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Abstract 

        A simple approach is illustrated for the preparation of functionalized spongy graphene/cobalt 

sulfide (FG-CoS) nanocomposites as unified, porous 3-dimensional (3D) network crinkly sheets. 

These crinkly sheets contain the reduced spongy graphene oxide (SGO) sheets and the intercalated 

CoS nanoparticles within the spongy graphene. The fabricated FG-CoS composites were 

characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier-transform 

infrared spectroscopy (FTIR), and Raman spectroscopy. The synthesized materials were examined 

as supercapacitor materials in an aqueous electrolyte (3M KOH) using cyclic voltammetry (CV) at 

a wide range of  potential scan rates, and galvanostatic charge/discharge at various current densities. 

The FG-CoS electrode yielded  a maximum specific capacitance of 1072 F/g at a scan rate of 1 

mV/s. In addition, it showed outstanding cyclability retention of 117% after the  1000th  cycle at 

100mV/s. The obtained energy density is 35.2 Wh/kg along with a power density of 250 W/kg at 

1.0 A/g. Such high performance can be attributed to the synergistic effect of graphene and CoS, 

where CoS is sandwiched between graphene nanosheets. This makes the FG/CoS composite a 

promising electrode material for a superior-performance supercapacitor.  
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Chapter 1: Introduction 

1.1 Necessity for energy storage  

In the present energy –dependent world, fast industrialization and development of the 

worldwide human populace have depleted the world's energy resources. For centuries, 

communities have been relying on conventional energy sources, such as fossil fuels. Those 

conventional energy resources as well as being non-sustainable are elements of air 

pollution and global warming. Owing to this, the search for alternative energy sources and 

storage devices is fundamental. The solar cell ingests energy from the sun early in the day; 

nonetheless, they cannot store it for additionally utilize. In this context research for 

alternative storage/ conversion devices is essential. Fuel cells, batteries and supercapacitors 

are front lines of electrochemical storage systems.  Electrochemical storage (EECS) can be 

incorporated with the sun powered cell as a capacity gadget in the form of batteries or 

supercapacitors. The aim of those devices is to hold enough capacities to store the energy 

outfit by numerous applications. 

 

 

 

 

 

Fig. 1.1: Applications of electrochemical capacitors. (1).          
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1.2 Supercapacitors 

Electrochemical supercapacitors (ES), also called supercapacitors, electrical double layer 

capacitors (EDLS) or ultra-supercapacitors, possess high power density and life cycle 

compared to batteries and high energy density compared to normal dielectric capacitors. In 

addition to this, supercapacitors are distinguished by the long charge-discharge life cycles, 

and wide working temperature ranges. (2). 

An electrochemical supercapacitor (ES) consists of two electrodes, an electrolyte and a 

separator that helps isolating the electrodes. ES can be classified into two main types 

according to charge storage mechanism: electrochemical double layer supercapacitor 

(EDLCS), pseudocapacitors, or sometimes referred to as faradic supercapacitors. In case 

of EDLCS, charge storage mechanism is via adsorption of ions on the electrolyte- electrode 

interface due to coulomb's force. i.e. it is the electrostatic mechanism that governs the 

charge transfer. The electric double layer is formed due to the charge balance between the 

electrolyte and the electrode. For pseudocapacitors, electrochemically active materials 

cause faradic charge transfer in the electrode porous layer. Such charge transfer is 

kinetically and thermodynamically driven redox reactions (3). 

 

 

 

Fig.1.2: Electrochemical Double Layer Capacitors (4) 
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Electric double layers have a similar nature of that of conventional physical batteries, as 

charge storage mechanism is physical. Such storage mechanism occurs at the electrode / 

electrolyte interface. Even though Double layer capacitors are characterized by the 

relatively long-life cycles, their capacitance values are low, since it depends only on the 

active surface area contributing to adsorption. Electrode materials used in EDLCS are 

mainly carbon- based materials with high specific surface area. such high specific surface 

area makes carbon materials ideal for EDLS in terms of specific power and life cycle. 

Unluckily, the contact resistance between carbon atoms leads to high resistivity, which 

results in decreasing conductivity. (5,6).Pseudocapacitors materials such as transition 

metal oxides and conducting polymers, yield high energy density due to the redox 

reactions. They are known for their high capacitance than EDLCS, but material 

degradation is their major drawback. (7).  

Hybrid supercapacitors are another kind of supercapacitors, which comprises of at least 

two materials. (e.g. nano– materials carbon nanotubes with conducting polymers as well 

as metal oxides). EDLC carbon materials alone regularly have constrained specific 

capacitance, while pseudocapacitive materials alone have higher specific capacitance 

however poor conductivity. In this manner, there is a requirement for devices comprising 

of carbon with pseudo capacitive materials as composite or asymmetric supercapacitors, 

to get elite anode materials that can be utilized as a part of superior supercapacitors. (8).  

 

 

 

 

 

 

 

 

 



4 
 

 

Fig.1.3: Schematic diagram of (a) electrical double-layer capacitor (EDLC), (b) pseudocapacitors (PC) and 
(c) hybrid supercapacitor (HSC). Carbon-based supercapacitors for efficient energy storage. (8) 
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     1.3 Aim of work 

The presented thesis aims at (1) preparing functionalized spongy graphene/cobalt 

sulfide (FG-CoS) nanocomposites as electrode materials for supercapacitors using easy 

and  eco-friendly methods.(2) characterize functionalized spongy graphene/cobalt 

sulfide (FG-CoS) nanocomposites as electrode material for supercapacitors that would 

further enhance the performance of a supercapacitor’s life time, power density, energy 

density and cyclability. 

The proposal of using metal sulphides along with graphene-based materials is to 

combine figures of merit of both. Regarding metal sulphides, they possess 

pseudocapacitance behaviour and presence of two or more oxidation states. The high 

theoretical capacity of Sulphur compounds provides excellent capacitance behaviour 

and makes it an excellent candidate to be used in supercapacitors. On the other hand, 

graphene-based materials are known for their chemical and mechanical stability, high 

surface area and relatively high capacitance values. Thus, it was logical combine the 

advantages of the excellent properties of both. 
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Chapter 2: Theoretical background 

2.1 Electrostatic capacitors Vs. supercapacitors 

An electric capacitor has a sandwich structure comprising two conductive plates 

surrounding a dielectric or an insulator. Dielectrics include air, glass, or titanate. When an 

external voltage difference is applied across the two plates, a charging process takes place. 

During charging, the positive charges get accumulated on one plate (positive electrode) 

while the negative charges accumulate on the other plate (negative electrode). Removing 

the applied voltage leads both the positive and negative charges to remain at their 

corresponding electrodes, thus, separating electric charges. The difference in potential 

between the two electrodes is called the cell voltage. If the two electrodes are connected to 

a conductive wire coupled or not coupled with a load, a discharging process occurs, where 

the positive and negative charges gradually combine through this wire. In such way, the 

capacitor now can store and deliver energy. (1). 

 

 

 

 

 

 

 

 

 

 

Fig.2.1: Schematic diagram of a charged capacitor (2) 
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Capacitance of an electrostatic capacitor (C) is related to the applied potential difference 

 (V) and amount of charges stored(Q) by the following equation.  

  C =
୕

୚
                                                                          (2.1) 

 

Energy stored in a capacitor related to its capacitance is given by: 

𝑤 = ∫ 𝑉𝑑𝑞 = ∫
௤

௖
𝑞𝑑𝑞 =

ଵ

ଶ
𝑐𝑣²

ொ

଴

ொ

଴
                                  (2.2) 

where V is the applied potential difference, Q is the amount of charges stored, and C is the 

capacitance. The maximum power of an electrostatic capacitor is: 

 𝑃 =
ௐ

௧
=

ଵ

ଶ
𝑉𝐼 =

ଵ

ସ

௏మ

ோ
                                                     (2.3) 

where R is the series resistance. 

The early idea of an electrochemical supercapacitor (ES) depended on the electric twofold 

layer existing at the interface between a conductor and the electrolyte. The electric double 

layer hypothesis was first proposed by Hermann von Helmholtz and further created by 

Gouy, Chapman, Grahame, and Stern. The electric twofold layer hypothesis is the 

establishment of electrochemistry from which the electrochemical procedures happening 

at an electrostatic interface between a charged electrode material and an electrolyte are 

researched. Considering this information, numerous electrochemical assumptions and 

advances including electrochemical supercapacitors, batteries have been created and built 

up since the double layer hypothesis was advanced. The first supercapacitor with high 

capacitance was invented by Becker at SOHIO in 1957.It operated in low voltage 

applications with carbon material as its electrodes. Fundamental understanding of the 

design, operation principle and materials used in supercapacitors led to development of 

such capacitors (increasing the energy density). To additionally increase energy density, 

further developed supercapacitors called pseudocapacitors, in which the electroactive 

materials are composited with carbon particles to frame composite electrode materials, 

were produced. (3,4). 
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2.2 Batteries, fuel cells, and supercapacitors. 

2.2.1 Batteries versus fuel cells versus electrochemical supercapacitors 

Electrochemical energy storage or conversion systems comprise batteries, fuel cells and 

supercapacitors. The electrochemical principles of the above mentioned three systems are 

the same, but restrictions on the electrons and ions conduction differ from one system to 

another. In case of  batteries and power devices, electrical energy is produced due to redox 

reactions at the anode and cathode. In case of batteries anode and cathode act as the active 

mass, but in fuel cells anode and cathode are simply charge exchange media, and the 

dynamic mass admission originates from outside i.e.  an oxygen tank for instance. As for 

electrochemical supercapacitors, energy is not necessarily transferred via redox reactions. 

By movement of electrolyte ions at the electrolyte/electrode interface, the so-called 

electrical double layers (EDLs) are evolved and, this results in a simultaneous  flow of 

electrons in the external wire, and therefore energy is delivered (5). 

 
 
2.2.2 Ragone plot 
 
The terms energy density and power density can determine the performance of a fuel cell, 

battery, or a supercapacitor. Energy density (
௪ ௛

௅
) is energy normalized per volume of 

electrode material. Specific power is a measure of how fast energy can be transferred. 

Ragone plot is developed to compare power and energy density. Ragone plot shows that 

fuel cells possess the highest energy density among the three applications. Supercapacitors 

are characterized by the high-power density. Batteries are intermediate systems between 

supercapacitors and fuel cells, yet batteries possess higher energy density than that of 

supercapacitors. 
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Fig.2.2: Ragone plot (6) 

 
2.2.3. Kinetics of an electrochemical system 
 
The difference between thermodynamics and kinetics is that thermodynamics determines 

whether a reaction can occur, energy associated (released or gained) during a reaction. On 

the other hand, kinetics determines the rate at which a reaction occurs. kinetics of a process 

is generally about how to overcome the energy barrier to finish the transformation from the 

starting (reactant) state to the final (product) state. Another key difference between them is 

that thermodynamics is concerned with systems in stable or metastable states, while 

kinetics is applicable to systems in transition from nonequilibrium to equilibrium, or 

between two equilibrium states. (11). 

 
Kinetics of electrodes and chemical kinetics are different from each in two aspects: (1) the 

potential drop at the electrode / electrolyte interface, and (2) The 2D reactions that take 

place at the electrode / electrolyte interface. In any electrochemical reaction, charge transfer 

process takes place, where kinetics of polarization effect must be considered. Polarization 

effects can be classified into three main categories; activation polarization, concentration 

polarization and ohmic polarization. (7). 
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Activation potential refers to the over potential caused by the rate determining step of the 

reaction, in such case it is the energy needed for a charge transfer reaction to proceed. The 

rate determining step of a reaction is due to dissociation of the activated complex, i.e. 

activation energy of the redox reaction, the rate, current flow, of a charge-transfer-

controlled battery reaction can be given by the Butler-Volmer equation as: 

 

𝑖 = 𝑖˳ exp [
ఈிఎ

ோ்
−

(ଵିఈ)ிఎ

ோ்
]                                                  (2.4) 

 

where i is the normalized current flow (I/A). A is the electrode surface area. i˳ is the 

exchange current density i˳=k˳FA (A here being the activity product, K is the reaction rate 

constant), α is the transfer coefficient, η is the polarization (η=E-E˳) (7,12). Another type 

of polarization occurs as a result of variation of the active species from the surface of an 

electrode/electrolyte to the bulk. Such polarization is named “concentration polarization”. 

