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ABSTRACT 

Investigating alternatives for fossil fuels have always been an area of interest for 

scientist around the globe.  The decline in the oil & gas stock along with the increasing demand 

for energy that accompanies the increase in population has created the need for an alternative 

energy solution. From the renewable energy solution, microalgae stand out as a very promising 

source for biofuel production due to its high lipid content. However, the production of biofuel 

from microalgae is still of a high cost compared to production of the same amount from fossil 

fuels. The unfeasibility commercial production for biofuel from microalgae goes back to the 

high cost in the cultivation process, mainly supply the cultivation medium with nutrients, 

extraction process, and transesterification process.  

This research aimed to reduce the cultivation process cost by investigating the substitution of 

required nutrients in the synthetic Woods Hole MBL (MBL) medium by those available in 

wastewater streams. Chlorella vulgaris was selected for this research for its high biomass 

productivity and its ability for adaptation in various media. Different cultivation conditions 

were tested to reach to growth rate close to which was recorded from the cultivation on 

synthetic medium (MBL). The research reached to the conclusion that a mixture between 

synthetic medium (MBL) and non-sterilized agriculture wastewater under indirect sunlight 

(16:8 light to dark cycle) achieved a growth rate close to the growth rate from cultivation on a 

pure synthetic medium (MBL). Regarding total lipids, The non-sterilizer agriculture 

wastewater and MBL mixture achieved the highest results after fourteen cultivation days. Both 

growth rates and total lipid results prove that a mixture between agriculture wastewater and 

synthetic medium (MBL) can be utilized as a substitution for the pure MBL medium. This 

substitution will support the objective of reducing the total cost for producing biofuel from 

microalgae. 
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CHAPTER 1 - INTRODUCTION 

1.1 HISTORICAL BACKGROUND 

Humankind relied on energy since the dawn of time to maintain its survival. At the 

beginning we needed heat to survive cold weather; sun, burned wood, straw, and dried dung 

were the primary sources of energy for heating. Humankind always has the ambition to explore 

the world and energy is needed to power transportation means for such exploration purpose. 

Muscle of horses and wind were the first forms of energy for transportation which helped 

humankind to explore the world. By the era of ancient Alexandria simple machines that used 

steam as a source of energy were developed which gradually reduced the reliance on animal 

power to do the work. The evolution of steam engines continued to ramp up till the mid-1700s 

when Thomas Newcomen and James Watt developed the primary form of modern steam 

engines. Coal extracted from mines in England was capable of powering steam engines for 

doing works of dozens of horses. Steam engines powered by coal started to provide energy for 

locomotives, factories, and farms.  

In 1880, coal was first used to generate electricity when Thomas Edison provided 

electricity to Wall Street financiers and the New York Times. By the late 1800s, petroleum 

started to evolve. The spread of petroleum utilization was accompanied by concerns from the 

community as contamination of drinking wells was observed.  

The turnout to petroleum oil grudgingly increased as the whale oil industry started to 

decline. Petroleum oil was initially used to light streets. By the early twentieth century, the 

processing of petroleum oil into gasoline was started, and the internal combustion engines era 

has begun. The first commercial well was drilled in 1859 by Edwin Drakes in Pennsylvania it 

was a first time to use steam engines in drilling. 
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Figure 1: Edwin drake's oil well in Titusville 

(American Oil & Gas Historical Society) 

1.2 THE GLOBAL ENERGY SHORTAGE AND THE SOLUTION 

As the world’s population increases so do the global petroleum consumption. Figure 

two shows statistics from the Energy Information Administration presents the world total 

petroleum consumption over the years.  

 

Figure 2: Total petroleum consumption 

(U.S. Energy Information Administration) 



 

  

3 
 

Humankind recognized that relying on petroleum-derived fuels is unsustainable since 

they are generated from depleting resources. Alternatively, fuel products that are generated 

from biological resources can be an excellent replacement to fossil fuels; not just because they 

have renewable nature, but they also help in reducing the greenhouse gases (GHGs) 

accumulation in the atmosphere (Posten & Schaub, 2009).  

Although using terrestrial crops as biomass source to generate biofuel is considered as 

an environmentally friendly solution for power generation, yet it has its constraints such as the 

utilization of the available land for the cultivation of food crops versus crops for biofuel 

production.  Microalgae overcome this constraint as it can generate more biomass than 

terrestrial crops for the same cultivation space. Algae can yield 61,000 L / ha compared to 200 

L / ha from soya and 450 L / ha from canola crops (Duan & Savage, 2011). Microalgae have a 

high yield rate as it can double its biomass within 24 hrs. 

1.3 MICROALGAE AS A RENEWABLE SOURCE FOR BIOFUEL 

Researches over the years have proven microalgae to be a very promising renewable source 

for useful bio-products, and biofuels (Horsman et al., 2008). Microalgae can help to reduce the 

carbon footprint from different emission sources as microalgae rely on carbon dioxide (CO2) 

in its photosynthetic process. Microalgae utilize the energy from the light to convert the carbon 

into lipid in a process called carbon fixation. It has been proven that for every 1 lb. Produced 

from microalgae a 1.8 lb. from CO2 can be sequestered (Keffer & Kleinheinz, 2002). Since the 

1970s, microalgae have been studied as an alternative source for fossil fuel; however, the 

excessive cost of production prohibited the enlargement to the commercial scale.  

In 1980s research resumed, and nowadays different biofuel products can be produced by 

using microalgae such as Biodiesel, Bio-syngas, Bio-oil, and Bio-hydrogen (Horsman, Wu, 

Lan, & Dubois‐Calero, 2008).  When comparing biofuels that are produced from plants to those 
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produced from microalgae, we will notice that the latest has better properties regarding caloric 

values. 

Microalgae biofuels have low viscosities and low densities which gives them an advantage 

over plants biofuels (Miao & Wu, 2004). Recently microalgae have been considered as the 

most promising renewable source for the production of biofuel for many reasons; of which the 

most important are ( (Campbell & Duncan, 1997); (Chisti, 2007); (Huntley & Redalje, 2007); 

(Schenk, et al., 2008); (Li Y. , Horsman, Wu, Lan, & Dubois-Calero, 2008); (Rodolfi, et al., 

2009); (Khan, Rashmi, Prasad, & Banerjee, 2009)): 

- Higher photon conversion efficiency in comparison to plants (approximately 3–8% 

against 0.5% for terrestrial plants) results in higher growth rate; 

- High carbon fixation capacity; 

- Ability to grow in salt & wastewaters which in returns reduces the requirement for fresh 

water; 

- Microalgae can utilize nutrients, e.g., nitrogen & phosphorus, in agriculture, and 

municipal wastewater which can reduce the chemicals needed for cultivation along with 

bioremediation of wastewater; 

- There are no particular specifications for the cultivation land which leave arable lands 

for the cultivation of feedstocks; 

- The production of microalgae can be easily customized according to the operational 

skills, and technology available; 

- Microalgae cultivation does not require fertilizers, or pesticides which reduce the 

number of wastes, and pollutants generated; 

- Relying on microalgae for biofuel production will help in reducing the number of 

nitrogen oxides released (Li Y. , Horsman, Wu, Lan, & Dubois-Calero, 2008). 
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1.4 CHLORELLA VULGARIS POTENTIAL FOR BIOFUEL PRODUCTION 

The driving factor behind the cultivation process toward biofuel production is the lipid 

productivity which is the product of biomass productivity, and lipid content. Many types of 

research have been conducted around the world to find the microalgae strain with high cell 

growth, and high lipid content; this is necessarily required for the economic feasibility of 

biodiesel production from microalgae. Generally, microalgae that are used for biofuel 

production can be classified based on lipid productivity, and biomass productivity. Table (1) 

shows lipid and biomass productivity for two widely used strains. 

