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Abstract 

Sensing is an important emerging technology in the current industrial era. It 

covers a plethora of applications from medical personalized devices to aerospace 

oxygen level detectors. Of those applications, environmental and pharmaceutical 

sensors are significantly important. Specifically, electrochemical sensors are easy to 

use and develop besides being cost-effective and accurate. The work in this thesis 

concerns the development of two sensing platforms for the detection of Hg(II) as a 

water pollutant, and the detection of Lornoxicam (LOR) as a pharmaceutical 

compound. The materials fabricated were morphologically, structurally, and 

electrochemically characterized. They were also tested against their analytical targets 

in spiked and real sample media to ensure their utility, sensitivity and accuracy. The 

testing results were either in the sub-nano or the pico-molar levels, with high linear 

range. The materials were also examined to target the analyte species in separate and 

co-formulated media to assure their selectivity. Furthermore, the sensing platforms 

were repeatedly used to test their stability and reproducibility. Titania 

nanotubes/reduced graphene oxide (TNTs/RGO) showed an efficient sensibility of 

Hg(II) in the presence of Cu(II) and Mn(II) species with no significant interference 

for a wide range of concentrations. On the other hand, BaNb2O6 nanofibers showed an 

enhanced activity towards the electrocatalytic oxidation of Lornoxicam (LOR) and 

paracetamol (PAR), producing remarkably high oxidation currents. Wide linear 

dynamic ranges, high sensitivity, very low LOD, good reproducibility and 

repeatability, and high stability, together with simple procedures for surface 

modification and determination are the advantages of the prepared sensors. 
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Chapter 1 

Introduction and Scope of The Thesis 

1.1 Global Sensor Market  

The personalized lifestyle of everything starting from medicine and electronics 

to environmental and food quality control has been a characteristic of the modern era. 

Sensors are a way to express this personalization such as mobile, integrated, and 

wearable sensors which are getting to become a commonplace. Although they now 

are mainly attached to physical parameters (such as pressure and temperature), 

sensors are soon to be personalized for many other parameters.
1
 Market study of 

sensors is evident that more money will be invested in sensors industry as they have a 

real chance of progress during the following decades. For instance, the compound 

annual growth rate (CAGR) of sensors industry is accelerating by rate of 8%, with an 

incremental growth of $17.04 bn between 2017 and 2022, as shown in Figure 1-1.
2
 

 

Figure 1-2: CAGR of sensors industry between 2017 and 2022.
2
 

As nanomaterials are getting involved in sensors industry, it is attracting more 

attention on both the financial and scientific communities. This is due to the 

tremendous enhancement of sensing properties that nanostructures may grant to the 



2 

 

detection platform.
3
 As a result, and according to Research Nester, the CAGR of 

chemical sensors and biosensors is accelerating by rate of 11.5%, which is even 

higher than that of flow and level sensors that currently sell higher in the global 

sensor market (see Figure 1-2).
4
 

 

Figure 1-3: Comparison between flow & level sensors vs biosensors & chemical sensors in the global 

sensor market.
4 

 

1.2 What Are Sensors? 

Sensors are devices that utilize an active and detective material toward certain 

analyte/s and a transducer to transfer and maybe magnify the produced signal. This 

signal can take different forms such as electrical, optical, thermal, or electrochemical. 

Such devices are used for direct determination of the targeted analyte in its sampling 

matrix.
5
 Many methods are proposed to classify the developed sensors, one of which 

is according to the type of the signal previously mentioned. According to Chen and 

Chzo, sensors can also be classified as sensors and biosensors, depending on their 
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active recognizing material on the electrode. Selecting this material differs with 

respect to the nature of the target analyte and the kind of effective reaction between 

them both.
6
 

1.3 Electrochemical Sensors 

Electrochemical sensing is the oldest form of all chemical sensors, since the pH 

glassy electrodes invention by Max Cremer in 1906. After L. Clark introduced the 

glucose enzyme amperometric electrode, electrochemical sensors started to be 

common in labs chemical industries, and many other fields.
7
 The feasibility of 

developing their recognition ability makes electrochemical sensors a good candidate 

for application in many disciplines such as food, biomedical, environmental, 

agricultural, and industrial fields. That is owing to their precise, cost effective, fast, 

and reliable detection of many organic and inorganic compounds.
8
 However, for these 

sensors to continue their progress, they need multidiscipline ray research in the fields 

of material science, electronics, and computer science to meet the emergent needs in 

different fields.
9
 

1.4 Objectives and Scope of Thesis 

Modification of electrochemical electrodes such as carbon paste electrodes 

(CPEs) is an effective way to produce a better sensitive and selective detection 

platform for different inorganic and organic analytes. Such platforms can be used for 

various applications. Out of these applications, environmental and pharmaceutical 

ones are of considerable importance. This thesis includes development of two 

modifiers for the purpose of increasing the sensitivity of CPEs. The first modifiers 

aim to sensitive detection of Hg(II) ions (as an environmental pollutant) in presence 

of Cu(II) and Mn(II). The second does to lornoxicam (LOR) (as an anti-inflammatory 
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drug example) in a coformulation with paracetamol. This thesis will be arranged as 

following: 

Chapter 2: Shows a concise background about the electrochemical sensing 

concept and its importance in the environmental and pharmaceutical fields. 

Chapter 3: Presents a literature review of the recent studies in the field of 

electroanalytical detection of heavy metals and drugs. 

Chapter 4: Designates the experimental conditions and procedures followed for 

the processes of electrode modification for both purposes (Hg(II) and LOR 

detections). 

Chapter 5: Discusses the main contribution of the thesis work and shows the 

difference in sensitivities that this modification has aimed to achieve from 

electrochemical point of view 

Chapter 6: Provides conclusion and future work. 
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2 Chapter 2 

                Scientific Background 

2.1 The Concept of Sensing 

The concept of sensing varies according to the detection essay (such as chemical, 

optical, and immunoassay) and the type of the targeted analyte. Nevertheless, there 

are several general mutual principles that need to be satisfied in most of these assays. 

They can be concisely stated as follows: 

a- Selective bonding type between the targeted analyte and the recognition 

platform. 

b- Chemical, physical, or biological interaction at the interface between the 

receptor and the analyte, which should result in a characteristic signal. 

c- Receiving this signal by a transducer, and then converting it into an electrical 

form of signals. 

d- Magnifying the transduced signal by using of an amplifying detector. 

e- Delivering the amplified signal to a computer for processing, quantifying, and 

correlating to the concentration of the analyte.
1
  

2.1.1 Conventional Techniques of Analytical Detection 

As there is always a demand for continuous detection of concentration for 

species such as drugs and heavy metals, many analytical techniques are being already 

used. For example, to monitor heavy metal ions concentration in their solution media, 

atomic absorption spectrophotometry (AAS) is almost the standard method for this 

purpose. The working principle depends on the thermal ionization of the metal, whose 

concentration is then detected by a spectrophotometer. According to the method of 
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sample introduction, there are two types for AAS, graphite furnace atomic absorption 

spectrophotometry (GFAAS) and flame atomic absorption spectrophotometry 

(FAAS). They both show a tolerable sensitivity; however, they are sample-destructive 

techniques and suffer from interference at low concentration, in addition to their time-

consuming sample measurements.
2
  

Another common analytical technique is atomic fluorescence spectrometry 

(AFS), which is a sort of atomic spectrometric methods. Nevertheless, it is based on 

the principle of vaporized metal atoms deactivation by means of subsequent radiation.  

Then, detecting the produced fluorescence, qualitative and quantitative analyses of the 

target species can be attained. Relatively, AFS is simpler than AAS, but still, it suffers 

from interference and quenching of the resultant interference.
3
 

 Also, inductively coupled plasma spectrometry (ICP) is another analysis 

technique which is built on the principle of detecting the emission of the target species 

instead of their absorption. As compared to AFS and AAS, ICP provides enhanced 

measuring process thanks to its strong emission that is based on the powerful thermal 

atomization. Though, the ICP system instability decreases its precision, which is a 

result of the unstable transfer of energy between the sample and the source of plasma 

in the device. This leads to the production of a hesitated ion signal.
4
 

On the other hand, several analytical techniques are common for the aim of 

pharmaceutical detection such as high-performance liquid chromatography (HPLC),
5–

7
 spectrofluorimetric,

8
 chemiluminescence,

9
 and spectrophotometric

10
 analyses. 

Despite the satisfactory sensitivity achieved by these techniques for pharmaceutical 

drugs, they frequently suffer from shortcomings such as tedious extraction procedures 
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from complex formulations, high cost, time consumption, and need for professional 

personnel, hindering the routine analyses.
11

 

2.1.2 Electrochemical Sensing 

Electrochemical detection techniques offer an alternative to the conventional 

analysis methods that are currently utilized for molecular monitoring purposes. 

Electrochemical determination essays mainly involve an electron transfer process 

across the interface between the target species and the surface of the electrode. Such 

assays are versatile, cost-effective, and use reagent-less sample preparation, making it 

less tedious. In the same manner, electrochemical analyses are non-destructive and 

consume very minute amounts of the sample, with low chances of contamination. 

This all adds to the fast, sensitive, and selective experimental results of the detection 

process. Consequently, electrochemical detection is promising to be automated and 

miniaturized for in-situ analysis purposes.
12

  

Voltammetry, out of various electrochemical techniques used for the process of 

pharmaceutical and environmental detection, is the most versatile and commonly used 

one. This is owing to the low signal to noise ratio and the capability of simultaneous 

detection of different targeted elements. Typically, voltammetry is usually a three-

electrode technique, involving working electrode (WE), counter electrode (CE), and 

reference electrode (RE) which work to produce a potential-current-time interrelated 

data. Figure 2-1 shows a schematic illustration of the electrochemical setup that is 

used for detection, recording both potential and current. The position of the peak in 

the graph produced from such a process is element-specific, sort of a fingerprint, 

whereas its magnitude is proportional to the concentration of that element.
13
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Figure 2-1: Schematic illustration of the principles of electroanalytical detection. Heavy metals are 

taken as an example.
14

  

 

Voltammetry can be further enhanced by using of anodic stripping step. This 

could lower the detection limit down to sub-nanogram level. Generally, taking a metal 

ion (M) as an example, anodic stripping voltammetry (ASV) is composed of two main 

steps: 

1- A preconcentration step, in which the targeted species accumulate on the 

surface of the WE in a reduction process to gain electron, attracted by the 

negative potential applied. This reaction can be written as: 

M
n+

 + ne
–
 → M

0
                    (2.1) 

Such migration from the ions toward the electrode’s surface can illustrate 

the distinctive electrochemical sensitivity. 

2- A step of voltage scanning on the surface of the WE. This leads to 

oxidation (stripping) of the accumulated ions back to their molecular form 
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in the solution at a certain potential value. This stripping causes the 

targeted species to convert into cations, upon collecting their electrons in a 

manner that is correlated to their concentration. This reaction can be 

written as: 

M
0
 - ne

–
 → M

n+
                        (2.2) 

A schematic diagram of the whole process is provided in Figure 2-2. It is 

worthening that this whole process can also happen in a reversed way, which is 

known as cathodic stripping voltammetry.
15

  

 

Figure 2-2: Schematic illustration of the concept of anodic stripping voltammetry (ASV).
15

  

 

In a different manner, regardless of the numerous merits of ASV, using only 

bulk interfaces as electrode surfaces, still, does not meet the required accuracy for the 

detection process of many analytes. In case of utilizing bulk structures for electrode 

surfaces, several issues can raise such as: 

I. High overpotential during the preconcentration step. 

II. Large potential needed for the stripping step. 

III. High chances of interference with the electrolyte contaminant ions of 

during deposition potentials. 