It is a result of the limited mass transport capabilities. Concentration polarization is given 

by: 

 

 𝜂 = ln
ோ்

௡

௖

௖˳
                                                         (2.5)                                               

C and C˳ are the concentration of material at the electrode interface and in the bulk of the 

electrode/electrolyte. (13). 

  

Ohmic polarization evolves as a result of the configuration of the electrochemical cell itself. 

It is due to ionic resistance of the electrolyte, resistance between current collector and the 

electrode material , and diffusion of ions of the ectrolyte. Such ohmic polarization leads to 

what so-called “IR drop”. Ohmic polarization is given by: 

 
η=IR                                                                        (2.6) 
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Fig.2.3: Schematic diagram of a discharge curve of a battery. (5). 

 
 

 

2.3 Classification of supercapacitors 
 
Supercapacitors are classified according to charge separation mechanism into double 

layer, pseudocapacitors and hybrid capacitors. 

 
 

 
Fig.2.4: Classification of supercapacitors (2) 
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2.3.1 Electrochemical double-layer supercapacitors 
 

Supercapacitors are electrochemical double layer energy storage devices. The concept of 

a supercapacitor is based on the electrical double layer existing at the interface between an 

electrode and its conducting electrolytic solution. Electrochemical supercapacitors are 

made of two electrodes separated by an electrolytic solution. The electrolytic solution 

between the two electrodes can either be a liquid or solid state. In addition to being physical 

separators between the two electrodes, Solid state electrolytes act as ionic conductors. 

Figure 5.2 shows a typical double-layer capacitor. The whole charge transfer mechanism 

is non-faradic, where, on the cathode, a gathering of positive charges pulls in an equivalent 

number of negative charges around the electrode in the electrolyte side because of 

Coulomb's force, but because of heat fluctuation in the electrolyte; the charges carried by 

the particles have a scattered distribution, prompting some net negative charges in the 

electrolyte zone close to the cathode. This charge adjustment between the electrode and the 

electrolyte represents an electric double layer. To keep up the electric neutrality of bias of 

the framework, an equivalent number of negative charges collect at the negative anode, 

where an equivalent number of net positive charges in the neighboring electrolyte, shaping 

another twofold layer. Subsequently, an entire double layer capacitor has two electric 

double layers, one at the positive electrode/electrolyte interface and the other at the 

negative electrode– electrolyte interface. These two twofold layers constitute the 

capacitor's "heart" and decide its performance. (14,15). 
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Fig.2.5: Electric double-layer supercapacitor (48). 

                           

 
2.3.1.1 Diffuse layer 
 

As discussed before, the electric double layer is formed due to accumulation of positive 

ions near the anode, and negative ions near the cathode side. However, due to heat 

fluctuation, ions may get scattered with a higher concentration near the electrode-

electrolyte interface, and a lower concentration within the solution. This scattered layer in 

addition to the positive or negative charge array is named , the Gouy-Chapmen diffuse 

layer or simply diffuse layer. (16). The thickness of this diffuse layer is a function of 

temperature, electrolyte concentration, and its dielectric constant, and the charge number 

carried by the ions. At lower temperature, higher concentration of electrolytic solution, 

charge number and dielectric constant of the electrolyte, diffuse layer gets very compact 

and thinner. This compact layer is called the Helmholtz layer, which is divided into inner 

and outer plane. (17). The Helmholtz layer in addition to the Gouy- chapmen charge 

distribution model illustrates the double layer interface model (Stern-Grahame model) (17). 



15 
 

 
Fig.2.6: Double-layer models at interface of electrode and electrolyte solution. (a) Diffuse 

layer or Gouy-Chapman model. (b) Helmholtz layer or model; the d represents the 
double-layer thickness. (c) Stern-Grahame layer or model in which the IHP represents the 

inner Helmholtz plane and the OHP is  the outer Helmholtz plane. (49). 
 
  

2.4 Calculations of EDL 

2.4.1 Specific capacitance 

Specific capacitance is the key factor of determining a supercapacitor’s performance. 

Specific capacitance is defined as the total capacitance of the two-electric double-layers 

divided by the electrode’s surface area. (20). 

 𝑐𝑠𝑝 =
௖

௠
                                                                   (2.7) 

where c is the total capacitance of the electric double-layers, and m is the mass of the active 

electrode’s material. 
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2.4.2 Energy density 

Energy density of a supercapacitor is one of the crucial factors that determine its 

performance. In a double layer supercapacitor energy density is expressed as: 

𝐸 = ∫ 𝑉𝑑𝑞 = ∫
௤

௖
𝑑𝑞 =

భ

మ
௤మ

௖
=

ଵ

ଶ
𝐶𝑉²

௤

଴

௤

଴
                        (2.8) 

In practical applications, the specific energy density is more widely used. 

𝐸 =
ଵ

ଶ
𝐶𝑠𝑝 𝑉²                                                              (2.9) 

Energy density is dependent on materials used. A stable material with higher voltage 

window leads to increasing the power density. Also, diverse current collectors' materials 

have distinctive densities. Lighter, highly conductive, and more stable current gatherer 

materials are constantly needed. Besides, the interaction of the electrolyte ions and the 

electrode's layer can likewise assume a part in changing the energy density of a 

supercapacitor by adjusting the differential capacitance. (21). 

2.4.3 ESR (equivalent series resistance) 

If a sinusoidal elective current is applied on a perfect capacitor, the yield voltage is ought 

to be out of phase by 90°. In a supercapacitor, the output voltage is ordinarily out of stage 

less than 90°, recommending that an equivalent series resistor coupled. Such ohmic 

component is the equivalent series resistance (ESR). This series resistance includes: the 

contact resistance between the present current collector and the electrode layer, the ionic 

(diffusion) resistance of ions moving in small pores, and electrolyte ionic resistance. (22). 
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2.4.4 Power density 

Power density determines the rate at which energy is transmitted to an external load. The 

definition of power density is the cell voltage multiplied by its current density. (23) 

P =
୍

୫
vcell                                                         (2.10) 

The discharge current (I) can cause the reduction of initial voltage (Vi) to the real time 

Voltage V=Vi-IRs. The corresponding power P=VI=ViI-I2Rs. To reach the maximum 

power, dP/dI=0. So IPmax=Vi/2Rs and VPmax=Vi-IRs=Vi/2. Then the Pmax has the formula. 

  

𝑃 =
ଵ

ସ௠

௏మ

ோ
                                                             (2.11)                       

 

2.5 Pseudocapacitors 

The idea of supercapacitors evolved to modify the properties of ES and increase its 

capacitance value. ES have relatively small values of specific capacitance as it depends 

only on the electrode’s surface area, such as carbon. Besides, the ion electrolyte 

accessibility of the carbon porous structure is low. In order to increase the capacitance of 

ES, electrochemically active materials are introduced as anode and cathode materials. 

Those electrochemically active materials provide higher pseudo capacitance than the active 

materials of the Double layer supercapacitors. Pseudo capacitance charge storage 

mechanism on a very basic level differs from that of Electrochemical double layers. In case 

of pseudocapacitors charge transfer is through a thermodynamically and kinetically 

favoured faradic (electrochemical) reaction. In practical applications, the electrode layer of 

a pseudocapacitors consists of both electrochemical materials such as carbon-based 

materials, and a solid- state redox material that contributes to pseudo capacitance. In such 

case the charge transfer mechanism involves both faradic and non-faradic reactions. (24). 

For electrochemical redox reactions (oxidation and reduction), each reactant molecule in 

the bulk phase donates one or more charges toward the stored energy, unlike the case in a 

double-layer charging or discharging process where only charges can physically adsorb 

on the material particle’s surface. Therefore, pseudo capacitance is much higher than that 

of the double layer capacitance. (25). Materials used in pseudocapacitors must be 
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electrochemically reversible. Electrochemical reversibility means that both oxidation and 

reduction process occur at the same electrode potential. However, in practice redox 

reactions are not very reversible, and limited by reaction kinetics. (50). 

2.5.1 Basic electrochemistry of pseudocapacitors 
Thermodynamics assumes a comparative part in physical chemistry like arithmetic in 

mathematics, but the relationship between thermodynamics and electrochemistry is not that 

clear. (5). An important term to start with would be the definition of an electrode. An 

electrode comprises of two or more electrically conducting states connected in series, 

where charge carriers (ions or electrons) can be exchanged, one of the terminal phases is 

an electron conductor and the other being an electrolyte. The electronic conductor can be 

an alloy, metal oxide, a semi-conductor, …etc. The electrode taking place in oxidation 

process is the anode. On the other hand, the electrode responsible for reduction is the 

cathode. (7), (8). Another important definition is the "electrode potential". It can be defined 

as  the potential difference between a certain electrode and the reference electrode. (8).The 

basic thermodynamic equation describing a reversible electrochemical transformed system 

is Gibb's free energy equation given by: 

∆𝐺 = ∆𝐻 − 𝑇∆𝑆                                                           (2.12) 

where ∆𝐺   is the Gibb's free energy. It represents amount of free energy available for a 

reaction to occur. ∆𝐻 is the energy released off a system (Enthalpy). T∆𝑆 represents the 

heat associated due to disorder in the system. It should be noted that ∆𝐺  ,∆𝐻   and ∆𝑆 are 

state functions which depend only on the initial and final states of the reaction. In an 

electrical point of view, Gibb’s free energy is given by 

 ∆𝐺 = −𝑛𝐹𝐸                                                                (2.13) 

F is faraday's constant, E is the electromotive force of the cell, and n is the number of 

electrons involved in the electrochemical reaction. This equation represents the net 

available electrical energy from a reaction. The quantity (nF) is the amount of electricity 

produced and is proportional to the amount of material used. For bulk chemical reaction 

Van't Hoff isotherm comes into play. 

∆𝐺 = ∆𝐺˚ + 𝑅𝑇 ln(
஺௣

஺௥
)                                                   (2.14) 
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where R is the universal gas constant, T is the absolute temperature, Ar and Ap are the 
activity product of products and reactants. Nernest equation is another crucial equation to 
consider since it determines the potential of an electrochemical system at nonstandard 
conditions. Nernest equation is given by: 
 

𝐸 = 𝐸˚ +
ோ்

௡ி
ln (

஺௣

஺௥
)                                                      (2.15) 

 
Faraday’s laws, as given in equation 2.16,illustrates the relationship between current flow 
and amount of material. (5, 9, 10). 
 
 

𝑔 =
ூ௧(ெௐ)

௡ி
                                                                       (2.16)                               

                               

2.6 Hybrid supercapacitor 

In a hybrid supercapacitor system, both carbon-based materials and electrochemically 

active (redox materials) are used simultaneously to make use of the merits of ES and 

pseudocapacitors and enhance their drawbacks. In such case, both faradic and non-faradic 

(electrostatic) charge storage mechanisms are incorporated. Both double-layer capacitance 

and pseudo capacitance can be achieved in single ES device to form a hybrid system. 

Because both Faradaic process and non-Faradaic process are used, high performance 

electrode materials, and better energy and power performance is achievable, with high class 

performing supercapacitor. Hybrid systems are themselves classified into three main 

categories, asymmetric supercapacitor, symmetric supercapacitor and battery-like 

supercapacitor. (26). 

 

 
2.6.1 Asymmetric hybrid supercapacitors 
 
Asymmetric hybrid supercapacitors consist of two different electrodes, with one of a 

carbon-based material (double layer capacitance), and the other one of a redox material 

(pseudo capacitance dominates). Such system is characterized by the high cycling stability 

when compared to pseudocapacitors. (27). 
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2.6.2 Symmetric hybrid supercapacitors 

 

Symmetric supercapacitors are made of two similar electrodes, with redox species 

anchored on the carbon – based material surface. This leads to improving the device's 

electrochemical properties and enhancing the overall performance. Also, composite 

electrodes (made of carbon-based materials and redox species) acting as the two electrodes, 

can be regarded as symmetric hybrid supercapacitors (28). 

 
2.6.3 Battery-like supercapacitors 
 
In such configuration, a battery-like material is use such as Li, and a carbon–based 
electrode is the other one. Such devices makes use of  the high energy density property of 
batteries, and the EDL material’s’ high-power density (29) 

2.7Applications of supercapacitors 

Applications of ES include consumer electronics. Supercapacitors are widely used in 

consumer electronics as back-up energy sources for system memories, microcomputers, 

and so on. They are very practical because of their long-life cycles when compared to 

batteries. Other applications include transportation. In such application, supercapacitors are 

couples with fuel cells. Supercapacitors provide sudden bursts of energy when starting up, 

and fuel cells on the other hand provide sustained energy. Other applications include, smart 

grids, smart cloth and cell phone towers. (30). 

