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THERAPEUTIC POTENTIAL OF CURCUMIN IN A SPINAL CORD INJURY 

MODEL: LOCAL APPLICATION VERSUS DIETARY SUPPLEMENT 

 

ABSTRACT 

 

Spinal cord injury is a debilitating disability that is characterized by a sequence of tragic 

events that occur following the primary impact aggravating the condition, collectively 

called secondary spinal cord injury. Oxidative damage and inflammatory surge are two 

hallmarks of the secondary spinal cord injury cascade. Curcumin is a polyphenolic 

compound extracted from the rhizome of Curcuma longa that has been well known to 

possess antioxidant and anti-inflammatory properties. The objective of this study was to 

evaluate the potential of curcumin as an antioxidant and anti-inflammatory agent following 

spinal cord injury, and to compare its therapeutic effects following local application 

directly to the injury versus its effect when given as a dietary supplement in a spinal cord 

hemisection model at T9-T10 level of the spinal cord. Female Sprague Dawley rats were 

randomized into a control group,  injury groups (1 day and 7 days) ,  local treatment groups 

single dose of Curcuma longa extract immediately on the injury site (1 day and 7 days) and 

a Dietary supplement group. Crude Curcumin was added to the animals’ feed (10% of daily 

feed) one week before and week after injury. Oxidative stress parameters used for detection 

the effect of Curcumin before and after treatment were Malondialdehyde (MDA) by 

Thiobarbituric acid assay (TBA) and total antioxidant capacity (TAC). Expression of tumor 

necrosis factor alpha (TNF α) and interleukin 6 (IL-6) was detected using Enzyme Linked 

Immunosorbent Assay (ELISA). Our results show that at 7 days, although Dietary 

supplement was effective in increasing TAC levels and lowering TNF α expression levels, 

yet it did not affect MDA levels (IL-6 data not measured). Local treatment regimen has 

shown to be more effective on all four parameters measured as the 7 days. Our results 

demonstrate that local Curcumin application directly on the injury site might be more 

efficacious in alleviating oxidative damage and reducing inflammation following spinal 

cord injury. Further analysis is needed to evaluate the effect of Dietary treatment regimen 

on IL-6 and detect the effect of different Curcumin treatment regimens on other anti-

oxidant and anti-inflammatory markers to investigate the role of curcumin in alleviating 

oxidation and inflammation. 
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CHAPTER 1: LITERATURE REVIEW 

 

1.1. Spinal Cord Injury 

       1.1.1 Introduction 

Spinal cord injury (SCI) is a debilitating tragic disability that affects a lot of people 

worldwide. About 2.5 million people have SCI with about 130,000 new injuries affecting 

people annually (Thuret et al. 2006). SCI has been described in an ancient Egyptian 

physician textbook called “The Edwin Smith papyrus” since 1700 BC as an “ailment not to 

be treated” (Porter, 2001) 

 

It influences not only the life of the individual but also the surrounding family members 

socially, emotionally and financially. The cost of being enrolled in a clinical trial per 

person is about 50,000 to 100,000 dollars in Europe and United States. On the other hand 

the cost of preliminary phase 2 human efficacy trials for a drug is about 5 to 10 million 

dollars (Tator, 2006). In Spite of all of this, available treatments give modest benefit that’s 

why more effort is needed to come up with more effective SCI treatment regimens (Ali and 

Bahbahani 2010)  

 

Many of the complications of SCI are permanent and eventually cause serious 

consequences, including; respiratory complications which are a frequent cause of death 

after SCI (Berney et al., 2011), Bladder dysfunction (Hagen, 2015), and heterotopic 

ossification (HO) (Banovac et al., 2004), which leads to reduction in joint motion range. 

 

Unfortunately, to date the approaches taken to handle or treat SCI can be still regarded as 

sedative, or palliative approaches trying to prevent further progression, handle 

dysautonomia and complications of loss of sensory abilities and aiming at teaching patients 

on how to cope up with their disabilities (Jablonska et al. 2010, Silva et al., 2014).  

 



2 
 

 

 

1.1.2 Incidence and Prevalence: 

 

In most countries, SCI patients are below 30 years of age (Singh et al., 2014; Rhee et al., 

2013). A higher male to female ratio is demonstrated and traffic accidents were the most 

known cause for SCI followed by falls in elderly. The highest SCI prevalence was (906 

/million) in the United States of America and lowest (250-280/million) in France and 

Finland (Singh and Tetreault et al., 2014). 

 

1.1.3 Anatomy of the Spinal Cord: 

 

The spinal cord extends from the medulla oblongata in the brainstem through the foramen 

magnum of the skull till lumbar vertebra L1 in humans or L3 in rats. The spinal cord 

provides connection between the brain and the peripheral nerves. It is protected by the bony 

vertebral column and by the three meninges namely: Dura, Arachnoid and Pia matter. 