IV. High possibility of interference with the other competitive ions in the 

sample. 
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These reasons raise the demand for surface modification of the WE to attain 

enhanced selectivity and sensitivity. Consequently, nanostructures have been 

thoroughly studied to be utilized as electrode surface modifiers.
16

  

2.1.3 Nanostructured Electrode Modifiers 

The last two decades have witnessed the major trend of using nanotechnology 

in different disciplines in which they proved their reliability and excellence. This can 

be attributed to their unusual properties, as they differ from bulk-structured materials 

in two main characteristics: 

1. They are not governed by the rules of classical physics, but rather quantum 

chemistry. 

2. They possess an enormous surface-area-to-volume ratio, which empowers a 

massive amount of reactant species to get into contact with electrode 

surface.  

Consequently, a superior mass transport efficiency, signal-to-noise ratio, and 

high charge transfer rate were noticed using of nanostructured materials. Also, they 

showed relatively higher absorption capacity and lower solution resistance than those 

of bulk-structured materials. So, selecting the right nanomaterial as an electrode 

modifier, keeping in mind their above-mentioned exceptional properties, would 

demonstrate extraordinary selectivity and sensitivity. This selectivity would, of 

course, lead to utilizing electrochemical sensing in complex aqueous and biological 

analyte matrices such as in urine, saliva, sweat, tears, and plasma.
17,18

  

2.1.4 Square Wave Voltammetry 

Square wave voltammetry (SWV) is a type of pulse voltammetry which aims 

mainly to measure lower detection limits than normal voltammetry. Pulse 
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voltammetry was mainly introduced by Barker and Jenkin. The concept depends on 

increasing the current difference between both the faradaic and non-faradaic currents 

produced during the analyte oxidation on the electrode surface.
19

 SWV is a 

differential technique of large amplitude in which a waveform is operated on the WE. 

This wave is comprised of an identical square wave, which is superimposed on a 

staircase potential (Figure 2-3 a).
20

 Sampling the current takes place twice during the 

cycle, firstly exactly before the forward pulse ends (t1), and secondly right before the 

reverse pulse does(t2).  

The products of the forward reaction undergo the reverse reaction as a result of 

the very large modulation amplitude of the square wave. Accordingly, the peak-

current produced is almost identical around the half-potential and a function of the 

analyte concentration.
21

 The superior sensitivity of SWV technique is a result of the 

fact that the net current is the difference between both the forward and the reverse 

ones, causing its peak to be higher than theirs (Figure 2-3 b). For both reversible and 

irreversible cases, SWV has proved to be 4 and 3.3 times higher than the 

corresponding differential pulse voltammetry measurements.
22
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Figure 2-4: SWV of amplitude Esw, step height ΔE, square wave period T, and delay time Td, 

with the current measured at both t1 and t2 (A); reversible SWV in with curve A is the forward current, 

B is reverse current, and C is the net peak current (B).
20 

2.2 The Concept of Water Quality 

It is great to see the industrial and agricultural development rise in an 

unprecedented level, which raise the living standards of humans. Though, as a 

collateral damage, the biosphere was affected first. For instance, the aquatic 

environment has dramatically deteriorated out of such developments. The water 

quality concept refers to a measurement of the extent to which water is decorous for 

the different living organisms uses. This concept can also be defined with regard to 

the existence of specific aqueous organic and inorganic nutrients in addition to certain 

chemical and physical properties in water.
23

  

Developing countries are faced with several environmental issues, one of the 

most important of which is water pollution. For instance, the Egyptian Nile has been 

estimated to receive at least 275 million tons of industrial and organic wastes each 

year. Needless to say, this is a direct result of the unmonitored and unsuitable 

industrial and irrigation drainage systems which directly throw their waste in the Nile 

streams. As a result, several pollutant levels (see Figure 2-4) have raised up such as 

pathogens, pesticides, and heavy metal ions. For example, coke industry pumps 
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massive amounts of manganese waste water, while lead and zinc pollution is 

attributed to steel industry. It has been shown that water pollution has its direct 

influence on aquatic organisms, agricultural quality, and public health.
24

  

 

Figure 2-4: Schematic numeration of the most common water pollutants.
25 

 

2.2.1 Heavy Metals as Water Pollutants 

Heavy metals, out of the several aquatic pollutants numerated in Figure 2-4, are 

of very potent effects. Numerous definitions have been proposed to describe heavy 

metals, such as 

a. Elements whose density is greater than 5 g/cm
3
. 

b. Metals of atomic weight that ranges from 63.5 to 200.6 g/mol. 

c. Metals that harmfully affect the biosphere and the environment. 

The ‘Agency for Toxic Substances and Disease Registry Priority List of 

Hazardous Substances’ has considered heavy metals as one of the most potent 
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“Environmental Health Hazards”. This, of course, due to the vigorous health risks and 

environmentally destructive effects.
17

  

For many metals, it is biologically important to gain them in a nutritional trace-

levels to maintain the biological systems performing efficiently such as oxygen 

transport and cell signaling systems. In this regard, these metals (such as Ca, Fe, and 

Ca) are harmful only when they exceed a certain level in the systems. Nonetheless, 

other metals are dangerous even at their trace levels. For example, Cd, Hg, and As 

have shown a powerful toxicity against living cells regardless of their concentrations. 

Principally, the toxicity mechanism of heavy metals depends on the destruction of the 

oxidative systems they cause in the living cell, which follows enzyme inhibition. This 

leads to extreme production of reactive oxidative species (ROS) that unswervingly 

changes the operation systems of DNA, proteins, and lipids. The excessive oxidation 

of such profound cell constituents results in cell dysfunction and then complete 

biological failure, as shown in Figure 2-5.
27

    

 

Figure 2-5: Schematic illustration of the stages of the interactive mechanism between heavy metals and 

the biological systems. 
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Mercury (Hg), in particular, is one of the ten most hazardous chemicals to the 

human health, according to the World’s Health Organization (WHO).
28

 It is an 

environmental pollutant heavy metal that is known for its potent toxicity towards the 

living organisms. As it accumulates in the food chain, Hg directly threatens the public 

health via damaging the kidney, liver, brain, lungs, and the cardiovascular system.
17,29

 

Therefore, various analytical techniques have been utilized to detect Hg
2+

 such as 

OES, ASF, AAS, ICP-MS, and ICP-OES.
2,30

 As previously referred to, despite their 

sensitivity, each of these methods might have a certain drawback such as tedious 

sample preparation, high cost, need for well-trained personnel, time consumption, and 

laboratory binding.
30,31

 On contrary, electrochemical techniques offer a promising 

alternative route that is sensitive, selective, fast, and versatile, with much less need to 

expensive equipment.
32

 Actually, detecting Hg by the electrochemical route is 

recommended by the United States Environmental Protection Agency (U.S. EPA).
30

 

In developing countries, still, most of the daily activities primarily depend on rivers, 

from cleaning and drinking to waste disposal. Until a real change takes place, the 

concentration level of heavy metals needs to be accurately monitored around-the-

clock. This will help safeguarding the vulnerable aquatic ecology from any further 

deterioration.   

2.2.2 RGO/TNT as an Electrochemical Modifier for Hg(II) Sensing 

Graphene (Gr) is a one-atom-thick single layer of carbon atoms that are sp
2
-

bonded and densely packed to form a lattice of a honeycomb shape.
31

 In account of its 

excellent charge carriers’ mobility,
32

 high thermal and electrical conductivity,
33

 very 

large surface area-to-volume ratio,
34

 with high stiffness and strength levels,
35

 Gr was 

utilized in various applications such as catalysis, biosensing, photo-induced energy 

conversion, and other electronic applications.
36,37

 Using Gr in electrochemistry mostly 



18 

 

involve a reduction process in which its oxide form is converted into ―OH, ―OOH, 

and ―COOH functional groups that enhance the absorption of analyte ions on the 

surface of graphene.
38,39

 However, upon drying, the as-reduced sheets tend to 

agglomerate, or even restack into graphite, due to the van der Waal forces and π―π 

stacking.
40,41

 Also, the strong absorption between the hydrophilic groups and analyte 

species can lead to low reusability of the electrode surface due to tedious desorption 

processes. Consequently, reduced graphene oxide (RGO) is favored in some 

electrochemical applications.
42

  

On the other hand, owing to its nontoxicity, biocompatibility, efficient 

conductivity, chemical stability, eminent catalytic properties, and cost-effectiveness, 

titania (TiO2) has been utilized as a superior electrode material for a variety of 

applications.
43–46

 Among the various tailored TiO2 nanomaterials, the one-

dimensional structures have shown exceptional electrical properties, especially the 

nanotubular structure.
47

 More specifically, well-ordered TiO2 nanotubes (TNTs) have 

proven to possess an excellent charge transport and separation characteristics with a 

very large specific surface area and a good mechanical stability.
48

 As a result, TNTs 

were considered as an auspicious material for a plethora of applications such as 

energy storage, catalytic reduction, dye-sensitized solar cells, and electrochemical 

sensing and biosensing.
49,50

  

A number of reports have introduced Gr/TiO2 nanocomposites for a variety of 

applications.
51–53

 Herein, we investigated, for the first time, the applicability of 

RGO/TNTs nanocomposite as a chemical modifier of CPE. This mixture can offer a 

superior conductivity for CPE, as the agglomeration problem of graphene is 

minimized by the presence TiO2, which acts as a template thanks to its nanotubular 

structure. This structure can also increase the charge transfer rate and the electrode 
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accessible surface due to its one-dimensional porous geometry.
48

 Furthermore, the 

tedious desorption of analyte species from Gr sheets is now deviated, due to the use of 

RGO instead, making the platform a better reusable material.
42

  

2.3 Importance of Pharmaceuticals Detection 

Pharmaceuticals and personal care products (PPCP) are of the so-called 

“emerging contaminants”. These compounds were of minimal effect in the past and 

only few decades ago started to emerge as potential harmful species.
54

 As most of the 

drug dosage taken by people is disposed via urine and feces in the sewage water, these 

drugs find their way to plants and aquatic organisms. Absorbing them by these species 

may end up causing their DNA damage, fish sex exchange, and cancer, which will 

have its potent and direct effect towards public health.
55

 In other uses, the interfering 

effect between drugs hinders the ability to quantify their concentration during 

formulation, leading to serious problems in their production lines. Also, for quality 

control purposes, the effective ingredients in drug formulations need to be measured 

in the production line. Moreover, special types of drugs, such as addictive ones, need 

an around-the-clock monitoring to prevent their misuse or excessive dosage. All these 

purposes require the presence of strict, sensitive, fast, and selective detection 

platforms for pharmaceuticals.
56,57

  

2.3.1 Detection of Lornoxicam (LOR) in the Presence of Paracetamol 

(PAR) 

Lornoxicam (LOR) or chlortenoxicam, chemically known as (3E)-6-chloro-3-

[hydroxyl (pyridin-2-ylamino) methylene]-2-methyl-2, 3-dihydro-4H-thieno [2,3-

e][1,2]thiazin-4-one 1,1-dioxide (Scheme 1),  is a  non-steroidal anti-inflammatory 

drug (NSAID).
58

 It is a commonly used pain reliever for joint disorders, sciatica, and 

post-operative pain,
59

 as it exerts its analgesic and antipyretic activities by blocking 
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cyclooxygenase enzyme and inhibiting the biosynthesis of prostaglandins.
60

 LOR is 

distinguished from other oxicam derivatives by its relatively rapid onset of action, 

almost complete absorption from the digestive tract, and short elimination life-time 