 

 

 

 

 

 

 Fig.2.7: Applications of Supercapacitors (30) 
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2.8 Components for supercapacitors  

Optimizing the design and operation of ES includes fine selection of electrode materials, 

separators, electrolytic solutions, sealants and current collectors. Electrode materials are 

ought to be highly conductive, highly porous and of high BET surface area. Current 

collectors must also be highly conductive to enable electron transfer through an external 

circuit. Electrolytes criteria of choice are the high mobility of ions, low toxicity, wide range 

of operating voltage (wide voltage window) and safety. As for the sealants, they are chosen 

to be porous, that is to allow ions transfer from the electrolyte to the electrode surface. In 

addition to this, they must be electronically insulating to avoid short circuiting. (31). 

Detailed considerations of the components used in supercapacitors will be discussed in 

below. 

2.8.1 Electrode requirements for supercapacitors 

Requirements for optimizing the electrode materials are the following: 

 High conductivity 

 Chemical stability over a wide range of operating voltage. 

 The voltage window of the electrolyte. 

 High specific surface area 

 Excellent mechanical stability. 

2.8.1.1 Electrical conductivity of the electrode material 

Great electrical conductivity is imperative in empowering ES devices to work at high 

power. Upon discharge, charges stored inside the material should successfully move 

through the thick anode layers and out to the circuit. Electron transport is reliant upon the 

nature of conductive pathways inside the material and the conductivity of the material 

utilized as a part of the cathode. On the off chance that the conduction through the cathode 

isn't sufficiently enough or the way is excessively convoluted. (32). 
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2.8.1.2 High specific surface area 

High electrode's surface area contributes in enhancing the performance of the ES device. 

This allows more ions from the electrolyte to be arranged at the electrode's surface. It is 

better to have a porous electrode material to increase the accessibility of ions. Maximizing 

the specific surface area leads to increasing the number active sites allowed for ions, and 

thus improving the properties of the supercapacitor. However, it should be noted that pore 

size has to be reasonable (mesoporous‹50 nm) to avoid having blocked pores or tightly 

bound planes that prevent ions from ordering at the surface of the electrode. (33), (34). 

 Relation between pore radius size b, capacitance C and surface area of the electrode A is 

given as follows: 

஼

஺
=

Ɛ˳Ɛ௥

௕௟௡ቀ
್

ೌ˳
ቁ
                                                                (2.17) 

 Ɛ˳and Ɛr are the permittivity of vacuum and electrolyte, and a˳ is the effective size of the 

ion. (35).  

 

Fig 2.8: Effect of pore size on supercapacitor ‘s specific surface area (49). 
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2.8.2 Current collectors 

Current collectors in ES are used to gather the electrical charges (electrons) stored in the 

electrode's active material. Usually, conduction of charges supplied by the electrode's 

active material is insufficient and leads to series resistance. For this reason, material of 

choice of the current collectors are metals such as aluminum, copper, etc. Unfortunately, 

with time the connection between the current collector and the electrode material can 

degrade due to the loss of the actual electrode material. These losses lead to shrinkage in 

the overall performance of the ES. Such affected properties are the life cycle and the overall 

capacitance. The direct contact between the electrode and the current collector leads to high 

series resistance. To avoid the drawbacks of this undesirable series resistance is increasing 

the surface roughness of the active material by plating it with either silver, gold or lead. 

(36), (37). 

2.8.3 Separators 

Separators are designed to prevent the contact between the two electrodes (cathode and 

anode). Separators should be mechanically strong and ionic conductive. They also should 

prevent migration of the actual active species of the materials used. Separators materials 

are mica, glass, ceramic and paper-based separators. (38). 

 

 Fig. 2.9: Ceramic-based separators (38) 
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2.8.4 Electrolytes 

Electrolytic solutions play an essential role in improving the performance of a 

supercapacitor. Electrolytes are ought to be of high ionic conductivity, reasonable ionic 

size, good chemical and mechanical stability, high operating temperatures, large potential 

windows, low corrosion potential and low flammability. The above-mentioned factors in 

addition to the electrolyte-electrode interactions must be considered in order to avoid break 

down of materials, increased series resistance and the life cycle durability of an ES. 

Electrolytes are classified into several main categories such as ionic electrolytes, organic, 

solid-state and aqueous electrolytes. (39). 

 

 

Fig.2.10: Classification of electrolytes reference (39) 

2.8.4.1 Aqueous electrolytes 

Aqueous electrolytes are grouped into alkaline, acidic and neutral solutions, such as 

Potassium hydroxide, sulphuric acid and   sodium sulphide. In general, aqueous electrolytes 

are characterized by their high ionic conductivity, mobility, and the contribution to higher 

specific capacitance values. On the other hand, aqueous electrolytes have some 

disadvantages such as, corrosion, reduced life cycle and low voltage window. Such low 
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voltage stability poorly restricts the performance of an ES such as the energy and power 

density values. (40). 

Table (2.1) electrolyte resistance and voltage of various aqueous electrolytes (42). 

 

2.8.4.2 Organic electrolytes 

Organic electrolytes are commonly used due to their wide potential window in the range 

of 2.5 V to 2.8 V. This wide potential window leads to higher power and energy density 

values. Organic electrolytic solutions used include conductive salts such as Acetonitrile. 

However, there are some issues concerning organic electrolytes. Those concerns are the 

toxicity of the organic material, flammability and the small specific capacitance values. 

(43). 

 In EDLCS organic electrolytes lead to lower specific capacitance values than aqueous 

electrolytes because organic electrolytes have large solvated ion size and low dielectric 

constants. In EDLCS, specific capacitance depends on the pore size distribution of carbon 

-based materials. Carbon materials with small pore size are not favorable because they limit 

the accessibility of the electrolyte's ions. Therefore, its essential to match the size of the 

pores in the carbon-based material and the electrolyte's ion size to increase the values of 

the specific capacitance. (44). 
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Table (2.2) relation between pore size, capacitance and internal resistance. (45) 

 

2.8.4.3 Ionic liquids 

Ionic liquids consist of molten salts made entirely of ions. They are characterized by the 

low melting point, high chemical stability, wide potential window, low toxicity and high 

chemical stability. However, they suffer from the low ionic conductivity, and high heat 

outcome. (46). 

 

2.8.4.4 Solid state polymer electrolytes 

Gel and solid-state polymer electrolytes are meant to combine functions of both the 

electrolyte and the separator in an ES. Examples include PVA and PVDF. Solid state and 

gel electrolytes are characterized by the high stability, ion conductivity and wide potential 

window. Yet, penetration of ions is a major drawback because of the electrolyte's thickness. 

(47). 
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Chapter Three 

Literature survey 

3.1 Introduction 

This section offers a brief review on the different graphene-based electrode materials used 

in supercapacitors, methods of preparation of Graphene as well as reduction mechanisms 

and approaches.  

3.1.1 Graphite and Graphene. 

Graphite is a carbon allotrope which is multilayers of graphene. It is made of sp2 hybridized 

carbon atoms. Graphite is electrically conductor, making it a perfect candidate for electro-

chemical applications. (1), (3). But Graphite cannot be used as a structural material alone 

due to its sheer planes. (4). 

Graphene is the monolayer sheets of Graphite that are stacked in a hexagonal structured 

lattice. Graphene is an excellent promising material due to its high electronic conductivity, 

mechanical strength, and high surface area. Graphene is considered the building block of 

all graphitic-based materials.(4,5) mentioned, Graphite cannot be employed as a structural 

material on its own. It is graphene, graphene oxide (GO) or Reduced graphene oxide (rGO) 

that can be employed. 

 

 

 

 

 

 

 

 

Fig 3.1:  0D Bucky balls, 1D nanotubes and 3D graphene (4). 
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3.2 Preparation of Graphene 

Bottom up approaches 

3.2.1 Chemical vapour deposition approach 

Chemical vapour deposition (CVD) can be defined as the  process of depositing gaseous 

reactants into a substrate. This reaction takes place in a confined reaction chamber, where 

temperature, pressure and precursor gases are scalable and pre-set. In general, in a CVD 

reactor, a thin substrate is used on which the target material film is grown. One of the main 

advantages of growing thin film using CVD is the high purity and hardness. On the other 

hand, one of the main concerns of CVD is that waste gases are highly toxic. (9).In recent 

studies, ethylene in gaseous form was deposited on IR substrate via chemical vapour deposition 

to produce  thin and highly pure  graphene sheets. Other metals were used as substrates for 

monolayers of graphene films to grow on such as, Ru, Co, Ni, and alloys like Ni-Mo, and Co-

Ni. (10). 

3.2.2 Epitaxial growth on metal surfaces 

Epitaxial growth of graphene on the surface of metals is investigated as a method that can 

overcome the limitations of other fabrication methods such as mechanical exfoliation. In such 

approach, the film structure, thickness and size can be controlled. This method is based on the 

formation of graphene on silicon carbide (SiC) which proceeds via the thermal desorption 

or sublimation of silicon from the SiC surface using for example electron irradiation. 

Subsequent graphitisation of the excess carbon atoms is left behind. Although this method 

provides a selected crystalline orientation, but it does not allow the growth of one-layer 

graphene. (6), (10), (11). 

 

 

 

 

 

Fig 3.2: Schematic diagram of Si sublimation through (a) Annealing and (b) Electron irradiation. (10). 



34 
 

Top down approaches 

3.2.3 Mechanical exfoliation 

Graphene sheets can be prepared using mechanical exfoliation by scotch tape. Where Geim 

et al. have managed to produce 10 µm thick mono layers of graphene using microchemical 

cleavage. (6).  

3.2.4 Liquid phase exfoliation 

In such method, graphene is exfoliated in water or other solvent and a surfactant. Then, 

ultrasonication is used for the cleavage of  graphene of its precursors. The basic idea of this 

technique is to exfoliate graphite oxide from aqueous layers of graphene oxide. This 

method is limited by the fact that the exfoliated graphene oxide needs further reduction to 

be electronically conductive. (7).  

 

Fig 3.3: Process of Graphene exfoliation (8). 

 

3.2.5 Hummer’s method (Exfoliation and Chemical reduction of Graphite 

oxide) 

The most-widely used method for obtaining graphene from exfoliation of graphite oxide is 

the so-called “Hummer’s method”. The need of an inexpensive and a highly yield method 

is the reason behind the distinction of Hummer’s and Hummer’s modified methods. In such 

approach, Graphite powder is used with oxidizing agents to form the graphite oxide. Then, 

such graphite oxide is exfoliated to obtain graphene oxide. To obtain functionalized 

graphene oxide, reduction is done by Hydrazine or other green methods as in our case. The 

term “functionalized graphene£ here refers to the incomplete reduction of graphene. But 
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Graphene oxide is electrically insulating due to the functional groups disrupting the sp2 

hybridized layers, so efficient reduction is a crucial step in gaining back the electrical 

properties of the material. One of the key issues surrounding chemical reduction is that GO 

sheets upon reduction tend to aggregate and precipitate. (10). 

Modified Hummer’s method excludes NaNo₃ and uses phosphoric acid. This has proved to 

improve the oxidation process and electrical conductivity of the product. (12). 

Attention has been recently drawn on the step of reducing the graphene oxide. Graphene 

oxide needs reduction in an attempt to restore the structural and electronic properties. 

Graphene conductivity is a function of  the long-ranged conjugated layers of the honey 

comb lattice. Graphene functionalization breaks this chain and localizes the π electrons, 

which in turns leads to a decline in the carriers’ mobility and concentration. Such attached 

functional groups act as scattering centres that blocks the pathway between sp² clusters. 

(13). 

 

Fig 3.4: Graphite, graphite, graphene oxide and reduced graphene oxide difference in 

structure. (26). 

 

3.3 Reduction strategies of Graphene oxide 

3.3.1 Thermal annealing 

In such strategy, Graphene oxide is reduced by applying rapid heating (>2000 c°) that helps 

exfoliating graphite oxide into graphene oxide, and at the same instant attaching the 

functionalized oxygen groups to carbon atoms to form CO or Co₂  gas between the stacked 
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layers. (14). This procedure makes it simple to produce graphene on a large scale. 

