model of 

policymakers’ preferences and shows how this generalises and extends models 

proposed in the literature.  Section 4) does the same for the case of a non-linear 

Phillips curve.  Section 5) considers the interactions between non-quadratic 

preferences and a non-linear Phillips curve, showing how this implies a richer set of 

non-linear models than considered thus far in the literature.  Section 6) concludes. 

 

2) The Taylor rule 

In this section we outline the derivation of the Taylor (1993) policy rule, as a 

foundation for the extensions in subsequent sections.  We assume the economy 

comprises conventional aggregate demand and aggregate supply or Phillips curves.  

The aggregate demand curve is  

 

(1)   1 1( ) d
t t t t t t ty i E E yρ π ε+ += − − + +  

  

where y  is the output gap, i  is the nominal interest rate, π is the inflation rate, ε d
t is an 

i.i.d demand shock and ρ  is a positive coefficient.   The Phillips curve is  

 

(2)  1
s

t t t t ty Eπ γ θ π ε+= + +  

 

where s
tε is an i.i.d supply shock and γ  and θ  are positive coefficients.  

We assume that policymakers choose the nominal interest rate at the 

beginning of period t on the basis of information available at the end of period (t-1).  

Their optimisation problem is  

 

(3)  { } 1
0

Min  
t

j
t t ji

j
E Lδ

∞

− +
=
∑    

 

subject to (1) and (2), where δ  is the discount factor and 
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(4)  ( )2* 2 * 21 ( )
2 2 2t t t tL y i iλ µπ π= − + + −  

 

is a conventional per-period quadratic loss function where *π  is the inflation target or 

desired inflation rate, *i  is the equilibrium or desired nominal interest rate and λ  and 

µ  are positive coefficients.   Following the existing literature (eg Clarida et al, 1999) 

by solving this optimisation problem under discretion, the optimal monetary policy rule 

can be expressed as 

 

(5)  ( )* *
1 1t t t t ti i E y Eρλ ργ π π

µ µ− −= + + −  

 

This is the celebrated Taylor rule, with the familiar constant proportional response of 

interest rates to inflation and output.   

 

3) Optimal monetary policy with non-quadratic preferences 

We generalise the quadratic per-period loss function in (4) by assuming 

 

(6) 
( ) ( )

*
*

* 2
2 2

1 11 ( )
2 2 2

yt y t yy
t y t

t t
y y

e e y
L i i

βπ βππ βα π π α β
π

π π

α π π αλ µ
β α β α

− − − − − −
= + + −  

 

where πβ  and yβ  are integers and πα  and α y are real numbers.  The optimal 

monetary policy rule then becomes 

 

(7)  ( )* *
1 1( ;  , ) ( ;  , )t t t y y t ti i E f y E f π π

ρλ ργβ α π π β α
µ µ− −= + + −  

 

where 1 1( ; , , )
xef x x

βα
ββ α

α
− −= .  Equation (7) is a non-linear monetary policy rule that 

encompasses the various models that have been proposed in the literature with non-

quadratic preferences as special cases.   
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 The loss function in (6) can take on a number of forms depending on the values 

of the parameters.  The loss function simplifies to the quadratic when 0πα → , 0yα →  

and 1yπβ β= = .  In this case, we obtain the Taylor rule in (5).  Figure 1) depicts *
ti i−  

as a function of the inflation gap *
tπ π− .  In this case, the relationship is a straight line.    

Considering the response to inflation, if 1πβ = , we have the Linex preferences of 

Ruge-Murcia (2003) and Nobay and Peel (2003).  The response of interest rates to 

inflation is a convex function of inflation if 0πα >  and a concave function if 0πα < .  

The relationships between *
ti i−  and *

tπ π−  in these cases are also depicted in figure 

1); the relationship is convex when 0πα >  as a greater concern for excessive inflation 

leads to a more vigorous adjustment of interest rates when inflation is above the 

target; the relationship is concave when 0πα < .   

Linex preferences imply the optimal policy rule is asymmetric.  An asymmetric 

response is arguably implausible, not least because many countries have a target 

zone for inflation rather than a point target (see Petursson, 2004, for details of the 

target zone in over 25 countries).  Following Orphanides and Wieland (2000), a target 

zone implies a small response to inflation when this is clearly within the zone and 

stronger response when inflation is outside the zone.  This type of response is 

obtained when 1πβ > . Interest rates are unresponsive to inflation in a zone around the 

desired level.  Outside the zone, interest rates respond more strongly; the strength of 

the response is an increasing function of πα .   The response is symmetric if πβ  is an 

even number (figure 2 illustrates this case).  If πβ  is an odd number, the response is 

asymmetric; the sign of the asymmetry is determined by πα  (there is stronger 

response when inflation is above rather than below the zone target if 0πα > ).  A higher 

value of πβ  widens the zone.  

This discussion has focussed on the response of interest rates to inflation.  