(3−5 h), which make it highly tolerable.
61

  

 
Scheme 2.1: Chemical structures of LOR and PAR 

 

Paracetamol (PAR), N-acetyl-p-aminophenol (Scheme 1), is also a widespread 

agent in pain relief medications used for headache, fever, toothache, and musculo-

skeletal originated pain.
62,63

 Although the general use of its normal dose is safe on 

public heath, long term and/or large dose therapy of PAR lead to harmful effects on 

vital body organs like liver, kidney and pancreas, especially when co-administered 

with other drugs or alcohol.
64

 Therefore, the amount of PAR in pharmaceutical 

formulations should be strictly monitored.
64,65

 Also, recent treatment trends are to 

utilize more than one drug in one pharmaceutical formulation, such as LOR and PAR 

in the same drug, making use of their synergetic effect. This makes it challenging to 

precisely evaluate a single component in the drug.
66

 Consequently, an accurate, 

feasible, and fast detection of LOR, owing to its therapeutic importance, in the 

presence of PAR is urgently needed. 
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2.3.2 BaNb2O6 Nanofibers as an Electrochemical Modifier for LOR 

Sensing 

Recently, inorganic perovskite materials have attracted the attention of the 

scientific community to be utilized in various catalytic and electrochemical 

applications, such as fuel cells, gas sensing, methane combustion, and other 

transduction and energy conversion applications.
67,68

 This is mainly attributed to their 

peculiar properties, such as superconductivity, ferromagnetism, ferroelectricity, high 

oxygen ion mobility, charge ordering, and considerable thermopower and chemical 

stability.
69,70

 All these characteristics reveal that perovskite structures can 

accommodate a variety of ions,
71

 which would suggest a great potential for use as 

chemical modifiers for highly selective and sensitive detection of biomolecules. As 

new ferroelectric tungsten bronze materials, barium niobate (BaNb2O6) and its 

derivatives have recently attracted great interest, due to their excellent electrical 

conductivity, pyroelectric, and electro-optic properties.
72,73

 Despite these numerous 

advantages, one main shortcoming of transition metal oxides is their tendency to form 

closely-packed aggregates on the electrode surface, which would diminish the 

electrochemical behavior of the sensing process.
74

 Thus, electrospun perovskite 

nanofibers are thought to be useful, as they possess high surface area-to-volume ratio 

with small grain size and higher probability of charge separation, which would 

enhance the electrocatalytic properties of the sensor.
70

 To the best of our knowledge, 

this is the first study on the electrochemical sensing of the mixture of LOR and PAR. 

To achieve this, we unprecedentedly used CPE modified with electrospun barium 

niobate nanofibers (BaNb2O6/CPE).   
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3 Chapter 3 

Literature Survey 

Decades ago, research has started to develop sensors to monitor the vital 

parameters that need around-the-clock detection in order to interfere at the right time 

and prevent possible deterioration. This has been applied on environmental, 

pharmaceutical, medical, electronic, and food goods levels, along with many others. 

The aim was always to control their quality and ensure that undesirable species are 

always within the permissible limits. As we are interested in heavy metal and 

pharmaceutical sensing, the following is a literature review of some recent studies in 

these fields.  

3.1 Heavy Metals Detection 

As previously mentioned, for electrochemical sensors to operate as selectively 

and sensitively as possible, trends have been toward modifying the surface. 

Nanostructures can significantly change the materials behavior as it is governed by 

quantum chemistry and have high surface area to volume ratio (SA/V). For this, many 

of the recent effective modifications involve such structures to improve their 

sensitivity. The following are some of these studies. 

3.1.1 Metallic Nanostructured Materials 

Metallic nanostructures have been thoroughly studied for electrochemical 

modification purposes showing a promising performance. This is mainly owing to 

their superior electrical conductivity and the ability to bind to the targeted ions. 

Therefore, nanostructured metals possess an extraordinary tendency to attract the 

targeted ions during preconcentration step onto their surfaces. Statistically speaking, 
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mercury is one of the most common metallic modifiers used for detection purposes. 

Later on, it will be shown how mercury is also used for pharmaceuticals detection. 

Nonetheless, as mercury itself is toxic, it is better to be changed with harmless 

alternatives. Examples for candidates are silver, gold, antimony, and bismuth.
1
  

In particular, Au nanostructures are of the most extensively studied modifiers 

for a sensitive electrochemical process. That is attributed to their large surface area 

and high catalytic activity, electrical conductivity, and ease of deposition. Recent 

studies used deposited Au nanoparticles on electrodes of quartz crystal microbalance 

(QCM) for selective detection of Hg in which LOD was 22 μg/m
3
.
2
 Au-NPs have 

been deposition for detection of other metals such as Pb(II), Cu(II), Fe(III), and Cd(II) 

ions.
3,4

 In some cases, the limit of detection (LOD) was as low as 100 fM.
5
 Despite of 

this very low detection limit, the use of Au as a modifier is still restricted by its high 

cost. 

In the same manner, morphologically self-ordered Bi nanostructures were 

proved to possess a great sensitivity to heavy metal ions. Several structures have been 

utilized to modify carbon electrodes for detection of metal ions such as Cd(II) and 

Pb(II).
6,7

 These structures exhibited a huge surface free energy along with their large 

surface-area-to-volume ratio. Such characteristics were why Bi-modified working 

electrode demonstrate a distinguishing adsorbability towards its targeted ions 

achieving an LOD of 12 nM. Bi-modified electrodes can also instantaneously 

sensitively detect Hg
2+

, Cu
2+

, and Cd
2+

 ions, but not to a competitive enough LOD. 

However, some important experimental parameters in the detection process still need 

to be scrutinized such as selectivity and reproducibilty.
8
 BiNPs have been also studied 

for electrodeposition on carbon electrodes to detect heavy metal ions using square 
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wave anodic stripping voltammetry (SWASV) technique. The detection limits were in 

the range of 10
-7

 g/L.
9
 

More chances to enhance the accuracy of the electrochemical sensing process 

can be offered by using of bimetallic nanomaterials. That is mainly attributed to the 

fact that bimetallics try to gather the merits of both metals involved and recuperate the 

shortcomings of each one by its counterpart.
10,11

 For instance, Au-Pt nanoparticles 

have been utilized for such an application, which lead to a sensitivity of 0.008 ppb 

against Hg
2+

. In addition to its sensitivity, the proposed bimetallic sensing platform 

modifier exhibited low interference chances in solutions containing Cu
2+

, Mn
2+

, Zn
2+

, 

Cr
3+

, and Co
2+ 

ions.
8,12

  

3.1.2 Carbon-based Nanostructured Materials 

A superior electrochemical performance has been exhibited by carbonic 

materials to act in both adsorption and transduction. As a result, carbonic structures 

such as graphene (Gr), reduced graphene oxide (RGO), and carbon nanotubes (CNTs) 

have been extensively during the past few decades.
2
 Largely, CPE is a unique 

carbonic heterogeneous electrode in which graphite powder is mixed with a water-

immiscible non-conductive binder, such as paraffin oil.
13

 The easy functionalization 

of CPEs helped involving them in many studies to enhance the electrocatalytic 

activity for various purposes, by improving the charge transfer kinetics.
14

 

Furthermore, the chemical functionalization of CPEs has displayed electrochemical 

results of low noise, easy surface renewability, broad range of potential window, and 

low cost.
15

 Therefore, chemically-functionalized CPEs with materials such as zeolites, 

nanostructured metallics, and biomolecules attracted the interest of the scientific 

community to be used for diverse electroanalytical studies.
16
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Many materials have been utilized to functionalize CPEs, one of which is 

carbonic materials, such as CNTs. They, CNTs, are commonly used for such an 

application due to their improved electrocatalytic properties and immense surface-

area-to-volume ratio. Furthermore, to functionalize CNTs would enhance their 

sensitivity towards heavy metal ions and decrease the process time.
2
 For instance, a 

facile preparation of 3D Graphene and MWCNTs as a glassy carbon electrode (GCE) 

modifier has resulted in superior Cd(II) and Pb(II) detection.
17

 CNT threads and 

amino-functionalized carbon NPs have been also utilized for detection of several 

heavy metal ions such as Zn(II), Pb(II), Cu(II), and Hg(II) using ASV. The modified 

electrodes have resulted in superior sensitivity and selectivity.
18,19

 Correspondingly, 

Afkhami et al
20

 modified CPE performance against heavy metal ions using of Schiff 

base-functionalized MWCNTs. Schiff base holds the ability to form metal ion 

complexes, which facilitated the combination of these ions with CNTs, resulting in a 

high electrochemical output signal. Accordingly, the detection limit of Hg(II) was 0.9 

nM and that of Pb(II) was 0.6 nM with low interference chances. Better-suited 

geometries to enhance the CNTs’ detection performance were also studied. In one 

interesting study, Guo et al. fabricated vastly aligned CNT towers as an 

electrochemical electrode modifier to detect low concentrations of Cd
2+

, Pb
2+

, Cu
2+

, 

and Zn
2+

. Each CNT tower contained almost 25 million organized long CNT which 

produced a more efficient electroconductivity. The modification helped to achieve 

individual LODs of 12, 25, 44 and 67 nM for Pb
2+

, Cd
2+

, Cu
2+

, and Zn
2+

 

respectively.
21
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3.2 Pharmaceuticals Detection 

3.2.1 Conventional Analyses 

The need for detection of pharmaceuticals has relatively recently emerged, 

almost started in 1990s. This was not the sensing trend before as most of sensors were 

directed towards monitoring other organic and inorganic pollutants such as heavy 

metals and pesticides owing to the industrial revolution.
22

 However, the exponential 

mechanized food production and the development of drug industry have caused drug 

detection to be an emerging need. In addition, drug interreference in the biological 

system and the wrong use of drugs for addiction purposes necessitates the need to 

develop effective and rapid methods of drug detection. Pharmaceuticals are rapidly 

increasing in numbers in which they now are exceeding 3,000 active compounds, 

which makes the detection process more challenging. 

Plethora of studies and reviews have been published to introduce and develop 

solutions for pharmaceutical determination using different techniques.
23,24

 As 

previously mentioned, this includes HPLC, ultraperformance liquid chromatography-

mass spectrometry (UPLC-MS/MS), solid phase extraction-liquid chromatography–

electrospray-tandem mass spectrometry (SPE-LC-ESI-MS/MS), and many other 

approaches.
25

 

3.2.2 Electrochemical Analysis 

Electrochemical analyses, especially the voltammetric ones, are well-

established in the field of molecular monitoring. Many of these studies were directed 

towards detection of pharmaceuticals, especially in their unprocessed or commercial 

form.
26

 A series of manuscripts have reviewed and studied the electroanalysis of 

pharmaceuticals via chemical modification of electrodes, which showed a great 
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potential to reach an acceptable sensitivity and LOD values. The following sections 

displays several electrode types and their use in such a purpose.
27,28

 

3.2.2.1 Metallic Electrodes 

Mercury electrodes, as the most used metallic electrodes in the literature, were 

of the first tools to use in the electroanalyses, starting by 1922. Advantages as its 

excellent surface renewability, hydrogen reduction overpotential, and smooth surface 

made hanging mercury drop electrode (HMDE) a good candidate for use as a sensor 

for pharmaceuticals concentration.
29

 Using square wave voltammetry (SWV), HMDE 

was used for detection of several drugs such as triamcinolone acetonide (TAA), 

haloperidol, ethinylestradiol, griseofulvin, and cefoperazone. The limit of quantitation 

(LOQ) in each study was down to few hundred picomolar. Some of these studies 

required a preconcentration step (in a range of tens of seconds), and they were tried in 

both spiked aqueous and serum solutions.
30–32

 In spite of these tremendous results, 

mercury electrodes still have the disadvantage of being toxic so, in case of their 

leakage, the results cannot be fully trusted, and the sample is not safe. This would 

hinder their practical use for in-situ applications. 