Notwithstanding, this method is effective just to deliver little size and wrinkled graphene 

sheets. This is because the decomposition of oxygen-containing functional  groups expels 

carbon atoms from the carbon plane. This results in splitting of   the graphene sheets into 

smaller pieces and leads to carbon plane distortion. (15). 

Wang et al. Illustrated that electrical conductivity of reduced Graphene oxide depends on 

the annealing temperature. They showed that electrical conductivity of rGO at 500 c° was 

only 50 S/cm, but at a temperature of 700 and 1100 c° it reached 100 S/cm and 550 S/cm. 

(16). 

 

Fig 3.5: effect of increasing annealing temperature of reduced graphene oxide on the 

electrical conductivity. (16). 

In addition to annealing temperature, one must take in mind the effect of annealing 

atmosphere on the reduction of GO. Wu et al. reported to use a mixture of Ar ang H₂ (1:1) 

ratio, this led to an increasing conductivity of 1000S/cm. Moreover, Li et al. reported 

annealing GO in low-pressure ammonia (2 Torr N₃3/Ar (10% NH₃). This can produce 

simultaneous nitrogen doping and reduction of GO. Electrical measurements carried out 

proved that GO annealed in Ammonia had higher electrical conductivity than that annealed 

in H₂. (17). 
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3.3.2 Chemical reduction 

3.3.2.1 Chemical reagent reduction 

Using chemical reducing agents is a straight forward procedure. It requires moderate heat 

and carried out in normal laboratory conditions. This procedure makes reduction of 

graphene oxide easier for mass production.  

3.3.2.1.1 Reduction by Hydrazine 

Reduction by Hydrazine can be done by adding the reagent into dispersed GO. upon drying 

agglomerated graphene sheets are obtained. Reduction with Hydrazine yields conductivity 

ranging of 99.6 S/cm and carbon to oxygen level of 12.5. (18). Although hydrazine (N₂H₄) is 

considered a good reducing agent, but it has hazardous effect on humans and animals. 

According to the occupational safety and health guidelines on hydrazine, a person subject to 

1.0 part of hydrazine per million parts of air (ppm) once a week for six months may develop 

fluid in chest cavity, bronchitis and in case of extensive exposure this may cause death. (19). 

3.3.2.1.2 Reduction using metal hydrides 

Metal hydrides such as Sodium hydride and lithium aluminium hydride have been proposed 

a s reducing agents, but unfortunately these hydrides have strong reactivity with water ( the 

solvent of GO). Instead, NaBH₃ s was proposed as a reducing agent, but it is slowly hydrolysed 

in water and can only reduce the c=o. (20). Hydrogen Iodide (HI) was also proposed as a 

reducing agent. GO reduced by HI proved to have better flexibility and strength than 

Hydrazine reduced GO.. (21). 

3.4 Reduction Mechanism 

Reduction of graphene oxide aims at eliminating formed functional groups formed by 

oxidation process and restoring back the defects created as well as the structure. According to 

Li et al., conductivity of graphene monolayers is dependent on carrier transport between the 

sp² clusters pathways. Functional groups present on the planar side reduces electrical 

conductivity whilst those present on the edge have a less effect. (22). Reduction of graphene 

by thermal annealing can help convert epoxy groups into less stable hydroxyl groups. At 

temperature ranging between 700-1000 c° Hydroxyl groups can be removed. As for carbonyl 

groups, they are more stable than epoxy groups and can’t be removed in annealing temperature 

less than 1700 c°. (23, 24). 
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Recovery of graphene conductivity is a must. This can be done by restoring the long range 

conjugated bonds of the sp² clusters. This is to provide a pathway for the electrons to be 

transported. According to Mattevi et al, sp² clusters are originally isolated and upon extensive 

reduction by annealing, defective areas are produced. Upon a threshold value new sp² domains 

are formed, and a minimum of 60 % sp² hybridization GO is considered conductive. (25).  

3.5 Reduced graphene oxide as supercapacitor’s electrode material 

Meryl D. Stoller et al. Prepared chemically modified graphene and was used as a 

supercapacitor electrode material. In such approach, chemically modified graphene was 

synthesized by Hummer’s method followed by suspending graphene oxide sheets in water 

followed by reducing them using hydrazine hydrate.  Such method showed maximum 

specific capacitance f 135 F/g using 10 molar KOH. (27).Yao Chen et al. Reported the 

preparation of reduced graphene oxide using hydrobromic acid as a reducing agent. 

Electrolytes used were ionic liquids. Graphene oxide was prepared using Hummer’s 

method. Followed by addition of 3 ml hydrobromic acid into the G colloids. Specific 

capacitance was measured in BMIPF₆ and BMIBF₄. Maximum capacitance was obtained 

using BMIBF4 as an organic electrolyte. Specific capacitance reached 74 F/g at a scan rate 

of 10 mV/s. (28).Chen et al. Proposed preparation of reduced graphene oxide by the aid of 

hydrobromic acid in aqueous electrolytes. Specific capacitance values reached 348 F/ g at 

a current density of 0.2 A/g. using sulphuric acid. (29).Zhang et al. proposed an 

environmentally friendly route to reduce graphene oxide. Glutathione as a reducing and 

stabilization agent has been used. The exfoliated GO was prepared using Hummer’s 

method. Such agglomerated was dispersed in water and ammonia mixture in addition to 50 

ml of GHS. The resultant RGO showed a maximum specific capacitance value of 140 F/g 

at a current density of 5A/g. (30). Jilia Zhang et al. testified using L-ascorbic acid as a 

reducing agent. GO was prepared using the normal procedures of Hummer’s method. 

Further, 50 mg of L-ascorbic acid was added to 50 mL (0.1 mg mL) of an aqueous 

dispersion of the GO under stirring and reduction of GO was confirmed by FTIR. (31). Wei 

Lv et al. have synthetized low-temperature exfoliated graphene through vacuum-prompted 

exfoliation. Graphene oxide was prepared using Hummer’s method followed by chemical 

exfoliation at a temperature ranging between 150 and 200 c°. Such heat treatment is 

accompanied is done in a low-pressure environment (< 1 Pa). Such high vacuum, 

accompanying the removal of the oxygen-based functional groups at a low temperature, 

results in the exfoliation of graphene layers. Maximum specific capacitance of 262 F/g was 
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reached at 1 mV/s using KOH as an electrolyte. (32).Yanwu et al. have prepared reduced 

graphene oxide platelets by exfoliating graphite oxide in propylene carbonate then reducing 

the resultant graphene oxide platelets using thermal reduction. Propylene carbonate was 

used as a solvent for exfoliation of graphene oxide platelets. Thermal reduction was used 

at 150 c° to remove the oxygen containing functional groups. Using TEABF₄ as an 

electrolyte, specific capacitance was calculated at 5 mA/g and reached 120 F/g. (33). 

Sliwak et al. have synthesised Nitrogen-doped reduced graphene oxide by hydrothermal 

method at 180 c°. Nitrogen species are pyridinic followed by amide/amine, pyrrolic, and 

quaternary nitrogen. Specific capacitance value was recorded to be 209 F/g at 20 A/g. (34). 

Several other techniques were used to dope and reduce graphene oxide by Nitrogen-based 

compounds. Lu et al. reported preparing Nitrogen- doped graphene sheets by chemical 

vapour deposition, which showed a surge in the concentration of charge carriers along with 

the growth temperature. (35). Xing et al. reported preparing 3D Nitrogen- doped Graphene 

oxide using melamine. Melamine was used as a reducing agent in the presence of ammonia. 

Using chronopotentiometry, specific capacitance value was 170.5 F g-1 at 0.2 A g-1 showing 

good electrochemical stability for high-performance supercapacitors. (36). Min and his co-

workers have prepared Pyridinic–rich nitrogen-doped graphene nanoplatelets (PRGOs) via 

an acid–catalysed dehydration reaction using, GO and 3, 4-diaminopyridine. PRGOs show 

high performance as supercapacitors, electrochemical properties were characterized by 

chronopotentiometry, and the specific capacitance value reached 214 F/ g at current density 

of 0.1 A/g maintaining a long-term stability. (37). Xiaolin Li et al. proposed simultaneous 

functionalization and reduction of graphene oxide using annealing in ammonia. Graphene 

oxide sheets were prepared using modified Hummer’s method. Reaction with ammonia 

was done by annealing in NH₃/Ar with a concentration of 10% ammonia at various 

temperatures that reached 1100 c° in an atmospheric pressure of 2 Torr. (38).Yong et al 

have prepared 3D macroscopic graphene hydrogels (MGHs) in a one-step hydrothermal 

reaction. Dispersions with 1,4-butanediamine acting as a nitrogen source. The specific 

capacitance value was268.8 F/g at 0.3 A /g in 6 M KOH electrolyte, and this capacitance 

could be maintained for 84.9%, although the discharging current density reached 10 A/ g. 

(39).Zhu et al. reported exfoliating and reduction of graphene oxide using a simple 

microwave- assisted method. GO powder prepared using modified Hummer’s method were 

treated in a microwave oven at 700 W for 1 mi. Upon irradiating, the powder expanded 

dramatically. Reported specific capacitance value for such microwave reduced graphene 

oxide is 191 F/g at a constant current density of 150 mA/g. (40).Lee et al. Synthesized 
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RGO at low temperature and pressure using assisted-plasma. In such reduction method, in 

hydrogen gas was generated to remove oxygen functional groups from graphene oxide. 

Attention has been drawn to plasma treatment due to its low and efficiency in reduction of 

graphene oxide.  (41). 

Recently, light has been spotted on using alternative “green” reducing agents that are eco-

friendly and efficient. Sodium borohydride, potassium hydroxide, benzyl alcohol, formic 

acid, and many other reducing agents have been proposed. (42).Yang and his co-workers 

reported preparing reduced graphene oxide using sodium borohydride and CaCl₂ as a 

catalyst. In such approach, graphene oxide was prepared using modified Hummer’s 

method. For reduction NaBH₄ (2.28 g) and CaCl₂ (4.4 mg~1.78 g) was added to a 200 mL 

GO suspension then RGO was filtered and washed with DI water. (43).X Fan et al. have 

proposed preparing reduced graphene oxide using NaOH as a green and eco-friendly 

reducing agent. They suggested that exfoliated graphene oxide can undergo fast reduction 

in the presence of strong acidic medium. They relied on the fact that the higher the PH – 

the higher is the degree of deoxygenation. (44). Dreyer and his co-workers have 

manufactured reduced graphene oxide using benzyl alcohol (BnOH). A mixture of 200 % 

GO wt. in benzyl alcohol was heated for 24 h in a temperature of 100 c °. Specific 

capacitance value was 35 F/g. (45). Mitra et al. reduced GO using formic acid. Where 100 

ml of formic acid was added to suspended GO and was kept at 100 c° for 18 h, 24 h and 30 

h. Results have shown that most of the oxygen functional groups were removed of the 

Formic acid reduced graphene oxide mixture (FRGO) with the highest annealing time. (46). 

3.6 Activated graphene oxide as a supercapacitor electrode material 

Functionalization using covalent and non-covalent chemistry helps modulating intrinsic 

properties and activating graphene oxide. A wide range of activation materials have been 

used such as polymers, organic compounds, bio materials and so on. (48). 

3.6.1 Functionalization with polymers 

Mixing of graphene and polymers can be achieved via covalent and non-covalent 

bonding. Where the latter occurs because of the weak Van der wall attraction force. As 

for the covalent bonding, it involves strong bonding between the GO oxygen functional 

groups and the polymer’s molecules. (49).Covalent bonding involves one of two 

methods named “grafting from” and “grafting to  “Grafting from” method involves using 
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initiators at the surface of graphene followed by in situ surface initiation polymerization 

to produce polymer chains. According to Lee et al., a surface initiator (a-bromoisobutyryl 

bromide) is added to graphene to functionalize the hydroxyl groups, and other polymers 

were then added to induce polymer chains. (50).“Grafting to “method involves bonding 

functionalized polymer chains into graphene surface. This normally includes esterification 

and amidation between the amine and hydroxyl groups of the polymers and carboxylic 

groups in the GO. Grafting to method usually leads to enhanced mechanical and thermal 

properties of GO. (49). 