Additional protection is provided by the subarachnoid space (between pia and arachnoid) 

which is filled with cerebrospinal fluid as well as, the epidural space between dura and 

periosteum; which is filled with adipose connective tissue and loose fibrous tissue (Vander 

et al., 2001). 

 

The gray matter is located centrally and is composed of neurons, interneurons, dendrites 

and cell bodies of motor neurons, glial cells and the entering fibers of the sensory neurons. 

The white matter on the other hand is mainly composed of myelinated axons which are 

organized in functional groups called tracts; descending to the periphery or ascending to the 

brain transmitting information in both sides, as well as propriospinal (local) tracts which 

connect and coordinate different levels of the spinal cord. These tracts are regarded as a 

crucial communication means between the brain and the spinal cord (Silva et al., 2014). 
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Descending tracts (pyramidal or extrapyramidal) control motor functions as shown in 

figure 1. Pyramidal tracts are so named due to the fact that they decussate (cross from one 

side to the other) in the medulla. These tracts terminate at the lower motor neurons in the 

grey matter of the spinal cord. Extrapyramidal tracts include: rubrospinal, reticulospinal, 

tectospinal and vestibulospinal tracts. These tracts are mostly responsible for complex 

movements, fine locomotion tuning, reflexes and postural control.  

 

Ascending tracts shown in figure 1 convey information from the periphery to the cerebral 

cortex. The dorsal column fibers carry proprioceptive, vibratory senses and fine touch. The 

anterolateral system (anterior & lateral spinothalamic tracts) carries crude touch, 

temperature and pain.  The spinocerebellar tracts aid in fine tuning and coordination of 

motor tasks and carry unconscious proprioceptive data (Lee and Thumbikat, 2015). 

 

Crossing of fibers carrying proprioception, motor function and light touch in the medulla 

means that the SCI patient will experience an ipsilateral (same side) deficit while 

decussation of fibers conveying information for temperature and pain occurs at their 

vertebral level of entrance into the spinal cord leading to a contralateral deficit upon injury 

(Lee and Thumbikat, 2015). 
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Figure 1: Ascending and Descending tracts of the Spinal Cord. Reproduced from Lee and 

Thumbikat  2015 with permission. 

 

Axons of afferent (sensory) neurons enter the spinal cord via the dorsal root with their cell 

bodies present in the dorsal root ganglion, while those of efferent (motor) neurons leave the 

spinal cord trough ventral roots. Eventually dorsal and ventral roots combine to form the 

mixed spinal nerve (motor, sensory and autonomic) which exit from 31  vertebral levels 

(Cervical-8, Thoracic -12, Lumbar-5, Sacral-5 and one coccygeal nerve) (Silva et al., 

2014).  

  

1.1.4 Pathophysiology of SCI 

        1.1.4.1 Primary Injury: 

 

SCI pathophysiology is biphasic in nature entailing a primary and a secondary phase.  The 

primary mechanical injury leads to a cascade of secondary damage involving vascular, 

cellular and biochemical events (Simon et al. 2009; White-Schenk et al., 2015). Traumatic 

SCI was classified by Bunge and colleagues as “a contusion with cavity formation, massive 

compression or laceration” (Bunge et al., 1997). 
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Vascular ischemia is not an uncommon cause for SCI especially as a surgical complication 

during the surgery for aortic aneurysm repair (Hollier et al., 1992) where spinal cord 

ischemia might result from prolonged  aortic cross clamping or ligation of lumbar or 

intercostal arteries causing ischemia (Anwar et al., 2016), that might eventually lead to 

paraplegia (Shimizu and Yozu 2011). 

This primary phase is marked by a series of events shown in figure 2 as spinal shock, 

systemic hypotension, ischemia, damaged plasma membrane and ionic imbalance (Oyinbo, 

2011). 

 

 

Figure 2: Pathophysiology of SCI. . A primary injury caused by impact or compression is 

followed by a secondary injury cascade that entails a series of cellular, molecular and 

biochemical events that contribute to worsening the primary injury. Reproduced from 

Esposito and Cuzzocrea 2011 with permission. 

 

1.1.4.2 Secondary injury: 

The secondary injury starts to take over following the primary phase and it can last for 

weeks (Wilson et al., 2013), the two major events that largely contribute to the secondary 

injury are inflammation and oxidative stress, which lead to  necrosis, immune system 

response and apoptosis (Johnson et al., 2005), neuro-inflammation, free radicals formation, 

breakage of the blood-spinal cord barrier (BSCB), ischemic dysfunction, neuronal injury 
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and glial scar formation which limits the SCI recovery ( Ormond et al., 2014). It also 

includes other functional problems, such as bladder, rectal and anal incontinence due to 

autonomic dysfunction, neuropathic pain and impotence (Singh and Tetreault et al., 2014).  