One major disadvantage of using any of these solid electrodes rather than 

mercury is their challenging renewable surface and low chances of reproducibility. 

Other metallic electrodes used for pharmaceuticals detection includes gold, bismuth, 

copper, and palladium.
33,34

 Gold electrodes, for instance, can easily be self-assembled 

on electrode surfaces to reach LOQ down to nanomolar level.
35

 Also, bismuth film 

electrodes have been developed as an alternative for mercury electrodes for in situ 

detection of compounds such as vitamin B-12 and sildenafil citrate. The level of 

sensitivity was in the tens of nanomolar order.
36,37
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3.2.2.2 Carbon Electrodes 

Owing to their easy handling, broad potential windows, and good conductivity, 

and high signal-to-noise ratio, carbon electrodes are generally good candidates for 

electrochemical detection. Using different electrochemical techniques such as SWV 

and differential pulse voltammetry (DVP), electrodes such as GCEs were used for 

detection of drugs such as levofloxacin, trimetazidine, and amlodipine besylate. The 

LODs were in the order of 10
-10

 and the linear ranged was between the milli and nano 

levels.
38–40

 Screen printed electrodes (SPE) were recently used for medical detection 

purposes to introduce a new concept to analysis, Lab-On-a-Chip. Without noticeable 

interference, studies have employed SPEs for quantification of pharmaceuticals such 

as sildenafil and methionine in multispiked urine samples, in which LOQ attained 10
-8

 

and 10
-6-

 M, respectively.
41,42

 Other studies have reported modifications like using of 

3D-spongy graphene and Cs-Au nanoparticles as modifier for detection of Codeine 

and Dapoxetine, respectively.
43,44

 

After Adams introduced them in 1958, CPEs have been widely used for 

electroanalytical objectives. This is due to their versatility, easy surface renewability, 

feasible modification, and cost effectiveness. For drug quantification, researchers 

have modified CPE surface by several organic and inorganic compounds, especially 

the nanostructured ones. Examples are using of Graphene Oxide Nanosheets (GO), 

Nanocrystalline Zeolite, and Nickel Nanoparticles for determination of Ezogabine, 

Ledipasvir, and Escitalopram Oxalate, respectively. LOD of each of these studies was 

always lower than an order of 10
-7

, especially in cospiked formulation.
45–47

 Other 

electrodes such as silver amalgam and molecular imprinting polymers were also used 

for the same aim of pharmaceutical sensing, achieving a detection limit in the range of 

10
-10

 M.
48
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4 Chapter 4 

Experimental Methods and Materials
*
 

4.1 Materials 

All reagents were analytical grade and used as received without any further pre-

treatments. TiO2 nanoparticles (P25) and Graphite flakes (150µm flakes) were 

obtained from Sigma Aldrich, H3PO4, K3Fe(CN)6 and H2SO4 from Alfa Aesar, HCl, 

NaOH, CH3COONa, and KMnO4 from Loba Chemie, H2O2 from Fischer Scientific, 

CH3COOH from Carlo Erba, paraffin oil used for pasting from Merck, and Hg 

standard solution (1000 ppm) from Agilent. For different pH values, 0.1 M acetate 

buffer solutions were prepared using different ratios of 0.1 M CH3COONa and 

CH3COOH solutions.  

                                                 
*
 Parts of this chapter were published in Abdullah, Ibrahim H., Nashaat Ahmed, Mona A. 

Mohamed, Fawzy MA Ragab, Marwa TA Abdel-Wareth, and Nageh K. Allam. "An engineered 

nanocomposite for sensitive and selective detection of mercury in environmental water samples." 

Analytical Methods 10, no. 21 (2018): 2526-2535.  

And in Mohamed, Mona A., Menna M. Hasan, Ibrahim H. Abdullah, Ahmed M. Abdellah, Ali 

M. Yehia, Nashaat Ahmed, Walaa Abbas, and Nageh K. Allam. "Smart bi-metallic perovskite 

nanofibers as selective and reusable sensors of nano-level concentrations of non-steroidal anti-

inflammatory drugs." Talanta 185 (2018): 344-351. 
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LOR was obtained from Novartis
®
, Egypt, with purity of 98.97%; PAR was 

generously supplied from CID CO
®
, Egypt, with purity of 99.34%. Pure graphite 

powder, bariam carbonate, niobium isopropoxide, ethanol absolute, and acetic acid 

were obtained from Sigma-Aldrich. Poly(vinylpyridine) (PVP, M.wt= 1,300,000) 

average Mw. Paraffin oil was obtained from Merck, and used as the binder liquid for 

preparing the pastes. Britton-Robinson buffer (B-R buffer) 40 mM was prepared by 

mixing boric acid, phosphoric acid, and acetic acid, then the solution was calibrated to 

pH values 2.0 - 9.0 using 0.2 M NaOH. Sterilized Milli-Q deionized water and 

analytical grade chemicals were used for all solution preparations. 

4.2 Synthesis of Graphene Oxide 

Graphene Oxide (GO) was prepared using Improved Hummer’s method.
1
 3 g of 

graphite flakes were added to a mixture of H3PO4/H2SO4 (60:90 ml) and stirred in an 

ice bath till the temperature of -5 
o
C was reached. Then 18 g of KMnO4 were added to 

the mixture in a slow rate to keep the temperature lower than 0 °C. This suspension 

was removed from the ice bath, raising its temperature to 50 °C, and then 

magnetically stirred for 24 h. The faint brown colored paste was then poured over a 

mixture of ice/water and allowed to stir for 15 min. A 20 ml of H2O2 was slowly 

added to quench the solution producing a yellow sol which was diluted with 1L of DI 

water and statically aged overnight. Then, the supernatant was removed away, and the 

solid material remained was washed several times with warm DI water and ethanol till 

the pH reached 6. Finally, the product was dried at 50 °C for 24 h. 

4.3 Synthesis of RGO/TNT Nanocomposites 

RGO/TNT nanocomposite was prepared through an alkaline hydrothermal 

method. A specific amount of GO was dispersed in 100 ml DI water by ultrasonic 
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stirring. Then 2 g of TiO2 P25 (⁓25 nm) were suspended in the GO solution by 

ultrasonic stirring, followed by addition of 40 g NaOH and 1 h stirring.  The mixture 

was transferred to a 200 ml-Teflon-lined autoclave and preserved at 160 
o
C for 23 h. 

The resultant gray precipitate was washed successively with distilled water, 0.1 M 

HCl, and distilled water until pH reached 7, then dried at 90 
o
C for 12 h. Finally, the 

collected product was calcinated in air at 300 
o
C (2 

o
C/min) for 10 h.

2 

4.4 Preparation of BaNb2O6 Nanofiber 

Barium carbonate (1.0 g) was dissolved in acetic acid (3.0 g) and constantly 

stirred for 1 h at 70 °C till a clear solution of barium acetate was obtained. Then, a 

solution of 10 % PVP (MW = 1,300,000) in ethanol (99.9%) was prepared. Niobium 

isopropoxide (1.58 g) and barium acetate (4 g) solutions were slowly added to PVP 

solution (8 g) under continuous stirring to adjust the viscosity needed for 

electrospinning. Then, the spinning solution was used to fill a syringe with a fine 

metallic capillary needle. The solution was spun using a conventional electrospinning 

setup (MECC Nanon-01A, Japan) with a working distance of 15 cm, a working 

voltage of 26 kV, and a feeding rate of 3.9 ml /h. Samples were collected on 

aluminum foil, then dried and calcined for 4 h at 900 ⁰ C to obtain the final perovskite 

nanofiber.
3 

4.5 Instrumentation 

Scanning electron microscopy (SEM) imaging was performed utilizing a Zeiss 

SEM Ultra 60 field emission scanning electron microscope (FESEM), equipped with 

Energy-dispersive X-ray spectroscopy (EDX). Images of High Resolution 

transmission electron microscopy (HRTEM) were obtained using a JEM-2010F 

electron microscope (JEOL, Japan), with accelerating voltage of 200 and 120 kV. 



51 

 

Fourier transform infrared spectroscopy (FTIR) measurements were carried out with a 

BRUKER Vertex 70 FTIR spectrometer. The phases and crystallinity were detected 

and identified using PANalytical (Empryan) 202964 X-Ray Diffractometer (XRD) 

using Cu Kα radiation (λ= 0.15406 nm) in the range of 5° to 80° at a scan rate (2θ) of 

3
o 

s
-1

. Raman measurements were performed by a Raman microscope (Pro Raman-L 

Analyzer) with an excitation laser beam wavelength of 532 nm. ICP-AES 

measurements were carried out by ICPE-9800 Series Simultaneous ICP Emission 

Spectrometer (Shimadzu, USA).  

Voltammetric experiments were all performed utilizing CHI 760A 

Electrochemical Workstation (CH Instrument Inc., USA). As a counter electrode, a 

platinum wire (BAS, USA) was used, while Ag/AgCl (3.0 M NaCl) was employed as 

a reference electrode in respect to which all the electrochemical cell potentials were 

measured. All pH measurements were performed using a Cyberscan 500 digital 

(EUTECH Instruments, USA) pH-meter with a glass combination electrode. 

Electrochemical impedance spectroscopy (EIS) experiments were performed utilizing 

SP-150, Bio-Logic SAS and EC-Lab
®
 software. The electrochemical measurements 

were all carried out at room temperature of 25±1 
o
C.  

4.6 Preparation of Carbon Paste Electrodes (CPEs) 

 Using a glassy mortar, graphite powder (0.5 g) was mixed with paraffin oil 

(0.35 mL) to prepare the bare paste of CPE. Then, prepared paste was stuffed into the 

electrode hole whose surface was then made uniform using a filter paper till achieving 

a shiny appearance. For RGO/TNT/CPE preparation, the compound was mixed in 

different ratios with the graphitic unmodified paste using equivalent amounts of 

paraffin oil for 40 min to form uniformly and homogenously wetted modified pastes. 

For preparation of carbon paste electrode modified with BaNb2O6 (BaNb2O6/CPE), 



52 

 

three different amounts of BaNb2O6 nanofibers (50, 100 and 150 mg) were separately 

mixed well with graphite to obtain a total weight of 1000 mg nanocomposite. Each of 

the BaNb2O6/CPE pastes (5, 10 or 15 wt%) was utterly mixed with an adequate 

quantity of paraffin oil (0.35 mL) for 40 min, till obtaining a homogeneous and 

smooth wetted paste. The modified pastes were crammed in the electrode body the 

same way as the bare one.
4 

4.7 Experimental Conditions and Procedures 

As for Hg(II) detection, a frequency range 100 mHz − 100 kHz was used to 

record all the impedance spectra. Cyclic voltammetry (CV) experiments were 

performed in a potential range between -300 to 750 mV vs. Ag/AgCl (3M NaCl) in 

which the scan rate was 100 mV s
-1

. Under optimized conditions, square wave anodic 

stripping voltammetry (SWASV) was utilized to detect Hg
2+

 in different 

concentrations. Deposition of Hg was performed at a potential of -1.1 V for 180 s in 

which Hg
2+

 ions were reduced in presence of 0.1 M CH3COONa/CH3COOH (pH= 

5.0). The anodic stripping, the process of oxidizing the electrodeposited metal from its 

atomic to ionic form, was carried out in a potential range between 0 and 0.45 V with 

the next parameters: increment potential, 4 mV; amplitude, 50 mV; frequency, 15 Hz. 