 

3.6.2 Functionalization with Nano particles 

Functionalization of GO-based nanocomposites provides excellent charge transport, high 

surface area and high catalytic activity. This decoration can be made via chemical or 

physical process. Such Nano particles include Pt, Au, Ag, Ru and other metal oxide-based 

Nano composites. (48). Dong and his co-workers proposed preparing Pt Nano particles on 

graphene sheets. GO was synthesized according to Hummer’s method and 1.5 ml of 

H₂PtCl₆ was added to the graphene oxide solution. Findings proved enhanced electrolytic 

activity of graphene activated with Pt Nano particles. (51). 

Baby et al. demonstrated decorating graphene sheets with Nano crystalline Au. The 

Nanocomposite was prepared by magnetically stirring 0.2 g of purified graphene with 1 M 

HAuCl₄·3H₂O for 12 h. Results showed that metal nanoparticles act as spacers and prevents 

restacking of functionalized graphene. Cyclic voltammograms showed improved 

performance of the Au-RGO than bare reduced graphene oxide. (52). Bong et al. have 

prepared Pt -Ru Nano particles and loaded them into graphene using colloidal method. 

Electrochemical activity was determined cyclic voltammetry in a methanol as an oxidizing 

agent. (53). 

3.6.3 Functionalization with organic compounds 

Organic compounds’ functionalization with graphene oxide have drawn attention due to 

the solubility in water and other organic compounds. A wide range of organic compounds 

have been used to functionalize graphene oxide. Among which are ionic liquids, pyrene, 

methylene green and adenine. (49). Liu et al. reported using Methylene green -reduced 

graphene oxide nanocomposite. In this study, Methylene green was used to non-covalently 
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functionalize Hummer’s prepared reduced graphene oxide. Results showed that Methylene 

green prevented aggregation of GO as well as improving electrochemical activity. (54). 

El-Gendy et al. have demonstrated preparing spongy adenine functionalized graphene 

oxide through 3D network crinkly sheets. In such approach, Graphene oxide was 

synthesized using modified Hummer’s method and functionalization of graphene oxide 

was done via adenine. Electrochemical performance was evaluated, and specific 

capacitance of the adenine functionalized graphene reached 323 F/g at a current density of 

1 A/g. This high specific capacitance value is attributed to the addition nucleophilic 

reactions between –NH2 adenine groups and carboxylic acid or epoxy groups on the 

Graphene surface. (55). 
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3.7 Graphene/Metal oxides composite electrode materials 

As discussed in previous sections, Graphene based electrode materials contribute in double 

layer capacitance via physical electrostatic interaction at both electrodes-electrolyte 

surfaces. Graphene is extensively used because of its chemical stability, excellent 

mechanical properties, high surface area and fast charge transport. However, graphene-

based supercapacitor electrodes have limited capacitance values thus it was logical to 

combine metal oxides with graphene-based materials to construct hybrid electrodes. Metal 

oxides are known to contribute to pseudo capacitance by the rapid redox reactions 

occurring at the electrode-electrolyte interface. In addition, this combination of pseudo 

capacitance and double layer capacitance materials leads to better chemical stability and 

specific capacitance values. (56). 

3.7.1 Graphene/Ruthenium oxide-based electrode materials 

Sanguen et al. proposed preparing RuO₂/graphene thin film with excellent stability and 

specific capacitance value. In such approach, RuO₂ is fabricated on graphene coated cu foil 

by electroplating method. This composite electrode showed excellent specific capacitance 

value of 1561 F/g at a scan rate of 5 mv/s as well as superior capacitance retention of 98 

%. (57). Thangappan et al. have synthesized Ruo2/GO Nanocomposite using hydrothermal 

method. GO was prepared using modified Hummer’s method. Electrochemical 

performance was tested using cyclic voltammetry with excellent specific capacitance value 

of 441 F/g at a current density 0.1 A/g. (58).Yang et al. Prepared a 3D porous framework 

of RuO2/reduced graphene oxide hydrogels (RuO₂/RGOH) using hydrothermal method. 

GO was prepared using modified Hummer’s method and 3.5 ml of Rucl₃ was added to the 

GO solution by the aid of NaOH to neutralize the PH value of the dispersion. Specific 

capacitance value was measured to be 345 F/g at 1 A/g. Excellent cyclic stability was 

observed even after the 2000th with a high retention of 95 %. (59). Zhang and co-workers 

have prepared asymmetric supercapacitor using ruthenium oxide and reduced graphene 

oxide. GO was prepared using Modified Hummer’s method followed by reduction in 

microwave oven followed by deposition of RuO₂ nanoparticles on the reduced graphene 

oxide sheets. Capacitance value of the asymmetric electrode reached 357 F/g at a current 

density of 0.3 A/g. This high capacitance value is attributed to the broadened potential 

value by the aqueous electrolyte. (60). 
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3.7.2 Graphene/Manganese oxide-based electrode materials 

Jadhav et al. have reported preparing MnO₂ nanorods by hydrothermal oxidation on 

graphene surface. In such experiment, graphene oxide was prepared using modified 

Hummer’s method followed by reduction in Hydrazine Hydrate. MnO2-rGO composite 

was prepared by adding MnSO₄.H₂O to KMnO4 a and 0.1 g of dispersed graphene powder. 

The mixture was then treated via hydrothermal method. Highest recorded value for specific 

capacitance was 759 F/g at a current density of 2 A/g. (61). Singu and co-workers used one 

pot in-situ chemical synthesis method to prepare exfoliated reduced graphene oxide-

manganese oxide nanocomposites. Graphene oxide was synthesised using modified 

Hummer’s method and 0.63 g of MnCl₂ was added to GO solution then heated for 4h at 

70°c. Specific capacitance of the rGO-MnOx was found to be 398.8 F/g at a scan rate of 

100 mV/s.This relatively high specific capacitance value is due to the high surface area of 

the nanocomposite. (62). Wu et al. have reported preparing Mn₃O₄/graphene 

nanocomposites by solvothermal method. In such approach GO was prepared using 

modified Hummer’s method and 0.5 ml−1 homogeneous GO suspension was added to 

0.0027 mol of Mn (AC)₂·4H₂O followed by treatment via hydrothermal method. Highest 

specific capacitance value was 225 F/ g at a scan rate of 5 mV/s 1 M Na₂SO₄ electrolyte 

with excellent capacitance retention. (63). Ghasemi et al. proposed preparing MnO₂ /RGO 

using sonochemical method. GO was prepared using modified Hummer’s method. 

Irradiation of 0.50 M KBrO₃ and 0.25 molar   Mn (CH3COO)₂ using a 20 kHz ultrasound 

horn transducer system to synthesize MnO. An electrostatic coprecipitation method was 

applied to anchor MnO2 nanoparticles on GO sheets. Maximum specific capacitance value 

was found to reach 344 F/g at a scan rate of 5mv/s. (64).Jinyang Dong et al. have prepared 

Nitrogen-doped Graphene Flower-like MnO₂ Nanocomposite by hydrothermal method. 

Nitrogen-doped graphene (NG) was prepared by adding 60 mL of GO solution into a two-

necked flask. 0.5 g of urea under stirring. This was followed by heating for 12 h at 95°c. 

Hybrids of NG-MnO₂ were prepared by adding 10 mg of dispersed GO, 316 mg of KMnO₄ 

and 1 g of urea. This mixture was then transferred to autoclave and heated at 120 °C for 12 

h. Maximum specific capacitance value obtained at 0.5 A/g was 220 F/g. (65). 
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3.7.3 Graphene/Cobalt oxide-based electrode materials 

Huan-Wen Wang et al. have demonstrated preparing reduced graphene oxide/cobalt oxide 

composites as electrode materials for supercapacitors by chemical precipitation approach. 

GO was prepared using modified Hummer’s method. GO/Co (OH)₂ composites of different 

mass ratios were prepared. 0.1 mg of dispersed GO was added to dissolved 1.45 g of 

CoCl₂·6H₂O then NH₃·H₂O was added to the solution. Thermal treatment of the products 

was performed at 60°C for 12 h. Specific capacitance value of the composite reached 291 

F/g at 1 A/g current density. Also, the composite exhibited excellent capability rate of 88% 

between starting 1 A/g till 8 A/g. Moreover, the composite maintained 90% of the initial 

value over 1000 cycles. (66). Nguyen et al. synthesized reduced graphene oxide sheets 

decorated with cobalt oxide nanoparticles using hydrothermal method. GO was prepared 

using improved Hummer’s method followed by freeze drying. Co₃O₂/rGO composite was 

prepared by mixing 0.01 g of GO and 0.10 g of Co (NO₃) ₂.6H₂Ofollowed by the addition 

of 0.5 ml of NH₄OH, then the mixture was transferred into an autoclave for 48 h at 100°C. 

Specific capacitance value of Co₃O₄/rGO was 545 F/g at current density of 8 A/g. This high 

specific capacitance value is due to the faradic capacitance nature of the composite as well 

as the outstanding electronic conductivity offered by rGO. (67).Xiao-Chen Dong, and co-

workers proposed preparing 3D graphene-cobalt oxide electrode using hydrothermal 

procedure. GO was prepared using chemical vapour deposition (CVD) using Ni foam as a 

substrate. The Graphene/Co₃O₄ Nanowire Composite was prepared by dissolving of 

CoCl₂.6H₂O in 20 mL of water followed by immersing of the graphene grown on Ni foam 

into the solution. Finally, the sample was heated at 450 °C for 2h. Specific capacitance of 

such electrode reached 768 F/g at a current density of 10 A/g. (68). Naveen et al. prepared 

(Co3O4)/graphene nanosheets composites. GO was prepared using modified Hummer’s 

method. Exfoliation of GO was done in a muffle furnace at moderate temperature of 150°C. 

10 mM of cobaltous nitrate was added to dispersed 50 ml of GO. 12 mM of urea was then 

added and finally the solution was heated at 120°C. Results showed that the highest value 

of specific capacitance of 650 F/g at a scan rate of 5mv.Such high specific capacitance 

value is due to the faradic nature of cobalt along with the high electronic conductivity of 

graphene. (69). 
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3.8 Graphene/metal sulphides-based electrode materials 

Xing et al. have proposed synthesise of Nickel sulphide/reduced graphene oxide 

nanocomposite using an environmentally friendly reducing agent. According to the 

authors, GO was prepared using modified Hummer’s method. 0.3 mM NiCl₂·6H₂O was 

added to dissolved GO in addition to l-cysteine (reducing agent and sulphur donor). This 

mixture was moved into an autoclave and was hydrothermally treated for 6 h at 160 °C. 

Electrochemical measurements revealed excellent specific capacitance value of 1169 F/g 

at a current density of 5 A/g as well as good stability at the 1000th cycle. The outstanding 

supercapacitive performance of such composite is attributed to high conductivity of 

reduced graphene oxide and sulphur. In addition, anchored Nis nanoparticles on graphene 

nanosheets makes the whole composite more stable. 

Huang and co-workers reported synthesizing reduced graphene oxide /copper sulphide as 

an electrode for supercapacitors. GO was prepared according to modified Hummer’s 

method. The rGO wrapped CuS hollow spheres were synthesised by adding dissolved Cu 

(NO₃).3H₂O, thiourea to rGO using hydrothermal reaction for  20 h at 180°C.Specific 

capacitance of the composite was measured to be 2317 F/g at a current density of 1 A/s.This 

high supercapacitance value is due to the high conductivity and capacitance of copper, large 

surface area and conductive networks of the CuS/rGO.(71). Ramachandran et al. have 

prepared Zinc sulphide decorated graphene nanocomposites by a solvothermal approach. 