Table 1: Lipid and biomass productivity for Botryococcus braunii and Chlorella vulgaris 

(Dayananda, Sarada, et al., 2007 & Griffiths & Harrison, 2009) 

Microalgae Lipid Productivity Biomass productivity 

Botryococcus Braunii 

(Dayananda, Sarada, et al., 

2007) 

Hight 

(lipid content of 50%) 

Low 

(28 mg L-1 d-1) 

Chlorella vulgaris 

(Griffiths & Harrison, 2009) 

Low 

((lipid content of 20%) 

High 

(short doubling time of 19 h) 

 

Researches proved that utilizing microalgae with high lipid content, but with low mass 

productivity results ultimately in low oil productivity. On the other hand, Chlorella vulgaris 

has proven to be a very promising strain for the biodiesel production due to its high biomass 

productivity, and ease of cultivation process, along with its ability to adapt in various 

cultivation media (Huntley & Redalje, 2006).  
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1.5 CULTIVATION OF CHLORELLA VULGARIS IN WASTEWATER  

Like in any other medium, many variables shall be controlled to ensure efficient cultivation 

of Chlorella vulgaris in wastewater medium. The following is a list of parameters that need to 

be adjusted before cultivation: - 

- pH 

- Temperature 

- Nutrients Concentration (Nitrogen, Phosphorus, and Organic Carbon) and the ration 

between them 

- Lighting 

- Oxygen, and CO2 

The main characteristic of wastewater that differentiates it from other cultivation medium is its 

high concentration of Nitrogen (NH3, No3
-, No2

-) and Phosphorous nutrients. However, excess 

concentration of Nitrogen, usually in the form of Ammonia, lead to inhibition in the growth of 

Microalgae. (Ip, Bridger, Chin, Martin, & Raper, 1982). 

The presence of other microorganisms in wastewater may compete with microalgae on 

available nutrients in the medium which in return lead to inhibition of the microalgae growth. 

Also, it was found that the starting density of microalgae in the wastewater medium affects the 

growth of the whole population (Lau, Tam, & Wong 1995) 

There are variances in the tolerance of microalgae species for being cultivated in 

different wastewater medium. Chlorophytes microalgae, especially Chlorella vulgaris are very 

efficient in accumulating Nitrogen, and Phosphorus from wastewater (Travieso, Benitez, & 

Dupeiron, 1992) 
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1.6 OTHER APPLICATIONS & USE OF MICROALGAE 

1.6.1 USE OF MICROALGAE FOR WASTEWATER TREATMENT 

Cultivating microalgae on wastewater combines the goals of providing microalgae with 

required nutrients for its growth and treat the wastewater by consuming pollutants from the 

wastewater stream (Andersen, 2005). Effluent streams from wastewater treatment plants are 

still rich with nitrogen, and phosphorous which if left to be discharged to waterways will 

generate unwanted algae blooms, and cause eutrophication effect (Sebnem, 2006). Utilizing 

algae for wastewater treatment has many advantages (Becker, 2004), of which are: 

- It provides a feasible method for nutrients recycling as algae biomass which in return 

will reduce the treatment cost 

- The discharged effluent streams to water bodies are much more abundant with Oxygen 

The efficiency of utilizing Chlorella vulgaris in treating agriculture and municipal wastewaters 

is out of this research scope. 

(Shijian Ge, 2018) proved that almost complete nitrogen and phosphorus could be removed 

from wastewater (> 99% for both total nitrogen and PO43−-P) through autotrophic, and 

mixotrophic cultivation with the addition of glucose during the exponential phase. 

1.6.2 USE OF MICROALGAE FOR COSMECEUTICAL APPLICATION 

Cosmeceuticals products are designed for the health and beauty of the skin. With the 

increasing demand for harmless Cosmeceuticals products, antioxidants generated from natural 

resources have to gain more prominent attention. Recently Tetraselmis tetrathele microalgae 

has been strongly nominated as a natural resource for Cosmeceuticals products due to its high 

antioxidant contents.   (Farahin A. W., 2018) Concluded that Tetraselmis tetrathele is a very 
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promising bioactive compound for the manufacturing of nano cosmeceutical products due to 

Tetraselmis tetrathele high homogeneity and stability. 

1.7 RESEARCH MOTIVATION 

One of the causes behind the high cost for producing biodiesel from microalgae is the 

cost of the chemicals that are required for the cultivation process. This research is motivated 

with ambitious to reduce the cultivation cost for microalgae by substitute the required 

chemicals with nitrogen, and phosphorus elements that exist in wastewater streams.    

1.8 RESEARCH QUESTIONS 

 A. Can the optimization of cultivation conditions support Chlorella vulgaris to grow in 

agriculture and municipal wastewaters and reach high growth rates? 

 B. What are the cultivation conditions for Chlorella vulgaris to achieve high growth 

rates in both agriculture and municipal wastewaters? 

1.9 RESEARCH OBJECTIVE 

This research aims to maximize the growth rate of Chlorella vulgaris in agriculture and 

municipal wastewaters by investigating the parameters affecting the growth rate of C. vulgaris. 

The aim is to utilize agriculture and municipal wastewaters as an alternative to the pure 

synthetic medium (MBL) in which chemicals are added to provide microalgae with required 

nutrients. This substitution should support the reduction in the overall cost of producing 

biofuels from microalgae. 
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CHAPTER 2 - LITERATURE REVIEW 

2.1 FACTORS AFFECTING THE GROWTH RATE OF MICROALGAE 

 Like any other plant, microalgae use the photosynthetic process to utilize the energy in 

light for the conversion of carbon in the air into lipid. Different factors affect the photosynthetic 

process and the growth rate of the microalgae as following: 

2.1.1 CARBON SOURCE 

The carbon source is considered the most critical factor which affects the growth rate 

of microalgae. Carbon fixation through the photosynthetic process in microalgae can happen 

autotrophically in which microalgae extract the required carbon source from the inorganic 

carbon in carbon dioxide  (Ren, et al., 2010) . Other microalgae species can perform the carbon 

fixation heterotrophically in which the microalgae rely on the organic carbon source in the 

growth medium with the presence or absence of light. Some microalgae can utilize carbon from 

both inorganic and organic sources which described as mixotrophic (Chojnacka & Noworyta, 

2004). Regarding the enlargement of microalgae cultivation for commercial scale, autotrophic 

cultivation is still dominant due to the elimination of extra cost by adding a source for organic 

carbon to the growth medium.  

2.1.2 NITROGEN SOURCE 

Researches have proven that cultivating microalgae with the limitation of nitrogen 

source causes remarkable accumulation of lipid content in microalgae (Mandal & Mallick, 

2009). In a comparison between cultivating microalgae of varied species under normal 

cultivation condition and nitrogen starvation cultivation conditions, (Hu, et al., 2008) proved 

that cultivation with nitrogen deficiency increased lipid content in microalgae by 10 - 20 %.   
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Microalgae convert nitrogen from its starch form to lipid as a long-term storage 

mechanism for energy (Siaut, et al., 2011). However, it is very crucial to be aware that putting 

the microalgae on starvation mode to increase the lipid content does not come with no cost; the 

drawback of the nitrogen starvation mode is a deterioration in the microalgae growth rate. 

Therefore, to achieve a high growth rate with high lipid content, a balance between cultivation 

with regular nitrogen content, and deficient nitrogen content should be achieved. 

2.1.3 LIGHTING 

Lighting wavelength is one of the most affecting factors in the growth of microalgae 

(Terry, 1986). The intensity of light can significantly stimulate or inhibit the growth of 

microalgae. Researchers have proven that the effect of lighting intensity on the growth rate of 

microalgae can be divided into three phases: light limitation, light saturation, and light 

inhabitation (Ogbonna & Tanaka, 2000). Figure 3 shows the relation between the lighting 

intensity and the growth rate. 

 
Figure 3: Effect of light intensity on the growth rate of microalgae 

(Ogbonna and Tanaka, 2000). 

 

For maximum biomass productivity, the light with saturation intensity needs to be 

distributed among the photobioreactor. However, this is impossible because the higher the 

distance from the source of light the lower the light intensity. This reverse proportional between 

the distance from lighting source and lighting intensity is due to the light shading effect that is 
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caused by the increase in the cell concentration. To overcome the lighting distribution 

challenge inside the photobioreactor, mixing of the growth media can be used to reduce the 

effect of light shading inside the photobioreactor.  

2.1.4 CARBON DIOXIDE (CO2) CONCENTRATION 

The concentration of CO2 can affect the growth rate and the lipid accumulation in 

microalgae. When the CO2 percentage increased from 0.035 % to .28%, the lipid content of 

Nannochloropsis sp. Increased (Hu & Gao, 2003). On the other hand, the concentration of CO2 

may adversely affect the growth rate, and lipid accumulation if increased above a certain 

percentage. (Hsueh, Li, Chen, & Chu, 2003) Reported that when the CO2 % in the air (0.04%) 

increased to 8 % both the biomass, and the lipid content of Nannochloropsis increased, but 

when the CO2 reached to 10 % a decline in the both was noticed. For Chlorella vulgaris, the 

optimum CO2 % range that stimulates high lipid accumulation is 2% - 5% (Chiu, et al., 2008). 