The real samples have been analyzed under the same electrochemical conditions. 

Before any electrochemical measurement were made, RGO/TNT was cycled in a 

range between 300 and 750 mV with scan rate of 100 mV s
-1

 in 0.1 M acetate buffer 

of pH 5 many times until a repeatable response was obtained. Then, the RGO/TNT-

modified electrode was removed to a cell including the same buffer solution 

containing the proper amount of Hg(II) analyte. This has been applied for all other 

electrodes as well.
5 
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For LOR detection, stock solutions of LOR and PAR (1.0 x10
-2 

M) were 

prepared in ethanol and double distilled water, respectively. The essential amount of 

any of these stock solutions was transferred to a 5.0 mL standard volumetric flask, in 

which the solution volume was completed to the mark using 4.0x10
−2 

M Britton–

Robinson buffer solution (pH 7.0).  Prior to voltammetric measurements, the modified 

electrode (BaNb2O6/CPE) was cycled several times between 0 to +890 mV with a 

scan rate of 100 mV s
-1

 in B-R buffer of pH 7.0 till a reproducible behavior was 

obtained. Then, BaNb2O6/CPE electrode was placed in to a different cell containing a 

proper amount of LOR in B-R buffer of pH 7.0. Cyclic voltammograms were 

recorded using the same parameters.
6 

For SWASV measurements, aliquots with LOR concentrations from 5.0×10
−8

 to 

1.4×10
−4

 M were moved to a series of 5.0 mL volumetric flasks using micropipette. 

The volume was then diluted to reach the 5-ml flask mark by adding B-R buffer pH 

7.0. By transferring 5 ml of the solution to the electrolytic cell, SWV was made ready 

to record. A scan rate of 40 mVs
-1

 was used to detect the current response of SWV 

measurements at the BaNb2O6/CPE working electrode. Also, the pulse period during 

chronoamperometry was 30 s while the impedance measurements were performed 

over a frequency range of 100 mHz − 100 kHz. 

4.8 Real Polluted Water Samples Preparation 

The water samples were collected from three different polluted sites in Qarun 

lake, Egypt, where many industrial plants are in operation around. The samples were 

pretreated by filtration, using 0.2 μm membrane to eliminate suspended particles and 

other organic impurities. Then, all samples were adjusted to pH 5.0 using 0.1 M 

acetate buffer. The Hg(II) concentration in the pretreated samples was then analyzed 
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using both inductive coupled plasma atomic emission spectrometry (ICP-AES) and 

the fabricated sensing platform.
7
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4.9 Spiked Plasma Samples Preparation 

Immediately prior to the experimental measuring, plasma samples were drawn 

from a healthy individual, in which 0.5 mL of the sample was injected into a 5-mL 

volumetric flask spiked with 1.0×10
-3 

M of LOR standard solution of different 

volumes, containing B-R buffer (pH 7). Then, the solution was directly moved to the 

voltammetric cell for analysis. The experimental measurements were all carried out in 

accordance with the institutional guidelines and conventional laws, after having the 

approval of the institutional ethics committees.  
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5 Chapter 5 

Results and Discussion
†
 

5.1 RGO/TNT as an Electrochemical Modifier for Hg(II) Sensing 

5.1.1 Morphological and Structural Characterization of RGO/TNT 

Nanocomposite 

Intercalating the TiO2 nanotubes between the sheets of graphene helps to boost 

the amount of Hg(II) adsorbed on the electrode surface. This distinctive structure is 

also important to diminish the probability of graphene sheets to agglomerate. Figure 

5-1a, b shows the FESEM and HRTEM images of the fabricated pure GO sheets, 

respectively. Note that very thin free-standing graphene sheets, with micrometer scale 

dimensions both in width and length, entail a considerable degree of crumbling, which 

would enhance their electronic and chemical properties.
1
 The FESEM image in Figure 

5-1c shows how the TiO2 one-dimensional structures are attached to the RGO sheets 

in the composite, helping to keep them separate. Also, Figure 5-1d depicts the TEM 

image of RGO/TNT nanocomposite clarifying that TNT has one-dimensional tubular 

morphology with an average diameter of 10±0.8 nm and a length of 100-200 nm, 

being spread all over the RGO sheets. The flake morphology of RGO can be also 

identified due to its typical sheet-like structure and sheet edges shape. 

                                                 
†
 Parts of this chapter were published in Abdullah, Ibrahim H., Nashaat Ahmed, Mona A. 

Mohamed, Fawzy MA Ragab, Marwa TA Abdel-Wareth, and Nageh K. Allam. "An engineered 

nanocomposite for sensitive and selective detection of mercury in environmental water samples." 

Analytical Methods 10, no. 21 (2018): 2526-2535.  

And in Mohamed, Mona A., Menna M. Hasan, Ibrahim H. Abdullah, Ahmed M. Abdellah, Ali 

M. Yehia, Nashaat Ahmed, Walaa Abbas, and Nageh K. Allam. "Smart bi-metallic perovskite 

nanofibers as selective and reusable sensors of nano-level concentrations of non-steroidal anti-

inflammatory drugs." Talanta 185 (2018): 344-351. 
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 To understand the interaction between RGO and TNTs, Fourier-transform 

infrared (FTIR) spectroscopy was performed, Figure 5-2a. The FTIR spectrum of GO 

shows a broad peak at 3400 cm
-1

, which is ascribed to the stretching vibration of 

hydroxyl groups (–OH). Other multi-peaks are also related to oxygen-containing 

functional groups such as carboxylates (−C−O−) (1051 cm
−1

), epoxide (−C−O−C−) 

(1370 cm
−1

), and ketenes (−C=O) (1729 cm
-1

). 
2,3

The broad band at 1616 cm
−1

 can be 

ascribed to in-plane vibrations of aromatic C=C sp
2
 hybridized carbons.

4
 On the other 

hand, the FTIR spectrum of RGO/TNT shows low frequency bands around 496 cm
−1

 

and 738 cm
−1

 related to Ti−O−Ti and Ti−O−C, respectively, due to the chemical 

interaction of RGO with the TNTs.
5
 Also, the decrease in the oxygen-containing 

Figure 5-1. (a) FESEM, (b) HRTEM images of the pristine GO, along with (c) FESEM, and (d) HRTEM images of the 

prepared RGO/TNT nanocomposite. 
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functional groups has been observed, demonstrating that GO was significantly 

reduced by the hydrothermal treatment, which promotes the hybridization of TNTs 

deposited on the RGO sheets.
3
  

Figure 5-2b shows the XRD patterns of GO and RGO/TNTs composite. The 

GO spectrum exhibits one characteristic diffraction peak at 2θ = 10.9° corresponding 

to the plane (002), having an interlayer distance of ∼0.86 nm, which is larger than that 

of graphite (∼0.33 nm).
6
 The large expansion of d-spacing of GO compared to 

graphite is usually ascribed to the insertion of oxygen containing groups and H2O 

molecules.
7
 The XRD pattern of RGO/TNTs (top in Figure 5-2b) showed peaks at 

25.35
o
, 37.92

o
, 44.67

o
, 54.23

o
, 62.68

o
, 69.2

o
, 75.08

o
, which are related to (101), (004), 

(200), (105), (211), (204), (116), (220), and (215) plans, respectively. These planes 

corresponded to the anatase crystalline phase (ICDD Card no: 00-021-1272). It has 

been noticed that the distinctive peak for GO disappeared in the composite pattern, 

which is due to the conversion of GO into RGO under alkaline hydrothermal 

conditions.
8
 Nonetheless, the characteristic peaks related to RGO were not noticed 

because the peak of (101) plane of anatase appears at almost the same 2θ value, 

especially that the percentage of RGO in the composite is lower than the detection 

limit of XRD.
9
 Based on the XRD peak broadening of the (101) peak, the average 

crystallite size (D) and micro strain (      of the TNTs and RGO/TNTs were 

calculated to be 7.7 nm and 2.255%, respectively, using Scherrer's (Eq. 5.1) and 

Wilson’s equations (Eq. 5.2).
9
  

                                                        (5.1) 
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                                                                  (5.2)  

where   is the full width at half maximum (FWHM) intensity, k is the shape factor 

(0.90),   is the incident X-ray wavelength, and   is Bragg’s angle.  
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Figure 5-2. (a) FTIR, (b) XRD, and (c) Raman spectra of both pristine GO and RGO/TNT; the inset in c 

shows the shift in D and G Raman bands. 
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The Raman spectra of the GO and RGO/TNT are shown in Figure 5-2c. The 

prominent bands at 1343 and 1597 cm
-1

 are corresponding to the D and G bands of the 

GO sample, respectively. The D band corresponds to the ring breathing modes of sp
2
 

carbon atoms that are adjacent to a defect or an edge, while the G band to sp
2
 carbon 

atoms in a planar and conjugated structure. The low ratio of D to G bands (ID/IG) can 

be attributed to a low concentration of defects and disorders in the graphitized 

structures.
10

 Also, Raman spectra confirmed the formation of RGO/TNTs composite 

in which several characteristic Raman peaks at 141, 390, 512 and 635.46 cm
-1

 were 

obtained, corresponding to the Eg(1), B1g(1), A1g with B1g(2), and Eg(2) modes of anatase 

TNTs, respectively. No peaks corresponding to rutile or brookite phases were 

observed, which is consistent with the XRD results. The D band (1334 cm
−1

) and G 

band (1602 cm
−1

) of the RGO/TNTs sample were, respectively, red and blue-shifted 

(Figure 5-2c inset) compared to those of the GO, which is attributed to the reduction 

of GO into RGO. Also, it may be due to a change of surface pressure after adsorption 

on TNTs surface.
10,11

  

5.1.2 Electrochemical Characterization of RGO/TNT Nanocomposite 

Cyclic voltammetry (CV) was utilized to investigate the electrochemical 

behavior of different bare and modified CPEs using the redox couple of [Fe(CN)6]
3-/4-

 

in a solution of 1.0 mM [Fe(CN)6]
3-/4-

 and 0.1 M KCl. Figure 5-3a reveals the 

relatively weak redox current of the bare CPE (black curve) with a peak-to-peak 

separation potential (∆Ep = Epa – Epc) of 380 mV, indicating a sluggish electron 

transfer process and low electrical conductivity.
12

 TNTs-modified CPE (green curve) 

shows a slightly increasing redox current response with a narrower ∆Ep (269 mV) 

than that of graphitic CPE, indicating a relatively better electron transfer kinetics, 

which can be ascribed to the one-dimensional tubular structure of TiO2 that may lead 
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to better charge collection.
13

 Higher values of both anodic and cathodic currents were 

demonstrated by the RGO-modified CPE (red curve), which could be attributed to its 

zero band gap electronic structure and considerable 2-D electrical conductivity.
14

 

Upon modifying the CPE with RGO/TNTs, the redox current significantly increased 

to ~ 1.45 times that of RGO-modified CPE. Also, the ∆Ep value was the lowest (179 

mV) among the other electrodes, indicating high rate of electron transfer process and 

better reaction reversibility at the electrode surface.
15

 This reveals that the synergetic 

effect of involving both RGO and TNTs in the modified paste might provide the 

required conduction pathway for the electrocatalytic detection mechanism. This 

behavior may be attributed to the edge plane defects that open up during the 

hydrothermal process, leading to notably higher surface area and more facile electron 

transfer kinetics in the resulting nanocomposite.
16

  

EIS is a vital technique to investigate the feasibility of the charge transfer 

process across the electrode surface as well as the kinetics and mass transport 

parameters. Figure 5-3b shows the EIS plots of different CPEs that are both bare and 

TNT, RGO, and RGO/TNTs-modified, in which the measurements were carried out 

using 1.0 mM [Fe(CN)6]
3-/4-

 containing 0.1 M KCl. The high frequency region 

verified a semicircle behavior is corresponding to the charge transfer resistance at the 

electrode surface. The obtained Nyquist plots for the different electrodes have 

revealed a Warburg-type equivalent circuit model, which is shown in the inset of 

Figure 5-3b. Qualitatively, the charge transfer is enhanced using TNTs, RGO, 

RGO/TNTs-modified CPEs as compared to the unmodified counterpart, as indicated 

via the radii of the semicircles. The value of charge transfer resistance (Rct) was found 

to be 3634 Ω and 2223 Ω for bare CPE and TNTs-modified CPE, respectively, which 

might be owing to the large surface area of TiO2 one-dimensional structure in which 
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the inner layer behavior of the porous structure can facilitate the diffusion.
17

 Also, the 

RGO-modified CPE showed an even lower resistance (1436 Ω), which can be 

attributed to the superior conductivity of graphene.  The Rct value was decreased to 

817.7 Ω in the case of RGO/TNTs-modified CPE, demonstrating an improved 

reaction reversibility at the electrode surface.  