GO was prepared using modified Hummer’s method. ZnS/Graphene composite was 

prepared by adding 0.075 M of ethylenediamine and 0.136 ml of carbon disulphide (CS₂) 

to 10 mg of dissolved GO. After stirring the composite was transferred into an autoclave 

and heated for 12 h at 180°C.Specific capacitance value of such composite reached 197.1 

F/g. (72).Ratha et al. prepared Layered Tungsten Disulphide Reduced Graphene Oxide by 

hydrothermal method. GO was prepared by the well-known modified Hummer’s method 

and further reduction was done via hydrothermal method.WS₂ sheets were synthesised by 

adding 3 mM WCl₆ ,15 mM thioacetamide and 5 mg/mL GO solution were kept in the 

hydrothermal reactor for 24 h at 265°C.Highest specific capacitance observed for the 

composite was 350 F/g at a scan rate of 2 mV/s. The admirable capacitive characteristics 

are due to the high electrical conductivity, fast transport of electrolyte ions and pseudo 

capacitive nature of WS₂. (72). 
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Firmiano et al. proposed preparing bonded 2D MoS₂ on Reduced Graphene Oxide to use 

as s supercapacitor electrode. GO was prepared by modified Hummer’s method. Synthesis 

of MoS 2 /RG was carried in a glove box and was then carried into microwave oven reactor 

for reduction. Specific capacitance value of this composite was 1558 F/g at 10 mV/s scan 

rate. (74). Cai et al. reported preparing NiCo₂S₄ grown on graphene fibres to use as 

electrode material for supercapacitors. Go was first prepared using modified Hummer’s 

method. Fabrication of the graphene nanofiber was done by mixing GO along with ascorbic 

acid in water bat inside a silicon tube. Finally decorating GFs was done by coating it with 

NiCo₂S₄ in a hydrothermal reactor for 24 h at 180°C. volumetric capacitance of 

GF/NiCo₂S4 was up to 388 F cm−3 at a scan rate of 2 mV/s. (75) Meng et al. proposed 

preparing Cobalt Sulfide/Graphene Composite hydrogel to be utilized as a supercapacitor 

electrode material. GO was prepared using modified Hummer’s method. Feeding ratios of 

Co (CH3COO)₂·4H₂O was added to GO. Sulphur were thiourea and ethanediamine. The 

whole mixture was treated hydrothermally for 12 h at 180°C.Maximum specific 

capacitance obtained was 564 F/g at a scan rate of 1 A/g. The hydrogel was characterized 

by the high capacity retention and stability of 94.8 % after the 1000th cycle. The specific 

capacitance value is related to unique nanostructure of the CoS interconnected with GO, 

which prevents restacking of graphene. Addition of CoS have facilitated electrolyte ion 

transferring as well as contributing to pseudo capacitance. (76). Xu et al. reported preparing 

cobalt sulphide/reduced graphene oxide composites as electrode material for 

supercapacitors. In such attempt GO was prepared using modified Hummer’s method then 

1 mmol of CoCl₂·6H₂O was added to dissolved GO. 0.5 mM of Sulphur source (sodium 

thiosulfate), and hydrazine hydrate was added to the solution and was treated 

hydrothermally at 180 °C for 12 h.  Specific capacitance value of the composite reached 

550 F/g at a current density of 1 A/g. The admirable value of specific capacitance is a result 

of the synergetic effect of both CoS ang rGO. In addition, the CoS particles prevented 

agglomeration and restacking of GO sheets, they also added porosity and allowed for 

electrolyte ion diffusion and transport within the composite. (77). 
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3.9 Metal oxides used as supercapacitor electrodes 

Metal oxides, transition metal oxides, polymers and metal sulphides are utilized in pseudo 

capacitors due to their redox nature which enables fast reversible reactions. In addition, 

they possess  high capacitance values and high energy density. Among the commonly used 

metal oxides are Ruthenium oxide, Manganese oxide and Nickel oxide. 

Kim et al. proposed preparing Ruthenium dioxide nanotubes and utilized it as an electrode 

material. In such approach, Synthesis was done via microwave-hydrothermal process, 

where 1.0 g of RuCl₃·nH₂O was added to 100 mL of a 10 M NaOH aqueous solution. This 

solution was then heated in a microwave system for 10 mins at 200 °C then was treated 

hydrothermally at the same temperature for 4 electrochemical measurements were 

measured, and a maximum specific capacitance value of 501 F/g was reached at a scan rate 

of 0.5 A/g. This excellent electrochemical performance is related to accessibility of 

electrolyte ions to the interior of the tubes and hence resulting in the rapid mass transport 

of H+ ions to electrochemically active sites. (78). Sarkar et al. have reported preparing 

manganese oxide films as an electrode material for electrochemical applications. Preparing 

of manganese oxide films was done via post chemical bath oxidation annealing on stainless 

steel sheet. Maximum specific capacitance measured was 410.5 A/g at a current density of 

0.46 A/g. (79). Pei et al. prepared NiO via hydrothermal method to utilize as a 

supercapacitor electrode material. Synthesis process was as follows: 1.188 g NiCl₂ 6H2O 

and 0.200 g NaOH were dissolved in 30 ml ethanol then the solution was transferred into 

an autoclave and hydrothermally treated for 24 h at 120°C. This was followed by 

calcination at 300 °C. Electrochemical characterization was done in 6 M KOH which 

revealed an admirable specific capacitance value of 1046 F/g at a current density of 1.8 

A/g. This high value of capacitance is credited to the fast-redox reactions which enhanced 

the transport of ions and electrons at the electrode/electrolyte interface. However, 

capacitance retention was 58.3 % after the 1000th cycle. (80). Kandalkar et al. proposed 

preparing cobalt oxide thin films and utilized it as an electrode material. In this approach, 

cobalt oxide thin film was synthesized from cobalt chloride precursor (CoCl₂6H₂O) by 

ionic layer adsorption and reaction on surface of copper substrate. Maximum Specific 

capacitance value was 165 F/g at 50 mV/s. (81). Juan Xu et al. have prepared cobalt oxide 

nanotubes as a supercapacitor electrode material. Preparing of Co₃O₄ nanotubes was done 
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via chemically depositing cobalt hydroxide in anodic aluminium oxide. This was followed 

by annealing in 500°C.Specific capacitance value was 574 F/g at a current density of 0.1 

A/s.This high capacitance value is related to the morphology of the prepared nanotubes 

which provides large specific surface area. Such surface area helps to enlarge the contact 

area between electrode and electrolyte and enhance the surface adsorption/desorption 

process of alkaline electrolyte ions. (82). 

 

3.10 Metal sulphides used as electrode materials 

Chen et al. have reported preparing nanosheet arrays of electrodeposited Nickel Cobalt 

Sulphide. The Ni-Co-S was electrochemically co-deposited onto carbon cloth. The 

electrodeposition solution contains 5 mM CoCl₂ .6 H₂O along with of NiCl₂. 6H₂O and 

thiourea. The NI-Co-S was used as a positive electrode in an asymmetric supercapacitor 

configuration where the other negative electrode was graphene-based. Specific capacitance 

value of the electrode was measured to be 1445 F/g at a current density of 10 A/g. 

(83).Yang et al. have reported the Solvothermal synthesis of hierarchical flower-like b-

NiS. Preparing of the NiS was done via facile solvothermal method. In such approach, 

diethanolamine (H₂DEA) was used as a coordination agent and a solvent for the prepared 

architecture. NiCl₂ and thiourea were used and an amount of H₂DEA was used. The mixture 

was hydrothermally treated for 12 h at 180°C. Specific capacitance values recorded showed  

specific capacitance of 457 F/g at a current density of 2 A/g. Such admirable specific 

capacitance value is related to the unique configuration which shortens the diffusion path 

of the electrolyte ions. In addition, the surface area offers more accessible sites for the 

electrolyte ions. (84). Krishnamoorthy et al. synthesised Ruthenium sulphide nanoparticles 

by sonochemical method. In such approach, thiourea was the sulphur source where it was 

added to RuCl with the aid of Argon purging. The mixture was then subject to ultrasound 

radiation for 2 h using titanium horn and showed specific capacitance of  85 F/g at a current 

density of 0.1 A/g. (85). Ting Zue et al. have prepared CuS nanoneedles on a CNT using 

template-engaged chemical conversion route as a supercapacitor electrode material. 

Maximum specific capacitance value reported was 110 F/g at a current density of 2.9 A/g. 

The nanoneedles also showed an excellent stability of 100 % after the 1000th cycle because 

of the presence of the carbon nanotubes which served as a supporter for the CuS. (86). 

Zusing Yang and his co-workers have reported preparing hollow cobalt sulfide hexagonal 
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nanosheets as an electrode material. Co (NO₃) ₂ (0.291 g),0.15 g of sulphur source 

(thioacetamide) and PVP (0.07 g) were added to ultrapure H2O. This was followed by the 

addition of 0.5 M NaOH. The whole solution was then heated for 1 h at 100°C.Maximum 

specific capacitance value was 326.4 F/g. (87). 
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Chapter Four: Materials and Methods 

4.1 Materials 

Graphitic powder ( size < 20 μm), nickel foam, Sodium Nitrate (NaNO3, 99.9%), Cobalt 

chloride (CoCl₂, 99.9%) and polyvinylidene difluoride (PVDF) were all purchased from 

Sigma Aldrich. Hydrogen Chloride (HCL, 33%) and absolute ethanol are purchased from 

El-Nasr Pharmaceutical Company in Egypt Whilst Absolute Sulfuric acid (H2SO4, 99%) 

was purchased from Sham Lab.30 % W/ V Hydrogen peroxide from LOBA Chemie. In 

addition, potassium permanganate (KMnO4, 99%) from the Arabic Laboratory Equipment 

Company. Finally, Adenine and sulphanilamide were purchased from Merk. For washing 

and dispersing the products, Distilled water and Deionized water were used . 

4.2 Synthesis methods 

     4.2.1 spongy graphene oxide fabrication (SGO) 

Modified Hummers’ method was employed to prepare GO. (1). In such approach, 

(1.5 g) of graphite, (1.5 g) of NaNO3 and (70 ml) of H2SO4 were mixed together followed 

by  stirring in an ice bath.  The above-mentioned procedure was then followed by the 

addition of  9 g of KMnO4. The formed mixture was heated to 40◦C and stirred for an hour. 

100 ml of distilled water was added and the whole reaction mixture was heated for 30 mins 

at 90°C. This was finally followed by the addition of 300 ml of distilled water slowly. 10 

ml of 30% H2O2 was added  subsequently. Filtration and washing were done by the aid of 

HCl(0.1 M) and distilled water. The formed GO precipitate underwent three centrifugation 

steps at 10000 rpm for 30 min in order to get purified. This step was performed after having 

been dispersed in a water/methanol (1:5) blend. Dispersion of the pure samples was carried 

out in deionized water followed by centrifuging at 2500 rpm. This was followed by step 

sonicating the dispersed GO for 1 hour to obtain exfoliated graphene oxide. The last step 

involved dispersion of  GO precipitate in water/methanol mixture and purification with 

repeated centrifugation steps at 10000 rpm for 30 min. Regarding preparing spongy 

graphene oxide( SGO), (5 mg/l) of GO were put in a freeze rat a low temperature of  -18 C 

for 2 consecutive days. This was followed by the transfer of frozen GO tubes into a freeze-

dryer at a very low temperature of -53 °C and a pressure of 10 Pa for 3 days. (2). see fig.4.1. 
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4.2.2 Adenine-functionalized graphene oxide synthesis   

 0.1g of the freeze-dried GO  was dispersed in 10 ml of distilled water.  Then an equimolar 

amount of NaOH and 0.3 g of adenine were mixed together in 10 ml of distilled water. The 

afore mentioned and the later mixtures added to each other. They product mixture was then 

stirred for 24 h . Centrifuging was done, and the mixture was washed several times with 

water and ethanol mixtures Finally, the product was dries at 60 °C., see fig. 4.1. 

 

4.2.3 Preparation of CoS and functionalized graphene (FG-COS) Powder 

      Cobalt sulfide was prepared using hydrothermal reduction method. In such method, 25 

mg of cobalt chloride (CoCl₂) and 50 mg of sulfanilamide were added to a 100ml flask. 