Moreover, it has been reported by (Cheng, Zhang, Chen, & Gao, 2006) that the maximum 

carbon fixation rate in Chlorella vulgaris was achieved at a CO2 concentration of 1%.  

2.1. 5 TEMPERATURE 

Temperature could impose a significant effect on the cultivation of microalgae on a 

commercial scale, especially with open ponds system. The temperature of the cultivation 

environment varies between day and night, and from season to another. The microalgae growth 

rate will be promoted when microalgae are provided with the appropriate temperature range; 

on the other hand, increase of temperature above the allowable range will inhabit the growth 

of microalgae due to the change in the protein/enzyme nature, and the cellular physiological 

changes (Pandey, Lee, Chisti, & Soccol, 2003). It has been reported that Chaetoceros sp. 

Showed a higher growth rate when the cultivation condition was controlled in a temperature 

range of 25 - 30 oC (Renaud, Thinh, Lambrinidis, & Parry, 2002). In a study for the influence 
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of the temperature of Chlorella vulgaris, the results suggested that the highest mortality was 

achieved at a temperature range 20 – 28 oC (Serra-Maia, Bernard, Gonçalves, Bensalem, & 

Lopes, 2016).  

2.1.6 PH 

pH is one of the cultivation conditions that should be controlled to maintain a suitable 

environment for microalgae to grow. The optimal pH for most microalgae species falls in the 

range between 7 – 9 (Lavens & Sorgeloos, 1996). It is essential to maintain the pH within the 

accepted range to avoid disruption to the microalgae cell wall; moreover, pH affects the 

biochemical reaction in the microalgae. pH also is a crucial factor in utilizing CO2 gas as a 

source of carbon for microalgae; as when the CO2 gas is fed to the cultivation medium it 

dissolves, and form (HCO3-); this conversation is wholly depended on the pH of the medium.    

2.1.7 SALINITY 

Many types of research on microalgae showed interest in studying its ability to grow in 

the marine environment. Microalgae can equalize the osmotic stress in the cultivation medium. 

It has been found that marine species of microalgae can tolerate salinity concentration in the 

surrounding medium up to 1.7 M (Pandey, Chisti, Lee, & Soccol, 2013). However, researchers 

concluded that salinity 35% or higher, which is standard in seawater, prohibit the growth of 

microalgae, and the photosynthesis process (Jacob, O.Kirst, Wiencke, & Lehmann, 1991). 

2.2 THE MICROALGAE – BACTERIA SYMBIOSIS  

Microalgae and bacteria have a synergistic effect to each other on both the physiological 

and metabolism scale. In the paste, bacteria were considered as a contamination in the 

microalgae cultivation media. However, this perception has changed with the discovery of 
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microalgae – bacteria symbiosis, and its benefit for biotechnology. Recent studies have proven 

the positive effect of microalgae – bacteria symbiosis on the algae growth rate (Fuentes, 2016). 

In the microalgae – bacteria symbiosis, microalgae give off dissolved organic matters 

(DOMs) as sources of carbon, Sulphur, nitrogen, or phosphorus to bacteria which in return 

remineralize these organic nutrients to its inorganic states which are required for the 

microalgae growth (Buchan et al., 2014). Moreover, the bacteria provide microalgae with B 

vitamins, while the algae provide the bacteria with the fixed carbon in the form of dissolved 

organic carbon (DOC) (Croft et al. 2005) as demonstrated in Figure (4). 

 

 

Figure 4: The microalgal – bacteria symbiosis effect 

(Yao., et al., 2018) 

2.3 MICROALGAE CULTIVATION SYSTEMS 

The selection of the cultivation system has a significant impact on the production cost 

for the microalgae which is not commercially feasible to compete with diesel from fossil fuel. 

Of the reasons for this excessive cost is the design of the photobioreactor, the supporting 
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systems, and the required energy input. The concept of photobioreactor for autotrophic 

cultivation of microalgae is familiar between opened and closed system which mainly to 

provide microalgae with proper mixing, lighting intensity, and gas transfer. Although the 

opened system has a lower cost in comparison to the closed system; however, it is much 

exposed to contamination due to the free gas exchange with the surrounding environment. 

Other downsides for opened systems are the cultivation conditions poorly controlled, and the 

growth rate is lower than the closed system. Table (2) shows the advantages, and disadvantages 

of both opened and closed systems. 

Table 2: Advantages and disadvantages of cultivation systems for microalgae 

 (Pulz, 2001) 

 

On the other hand, opened systems are less involved regarding operation than in closed 

systems. For cultivating microalgae to achieve specific product specifications, a closed system 

can achieve better results as it allows better control of the cultivation conditions. 
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2.3.1 OPENED SYSTEMS 

Opened systems exist in the form of the raceway, shallow big, or circular (Masojídek 

& Torzillo, 2008). The oldest opened system is the circular type which has centrally rotating 

agitator like the water treatment tanks. The area of the circular type open pond is limited to 

10,000 m2 as increasing the area above this limit will lead to uneven mixing by the rotating 

arms. 

 

Figure 5: Circular open pond system 

(Making Biodiesel Books) 

Raceway ponds are the most conventional opened system due to its lower cost 

compared to circular ponds. Raceway ponds are constructed of closed loops with oval shape 

recirculation channels. The raceway is characterized by their shallow depth (0.2 – 0.5 m) to 

allow better penetration of sunlight to the cultivation medium (Ugwu, Aoyagi, & Uchiyama, 

2008). 
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Figure 6: Raceway open pond 

(Meristem Journeys) 

The opened system still has the privilege of producing microalgae products at a lower 

cost such as biofuel. However, for other products with a high value such as pharmaceutical, 

cosmetics products a controlled cultivation condition can only be achieved by closed systems.   

2.3.2 CLOSED SYSTEM 

The term Closed refers to the system in which no direct gas exchange with the 

surrounding environment which minimizes the possibility for contamination. One type of the 

closed system is the vertical column photobioreactor which consists of vertical tubing, mainly 

glass, to allow penetration of light through the cultivation medium. The vertical column 

photobioreactor has the gas system installed at its bottom which converts the gas into tiny 

bubbles which provide the cultivation medium with mixing, carbon dioxide, and removal of 

oxygen that is produced by microalgae in the photosynthetic process. 
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Figure 7: Vertical column photobioreactor 

 (Capital Energy) 

 

Another type of closed system is the flat panel photobioreactor which consists of 

transparent flat plates that which illuminate on both sides, and mixing is provided by aeration 

as in the vertical column photobioreactor. The flat panel photobioreactor can be constructed to 

the desired light path; however, the downside of this system is it required large space, more 

lighting power than other systems, and it is difficult to be cleaned; never the less, it has lower 

efficiency of mass production (Slegers, 2011). 

 

Figure 8: Flat plate photobioreactor 

(Capital Energy) 
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The most commercially used closed system is the Horizontal Tubular Photobioreactor 

which is made from small diameter tubes of polypropylene or polyvinylchloride.  

The idea below the small diameter is to allow for efficient penetration of light through 

the cultivation medium, and like other closed systems, mixing is provided by aeration which is 

derived by an air pump. The most significant feature of the tubular system is its high air 

residence time which introduces more dissolved CO2 to the cultivation medium. Also, the 

tubular system can utilize both artificial, and sunlight. 

 

Figure 9: Horizontal tubular photobioreactor 

 (Capital Energy) 

 

2.3.3 OVERALL LOOK FOR THE MICROALGAE CULTIVATION SYSTEMS 

Despite its low construction, and operation costs, opened systems require land space, 

and is more exposure to contamination risks; moreover, since there is no control especially for 

temperature in opened systems, it is widely dependent on the temperature of the weather; 

therefore, it is not possible to use it in cold regions of the world. On the other hand, closed 

systems provide more control on the cultivation environment, yet its excessive cost is the main 

barrier for being commercially feasible for mass production of microalgae products.  Table (3) 

demonstrates the prospects, and limitations of the most commonly used cultivation systems 

(Ugwu, Aoyagi, & Uchiyama, 2008). 
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Table 3: Prospects and limitations of commonly used microalgae cultivation systems 

(Pandey, Chisti, Lee, & Soccol, 2013) 

 

2.4 LIPID PRODUCTIVITY AND MICROALGAE SPECIES SELECTION 

Lipid productivity is a factor of microalgae growth rate, and lipid content. Microalgae 

species designated for lipid production can be divided into two categories; first, microalgae 

with high lipid content but low growth rate such as e Botryococcus Braunii which has lipid 

content of 50 %, but low growth rate of 28 mg L-1 d-1, (Dayananda, Sarada, Rani, Shamala, 

& Ravishankar, 2007) Second, Chlorella vulgaris  with low lipid content of 20 %, but its 

biomass is doubled every 19 hours (Griffiths & Harrison, 2009). Lipid content can be presented 

as a product of biomass productivity and lipid content 

 

 

Lipid productivity = biomass productivity x lipid content  
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In general cultivation condition of Chlorella vulgaris, the culture life cycle was 14 days, 

and the lipid productivity is 14.9 mg L-1 d-1 as reported by (Illman, Scragg, & Shales, 2000). 