Furthermore, Figure 5-3c presents the SWASV measurements recorded for 

bare, TNTs, RGO, and RGO/TNTs-modified CPEs. With an accumulation process 

performed for 180 s at a potential of -1.1 V in a solution of 1.0 μM Hg(II) containing 

0.1 M acetate buffer (pH 5.0), almost no peak was detected using bare CPE (black 

line) in the potential range of 0 − 0.45 V. However, a weak and wide peak was 

observed at the TNTs-modified CPE (green line) and a higher one was found with 

RGO-modified CPE (red line). Although it might have been expected to obtain 

intense peaks using pure graphene oxide instead of RGO due to the anchor sites 

provided by its many functional groups, it was found that desorbing the Hg ions from 

the electrode surface was very difficult, which would affect the reusability of the 

electrode. The sharpest and highest peak current (at a potential of 0.24 V) was 

demonstrated by the RGO/TNTs-modified CPE, which indicates a proper 

accumulation of Hg(II) on the electrode surface yielding an enhanced sensitivity.
18

 

These findings are consistent with those of the CV and EIS measurements, indicating 

that RGO/TNTs nanocomposite can provide better electrical conductive pathways as a 

CPE modifier owing to the synergistic influence of its components. 
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Figure 5-3. (a) Cyclic voltammograms of bare CPE along with TNT, RGO, and RGO/TNT-modified CPEs in a solution of 

1.0 mM [Fe(CN)6]
3-/4-

 and 0.1 M KCl with a scan rate of 100 mV s
-1

. (b) EIS plots for both the modified and unmodified 

CPEs in 1.0 mM [Fe(CN)6]. (c) SWASV of all electrodes against a solution of 1μM Hg(II). 
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5.1.3 Interaction Between TNT and Hg (II) Ions 

TiO2 nanotubes act as a supporting constituent in the fabricated composite. Its 

tubular structure helped to increase the probability of Hg (II) ions on its high surface 

area. Through their very thin walls, TiO2 nanotubes significantly facilitated the charge 

carrier movement to be collected from the Hg (II) ions. Typically, the ions have 

various possibilities either to attach to nanotubular nozzles or themselves embed into 

the tubes or between the tubes and RGO sheets. Some even may disperse inside the 

tubes, to be adsorbed on the inner tubular walls or enwrapped on the tubes mouth. 

TiO2 nanotubes also helped to act as scaffold for the reduced graphene oxide sheets 

whose conductive properties were a main player to boost the electrochemical activity 

of the whole nanocomposite. This explanation is reinforced by the electrical behavior 

both TNT and TNT/RGO composite showed in both the CV and EIS measurements. 

5.1.4 Optimization of the Experimental Conditions 

To obtain the highest possible sensitivity toward the trace Hg
2+

 concentration 

using RGO/TNTs-modified CPE, a series of experiments was conducted to determine 

the influence of the various voltammetric parameters involved in SWV. The effects of 

pH, deposition potential, and deposition time were investigated in a solution 

containing 1.0 μM of Hg(II). The influence of operating temperature was not 

considered as Hg
2+

 was designed to work at the ambient temperature. It is essential to 

study how the value of pH of the environmental samples affects the Hg
2+

 sensor. 

Figure 5-4a depicts the effect of a range of pH values from 3.0 to 6.0 on the 

voltammetric current response using acetate buffer solution (0.1 M). The 

corresponding current in SWV changed with different pH values from 3.0 to 5.0, 

where it reached the maximum value. This may be owing to the mechanism of 

electrostatic attraction and complexation, in which the carboxylic and hydroxyl 
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groups can act as anchor sites to absorb Hg
 
ions.

14
 Then, the stripping signal has 

slightly declined after 5.0 to 6.0, which may be related to the hydrolysis of Hg ions. 

Consequently, 0.1 M acetate buffer solution with pH 5.0 was selected to conduct the 

SWV measurements.  

In stripping voltammetry, it is essential to select an adequate deposition 

potential in order to achieve the highest possible sensitivity. Hence, at pH 5.0 and 

after accumulation time of 180 s, the effect of deposition potential on the current 

response was investigated. The results clarifying how a range of deposition potentials 

from -0.5 to -1.1 V affected the value of the signal response are presented in Figure 5-

4b. It was found that the more negative the deposition potential was, the higher the 

peak current values obtained from Hg(II) ions. Although it was expected for values 

more negative than -1.1 V to exhibit higher signal response, a value of -1.1 V was 

chosen as an optimum deposition potential for the conducted experiments to evade 

both the other metal ions codeposition in real environmental samples and the 

competitive generation of H2 gas that is more likely to happen after a potential of -

1.23 V vs. NHE.  

 

Additionally, it is important to study the effect of deposition time on the 

stripping measurements as it can enhance the sensitivity and detection limit of the 

Figure 5-4. Optimization of the effect of the voltammetric parameters of (a) pH, (b) Deposition potential, and (c) Deposition 

time on the current response of RGO/TNT nanocomposite-modified CPE. Measurements were recorded by SWASV of 1.0 

μM of Hg(II) solutions. 
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sensor. Figure 5-4c describes the dependence of the obtained current on the deposition 

time, in a range between 30 to 180 s. As demonstrated, the achieved peak current 

increased as the deposition time was extended to 180 s, which is attributed to the 

increased amount of analyte ions absorbed on the electrode surface. While more 

deposition time is suggested to show better sensitivity, it also can decrease the upper 

detection limit as the electrode surface becomes saturated when metal ion 

concentration is high.
51

 Thus, to achieve more sensitive behavior with a broad 

detection range, deposition potential of 180 s was chosen for the subsequent 

experiments.  

5.1.5 Stripping Response Toward Hg(II) 

Under the optimized experimental conditions, SWASV was employed to 

determine the analytical behavior of RGO/TNTs-modified CPE toward different 

concentrations of Hg(II), Figure 5-5a. Well-defined peak currents corresponding to 

the electrochemical oxidation of Hg were obtained using RGO/TNTs-modified CPE 

as a sensing platform. The peak current values (I) were found to be linearly 

proportional to Hg(II) concentrations (C) over a range from 2.5×10
-10

 M to 5×10
-6

 M 

with a linearization equation: I/μA = 6.280 C/μM + 0.768; R
2
 = 0.9992. The equation 

LOD = 3S/x was employed to calculate the LOD, where S is the standard deviation of 

the current response (n=5) and x is the slope of the calibration curve (see Figure 5-

5b). The LOD was calculated to be 4×10
-11

 M. This limit is much lower than the 

permissible limits of Hg concentrations given by both WHO and the U.S. EPA. The 

results obtained are represented in Table 5-1, proving to be comparable to many of the 

recently reported studies,
19,20

 in which the proposed non-enzymatic, mobilized, and 

label-free sensing platform utilizes cost-effective materials with facile fabrication 

procedures.  
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Figure 5-5. (a) SWASV graphs resulted using of RGO/TNT-modified CPE to detect Hg(II) over a concentration ranging from 

2.5×10
-4

 μM to 5 μM in 0.1 M acetate buffer (pH 5) with scan rate of 100 mV s
-1

. (b) The calibration curve resulted by plotting 

the peak response. 
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Table 5-1: Comparison between some electrochemical sensors reported to detect Hg(II). 

Materials Linear ranges (M) LOD (M) Ref. 

Au/Nafion/GCE 25×10
-9

 – 225×10
-9

 18.9×10
-9

 
19

 

ZnO QDs 25×10
-9

 – 250×10
-6

 25×10
-9

 
21

 

Gr-DNA based 8×10
-9

 – 1×10
-7

 5×10
-9

 
22

 

SWCNT/PhSH/Au 5×10
-9

 – 9×10
-8

 3×10
-9

 
23

 

Au-DNA based 1×10
-10

 – 1×10
-7

 3×10
-11

 
20

 

IL/Gr/L/CPE 1.25×10
-9

 – 2×10
-7

 3.57×10
-10

 
15

 

C3N4/Chitosan 
1×10

−7
 – 5×10

−6
 

and  
               1×10

−6
 – 8×10

−5 
1×10

-8
 

24
 

RGO/TN
T/CPE 

2.5×10
-10

 – 5×10
-6

 4×10
-11

 This work 

 

5.1.6 Simultaneous Detection of Hg(II), Cu(II), and Mn(II) 

Fertilizers and pesticides frequently contain ions of Hg, Pb, Cu, As, Mn, and 

Fe.
18

 During irrigation process, these ions are transferred to the soil and main water 

streams acting as permanent pollutants. Some of these ions may interfere with Hg(II) 

detection process such as Cu(II), which forms Cu-Hg intermetallic bonds shielding 

the Hg ions from the redox process at the electrode surface, especially at low 

concentrations.
14

 Thus, to examine the specificity of the proposed sensing platform 

toward Hg(II), its electroanalytical behavior was simultaneously observed in presence 

of Cu(II) and Mn(II). As shown in Figure 5-6a, the SWASV graphs obtained during 

the simultaneous detection of Hg(II) with Cu(II) and Mn(II) show three separate 

anodic peaks at potentials of 0.24, -0.12, and 0.8 V, respectively, representing the 

feasibility of detecting these ions simultaneously using our RGO/TNTs-modified 

CPE. The measurements were performed under the above-mentioned optimized 

conditions over a range of concentrations from 5×10
-9

 to 3×10
-6

 M; scan rate, 100 mV 
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s
-1

. Figure 5-6b displays the calibration curve in which the peak current of each of the 

metals is plotted against its various concentrations. As demonstrated, linear relations 

were found to be applicable within the above-mentioned concentration range with 

regression equations of I/μA = 5.833 C/μM + 0.774; R
2
 = 0.9989, I/μA = 3.779 C/μM 

+ 0.489; R
2
 = 0.9991, and I/μA = 2.478 C/μM + 0.323; R

2
 = 0.9994, for Hg(II), 

Cu(II), and Mn(II), respectively.  

Accordingly, the sensitivity of the RGO/TNTs-modified CPE toward Hg(II) 

was found to be 5.833 μA/μM, which is quite close to that obtained in the absence of 

Cu(II) and Mn(II) (6.280 μA/μM). This designates that oxidation processes of these 

different heavy metal ions at the surface of the proposed sensing platform are almost 

independent and thus, their simultaneous detection is feasible with low probability of 

remarkable interference. Using the equation LOD = 3S/x, the LOD of Hg(II) in these 

simultaneous measurements was calculated to be 8×10
-10

 M. 