 

Unfortunately in most cases the aggravating effects of the secondary injury commence 

before expert intervention starts (Oyinbo 2011). That’s why treatment strategies are 

focusing on combating this sequence of events (Fehlings and Nguyen 2010), and new 

strategies would help enhance axonal regeneration and neuronal function, and restore the 

disrupted functions that follow the injury. 

 

Finally the chronic phase commences which may last for years post SCI, causing continued 

demyelination, apoptosis and cavitation well as syringomyelia which lead to permanent 

neurological impairment (Yiu and He 2006; Oyinbo, 2011). 

 

1.1.5 Main Events in Secondary Spinal Cord Injury 

 

   1.1.5.1 Inflammation 

 

Following SCI, the net result of the immune system response through its cellular (immune 

cells) and molecular (regulatory proteins) components is inflammation (Oyinbo, 2011). 

Immune cells secrete pro-inflammatory cytokines as tumor necrosis factor α (TNF-α), 

interleukin 1β and Interleukin-6 increasing the extent of inflammation, to remove cellular 

debris, unfortunately, over-activation of this inflammatory response aggravates the injury 

and damages the healthy tissues (Oyinbo, 2011).  

 

The role of some immune cells in SCI is regarded as controversial (Donnelly and Popovich, 

2008). Macrophages and microglia are thought to be a key component for neural 

regeneration while others suggest that these cells are responsible for oligodendrocytes 

damage (Merrill et al., 1993), demyelination and neuronal death (Rhoney et al., 1996). The 
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infiltration and activation of glial cells and leukocytes becomes the main source of reactive 

oxygen species (ROS) (Bains and Hall, 2012). The inflammatory cascade following SCI is 

shown in figure 3. 

 

 

Figure 3: Inflammatory environment following SCI. The primary injury causes hemorrhage 

and increase in vascular permeability. Leukocyte extravasation and infiltration then occurs 

breaking up inter-cellular proteins and extracellular matrix.  ROS are then released from 

activated microglia and leukocytes causing protein modification, lipid peroxidation and 

gene expression modulation eventually leading to cellular and tissue damage causing 

necrosis and apoptosis in neuronal and glial cells within the spinal cord parenchyma. Yet, 

the anti-inflammatory subsets of glial cells and leukocytes potentiate anti-inflammatory 

mechanisms .Reproduced from Anwar et al., 2016 with permission. 

 

1.1.5.2 Neutrophils and Macrophages: 

 

Following SCI, neutrophils arrive first at the injury site guided by the vascular endothelial 

cells. They enhance recovery by removing tissue debris and microbial invaders, and recruit 

macrophages (Kigerl et al., 2006). They also release proteases, free radicals, cytokines, and 
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activate other inflammatory and glial cells ultimately causing neuronal and glial toxicity 

and death (Joy et al. 2005, Shamash et al., 2002). 

 

Depletion of neutrophils (Noble et al., 2002), inhibition of their adhesion (Hamada et al., 

1996) or blocking of their related enzyme proteolytic activities (Noble et al., 2002) were 

correlated with neuroprotection (Kigerl et al.,2006). 

 

Neutrophils and macrophages synthesize a variety of pro-inflammatory cytokines e.g. 

TNF-α and IL-1β as part of their function in normal cellular communication (Probert and 

Selmaj  1997) ; however, the sustained release of these molecules in SCI triggers 

inflammation and disrupts the cytokine release pattern, potentially exaggerating glutamate 

excitotoxicity causing neuronal and oligodendrocyte death (Shamash et al., 2002).  

 

Glutamate is the main excitatory neurotransmitter within the CNS (central nervous system), 

and excess amounts of it are normally removed by astrocytes and to a lesser extent by 

microglia (Rimaniol et al., 2000). However, after SCI its metabolism by astrocytes is 

disturbed and its clearance is prohibited by tumor necrosis factor alpha (TNF-α) or 

interleukin 1beta (IL- 1β) (Takahashi et al., 2003). Neurons and oligodendrocytes are 

particularly sensitive to glutamate excitotoxicity as they demonstrate high numbers of 

glutamate receptors (Oyinbo, 2011). Blocking TNF-α or IL-1β enhances neuroprotection in 

SCI, traumatic brain injury (TBI) and stroke models (Sharma et al., 2003). Moreover, 

interleukin-6 (IL-6) overexpression was shown to potentiate leukocyte infiltration and 

impair both locomotor activity and axonal regrowth (Lacroix et al., 2002).  