However, (Lv, Cheng, Xu, Zhang, & Chena, 2010) enhanced the cultivation conditions for 

Chlorella vulgaris and could achieve lipid productivity of 40 mg L-1 d-1. Also in heterotrophic 

cultivation of Chlorella Protothecoides, (Xiong, Li, Xiang, & Wu, 2008) reached to lipid 

productivity of 1210 mg L-1 d-1.  

The nitrogen deprivation stimulates the lipid accumulation in microalgae. Lipid content 

in Chlorella vulgaris can reach up to 40 % with deprivation in Nitrogen compared to 18 % with 

normal conditions (Illman, Scragg, & Shales, 2000). However, the decrees in Nitrogen 

concentration is accompanied by a decrease in the growth rate for the microalgae (Rodolfi, et 

al., 2009). The Nitrogen level of 5 mM considered as the minimum acceptable level for 

microalgae to grow (Li Y. , Horsman, Wang, Wu, & Lan, 2008). In studying the effect of 

Nitrogen level, (Li Y. , Horsman, Wang, Wu, & Lan, 2008) noticed that in cultivating 

Neochloris Oleoabundans the NaNO3 range of 3 – 20 mM was tested. It was noticed that the 

height lipid productivity was achieved at 5mM NaNO3, while the highest lipid content was 

achieved at three mM NaNO3. 

2.5 THE EFFECT OF PESTICIDES IN AGRICULTURE WASTEWATER 

 Due to the varsity of food crops concerning the seasonality of the cultivation process, 

different pesticides may be used which in turn will be introduced into the agriculture 

wastewater stream. Below are the most used active ingredients in pesticides products:   

Nonylphenol (NP) usually used as intermediate in the manufacturing of non-ionic 

surfactants nonylphenol ethoxylates which are used in pesticides. The existence of NP in the 

agriculture wastewater medium inhibits the growth rate of C. vulgaris, decrease chlorophyll 
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content, and overproduce Reactive Oxygen Species (ROS) which destroy the C. vulgaris 

membrane system (Haifeng Qian, 2011) 

Pentachlorophenol (PCP) is the most toxic member in the Chlorophenols (CPs) as it 

has a high number of chlorine atoms. PCP is widely used with pesticides and is considered a 

primary pollutant source due to its long half-life, and its harmful effect at low concentrations  

(Paulode Moraisa, 2014) proved that PCP inhibited the growth of C. vulgaris in all 

concentration levels above 0.99 µg L-1. 

 Topramezone has been recently selected as herbicide due to its pyrazole structure, and 

its ability to eliminate different broadleaf weeds and annual grass. Applying Topramezone to 

agriculture crops cause a significant increase of such herbicide in the agriculture wastewater. 

Research has proven that Topramezone is capable of affecting the cell morphology, and 

photosynthetic process in Chlorella vulgaris; moreover, Topramezone induces Reactive 

Oxygen Species (ROS) cause damage to C. vulgaris membrane through lipid peroxidation  

(Fangfang Zhaoa, 2017) 

Boscalid as the most widely used pesticide of Succinate dehydrogenase inhibitor (SDHI) 

has a significant role in protecting agriculture crops from many plant diseases through the 

inhibition of fungal respiration. However, (Le Qian, 2018) proved that Boscalid at a 

concentration of 1.6 mg/L had inhibited the Chlorella vulgaris growth rate and affected its 

content of chlorophyll and carotenoids. 
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2.6 FEASIBILITY ASSESSMENT FOR GENERATING MICROALGAE FROM 

CHLORELLA VULGARIS  

In a trial for an approximation for industrial operation (Juan J. Jaramillo et al., 2012) 

calculated the mass and energy balance for producing oil and cake from Chlorella vulgaris by 

simulation. In their simulation (Juan J. Jaramillo et al., 2012) utilized CO2 emitted from the 

rice husk processing. Figure(10) proposes the algae processing system, and the mass and 

energy balance is presented in Table (4).  

The simulation gave a yield of 0.37 kg of oil and 0.63 kg of cake per kilogram of 

microalgae biomass. The model utilized generated energy from the rice husk industry to supply 

the Chlorella vulgaris processing system with 86% of the required energy. The economic 

evaluation of the cultivation and extraction of Chlorella vulgaris are presented in Table (5). 

The economic study for the model showed a production cost of 0.56 USD/kg for oil 

and 0.33 USD/kg for cake. Figure (11) represents the cost distribution for the cultivation of 

Chlorella vulgaris and oil extraction in which 33% of raw materials cost goes to the 

formulation of the growth media, 57.14% goes for the light cost and maintenance, and 9.52% 

for gas pretreatment. (Juan J. Jaramillo et al., 2012) flagged the importance of finding the 

inexpensive nutrient source as a replacement for the formulated media, e.g., utilizing 

wastewater.  (Juan J. Jaramillo et al., 2012) concluded that the cost of microalgae oil generated 

from Chlorella vulgaris is 0.504 USD/L. 
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Figure 10: Cultivation and extraction flowsheet for Chlorella vulgaris 

 (Juan J. Jaramillo, et al, 2012) 

Table 4: Mass and energy balances of the cultivation of Chlorella vulgaris 

 (Juan J. Jaramillo et al., 2012) 
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Table 5: The economic evaluation of the cultivation and extraction of Chlorella vulgaris 

 (Juan J. Jaramillo et al., 2012) 

 

 

 

Figure 11: Cost distribution of Chlorella vulgaris cultivation 

(Juan J. Jaramillo et al., 2012) 



 

  

25 
 

2.7 CULTIVATING OTHER MICROALGAE STRAINS IN WASTEWATER 

In a study for the growth of nine microalgae strains, blue and green microalgae, (Mostafa 

S. S. M., 2012) proved the concept of cultivating microalgae in wastewater for the combined 

objective of nutrients removal, and lipid production to be used as feedstock for biodiesel. The 

nine strains were cultivated on secondary treated municipal wastewater. Four streams were 

tested in (Mostafa S. S. M., 2012) as follows: 

• T1: wastewater without nutrients or sterilization 

• T2: wastewater with sterilization 

• T3: wastewater + nutrients with sterilization 

• T4: wastewater + nutrients without sterilization 

Table (6) represents the dry weight of different microalgal species cultivated in different 

wastewater treatments. (Mostafa S. S. M., 2012) concluded that wastewater without nutrients 

or sterilization (T1) are suitable for the cultivation of (Nostoc humifusum), wastewater with 

sterilization (T2) are suitable for the cultivation of (Oscillatoria sp, and Phormium fragile), 

wastewater + nutrients with sterilization (T3) are suitable for the cultivation of (Nostoc 

muscorum, Anabaena flows aquae, Chlorella vulgaris, Spirulina platensis, Wollea saccate), 

and wastewater + nutrients without sterilization (T4) are suitable for the cultivation of 

(Anabaena oryzae) 

Table 6: Dry weight of microalgal species cultivated in different wastewater treatments 

(Mostafa S. S. M., 2012) 
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2.8 THE EFFECT OF OTHER MICROORGANISMS ON MICROALGAE 

Other microorganisms in non-sterilized cultivation media, such as fungal, bacterial and 

amoebic species, can cause a challenge for the cultivation of microalgae (Mendes, 2013; 

Carney, 2014). A very well know algal parasites are Fungi and fungal-like organism 

(oomycetes, labyrinthulids) (Carney, 2014). Figure (12) depict microscopic examination of 

algal culture contaminated with a protozoan. (A-C) The sequence of events depicting the 

predatory activity of protozoan strain over the alga glamor; (D-G) Motion of protozoan 

towards the green alga for feeding and finally away from it and (H-I) Presence of microalgal 

cells within the predatory protozoan (Wahi, 2018) 

 

Figure 12: Predatory action of protozoa on Chlorella vulgaris 

(Wahi, 2018) 
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CHAPTER 3 - EXPERIMENTAL METHOD 

 

The experimental method for this research is divided into the following sections: 

- Preparation of Woods Hole MBL synthetic medium, and initial inoculation phase 

- Investigating the parameters affecting the growth rate of Chlorella vulgaris 

- Enlargement phase 

- Total lipid measurement 

3.1 PREPARATION OF WOODS HOLE MBL SYNTHETIC MEDIUM, AND 

INOCULATION PHASE 

Chlorella vulgaris strain was obtained from Phycology laboratory, Botany and 

Microbiology Department, Faculty of Science, Alexandria University. Stock solutions were 

prepared from chemicals in Table (7). Stock solutions were stored in a refrigerator at 4 oC. 