Figure 5-6 (a) SWASV graphs using of RGO/TNT-modified CPE in 0.1 M acetate buffer solution (pH 5.0) containing 

different concentrations of Hg(II), Cu(II), and Mn(II) from 5×10
-9

 to 3×10
-6

 M; scan rate, 100 mV. (b) Calibration curve of 

each heavy metal in the simultaneous detection process, plotting the resulting peak current as a function of the metal ions 

concentration ranging from 5×10
-9

 to 3×10
-6

 M. 
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5.1.7 Interference Study of Adjacent Heavy Metal Ions 

Under the optimized conditions, the current density resulting from 

voltammetric current measurements of Hg
2+

 were recorded in presence of a variety of 

interfering ions. In addition to Cu
2+

 and Mn
2+

, ions like Na
+
, K

+
, Ca

2+
, and Mg

2+
 were 

injected to test the sensor’s response. The experiments were performed using 

solutions of 1.0 μM Hg(II) containing 0.1 M acetate buffer (pH 5.0), in presence of 

the interfering ions of the same concentration each. As shown in Figure 5-7, the 

current readings showed almost consistent behavior, which is due to the high 

specificity of the sensor towards Hg
2+

 ions. The most noticeable negative fluctuation 

of the current was in presence of Cu
2+

 ions. This may be attributed to the Hg−Cu 

intermetallic bonds that can produce a misleading effect in the signaling current. 

Almost all the other ions did not affect the current response in such a way. This 

probably maybe ascribed to the fingerprint potential values of these ions that are 

relatively far from that of mercury. 

Stability Measurements  

Figure 5-8 shows the stability and repeatability test of the RGO/TNTs-

modified CPE over 25 runs against 1.0 μM Hg(II) in 0.1 M acetate buffer solution 

 
Figure 5-7 Interfering effect of various heavy metal ions against the volumetric detection 

measurements of Hg
2+

ions. 
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(pH 5.0). The peak currents of the SWASV measurements obtained using the 

proposed CPE modifier were reproducible with a relative standard deviation (RDS) of 

0.928%. The results reveal that RGO/TNTs-modified CPE exhibits an outstanding 

reproducibility and stability under the repeated analytical measurements, using the 

optimized experimental conditions.  

5.1.8 Real Polluted Water Sample Analysis 

To verify the practicality of the fabricated sensor, it was tested to detect Hg(II) 

in real environmental water samples. After pretreatment, the presence of Hg(II) was 

investigated in the samples using both the proposed sensing platform and ICP-AES. 

Hg(II) was not detected in two of the three samples. Then, they were all spiked with 

5×10
-8

 M Hg(II). Clearly, highly consistent results were obtained from ICP-AES and 

our sensor (see Table 5-2). Moreover, compared to ICP-AES, the sensor overcame 

Figure 5-8 SWASV recorded peak currents of 1.0 μM Hg(II) on RGO/TNT-modified CPE sensing 

platform in 0.1 M acetate buffer (pH 5.0); scan rate, 100 mV s
-1

. The inset displays the corresponding 

obtained plots from the stripping measurements over 25 runs. 
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some shortcomings such as expensive equipment, tedious sample preparation, and 

reagent consumption. Accordingly, RGO/TNTs-modified CPE showed a significant 

potential to be reliable for real water samples.  

Table 5-2: Results of Hg(II) determination in real water samples. 

# Added (×10
-8 

M) Found 
 (×10

-8
 M) 

Recovery 
(%) 

ICP-AES 

1 0.00 ND
a
 − ND

 

5.00 4.97 (±0.16) 99.4 5.13 (±25) 

2 0.00 ND − ND 

5.00 5.06 (±0.21) 101.2 5.21 (±0.32) 

3 0.00 42.54 (±0.13) − 42.72 (0.26) 

5.00 47.78 (±0.22) 100.5 47.95 (±0.41) 

a
 ND, not detected. 

Values between parentheses are S.D. of three replicate measurements. 
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5.2 BaNb2O6 Nanofibers as an Electrochemical Modifier for LOR 

Sensing 

5.2.1 Morphological and Structural Characterization of BaNb2O6 

Nanofibers 

The morphology of the developed modifier was investigated using SEM 

imaging, Figure 5-9. The nanofibers, in general, exhibit well-defined morphology, 

with fibers diameters ranging from tens to hundreds of nanometers, which could be 

further adjusted according to the targeted application via controlling several 

parameters such as polymer concentration, solvent type, and spinning conditions. 

Figure 5-9B, C reveals that the obtained morphology has been maintained even after 

being annealed at high temperature, where the nanofibers are composed of small 

plate-like crystallites. The EDX analysis shows the presence of Ba, Nb, and O 

elements, which confirms the composition of the fabricated nanofibers, Figure 5-9D.  
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The successful formation of BaNb2O6 nanofibers was further confirmed using 
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powder x-ray diffraction (PXRD) (Figure 5-10). The PXRD patterns of BaNb2O6 
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strongly proved the orthorhombic crystal structure of the resulted nanofibers, in 
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accordance with (JCPDS: 14–27). In addition, the prepared nanofibers were 
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characterized by HRTEM after calcination at 950 °C, Figure 5-11. The HRTEM 
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images shown in Figure 5-11 indicate that the nanofibers are essentially composed of 
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intergrown single crystals.
25,26

 A lattice fringe spacing of 0.2991 nm was observed, 
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which corresponds to (023) plane of the fabricated nanofibers, exhibiting 
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orthorhombic structure. This is supporting to the results obtained by PXRD 
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measurements. Also, the presence of single crystals as the building blocks of the 
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fibers can be further verified by the bright spots of the selected area electron 

diffraction (SAED) pattern. The occurring double-spots in SAED occur from several 

Figure 5-9 SEM images of BaNb2O6 nanofibers (A) as-synthesized, (B) after calcination at 650 
o
C, and (C) after 

calcination at 950 
o
C; along with (D) the corresponding EDX analysis. 

Figure 5-10 PXRD patterns of BaNb2O6. 
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crystals lying over each other. 

 

5.2.2 Electrochemical Behavior of LOR at Different Electrodes 

To confirm that BaNb2O6/CPE has no electroactivity within the designated 

potential range, initial assessment was carried out in the absence of LOR, in which 

neither anodic nor cathodic measurable peak currents were detected. On the other 

hand, CVs of both bare and modified CPEs were examined for the electrochemical 

sensing of LOR, Figure 5-12A. Electrochemical oxidation of LOR showed anodic 

current peak, which increased in the presence of nano-perovskite fiber as a CPE 

Figure 5-11 TEM images of the prepared BaNb2O6 nanofibers after calcination at 950 °C. SAED pattern shows 

the high crystallinity of the nanofibers. 
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modifier compared to the unmodified CPE counterpart. Note that the anodic peak 

current (Ip) was significantly improved in the presence of BaNb2O6 perovskite. This 

increase can be related to the ease of electron transfer kinetics as a result of the 

catalytic properties of BaNb2O6 perovskite, which enjoys high surface area.  

To get insights into the kinetics, mass-transport, and charge transfer 

coefficient of the new modified CPE, EIS measurements were performed in 5.0 mM 

K3Fe(CN)6 (1:1) solution in 0.1 M KCl, Figure 5-12B. The EIS plots showed both 

semicircular and linear part. In the high frequency region, the diameter of the verified 

semicircle corresponds to the charge transfer resistance (Rct) across the electrode-

electrolyte interface. Therefore, a general qualitative analysis of the observed Nyquist 

plots would suggest that the diminution of the semi-circle diameter for the BaNb2O6-

modified CPE indicates an enhanced charge transfer, as juxtaposed with the 

Figure 5-9 (A) Cyclic voltammograms of 1.0 x 10
−4

 M LOR in B–R buffer pH 7.0, at a scan rate of 100 mV 

s
−1

, recorded at CPE and BaNb2O6/CPE electrodes. (B) EIS plots for both CPE and BaNb2O6/CPE in 5.0 x 10
-3

 

M [Fe(CN)6]
3−/4-

 (1:1) solution in 0.1 M KCl. 
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unmodified CPE. The inset of Figure 5-12B shows the correspondent circuit model 

used to fit the resultant impedance data; where Rct is the charge transfer resistance, ZW 

is the Warburg-type impedance (governing the diffusion process), and C is the 

interfacial capacitance. From the fitted data, RCT was 3909.12 Ω at the bare CPE, 

whereas it slumped to 1401.78 Ω for BaNb2O6/CPE, manifesting the enhanced 

electron transfer on the BaNb2O6/CPE surface. These findings are in good agreement 

with the CV results, suggesting that the BaNb2O6/CPE composite would grant more 

electrically conductive pathways owing to the synergistic influence of its components.  

5.2.3 Optimization of the Experimental Conditions 

5.2.3.1 Influence of pH 

As solution pH is an important variable affecting the resulted current 

magnitude and voltammogram shape, its influence was investigated upon the electro-

oxidation of LOR with ASSWV, Figure 5-13. The peak potential shifts toward zero 

(less positive) as the pH goes higher (from 2.0 to 9.0), suggesting the contribution of a 

protonation-deprotonation process in the electrochemical oxidation of LOR.
27

 

Regarding the peak potential (Ep), the voltammetric measurements revealed a linear 

correspondence with the pH of the buffer solution as: Ep(mV) = 680.20 - 29.97 pH; 

(R
2
=0.9985). Moreover, the best fit line of the data follows the Nernstian behavior, 

signifying that this electrochemical process entails one proton and two electrons 

transfer reaction. The suggested mechanism of oxidation is illustrated in the Scheme 

5-1. Note that raising the pH of the solution leads to an increase in the peak current, 

till it reaches a maximum at about pH 7.0, then it decreases. This is probably because 

at higher pH values the electrochemical reaction is more difficult due to the 

deficiency of protons. Consequently, pH 7.0 was selected for the rest of the 

experiments. 
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Figure 5-10 ASSWV response of BaNb2O6/CPE sensing platform, in a solution containing 1.0 x 10
-4

 M 

LOR at different pH values (in range 2.0 − 9.0); scan rate: 10 mV s
−1

. The inset plots the LOR anodic 

peak potential vs. pH. 
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Scheme 5-2: Proposed mechanism of LOR detection on BaNb2O6 surface. 

5.2.3.2 Effect of Scan Rate 

The effect of scan rate (v), ranging from 10 − 100 mV s
-1

, in B-R buffer (pH 

7), on the electrochemical response of 1.0 ×10
−4

 M
 
LOR on BaNb2O6/CPE was 

investigated to understand more about the electrode reaction mechanism, see Figure 

5-14. As shown in inset A of Figure 5-14, a linear relationship was obtained between 

the peak current (Ipa) and v
1/2

, indicating that the process is likely to be diffusion-

controlled. The equivalent equation is: Ip(µA) = -36.80 + 13.39 v
1/2

 (V s
-1

)
1/2

, with a 

regression coefficient of 0.9975. Furthermore, it was observed that the oxidation peak 

potential (Ep) is also a function of scan rate, where increasing the scan rate causes the 

potential to shift toward more positive values, inset B of Figure 5-14. The regression 

equation: y=48.89a+449.04, (R
2
=0.9937) describes the linear relationship of Ep and 

log v. 