Similar considerations apply to the response to output.  This response is convex if 

0yα >  and concave if 0yα < .  A convex response is consistent with arguments that 

policymakers are more averse to slumps than to booms (Cukierman and Gerlach, 

2003).  It has also been suggested that policymakers should only respond strongly to 

output when this is clearly some way from the equilibrium level (Meyer et al, 2001).  
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This suggests a zone-like response to output, which is obtained when 1yβ > .  As with 

the response to inflation, this response is symmetric if yβ  is even and asymmetric if 

yβ
 
is odd. 

 

4) Optimal monetary policy with a non-linear Phillips curve 
In this section we revert to quadratic preferences but assume the Phillips curve is   

 

(8)   1
1

1PC
PC t

PC

y
s

t t t t t
PC

ey E
βα

βπ γ θ π ε
α

−
+

−= + +  

 

The optimal monetary policy rule in this case is  

 

(9)   ( )* *
1 1 1( )t t t t t t ti i E y E g y Eργρλ π π

µ µ− − −= + + −  

 

where 2 1( ; , ) (( 1) )
pc

pc pc
pc pc pc

y
y

pc pc pc pc
pc

eg y y y e
β

βα
β β αβ α β β

α
− −= − +  is proportional to the 

slope of the Phillips curve. The response of interest rates to inflation in (9) depends on 

the slope of the Phillips curve, and is thus a function of the output gap.  The policy rule 

is a generalisation of the  Taylor rule, which is obtained if the Phillips curve is linear, in 

which case ( ) 1tg y = .  The response of interest rates to inflation reflects the shape of 

the Phillips curve.   The Phillips curve is convex if 1PCβ =  and 0pcα > ; convexity was 

proposed by Laxton et al (1995) and is often assumed in recent models. The response 

of interest rates to inflation is a convex function of output in this case. The concave 

Phillips curve, suggested by Stiglitz (1997), is obtained where 1PCβ =  and 0pcα < ; in 

this case the response to inflation is a concave function of output.  Figure 3) illustrates 

the responses of interest rate to inflation in these cases.  Finally, it has been 

suggested that the Phillips curve may be concave when the output gap is negative 

and convex when the output gap is positive (Dupasquier and Ricketts, 1998).   The 

Phillips curve in (8) has this property when 1PCβ > .  In this case, as figure 4) shows, 

the response to inflation is close to zero in a zone around the point where the output 
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gap is zero, but stronger when the output gap is larger in either direction.   The Phillips 

curve is symmetric when PCβ  is an even number; reflecting this, the response to 

symmetric.  The Phillips curve is asymmetric when PCβ  is odd; the response to 

inflation in this case is also an asymmetric function of output, with a stronger response 

when the output gap is positive if 0pcα > . 

 
5) Optimal monetary policy with both non-quadratic preferences and a non-
linear Phillips curve 
 Finally, we consider the case where preferences are non-quadratic and the Phillips 

curve is non-linear.  Using (6) and (8), the optimal monetary rule in this case is  

 

(10)  * *
1 1( ;  , ) ( ; , ) ( ;  , )t t t y y t t pc pc ti i E f y E g y f π π

ρλ ργβ α β α π π β α
µ µ− −= + + −�  

 

where the functions (.)f  and (.)g  are as defined above. In this policy rule, the second 

term reflects non-quadratic preferences over output while the third term reflects both 

non-quadratic preferences over inflation and a non-linear Phillips curve. This latter 

interaction suggests that the policy rule can take a number of forms beyond those 

suggested so far in the literature. 

 Figures 5) and 6) depict the relationship between *
ti i−  and the output gap, for 

a given inflation gap, when there are zone-symmetric preferences over output and 

either a concave (figure 5) or a convex-concave (figure 6) Phillips curve.  In both 

cases, there is a strong response to output when output is some way from equilibrium 

(the response is asymmetric in figure 5), reflecting the concavity of the Phillips curve).   

The most striking feature of these graphs is that there is a “perverse response”, 

whereby interest rates actually fall when output increases, for some values of the 

output gap.  In figure 5), the perverse response occurs when the output gap is in a 

zone close to zero. In figure 6), the perverse response occurs when the output gap is 
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negative.  These types of “perverse response” are analysed in more detail in Boinet 

and Martin (2006). 

 

 

 
6) Conclusions 
This paper has considered optimal monetary policy when non-quadratic preferences 

and a non-linear Phillips curve imply non-linear responses by policymakers.  We 

propose a simply yet flexible framework that produces the type of non-linear 

responses derived in the literature as special cases.  This framework suggests a 

richer set of non-linear responses than have been considered yet and thus may 

prompt further work in this area.   The optimal policy rules suggested in this paper can 

be econometrically estimated. Ultimately, their value will be determined by empirical 

evidence.  
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Figure 1) The response of interest rates  Figure 2) The response of interest  
with quadratic and Linex preferences rates with zone-symmetric preferences 
 
 
 

 
 
 
 
 
 
Figure 3) The response to inflation   Figure 4) The response to inflation  
with linear, convex and concave with a convex-concave Phillips curve 
Phillips curves   
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Figure 5) The response of interest rates         Figure 6) The response of interest  
with zone-symmetric preferences and rates with zone-symmetric preferences  
a concave Phillips curve                                  and a convex-concave Phillips curve 
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