Table 7: Woods Hole MBL medium recipe 

 (Nichols, 1973) 

 

To prepare MBL medium, one mL of each stock solution (1–11) was added to one liter 

of distilled water. 
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The axenic unicellular algae (Chlorella vulgaris) was initially inoculated in 250 ml 

flask by adding 5 ml from the Chlorella vulgaris aliquot to 100 ml of synthetic medium (MBL) 

as demonstrated in Figure (13). pH was adjusted to 7.2 using hydrochloric acid, and the 

medium was sterilized in an autoclave for 15 min (15 PSI, 121.11 oC). The initial inoculation 

served as culture stock for further experiments. Inoculation was conducted under controlled 

laboratory conditions (temperature at 22 (+/- 3) oC, and light intensity at 80 µ mol m-2 S-1) in a 

culturing chamber. The inoculation was conducted under a regime of 16:8 light to dark cycle. 

 

Figure 13: Initial inoculation of Chlorella vulgaris 

 

3.2 INVESTIGATING THE PARAMETERS AFFECTING THE GROWTH RATE OF 

CHLORELLA VULGARIS 

The objective from this step was to test different cultivation conditions for Chlorella 

vulgaris using two wastewater streams (Agriculture & Municipal) and benchmark the growth 

rate with that recorded from cultivation on the synthetic medium (MBL). Agriculture 

Wastewater was obtained from an agriculture drainage canal in Idku city, Bahira governate 

while municipal Wastewater was obtained from Katamya Heights Wastewater Treatment Plant 

in the fifth settlement, Cairo governate. The later was collected after the secondary treatment, 
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and before the chlorination step. It is worth to mention that the collected agriculture wastewater 

was in October during which citric crops were cultivated; a variety in the collected agriculture 

wastewater may occur due to the difference between crops’ need in different seasons.    

Fifteen experiments were started simultaneously and continued for 35 days as explained 

in Table (8). For each experiment, 100 mL of the testing medium was added to a 250 mL flask, 

and 5 mL of the Chlorella vulgaris was added to each flask. pH of the medium was maintained 

in the range of 7 - 7.5, with a temperature range of 22 (+/- 3) oC. Some experiments were 

performed under indirect sunlight (16:8 light to dark cycle) (Cheirsilp & Torpee, 2012), while 

others were performed under led light by using UTEX RGB-LED Lighting Platform which has 

60 total LED Lights (five rows of twelve) with 43,200 millicandela (MCD) output as 

demonstrated in Figure (14).  The UTEX RGB-LED Lighting Platform was obtained from the 

University of Texas at Austin, USA. 

 For experiments where the illumination source was led light, the lighting color and 

illumination duration were examined as well.  

 Altering the purity of the medium was also tested between sterilized vs. non-sterilized, 

and pure wastewater medium vs. a mixture of wastewater and a synthetic medium.  
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Figure 14: UTEX RGB-Led lighting platform 

 (The University of Texas at Austin) 
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Table 8: Experiments objectives and tested cultivation conditions 

  

Experiment 

No. 
Objective 

Cultivation 

Medium 

pH 

Range 

Temperature 

Range 

Light 

Source 

Light 

Color 

Illumination 

Hours 

1 

Cultivating C. vulgaris on (MBL) synthetic 

medium to use its growth rate as a 

benchmark for other experiments 

synthetic medium 

(MBL) 
7 – 7.5 22 (+/- 3) oC Sunlight Sunlight 

16:8 light to 

dark cycle 

Cultivation on Agriculture Wastewater 

2 

Cultivating C. vulgaris on sterilized 

agriculture wastewater under indirect 

sunlight and compare the growth rate with 

what is recorded from cultivation on 

synthetic medium (MBL) in an experiment 

(1). 

sterilized 

agriculture 

wastewater 
7 – 7.5 22 (+/- 3) oC Sunlight Sunlight 

16:8 light to 

dark cycle 

3 

Cultivating C. vulgaris on non-sterilized 

agriculture wastewater under indirect 

sunlight and compare the growth rate with 

what is recorded from cultivation on 

synthetic medium (MBL) in the experiment 

(1). 

non-sterilized 

agriculture 

wastewater 
7 – 7.5 22 (+/- 3) oC Sunlight Sunlight 

16:8 light to 

dark cycle 

4 

Cultivating C. vulgaris on sterilized 

agriculture wastewater in led light with a 

blue wavelength and exposure time of 24 

hrs./d. Moreover, compare the growth rate 

with what is recorded from cultivation on 

synthetic medium (MBL) in the experiment 

(1). 

sterilized 

agriculture 

wastewater 
7 – 7.5 22 (+/- 3) oC Led light Blue 24 
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5 

Cultivating C. vulgaris on 

sterilized agriculture wastewater 

in led light with a white 

wavelength and exposure time of 

24 hrs./d. Moreover, compare the 

growth rate with what is recorded 

from cultivation on synthetic 

medium (MBL) in the experiment 

(1). 

sterilized agriculture 

wastewater 
7 – 7.5 22 (+/- 3) oC Led light White 24 

6 

Cultivating C. vulgaris on a 

mixture between sterilized 

agriculture wastewater, and 

synthetic medium (MBL) under 

indirect sunlight and compare the 

growth rate with what is recorded 

from cultivation on synthetic 

medium (MBL) in an experiment 

(1). 

75 ml - sterilized 

agriculture 

wastewater 

25 ml - Synthetic 

Medium (MBL) 

7 – 7.5 22 (+/- 3) oC Sunlight Sunlight 
16:8 light to 

dark cycle 

7 

Cultivating C. vulgaris on a 

mixture between non-sterilized 

agriculture wastewater, and 

synthetic medium (MBL) under 

indirect sunlight and compare the 

growth rate with what is recorded 

from cultivation on synthetic 

medium (MBL) in the experiment 

(1). 

 

75 ml - Non-

sterilized agriculture 

wastewater 

25 ml - Synthetic 

Medium (MBL) 

7 – 7.5 22 (+/- 3) oC Sunlight Sunlight 
16:8 light to 

dark cycle 
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Cultivation on Municipal Wastewater 

8 

Cultivating C. vulgaris on non-

sterilized municipal wastewater 

under indirect sunlight and 

compare the growth rate with 

what is recorded from cultivation 

on synthetic medium (MBL) in 

an experiment (1). 

100 ml - Non-

sterilized municipal 

wastewater 
7 – 7.5 22 (+/- 3) oC Sunlight Sunlight 

16:8 light to 

dark cycle 

9 

Cultivating C. vulgaris on non-

sterilized municipal wastewater in 

led light with a white wavelength 

and exposure time of 24 hrs./d. 

Moreover, compare the growth 

rate with what is recorded from 

cultivation on synthetic medium 

(MBL) in an experiment (1). 

100 ml - Non-

sterilized municipal 

wastewater 
7 – 7.5 22 (+/- 3) oC Led light White 24 

10 

Cultivating C. vulgaris on a 

mixture between non-sterilized 

municipal wastewater, and 

synthetic medium (MBL) under 

indirect sunlight and compare the 

growth rate with what is recorded 

from cultivation on synthetic 

medium (MBL) in the experiment 

(1). 

 

75 ml - Non-

sterilized municipal 

wastewater 

25 ml - Synthetic 

Medium (MBL) 

7 – 7.5 22 (+/- 3) oC Sunlight Sunlight 
16:8 light to 

dark cycle 
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11 

Cultivating C. vulgaris on a 

mixture between non-sterilized 

municipal wastewater, and 

synthetic medium (MBL) in led 

light with a white wavelength and 

exposure time of 24 hrs./d. 