This was followed by the addition of c40ml of deionized water. To obtain homogeneous 

dispersion, sonication was carried out for 30 min. As for the hydrothermal reduction, the 

solution was transferred to a Teflon-lined autoclave and heated at 170 °C for 24h. The 

solution was then left to cool room temperature. This was followed by  washing the product 

with deionized water several times. Finally, CoS was dried in an oven at 60 °C. Preparation 

of functionalized graphene–Cobalt Sulfide (FG-CoS): The functionalized graphene–CoS 

by using sulfanilamide (FG-CoS-SA). Briefly a specific amount of functionalized graphene 

oxide powder was dispersed in 20 ml DI water and sonicated for 1 h (4). Later, cobalt 

chloride equivalent to 30 wt. % from FGO mass and 0.2g of sulphanilamide were added to 

the above suspension under sonication for 35 min to obtain a homogeneous dispersion; The 

solutions were transferred to a Teflon-lined autoclaves and heated at 170 °C for 24h, and 

were left to cool at room temperature. This was followed by washing the products several 

times with deionized water and collected through centrifugation. Finally, the solid products 

were dried in an oven at 60 °C. The steps are summarized in Fig.4.1. 
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Fig 4.1: Scheme of Synthesis of CoS and FG-CoS 
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4.2.4 Preparation of electrodes and electrochemical measurements 

An electrode was fabricated by mixing 90 wt. % of FG-CoS, and 10 wt. % of poly 

vinylidene di fluoride in N-methyl-2-pyrrolidinone. The working electrode is made from 

Ni foil, which was is cleaned via ultrasonication in ethanol and acetone for 10 minutes each 

then dried Then, the slurry was applied to the polished Ni foil using a micro pipette (area 

of coating: 1 cm2, and foil thickness: 0.2 mm).In order to proceed with characterization,  

the working electrode was dried at 60 °C for 24 h. All the electrochemical measurements 

were performed in a three-electrode system. The working electrode is Ni foil, the standard 

being calomel electrode (SCE) and platinum wire were used as counter. The electrolyte 

used is 3 M KOH. Electrochemical measurements were performed using using CHI 

electrochemical workstation. Cyclic voltammetry (CV) measurements were done in the 

potential range 0 to 0.5 V at various scan rates (1-100 mV/s). Galvanostatic 

charge/discharge measurements were run in the potential range 0 to 0.5 V at current 

densities of 1, 2, 3, and 4 A/g respectively. The difference in mass between the initial, and 

impregnated nickel foil is taken to be the active mass of the electrode. 

 

4.3 Characterization techniques 

X-ray diffraction was measured by the diffractometer (XRD, XPERT- PRO- Analytical) 

with Cu Kα radiation (λ = 1.54 ºA) to examine crystal structure of the prepared materials. 

Surface morphology was examined by field-emission scanning electron microscope 

(FESEM-Zeiss SEM Ultra-60). The infrared (IR) spectra were measured using a JASCO 

spectrometer (FT/IR-6300 type A) in the range 400-4000 cm-1, and finally, Raman 

measurements for exploring chemical structure were performed using a micro-Raman 

microscope with an excitation laser beam wavelength of 325 nm.  

 

4.3.1 Physical Characterization 

 4.3.1.1 Crystallinity 

As mentioned, the crystal structure of the prepared materials was examined by X-ray 

diffraction (XRD, XPERT- PRO- Analytical) with Cu Kα radiation (λ = 1.54 °A). XRD is 

an analytical technique used to identify spacing of planes and hence structure of a 
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crystalline material through its unique diffraction pattern. X-ray diffraction is based on the 

principle of constructive interference between the incident x-rays and the target crystal 

sample. Constructive interference occurs only when Bragg’s rule is satisfied 

nλ=2d sin where λ is the wavelength of the incident x-ray radiation, d is the inter- planer 

spacing and θ is the diffraction angle. The diffracted X-rays are then detected hence 

counted. By scanning the sample through a range of 2θ angles, all possible diffraction 

patterns of the lattice should be deduced. Conversion of the diffraction peaks to d-spacings 

makes identification of the mineral possible, since each mineral has a set of unique d-

spacings. Then by comparing the d-spacing to a reference pattern the material of interest 

can be identified. (5). 

 

 

 

 

 

 

 

 

Fig 4.2:Modern X-ray diffractometer. (Courtesy of Panalytics, XPert Powder) (5) 

Diffraction pattern of graphite  appeared at 2ϴ = 26.5°. The spectra of graphite oxide (GO) 

showed a  sharp and lone diffraction peak at 2ϴ = 12°. In addition to this, there appears a 

broad diffraction peak at 2Ө of 24.7°. 

 

4.3.1.2 Morphology 

Field-emission scanning electron microscope (FESEM-Zeiss SEM Ultra-60) was used to 

investigate surface morphology by at AUC. Powder samples of FG, FG-CoS, and CoS were 

gold coated (to increase conductivity) and placed on the sample stub. A Scanning Electron 

Microscopy uses a collimated high energy electron beam of very low wavelength to collect 

a highly magnified image of the target samples’ topography. SEM provides information 



67 
 

about the material’s surface morphology. Due to the very high resolution of SEM, it can 

determine the pore size of a nanotube. (6) 

 

 

 

Fig 4.3:Materials Characterization Using Non-destructive Evaluation (NDE) Methods 

(7) 
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4.3.1.3 Composition 

Raman spectroscopy is a spectrometric technique used to identify different modes of 

vibrations of molecules through the intensity of scattered light beam (8). The molecules 

absorb the incident photons, they get excited, and then re-emit photons of different 

wavelengths, returning the molecule to a different rotational or vibrational state than its 

original ground state. This difference in energy is detected in the form of wavelength shift. 

Raman spectroscopy gives insight about the molecules’ functional group, which in turns 

defines chemical reactivity and all chemical properties of a given molecule. (9). A micro-

Raman microscope with an excitation laser beam wavelength of 325 nm was used to 

examine chemical structure . 

Moreover, infrared (IR) spectra were recorded using a JASCO spectrometer (FT/IR-6300 

type A) in the range 400-4000 cm-1 to determine functional groups present. In addition, 

EDX analysis spectrum (FG-COS) was carried to study the compositions’ elements. 

 

4.3.2 Electrochemical Characterization  

4.3.2.1 Cyclic Voltammetry 

Cyclic voltammetry is an electrochemical transient technique used to investigate the 

electrochemical behaviour of a system. In this process the electrode is being subject to a 

voltage sweep between two fixed values. The CV scan is a plot of the current passing 

between the working electrode and counter electrode verses potential which determines the 

potential at which redox process occur. This current normalized by the electrode surface 

area is referred to as current density. (10). The plot of current density vs. scan potential is 

called a voltammogram. Specific capacitance is measured using  

𝐶𝑠 =
∫ ூௗ௩

௩௠∆௏
                                                                          ( 4.1) 

where Cs is the specific capacitance of the prepared electrode, m is the weight of the 

electrode material (g), I is the response current density (A/g), ΔV is the potential 

difference, and 𝑣 is the potential scan rate (mV/s). Cyclic voltammetry was carried at a 

scan rate of 1, 5, 10, 25, 50, and 100 mv. 
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4.3.2.2 Galvanostatic charge/discharge 

Galvanostatic cycling (chronopotentiometry), is an electrochemical characterization 

technique, which can give an insight about capacitance, resistance and cyclability. In this 

technique, current is controlled, and voltage is fixed. (11). The specific capacitance is 

calculated at various current densities using the following equation: 

Cs =  
⨜୍ ୼୲

 ୫ ୼୚ 
                                                            (4.2) 

I is the discharge current (A), Δt is the discharge time (s), and ΔV is the potential window 

(V).Values of specific capacitance were calculated at current densities of 1, 2, 4, and 5 A/g. 

4.3.3.3 Cycle life measurement using Charging-Discharging curves 

Charging-Discharging over many cycles, is an efficient way to study a supercapacitor’s 

degradation. This enables to calculate specific capacitance values to determine retention 

or degradation of the supercapacitor. Our case showed a capacitance retention even after 

the 100th cycle.   
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Chapter Five: Results and discussion: 

Herein, we demonstrate a facile and green method to prepare spongy functionalized 

graphene/CoS (FG-CoS) composite electrodes for supercapacitor applications. A simple 

approach is illustrated to synthesize functionalized spongy graphene/cobalt sulfide (FG-

CoS) nanocomposites as interconnected, porous 3-dimensional (3D) network crinkly 

sheets which contain the reduction of SGO sheets and intercalated of CoS nanoparticles 

with spongy graphene. The formed special 3D structure provides this composite through 

high electrochemical performance. Physical Characterization of  the fabricated FG-CoS 

was by X-ray diffraction (XRD), scanning electron microscopy (FESEM) and  Raman 

spectroscopy. Whilst electrochemical characterization was  performed  in 3M KOH using 

cyclic voltammetry (CV)in a potential window from 0-0.5 V at different potential scan 

rates. Galvanostatic charge/discharge was performed at current densities of 1,2,3, and 5 

A/g respectively.. 

 

5.1 Physical Characterization 

5.1.1 Surface morphology (FESEM) 

           Figure 5.1 shows FESEM images and EDX spectra of the synthesized materials. Figure 

1a describes the surface of the fabricated spongy graphene oxide (SGO). The large thickness 

of the layers is possibly due to the formation of oxygen -containing groups in the basal plane 

of graphene. Figure 5.1b depicts the morphology of the CoS synthesized with sulphanilamide 

with the inset showing a junk of nanoparticles with very fine particle size. Figure 5.1c shows 

the morphology of the fabricated SG/CoS composite, where graphene sheets become more 

exfoliated, exhibiting an interconnected, porous 3D framework of randomly oriented, and 

crinkly sheets. Those wrinkles can act to prevent graphene sheets from restacking. Not only 

the uniformly distributed CoS but also the sulphanilamide played an important role in 

preventing the restacking of the sheets. Moreover, the existence of sulphanilamide effectively 

restrains the agglomeration of fine nanoparticles with high energy. This is favourable for the 

formation of CoS nanocrystals. Afterwards, the formed nucleus gradually grew into hexagonal-

like nanoparticles and in-situ deposited on both sides of graphene sheets. At the same time, 
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FGO was reduced during the hydrothermal process and self-assembled to form the final 

composite hydrogel (FG-CoS) with cross-linked 3D network, owing to π-π stacking interaction 

of conjugated FG sheets. Figure 5.1d shows the EDX spectrum of FG-CoS, which confirms 

the presence of Co, S, and C in the FG/CoS nanocomposite with the inset showing the weight 

% of the detected elements. 

FG sheets. EDX analysis spectrum (FG-COS) shown in Fig.5.4, Shows the EDX spectrum, 

which confirms the presence of CoS in the FG/CoS nanocomposite. 

 

Figure 5.1: FESEM images of (a) spongy graphene oxide (SGO), (b) CoS, (c) FG-CoS, and 
(d) EDX spectra of the FG-CoS nanocomposite. 
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5.1.2 Crystallinity, composition and chemical structure. 

Figure 5.2a shows the XRD pattern of bare graphite, SGO, FGO, CoS, and FG-CoS. 

The lone sharp peak which appeared in the diffraction pattern of graphite at 2ϴ = 26.5° 

corresponds to  interlayer spacing of 0.34 nm and reflection from the (0 0 2) plane. The spectra 

of graphite oxide (GO) shows a single and sharp diffraction peak at 2ϴ = 12°this  corresponds 

to an interlayer spacing of 0.83 nm, suggesting no remaining native graphite (1). The increase 

in the d-value of GO (from 0.34 to 0.83 nm) is due to the increase in the interlayer spacing 

along the c-axis. This can be related  to the presence of oxygen atoms as a result of rapid 

oxidation of the GO sheets (2), confirming that SGO is converted into FGO after 

functionalization. Upon reducing the FGO with cobalt chloride, there appears a broad 

diffraction peak at 2Ө of 24.7°. Moreover, the in-situ formed CoS nanoparticles might attach 

onto FG sheets during the hydrothermal treatment, preventing their aggregation and restacking, 

which also could weaken the peak intensity of FG-CoS. Compared with the pattern of bare 

CoS, the peaks at 30.7°, 36.0°, 47.5°, and 54.2° are attributed to [100], [101], [102], and [110] 

faces of CoS (JCPDS No. 65-3418, hexagonal phase) becoming weaker in intensity and broader 

in width. This may imply that the composite has a lower crystallinity due to the existence of 

the CoS impurity, which is confirmed by EDX analysis spectrum of FG-CoS shown in Fig. 

5.1d (3). Figure 5.2b represents  the FTIR spectra of GO, FGO, and FG-CoS. Various peeks 

appearing in the the FTIR spectrum corresponds to the presence of many functional groups. 