5.2.4 Chronoamperometric Measurements 

The chronoamperometric experiments of different concentrations of LOR are 

shown in Figure 5-15, where a constant DC potential of +570 mV vs. Ag/AgCl was 

applied on BaNb2O6 /CPE in 0.04 M B-R buffer of pH 7.0. Inset A in the Figure 5-15 

shows different current plots, sampled at constant time as a function of the 

concentration of LOR. For materials which are electroactive with a diffusion 

coefficient (D), the current analogous to their electrochemical reactions (under 

diffusion control) can be estimated by Cottrell’s equation.
28

 In the addressed 

measurements, with a time of 30 s, Cottrell current was found to increase by raising 

LOR concentration. Plotting I vs. t
−1/2

 resulted in a straight line (inset 5-15A) whose 

slope (inset 5-15B) was used to obtain the value of D.
12

 Accordingly, the diffusion 

coefficient was estimated to be 5.51×10
−5

 cm
2
 s

−1
 for LOR.  
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Figure 5-11 (A) Cyclic voltammograms of 1.0 ×10
−3

M LOR in B-R buffer (pH 7) using a BaNb2O6/CPE sensor 

at various scan rates: 10-100 mV.s
-1

. Inset A: plot of Ip vs. v
1/2

. Inset B: plot of Ep vs. log v. 
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5.2.5 Analytical Characterization and Method Validation 

Design of experiments for optimization is a beneficial technique for extracting 

factors' effects on certain response.
29

 As a common experimental technique, response 

surface methodology (RSM) was used for optimizing analytical procedures. RSM can 

estimate second order prediction formula along with interaction effects. However, it 

required substantial number of experiments in numerous factor designs. Therefore, 

factors should be limited in the first instance to apply RSM. Screening for influential 

Figure 5-12. CA of different LOR concentrations at BaNb2O6/CPE surface in BR buffer (pH 7), for a 

potential step of +570 mV vs. Ag/AgCl. The numbers 1 to 6 in Cottrell's plot (inset A) correspond to 2.5, 

5.0, 7.5, 10.0, 12.5, and 23.0 x10
-6

 M of LOR, respectively.  
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factors such as pH, nanofiber amount, scan rate, pulse height, pulse width along with 

accumulation potential and time was experimentally conducted beforehand. This 

study revealed that nanofibers amount, scan rate and accumulation time are 

substantially affecting the current. A face centered design was applied which is a 

special type of central composite design for RSM optimization. Figure 5-16 shows 

eight experiments at the vertices of the cube, six experiments on face axial points (i.e. 

axial value =1), and a center point repeated 2 times in order to improve the 

mathematical prediction model. Ball markers, in the same Figure, are scaled relative 

to the magnitude of measured current for each experiment. 

The mathematical prediction model for current ( ) was calculated from linear, 

quadratic and interaction terms as follow: 

                    
                

                
 

                           

where   ,   , and    were composite amount, scan rate and deposition time, 

respectively. 

Comparing coefficients of main effects, we can conclude that amount of 

composite has the largest negative effect and hence response would be maximized at 

low level of this factor, Figure 5-17A. However, its relatively large quadratic term 

would noticeably decrease the current at either extreme levels, Figure 5-17B. 

Therefore, optimum amount of composite would lay between maximum and 

minimum levels.  Other main effects are affecting the response insignificantly, but 

high level of scan rate and low level of accumulation time are favorable to design's 

target. In addition, their corresponding quadratic terms are too trivial to exhibit 

curvatures in their response function and therefore insignificant. Interactions were 
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registered in the prediction model as well, Figure 5-17C. As the largest value of 

interaction coefficient, scan rate and deposition time interaction term (    ) is 

statistically significant (p=0.0125). Figure 5-17D shows that current is increased 

where the two factors are simultaneously at their maximum or minimum levels. 

Current is decreased at center points of both whereas sharp decrease in response is 

observed at low level of scan rate and high level of deposition time. Contrary to 

foregoing assessment of deposition time based on its main effect, the significant 

interaction necessitates applying high level of this factor along with scan rate which 

would dramatically increase response. Final optimization suggested using 10 mg% 

composite along with scan rate of 40 mV s
-1 

and accumulation time 180 s that would 

maximize the obtained current. 
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Figure 5-13 3D scatter plot of face centered design on three factors and current as a response; size of ball markers 

is relevant to measures current. 
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5.2.6 Stripping Behavior Towards LOR 

The methods used to validate our proposed sensing platform were designed 

according to the protocols instructed by the International Conference on 

Harmonization (ICH) for methods validation.
30

 SWASV measurements were carried 

out using BaNb2O6/CPE in solutions of different concentrations of LOR, in the 

presence of B-R buffer pH 7.0. The range of calibration was designed to take the 

essential practical range into consideration, according to the concentration range of 

LOR in the common pharmaceutical drugs, providing linear and precise results. 

Figure 5-18 shows the results of plotting the peak current vs. LOR concentration, in 

which two linear ranges, with different slopes, of LOR concentrations were obtained. 

Figure 5-14 Surface plots of factors effects on current (A, B, and C) Interaction plot for current showing 

effect of scan rate at maximum and minimum levels of deposition time. 
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For the range 4.0 × 10
-9

– 1.0 × 10
-6

 M, the regression equation was I(μA) = 0.101 C + 

0.012 (R
2 

= 0.9994), while for 1.0 × 10
-6 

– 2.5 × 10
-4 

M, the regression equation was 

I(μA) = 0.088 C + 0.763 (R
2 

= 0.9992). The lower slope (indicating sensitivity) of the 

second linear range can be attributed to kinetic limitations.
31

 

 

LOD was found to be 6.39 × 10
-10

 M, which was calculated from the equation 

LOD = 3S/x; where S is the standard deviation of 5 repetitive results of the oxidation 

Figure 5-15 ASSWV at BaNb2O6/CPE in solutions containing different concentrations of LOR, using B–R buffer 

(pH 7.0), at a scan rate of 40 mV s
−1

. Insets: the plot of the peak current as a function of LOR in concentration 

range 4.0 × 10
-9

 – 1.0 × 10
-6

 M (A), and 1.0 × 10
-6

 – 2.5 × 10
-4

 M (B). 
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peak current, and x is the slope of the resulted calibration curve. Also, the LOQ was 

calculated to be 2.13 × 10
9 

M, using the equation LOQ = 10S/x; where S is the 

standard deviation of the intercept and x is the slope of the regression line. The intra-

day (within-day) and inter-day (between-day) precisions ranged in 0.74–1.19% and 

0.65–1.24%, respectively. The stability of the modified electrode has been studied, 

where over 10 days of storage in air, the peak current response has recorded almost 

the same value. Moreover, the proposed electrode has maintained 98.12% of its first 

response over a period of one month. 

5.2.7 Selective Determinations of LOR and PAR  

The selective and sensitive detection of LOR and PAR in their co-formulated 

mixtures was performed using ASSWV technique. In the LOR and PAR mixtures, the 

concentration of one drug was to be changed while keeping the other constant and 

vice versa, Figure 5-19A. The peak current of LOR showed a positive proportionality 

with its concentration in the range of 1.12 × 10
-6 

– 2.50 × 10
-4 

M, whereas the current 

of PAR was almost the same at 3.30 × 10
-4

 M. Likewise, at a constant concentration 

of LOR, the current response of PAR was changing in correspondence to its 

concentration, Figure 5-19B. Note that PAR current peaks vary linearly over the 

concentration range of 5.00 × 10
-7

 –1.00 × 10
-3

 M, with the LOR concentration 

constant at 1.20 × 10
-6

 M.  
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 Figure 5-16 (A) ASSWV at BaNb2O6/CPE in B-R buffer of pH 7.0 of 1.12 x 10
-6
–2.50 x 10

-4
 M 

LOR at fixed concentration of 3.30 x 10
-4

 M PAR; Inset: the plot of the peak current as a function 

of LOR concentration. (B) ASSWV at BaNb2O6/CPE in B-R buffer of pH 7.0 of 5.00 x 10-7 –1.00 

x 10-3 M PAR at fixed concentration of LOR 1.20 x 10-6 M and their corresponding calibration 

curves; Inset: the plot of the peak current as a function of PAR concentration. 
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5.2.8 Analysis of Spiked Plasma Samples 

The applicability of BaNb2O6/CPE to determinate both LOR and PAR in 

human plasma was examined. Using the standard addition method, concentrations 

were detected by applying the calibration curve, with the results presented in Table 5-

3. The recovery percentages show a good precision of the suggested sensor. The 

experimental results show that the proposed sensor has excessive potential for the 

simultaneous trace-level detection of LOR and PAR in biological fluids. 

Table 5-3. Determination of LOR and PAR concentrations in human plasma samples. 

Sample Amount added standard 

(µM) 

Amount found
* 

(µM) 

Apparent recovery% 

LOR 20.00 20.10±0.32 100.50 

40.00 39.97±0.56 99.92 

60.00 58.98±097 98.30 

 80.00 80.12±1.18 100.15 

 100.00 98.87±2.07 98.87 

Recovery%±R.S.D   99.55±0.93 

PAR 20.00 20.05±0.16 100.25 

40.00 40.13±0.30 100.32 

60.00 59.87±0.42 99.78 

 80.00 80.21±0.91 100.26 

 100.00 99.43±1.02 99.43 

Recovery%±R.S.D   100.02±0.39 

*Based on three experimental measurements. 
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6 Chapter 6 

Conclusion and Future Work
‡
 

Market study of sensors is evident that more money will be invested in sensors 

industry as they have a real chance of progress during the following decades. The 

feasibility of developing their recognition ability makes electrochemical sensors a 

good candidate for application in many disciplines such as food, biomedical, 

environmental, agricultural, and industrial fields. To enhance the sensitivity of the 

electrochemical electrodes used, two novel nanostructures have been fabricated for 

environmental and pharmaceutical purposes.  

The fist is TNT/RGO for improved detection of Hg(II) trace concentrations. 

The sensor exhibited low LOD, wide linear range, high selectivity, and good 

reusability. The fabricated electrode modifier displayed an efficient sensibility of 

Hg(II) in the presence of Cu(II) and Mn(II) species with no significant interference 

for a wide range of concentrations. The sensing platform also proved to be applicable 

for real sample analysis with very satisfactory results.  

The second is BaNb2O6 nanofibers for enhanced determination of LOR low 

concentrations. The fabricated BaNb2O6/CPE sensor showed an enhanced activity 

towards the electrocatalytic oxidation of LOR and PAR, producing remarkably high 

oxidation currents. Wide linear dynamic ranges, high sensitivity, very low LOD, good 

                                                 
‡
 Parts of this chapter were published in Abdullah, Ibrahim H., Nashaat Ahmed, Mona A. 

Mohamed, Fawzy MA Ragab, Marwa TA Abdel-Wareth, and Nageh K. Allam. "An engineered 

nanocomposite for sensitive and selective detection of mercury in environmental water samples." 

Analytical Methods 10, no. 21 (2018): 2526-2535.  

And in Mohamed, Mona A., Menna M. Hasan, Ibrahim H. Abdullah, Ahmed M. Abdellah, Ali 

M. Yehia, Nashaat Ahmed, Walaa Abbas, and Nageh K. Allam. "Smart bi-metallic perovskite 

nanofibers as selective and reusable sensors of nano-level concentrations of non-steroidal anti-

inflammatory drugs." Talanta 185 (2018): 344-351. 
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reproducibility and repeatability, and high stability, together with simple procedures 

for surface modification and determination are the advantages of the prepared sensor. 

It is supposed that as an extension for this thesis work, future research can be 

focused on: 

1- Testing the TNT/RGO modifier in a photoelectrochemical cell for 

sensing purposes. 

2- Testing BaNb2O6 modifier against other drugs of a chemical structure 

similar to that of LOR and PAR. 

3- Trying to deposit both modifiers on SPE to get closer to a commercial 

model of sensors.  
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