Moreover, compare the growth 

rate with what is recorded from 

cultivation on synthetic medium 

(MBL) in the experiment (1). 

 

75 ml - Non-

sterilized municipal 

wastewater 

25 ml - Synthetic 

Medium (MBL) 

7 – 7.5 22 (+/- 3) oC Led light White 24 

12 

Cultivating C. vulgaris on 

sterilized municipal wastewater 

under indirect sunlight and 

compare the growth rate with 

what is recorded from cultivation 

on synthetic medium (MBL) in 

the experiment (1). 

100 ml - sterilized 

municipal 

wastewater 
7 – 7.5 22 (+/- 3) oC Sunlight Sunlight 

16:8 light to 

dark cycle 

13 

Cultivating C. vulgaris on 

sterilized municipal wastewater in 

led light with a white wavelength 

and exposure time of 24 hrs./d. 

Moreover, compare the growth 

rate with what is recorded from 

cultivation on synthetic medium 

(MBL) in the experiment (1). 

100 ml - sterilized 

municipal 

wastewater 
7 – 7.5 22 (+/- 3) oC Led light White 24 
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14 

Cultivating C. vulgaris on a 

mixture between sterilized 

municipal wastewater, and 

synthetic medium (MBL) under 

indirect sunlight and compare the 

growth rate with what is recorded 

from cultivation on synthetic 

medium (MBL) in the experiment 

(1). 

 

75 ml - sterilized 

municipal 

wastewater 

25 ml - Synthetic 

Medium (MBL) 

7 – 7.5 22 (+/- 3) oC Sunlight Sunlight 
16:8 light to 

dark cycle 

15 

Cultivating C. vulgaris on a 

mixture between sterilized 

municipal wastewater, and 

synthetic medium (MBL) in led 

light with a white wavelength and 

exposure time of 24 hrs./d. 

Moreover, compare the growth 

rate with what is recorded from 

cultivation on synthetic medium 

(MBL) in the experiment (1). 

75 ml - sterilized 

municipal 

wastewater 

25 ml - Synthetic 

Medium (MBL) 

7 – 7.5 22 (+/- 3) oC Led light White 24 
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3.3 ENLARGEMENT PHASE 

Enlargement was performed to the experiments with the cultivation conditions that 

showed the highest dry weight (g/L) in which 25 ml of Chlorella vulgaris was cultivated in 500 

ml medium of the chosen conditions which are: 

- 75% vol. of non-sterilized agriculture wastewater mixed with 25% vol. of synthetic 

medium (MBL) in indirect sunlight under 16:8 light to dark cycle.  

- Non-sterilized municipal wastewater in indirect sunlight under 16:8 light to dark cycle. 

Three replicas were prepared for each chosen cultivation conditions to verify the 

enlargement results. Air was supplied to each flask through an air pump to generate air bubbles 

to mix the culture and increased the contact of the culture with air and the medium. Figure (15) 

represents the enlargement setup. 

 

 

Figure 15: Enlargement phase setup 
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3.4 GROWTH MEASUREMENT 

The growth of Chlorella vulgaris was measured regarding Optical Density (OD) at 680 

wavelengths using DR/2000 Spectrophotometer Figure (16) and expressed as Dry Weight (DW). 

The following equation represents the correlation between the Dry Weight (DW), and the 

Optical Density (OD) (Hongli Zheng, 2011): 

DW = 0.560 × OD680 (r
2 = 0.986) 

 

Figure 16: DR/2000 spectrophotometer 

 (Hach) 

 Moreover, calculated Dry Weight was verified by following the below steps: 

1. The weight of aluminum weighing dish was recorded 

2. 10 mL of the culture was transferred to a 15 mL centrifuge tube 

3. Chlorella vulgaris cells were pelletized by centrifugation for 3000 rpm for 5 minutes; 

using Heraeus Labofuge 200 centrifuge.  

4. The supernatant was replaced by 10 mL of distilled water 

5. Cells were centrifuged again at 1600 rpm for 5 minutes 
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6. Supernatant was discarded 

7. 1 mL of distilled water was added, and the pellets were suspended by genteelly 

pipetting them up and down. 

8. The concentrated algae were transferred to the aluminum dish  

9. The aluminum dish was placed in 50 – 60 o C oven and the weight was recorded 

every 0.5h, 1h, 1.5h until it is constant 

10. The original weight of the aluminum dish was subtracted from the new weight to 

calculate the Chlorella vulgaris dry weight   

11. The growth curve for Chlorella vulgaris was plotted. 

 

3.5 TOTAL LIPID MEASUREMENT 

Bligh and Dyer method for lipid extraction (Bligh, 1959) was used for the quantification 

of produced lipid as follows: 

1- 8 ml of Chlorella vulgaris medium was homogenized in a blender for 2 minutes 

with a mixture of 10 mL chloroform, and 20 mL methanol to reach 1:2:0.8: parts  

chloroform: methanol: water (v/v/v). 

2- Another 10 mL of chloroform was added, and the mixture was blended again for 

30 seconds 

3- 10 mL of distilled water was added, and the mixture was blended again for 30 

seconds giving a final ratio of 2:2:1.8 chloroform: methanol: water (v/v/v). 

4- The homogenate was filtered using Whatman No. 1 filter paper on a Coors No. 3 

Buchner funnel with slight suction 

5- when the residue became dry, the pressure was applied with the bottom of a beaker 

to ensure maximum recovery of solvent. 
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6- The filtrate was transferred to 50 mL graduated cylinder and allowed few minutes 

for complete separation in two phases, and the volume of the chloroform layer was 

recorded (at least 15 ml). 

7- The methanol phase was removed by a pipette, with small volume from 

chloroform to ensure complete removal of methanol phase. 

8- Three pre-weighted aluminum dishes were prepared, and to each, a 5 mL from the 

chloroform layer was added.  

9- In the fume hood, the aluminum dish was heated at low heat until the chloroform 

was evaporated, and only thin lipid layers were left 

10- The aluminum dish was dried in a drying oven at 105 oC for 15 minutes to remove 

the last trace of chloroform 

11- The aluminum dish was cooled in a desiccator for a while 

12- The aluminum dish was weighed again to calculate the lipid content 

13- The Total Lipid is calculated by the following equation (Pandey, Chisti, Lee, & 

Soccol, 2013): 
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CHAPTER 4 - RESULTS AND DISCUSSION 

 

As explained in the experimental method chapter, Chlorella vulgaris was initially 

cultivated on a synthetic medium (MBL) for 35 days in Experiment (1), and growth rate was 

measured in dry weight (g/L). The growth rate measurements as recorded from Experiment 

(1) was plotted as growth rate curve; this curve was used as a benchmark for other growth 

rates’ curves from other experiments which represent cultivations under different conditions. 

Figure (17) represents Experiment (1) growth rate’s curve in which the cultivation conditions 

were as follow: 

- Cultivation medium: synthetic medium (MBL) 

- pH range: 7 – 7.5 

- Temp range: 22 (+/- 3) oC 

- Light source: sunlight  

- Light hours: 16:8 light to dark cycle 

Figure (17) shows that the cell density in the first week is relatively slow due to the low 

inoculation ratio (small number of cells is added to the new media). In the next three weeks, the 

growth curve turns to be exponential. Chlorella vulgaris growth entered the stationary phase 

after 28 days of cultivation. Experiment (1) was not intended to depict the full life cycle of 

Chlorella vulgaris but to the benchmark growth rate in synthetic medium (MBL) against growth 

rates in other cultivation conditions.  

 

Figure 17: Growth rate curve for Chlorella vulgaris in synthetic medium (MBL) 
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4.1 STERILIZATION EFFECT ON GROWTH RATE  

In studying the sterilization effect on the growth rate, six experiments were conducted 

on agriculture and municipal wastewaters. The object of those experiments was to investigate 

whether the existence of other microorganisms in the cultivation medium will suppress the 

growth of the Chlorella vulgaris. Experiments were divided into two groups using sunlight and 

led light. 