There appears band at about 1725 cm-1 can be credited to the stretching vibrations ν(C=O) of 

COOH group of carbonyl and carboxyl groups. Another band appearing at 1621 cm-1 which 

can be linked to  the in-plane vibration (C=C) from un-oxidized sp2 CC bonds. There is a  broad 

band centred around 3563 cm-1 which might be associated to O-H stretching vibrations ν(OH2) 

.This functional group can be related to adsorbed water. A sharp band at 1378 cm-1 can be 

linked to to O-H deformation of C–OH group. The recognized band at 1101 cm-1 is due to the 

ν(C–O) stretching vibrations mode (4). As for FGO,the peak at 1725 cm-1 almost disappears 

and another peak arisen at 1637 cm−1  which is characteristic of the C= O stretching in the 

amide group. A strong peak at 1188 cm−1 appeared due to the amide C-N bond stretching of 

the amide group . Other peaks at 1560 and 1618 cm−1 are related to the graphene vibration, The 

peak at 3415 cm−1 is specific for N−H stretching (5).Peaks corresponding to the OH and NH 

stretching groups appeared at 3475 cm-1 .These peaks confirm the covalent functionalization 
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of the graphite by adenine, hence indicating the  simultaneous successful functionalization and 

reduction process .. These results assure  that adenine molecules were covalently bonded to 

GO via amide group linkage. Note that the peak intensity of the C-O and C-O-C (epoxide) 

groups, respectively, was decreased in FGO and after the hydrothermal reduction that resulted 

in FG-CoS. On the contrary, the peak intensity of OH and carboxyl ions around 3000–3700 

cm−1 was negligible in the FG-CoS nanocomposite, which can be attributed to the interaction 

between CoS and carboxyl groups. Note also that the interaction between the CoS and FG is 

very strong that they remained attached to the surface even after washing and strong sonication 

(6). Raman is used to investigate the  crystal structure and the defect level of graphene and 

carbon-based materials. Figure 5.2c shows the Raman spectra of GO and compared to that of 

FG-CoS. Two main peaks were observed that are located at approximately 1350 and 1590 

cm−1, corresponding to D-band and G-band. The intensity ratio of the D and G bands (ID/IG) is 

a useful parameter for determining degree of reduction of GO .It determines the portion of the  

present sp2 and sp3 . (7). The higher ID/IG ratio of FG-CoS (1.04) than that of GO (0.98) is 

attributed to the intercalated CoS nanoparticles with FG during the formation of the composite, 

which is in agreement with the XRD results. 
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Fig. 5.2.  (a) XRD pattern, (b) FTIR spectra, and (c) Raman spectra of the fabricated 
materials 
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5.2 Electrochemical Characterization 

5.2.1 Cyclic Voltammetry measurements 

 

To Study supercapacitive behaviour of the synthesized  electrodes, cyclic voltammetry (CV) 

measurements were performed in 3M KOH, and the specific capacitance of the electrodes was 

calculated using Eq. 5.1.  

𝐶𝑠 =
∫ ூௗ௩

௩௠∆௏
         (5.1) 

Cs is being is the specific capacitance, m is the weight of the electrode material (g), I is the 

response current density (A/g), ΔV is the potential difference, and 𝑣 is the potential scan rate 

(mV/s). Figure 5.3a represents the cyclic voltammograms of the FG-CoS and SGO electrodes 

in 3M KOH aqueous electrolyte at 1 mV/s scan rate. The SGO electrode shows negligible 

current response due to its insulating characteristics, the current of the FG-CoS electrode 

increases as the potential increases. This behaviour can be ascribed to the faradaic and non-

faradaic reactions arising from graphene and cobalt sulfide CoS in the FG-CoS electrode. 

Figure 5.3b demonstrates that the specific capacitance of the FG-CoS electrode can reach 1072 

F/g at a scan rate of 1 mV/s. Specific capacitance value dropped to 237 F/g at a scan rate of 

100 mV/s as shown in Fig.5.3c. The reason for this decline in specific capacitance value at high 

scan rates  is due to the diffusion limitation on the electrolyte ions, as they are not given enough 

time to enter into the complex micro pores of the electrode. This high specific capacitance 

value of the FG-CoS could be attributed to the synergetic effect of the RGO and CoS. The 

anchored Cos nanoparticles to the surface of RGO induced porosity and hence increased the 

accessible surface area for electrolyte ions diffusion. This contributed in pseudo capacitance 

and the overall capacitance of the FG-CoS composite.  The FG-CoS electrode showed much 

higher capacitance than that of CoS nanoparticles at different scan rates. The obtained specific 

capacitance of 1072 F/g at a scan rate of 1 mV/s is much higher than that previously reported 

for CoS2–graphene nanocomposite prepared by solvothermal method (253 F/g in 6 M KOH 

solution at 5 mV/s) (8), indicating the superiority of our fabricated electrodes. 

 

 

 

 



77 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.3. (a) Cyclic voltammograms of FG-CoS and SGO electrodes in 3 M KOH at a scan 
rate of 5 mV/s, (b) cyclic voltammograms of FG-CoS electrodes at different scan rates, and 

(c) the corresponding specific capacitance of FG-CoS electrodes at different scan rates in 3 M 
KOH. 
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5.2.2 Galvanostatic charge/discharge 

 

Galvanostatic charge/discharge measurement is essential to determine the performance of any 

material for use as a supercapacitor. Figure 5.4a reveals the galvanostatic charge/discharge 

graphs for the fabricated FG-CoS electrodes at different current densities (1, 2, 4, and 5 A/g). 

All the charge–discharge curves are quasi-triangular, indicating fast, capable charge transfer 

and the presence of capacitive faradic charge storage. In addition, the non-uniformity in the 

triangular curves can be attributed to IR drop on the electrode/electrolyte interface. (9). This 

can be related to the high electronegativity due to the presence of active nitrogen and sulfur 

atoms from adenine and sulphanilamide. Moreover, the presence of CoS on graphene surface 

may have created dipoles (10, 11), which attract charged species of adenine and electrolyte 

ions into the surface (12, 13).  Nitrogen , Sulphur, and Oxygen atoms present had an inductive 

effect due to their σ-bonded structure, which in turns enhanced specific capacitance value 

resulting in reversible Faradic redox reactions (14). 

Fig. 5.4b indicates a decline in specific capacitance as the current density increases. The 

specific capacitance was calculated at different current densities using Eq. 5.2 
 

Cs =  
ூ ௱௧

 ௠ ௱௏ 
         (5.2) 

 

where I is the discharge current (A), Δt is the discharge time (s), and ΔV is the potential window 

(V). The calculated specific capacitances were 1013.7, 664.8, 589.9, and 484.5 F/g at 1, 2, 4, 

and 5 A/g,. The specific capacitance at 1 A/g is found to be 1013.7F/g, which is very close to 

that calculated from the CV graphs (1270 F/g at scan rate 1 mV/s). This value is much higher 

than that previously reported for 3D CoS/graphene composite hydrogel (564 F/g at 1 A/g using 

6 M KOH electrolyte) (8), solvothermally synthesized CoS2/graphene nanocomposite (314 at 

6 M KOH) (14) and cobalt sulfide/reduced graphene oxide (550 F/g at 1 A/g in 6 M of KOH) 

[36] and (20-25), see Table5.1. Fig.5.4c shows that the specific capacitance is sharply increased 

from the initial cycle until the 1000th cycle to reach 117% of the initial cycle, indicating an 

excellent cycling stability and retention of the FG-CoS electrodes.  
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Table 5.1: Specific capacitances reported for doped graphene compared to current work. 

Material Synthetic approach Specific capacitance Ref. 

CoS2/graphene nanocomposite Solvothermal 

processing 

314F/g in 6 M KOH 14 

cobalt sulfide/rGO Hydrothermal 

processing 

550 F/g in 6 M of 

KOH 

15 

Graphene/TiO2 hybrid  Microwave 

processing 

165 F/g in 1 M 

Na2SO4 

20 

coating of TiO2 on graphene  Atomic layer 

deposition 

84 F/g in a 1 M KOH 21 

sulfonated 

graphene/MnO2/polyaniline 

Polymerization 

reaction 

276, 1 F/g in 1 M  

Na2SO4 

22 

CoFe2O4/rGO/polyaniline Polymerization 

reaction 

257 F/g in 1 M KOH 23 

Graphene/MnO2/Polyaniline Polymerization 

reaction 

380 F/g in 0.5 M 

Na2SO4 

24 

Graphene/MnO2/polyaniline Polymerization 

reaction 

395 F/g in 1 M H2SO4 25 

CoS2/graphene nanocomposite Solvothermal 

processing 

253 F/g in 6 M KOH  26 

Cobalt Sulfide/Functionalized 

Graphene 

Green, single-pot 

synthesis 

1072 F/g in 3 M 

KOH 

Current 

work 
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5.2.3 Energy and power density 

 

 The energy and power densities are very important performance metrics of supercapacitors 

performance. In fact, the ultimate aim is to enhance the energy density capability of 

supercapacitors. Energy and power density can be depicted from the galvanostatic 

charge/discharge graphs using Eqs.5.3 and 5. 4. 

 

𝐸 =
ଵ  

ଶ
 𝐶𝑠(𝛥𝑉)ଶ =  

ூ ௱௏௧

 ଶ௠  
       (5.3) 

𝑃 =
ா  

௧
 =  

ூ ௱௏

 ௠  
                         (5.4)   

E and P refer to the mean energy density (Wh/Kg) and mean power density (W/Kg), Cs is the 

specific capacitance as obtained from the charge/discharge curves, I is the discharge current 

(A), t is the discharge time (h), 𝛥𝑉 is the potential window (V), and m is the mass of the FG-

CoS electrode (kg). Ragone plot for the FG-CoS electrode at different current densities is 

shown in Fig. 5.4d. The energy density reaches to 35.2 Wh/Kg with a power density of 250 

W/kg at 1.0 A/g. The energy and power density values of  16.82 Wh/Kg and 1250 W/Kg remain 

the same at a current density of 5 A/g. It is a necessity to state that the value of the obtained for 

FG-CoS electrode (35.2 Wh/Kg) is much higher than those reported for Cobalt 

sulfide/rGO(13.6) (15), thermally-reduced graphene (11.6 Wh/Kg) (16) and chemically-

reduced graphene (11.5) Wh/Kg (17), 
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Fig. 5.4. (a) Galvanostatic charge/discharge, (b) variation of the specific capacitance with the 

current density, (c) the first and 1000thCV cycles of the FG-CoS electrodes, and (d) Ragone 

plot at different current densities of 1, 2, 4 and 5 A/g. 
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Table 5.2:  Ragone table for reported energy and power density values compared to our 
work 

 

Reference Material Power 
density  
(W/Kg) 

Energy 
density 
(Wh/Kg) 

15 Cobalt sulfide/rGO 1200 13.6 

16 Graphene nanosheets 300 11.6 

18 Carbon spheres/rGO 800 5.8 

20 Graphene/TiO2 hybrid 950 3.5 

23 CoFe2O4/rGO/polyaniline 875 7.9 

Current 
work 

Green, single-pot synthesis 1250 16.82 
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Chapter six: Conclusion and future work 

 

Conclusion 

        CoS-decorated 3-dimensional (3D) network crinkly sheets of functionalized spongy 

graphene (FG-CoS) nanocomposites were successfully synthesized via a simple and a green 

method. This provides better contact at the electrode/electrolyte interface and facilitates the 

charge transfer kinetics. The electron microscopy (FESEM) analysis showed the homogenous 

distribution of the CoS nanoparticles on the surface of the functionalized graphene sheets. EDX 

analysis spectrum confirms the presence of carbon, oxygen, sulfur, and cobalt. Also, the FTIR 

spectra showed a peak intensity of OH and carboxyl around 3000–3700 cm−1 was negligible in 

the FG-CoS nanocomposite, which can be attributed to the interaction between CoS and 

carboxyl groups. The higher ID/IG ratio of FG-CoS (1.04) than that of GO (0.98) is attributed 

to the intercalated CoS nanoparticles with FG. The synthesized materials have been evaluated 

as supercapacitor materials in 3M KOH using cyclic voltammetry (CV) at different potential 

scan rates and galvanostatic charge/discharge tests at different current densities. The FG-CoS 

electrodes showed a maximum specific capacitance of 1072 F/g at a scan rate of 1 mV/s and 

exhibited excellent cycling retention of 117% after 1000 cycles at 200 mV/s. The energy 

density was 35.2 Wh/kg with a power density of 250 W/kg at 1.0 A/g. Those figures of merit 

are much higher than those reported for graphene-based materials tested under similar 

conditions. The observed high performance can be related to the synergistic effects of CoS and 

3-dimensional (3D) network crinkly sheets of functionalized spongy graphene. 

 

Future Work:  

Future work will include implementation of other metal sulphides incorporated with 

spongy reduced graphene oxide will be introduced such as MoS, RuS and NiS. In addition, 

Device measurement will be performed for the prepared composite in order to test the 

supercapacitor device in real life applications. 
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