4.1.1 STERILIZATION EFFECT IN AGRICULTURE WASTEWATER UNDER INDIRECT SUNLIGHT 

In sterilized agriculture wastewater Chlorella vulgaris was able to adapt to the new 

cultivation environment and entered the exponential phase after the first week. After fourteen 

days of cultivations, Chlorella vulgaris achieved growth rate close to the benchmark from 

Experiment (1). In the third week, Chlorella vulgaris did not continue its exponential growth 

but entered the stationary phase with a big difference from the benchmark. C. vulgaris 

consumed most of the available nutrients in the agriculture wastewater sample in the first 

fourteen days of cultivation. The remaining nutrients in agriculture wastewater did not support 

the C. vulgaris growth rate to follow the same pattern as in the synthetic media (MBL). 

On the other hand, Chlorella vulgaris in non-sterilized agriculture wastewater took 

fourteen days to move from the lag phase to the exponential phase, and after twenty-one days 

of cultivation, the growth rate started to decline. As agriculture wastewater sample in 

Experiment (3) was not sterilized, in which other microorganisms exit, C. vulgaris took more 

extended time (fourteen days) to adapt the new environment and to enter the exponential phase. 

The reason behind this delay is due to the limited amount of nutrients in the agriculture 

wastewater sample on which other microorganisms in the non-sterilized agriculture wastewater 

compete with the C. vulgaris.  
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As demonstrated in Figure (18), the difference between the growth rate in non-sterilized 

agriculture wastewater in Experiment (3), and the benchmark in Experiment (1) is still 

significant, and even less than the growth rate recorded from sterilized agriculture wastewater 

in Experiment (2)    

From the observations above we can conclude that sterilization is not a compelling factor 

on the cultivation of C. vulgaris in agriculture wastewater medium using indirect-sun light. As 

the elimination of other microorganisms from the agriculture wastewater supported only in 

accelerating the C. vulgaris reach to the exponential phase, yet the amount of available 

nutrients is still the compelling factor C. vulgaris growth in agriculture wastewater. Therefore, 

this cultivation setup was excluded from the enlargement phase. 

 

Figure 18: Sterilization effect on growth rate under sunlight in agriculture wastewater 

  

4.1.2 STERILIZATION EFFECT IN MUNICIPAL WASTEWATER UNDER INDIRECT SUNLIGHT 

 The sterilization effect in municipal wastewater behaved differently than its effect on 

agriculture wastewater. Sterilizing the municipal wastewater medium caused strange growth 
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pattern for Chlorella vulgaris. After seven days of cultivation, the growth rate for Chlorella 

vulgaris in sterilized municipal wastewater recorded a significantly high value of 0.332 (g/L), 

which is higher with 0.277 (g/L) than the benchmark after the same cultivation period. 

However, after another cultivation week, the growth rate declined with 27% to record a growth 

rate of 0.244 (g/L). Although this declination was not expected yet the growth rate is still higher 

than the benchmark after the same cultivation period. 

Three weeks after the cultivation start date in sterilized municipal wastewater, the growth 

rate recorded its maximum value of 0.532 (g/L) which represents a 49% increase in growth 

rate compared to the benchmark. Unexpectedly, a sharp decline in the growth rate reoccurred 

as observed after the first week, as demonstrated in Figure (19). The reason behind this 

unexpected deterioration is that at the beginning of the cultivation C. vulgaris growth was 

supported with available nutrients in the municipal wastewater; however, as wastewater 

treatment plant, from which the municipal wastewater sample was collected, performs only 

secondary treatment, other dissolved organic matters (DOM) still exist in the municipal waste 

which usually is consumed by other organisms in the municipal wastewater. However, 

sterilization of the municipal wastewater sample had eliminated the referred to organisms 

which caused inhibition to C. vulgaris growth in the second week. As C. vulgaris is recognized 

with its high adaptation capabilities, it entered the exponential phase after the drop-in growth 

rate from the second week and continued its cycle, yet the existence of other DOMs didn’t 

allow the C. vulgaris to stay in the stationary phase, the growth rate declined immediately 

after twenty-one days of cultivation.  



 

  

44 
 

 

Figure 19: Sterilization effect on growth rate under sunlight in municipal wastewater 

 

On the other hand, non-sterilized municipal wastewater proved to be a very promising 

medium for cultivation of C. vulgaris. After one week from starting the cultivation,  

C. vulgaris entered the exponential phase with one week ahead of the growth rate in 

synthetic medium (MBL). Through the second, and third cultivation weeks, non-sterilized 

municipal wastewater demonstrated growth rates better than the benchmark (3.4 times higher 

for the second week, 1.75 times higher for the third week), growth results are presented by the 

Table (9).   

As demonstrated in Figure (19), twenty-eight days after the cultivation start date, the 

growth rate for C. vulgaris in non-sterilized municipal wastewater followed a very similar 

pattern to the growth rate on synthetic medium (MBL).  

Maintaining the municipal wastewater non-sterilized allowed for the existence of other 

microorganisms such other bacteria which consumed dissolved organic matters (DOM) in the 
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wastewater, and remineralize organic compounds (Carbon, Sulphur, Phosphorus) to its 

inorganic form which are consumed by C. vulgaris, thing that allow better growth rate for C. 

vulgaris; this interaction is referred to as microalgae – bacteria symbiosis (Buchan et al., 2014). 

As a result, the cultivation on non-sterilized municipal wastewater was nominated for 

the enlargement phase.  

Table 9: Growth rate comparison: synthetic medium and non-sterilized municipal 

wastewater 

# of Days 7 14 21 28 35 

Synthetic 
Medium (MBL) 

OD680 0.100 0.158 0.496 0.928 0.946 

DW (g/L) 0.055 0.087 0.274 0.512 0.522 

Non-sterilized 
municipal 
wastewater 

OD680 0.145 0.542 0.872 0.882 0.972 

DW (g/L) 0.080 0.299 0.481 0.487 0.537 

 

4.1.3 STERILIZATION EFFECT UNDER WHITE LED LIGHT WITH 24 HOURS ILLUMINATION 

White led light, with 24 hours illumination, stimulated C. vulgaris in both sterilized, 

and non-sterilized municipal wastewater to enter the exponential phase after only seven days 

from starting the cultivation. However, in the second week, C. vulgaris entered the stationary 

phase while the growth rate in synthetic medium (MBL) continued its exponential growth. In 

the third week, the growth rate in sterilized medium started to decline, and the growth rate from 

non-sterilized medium followed it three weeks later as demonstrated in Figure (20).  

The continuous exposure to led light empowered C. vulgaris with the required energy 

to adapt to the municipal wastewater medium but caused light saturation to C. vulgaris which 

inhibited the growth rate. Although the existence of bacteria in non-sterilized municipal 

wastewater supported the growth of C. vulgaris; however, the light saturation caused inhibition 

of the growth rate 
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A possible reason for this declination is the continuous stress that the microalgae 

exposed to by illuminating the cultivation environment continuously for 24 hours (Ogbonna & 

Tanaka, 2000). 

We can conclude that utilizing led light did not support C. vulgaris to grow in a pattern 

neither similar to nor close to the growth rate from the synthetic medium (MBL) whether the 

municipal wastewater was sterilized or not.  Therefore, this cultivation setup was excluded 

from the enlargement phase. 

 

Figure 20: White led light effect on growth rate in municipal wastewater 

 

 4.2 LIGHTING COLOR EFFECT ON GROWTH RATE 

The growth rate for Chlorella vulgaris in blue wavelength of led light with 24 hours 

illumination behaved similarly with white light regarding entering the exponential phase just 

after one week of cultivation and declined in the second week, as demonstrated in Figure (21). 

The continuous illumination has a significant adverse effect on the growth rate for C. vulgaris 
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(Ogbonna & Tanaka, 2000) regardless of the lighting wavelength.  Therefore, this cultivation 

setup was excluded from the enlargement phase. 

 

Figure 21: Blue led light effect on growth rate in municipal wastewater 

 

4.3 MEDIA MIXING EFFECT 

4.3.1 MIXING EFFECT UNDER LED LIGHT 

In experiments to test wither mixing synthetic medium (MBL) with municipal 

wastewater will stimulate the Chlorella vulgaris growth rate or not, two experiments were 

conducted for each 25 ml of synthetic medium (MBL) were added to 75 ml of non-sterilized 

municipal wastewater in one experiment, and to 75 ml of sterilized municipal wastewater in 

another experiment.  

Both experiments were conducted under led light with 24 hours illumination. The 

recorded growth rates from both experiments were very similar to each other in which 

Chlorella vulgaris entered the exponential phase after first cultivation week and continued to 
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rise until the third week after which the growth rate started to decline, as demonstrated in Figure 

(22).  

We can observe that led lighting effect enforced the growth rate to follow the same 

pattern from section 4.1.3. It is becoming evident that putting Chlorella vulgaris under 

continuous stress of illumination suppresses the growth rate (Ogbonna & Tanaka, 2000). 

Therefore, this cultivation setup was excluded from the enlargement phase. 

 

Figure 22: Mixing effect of synthetic medium & municipal wastewater under led light 

 

 

4.3.2 MIXING EFFECT UNDER INDIRECT SUNLIGHT 

4.3.2.1 MIXING EFFECT (SYNTHETIC MEDIUM & AGRICULTURE WASTEWATER) UNDER 

INDIRECT SUNLIGHT 

 

It is clear how mixing agriculture wastewater with synthetic medium (MBL) has 

significantly stimulated the growth rate of Chlorella vulgaris. Mixing non-sterilized agriculture 

wastewater with synthetic medium (MBL) has shown a significant growth rate, even higher 
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than the benchmark, as demonstrated in Figure (23). The thing that has strongly nominated that 

cultivation condition for the enlargement phase. The growth rate from mixing sterilized 

agriculture wastewater with synthetic medium (MBL) also showed promising results, yet not 

as high as those observed from mixing with non-sterilized agriculture wastewater. The reasons 

behind this finding are adding synthetic media (MBL) to the non-sterilized agriculture 

wastewater supplied C. vulgaris with the missing macro and micronutrients which the 

agriculture wastewater lacks too. 

 

Figure 23: Mixing effect of synthetic medium & agriculture wastewater under sunlight 

 

4.3.2.2 MIXING EFFECT (SYNTHETIC MEDIUM & MUNICIPAL WASTEWATER) UNDER 

INDIRECT SUNLIGHT 

 

The first observation we can notice from mixing synthetic medium (MBL) with 

municipal wastewater, that in both sterilized and non-sterilized municipal wastewater mixture 
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the growth rate for Chlorella vulgaris started at a higher value compared to that recorded from 

the benchmark. 

Although starting at a very high value, growth rate on non-sterilized municipal 

wastewater started to decline immediately from the second week. For sterilized medium, the 

exponential phase continued for three weeks, and declination started in the fourth week, as 

demonstrated in Figure (24). Although mixing synthetic medium (MBL) with sterilized 

municipal wastewater in Experiment (14) provided promising results as high as with which 

was recorded from Experiment (8) (cultivation on pure non-sterilized municipal wastewater) 

and this is because mixing the municipal wastewater with synthetic medium (MBL) enriched 

the media with required macro and micronutrients, yet for the objective of reducing the 

production cost, the setup in Experiment (8) was selected for the enlargement phase as it gave 

similar promising results without the additional cost of chemicals required for the synthetic 

medium (MBL) Therefore, this cultivation setup was excluded from the enlargement phase. 

The data from Experiment (14) are close to the findings from (Mostafa S. S. M., 2012) research 

 

Figure 24: Mixing effect of synthetic medium & municipal wastewater under sunlight 
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4.4 ENLARGEMENT PHASE RESULTS 

As explained in section 4.3, two cultivation conditions were selected for the enlargement 

phase which are: 

- Non-sterilized agriculture wastewater mixed with the synthetic medium under indirect 

sunlight 

- Non-sterilized municipal wastewater medium under indirect sunlight 

So, for each cultivation condition, three replicas were prepared with 500 ml each. The mixture 

proportion between non-sterilized agriculture wastewater and the synthetic medium (MBL) 

was 75% to 25% by volume respectively. Moreover, a synthetic medium (MBL) was prepared 

as well to be used as a benchmark for comparison. The two cultivation groups and the synthetic 

medium were cultivated under the same conditions, and during the same period to ensure that 

all media are exposed to the same conditions. On a weekly basis, the growth rate, regarding 

dry weight, and the total lipid content were measured for each experiment. It was observed that 

for agriculture wastewater experiments the average growth rate after seven cultivation days 

was higher than the benchmark which was recorded from the synthetic medium (MBL). On the 

other hand, for municipal wastewater experiments, the average growth rate was lower than the 

benchmark. For the remaining of the cultivation period, the growth rates were below the 

benchmark for all experiments as demonstrated in Figure (25) which illustrates the growth rate 

comparison.
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Figure 25: Growth rate comparison between different cultivation media
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For total lipid produced, it is clear as presented in Figure (26) that after 14 days of 

cultivation, the agriculture wastewater and synthetic medium (MBL) mixture achieved the 

highest results compared to other media. 

  

Figure 26: Total lipid comparison after 14 days 

 

 

Figure 27: Total lipid comparison after 21 days 
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Figure 28: Total lipid comparison after 28 days 

 

 

Figure 29: Total lipid comparison after 35 days 

The rise of total lipid in agriculture wastewater and synthetic medium (MBL) mixture is due 

to the FeCl3 in the MBL which can cause an increase in the total lipid by up to 56.6% of the 

dry biomass weight (Liu, Wang, & Zhou, 2008)  
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CHAPTER 5 - CONCLUSION & 

RECOMMENDATIONS 

5.1 CONCLUSION 

This research aimed to support the principle of relying on microalgae as an 

economically feasible renewable source for biodiesel production. Utilizing microalgae for 

biodiesel production is encountered with the challenge of high production costs. Chemicals in 

synthetic media that present the nutrients for the microalgae cultivation have a direct relation 

to the overall production cost, which constitutes an obstacle for replacing traditional diesel 

with microalgae-based biodiesel. 

In a trial to overcome this obstacle, this research investigated the possibility of 

utilizing nutrients that are available in agriculture, and municipal wastewaters for the 

cultivation of microalgae. Different cultivation conditions were tested to achieve growth rate 

as close as possible to the growth rate from the synthetic medium (MBL). Chlorella vulgaris 

was selected for this research due to its availability, and its capability to adapt in different 

cultivation environments. Agriculture wastewater was collected from an agriculture drainage 

canal in Idku city, Bahira governorate; while the municipal wastewater was collected from Al 

Katamya treatment plant in Cairo governorate. From different cultivation parameters that can 

affect the Chlorella vulgaris growth rate, sterilization effect, lighting wavelength, lighting 

exposure time, and mixing the synthetic medium with wastewater were selected for tests. 

Other cultivation parameters such as pH, temperature CO2 ratio were set within the 

acceptable range. Cultivations were conducted in a closed system to control the cultivation 

parameters, and to reduce the contamination probability.  

From the fifteen different initial cultivation setups, two were selected for the enlargement 

phase due to their high achieved growth rate. Those two setups are as following: 
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- 75% vol. of non-sterilized agriculture wastewater mixed with 25% vol. of synthetic 

medium (MBL) in indirect sunlight under 16:8 light to dark cycle.  

- Non-sterilized municipal wastewater in indirect sunlight under 16:8 light to dark 

cycle. 

Agriculture wastewater group achieved the highest growth rate after seven cultivation 

days and the highest total lipid production after fourteen cultivation days. On the other hand, 

recorded results from the municipal wastewater group were below the benchmark.  

We can conclude that in order to get the highest total lipid from C. vulgaris, when 

utilizing a mixture of agriculture wastewater and synthetic medium (MBL) extraction should 

be conducted after fourteen cultivation days. 

This finding promotes the agriculture wastewater and synthetic medium (MBL) mixture 

as a promising alternative for the pure synthetic medium (MBL). Finding a replacement for the 

pure synthetic medium should support the reduction in total cost for producing biodiesel from 

microalgae. Applying this work finding on (Juan J. Jaramillo, et al, 2012) feasibility study for 

producing microalgae oil from Chlorella vulgaris, we can conclude that replacing the 

formulated media in (Juan J. Jaramillo, et al, 2012) model with the agriculture wastewater and 

synthetic medium (MBL) mixture from this work should reduce the production cost with 12.6%  

for removing 75% of the required nutrients, and another 29.4% for substituting the artificial 

light with sunlight. Therefore, the total saving will be 41.7%. 
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5.2 RECOMMENDATIONS 

The following are recommendations for future researches: 

- Different mixing ratios between agriculture wastewater and synthetic medium (MBL) 

need to be examined to investigate if better total lipid production can be achieved.  

- Replacing the synthetic medium, in the agriculture wastewater and synthetic medium 

mixture, with municipal wastewater needs further investigation which may support 

further reduction in the overall production cost 

- Researching the optimum illumination exposure time that achieves high growth rate 

and lipid production for cultivating Chlorella vulgaris in wastewater. 
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