 

Stellwagen and colleagues demonstrated that TNF α causes an elevation in α-amino-3-

hydroxy-5-methyl-4-isoxazole propionic acid receptor (AMPARs) specifically non 

glutamate (non-GLU2-AMPARs) through tumor necrosis factor receptor 1 (TNFR1) 

rendering them more calcium permeable. At the same time TNF α causes fewer expression 

of surface gamma-aminobutyric acid (GABAA) receptors, consequently causing alleviation 
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in the inhibitory synaptic strength and enhancing excitotoxicity (Stellwagen et al., 2005). 

Potassium (K+) and Calcium (Ca2+) may also have a role in neuronal destruction (Jung et 

al., 2013). 

 

Neutrophils and Macrophages also release superoxide and Nitric oxide which both react 

and combine releasing the highly toxic species, peroxynitrite (Xiong et al., 2007). After 

injury, depolarization causes opening of voltage dependent Ca2+, K+ and sodium  (Na+) 

channels followed by Ca2+ overload leading to  peroxynitrite (PON) derived free radicals 

production as shown in figure 4 .These peroxynitrite radicals react with amino acids 

causing protein Carbonylation and damage the unsaturated fatty acids causing cellular 

damage (Xiong et al., 2007). 

 

1.1.5.3 Lymphocytes: 

 

After injury, Activated Lymphocytes carry out an autoimmune response that exaggerates 

the effect of macrophages causing more toxicity to the neurons and damage to the blood-

brain barrier (Sriram and Rodriguez, 1997). T-lymphocytes appear to play a dual role in 

injury and repair depending on the surrounding microenvironment and the signals that 

recruited them (Trivedi et al., 2006). Chemokines are responsible for T-cell migration and 

activity modulation at inflammation sites (Sallusto et al., 2000). Some studies correlated 

their activation with increased cytokine release (Jones et al., 2005), fibrosis and scarring 

(Wynn, 2004).  
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Figure 4:  Oxidative damage following SCI. . Calcium overload is caused via glutamate 

receptor and voltage dependent channels. Mitochondrial oxygen (O2) uptake causes  nitric 

oxide synthase (NOS) activation and eventually peroxynitrite radicals are formed causing 

damage and promote cytoskeletal proteins proteolysis and neurodegeneration. Reproduced 

from Bains and Hall 2012 with permission. 

 

 

 

Neuro-antigen reactive T and B lymphocytes that act against myelin protein as Myelin 

Basic Protein (MBP) have noticeable pathological potential in Multiple sclerosis (Von 

Bũdingen et al., 2001). Transgenic rats and mice vaccinated to enhance MBP-reactive T 

cells, were shown to cause axonal impairment and demyelination causing neuronal loss 

(Jones et al., 2004). 
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Athymic nude (AN) rats manifested better locomotor activity than injured Sprague Dawley 

rats (SD) one week post injury in a study aiming at detection of T lymphocyte role in SCI . 

Moreover, injured SD rats showed acute elevation in death related genes suggesting a 

secondary wave of damage caused by T-cells. This suggests that a combination of T-cell 

inhibition and other neuroprotective strategies might have a promising therapeutic potential 

(Satzer et al., 2015). 

 

Nevertheless, Schwartz and colleagues propose a protective role for T-cells specifically 

reactive to MBP in Lewis rats, in enhanced neuroprotection after spinal cord contusion or 

crushing optic nerve injury, but not in complete transaction model (Schwartz and Kipnis 

2001). 

 

B-lymphocytes also present in the injury site within hours post SCI and last for up to 1 

week (Popovich et al., 2001). Enhanced activation of B cells was also evident following 

SCI, with elevated CNS antibodies in the serum of SCI individuals (Hayes et al., 2002) and 

in a mouse model of spinal cord contusion injury (Ankeny et al., 2006).  B-lymphocytes 

also enhanced demyelination in an experimental allergic encephalomyelitis model 

(Chavarria and Alcocer Varela 2004).  

 

1.1.5.4 Microglial cells: 

 

Microglial cells exist as two main phenotypes, M1 the pro-inflammatory phenotype and 

M2 the anti-inflammatory phenotype which are two polarized states whose activation 

depends on external signals (Durafourt et al., 2012). Following SCI, microglia sense the 

initiation of tissue damage via toll-like receptors (Heiman et al., 2014), and undergo 

morphological changes, they attain an amoeboid morphology rather than the ramified 

appearance they maintain in their Quiescent state (Lee et al., 2007; Witcher et al., 2015). 
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Following SCI, M1 phenotype is activated and initiates a series of damaging side effects to 

neurons, axons, oligodendrocytes (Nguyen et al., 2012). This cascade is mediated through 

various signaling pathways, such as, inflammatory cytokines (TNF- α, IL-6) (Pineau and 

Lacroix, 2007), ROS (Barger et al., 2007), Chemokines (Mantovani et al., 2004) and 

Glutamate (Barger et al., 2007). These cytokines are expressed within two hours following 

injury (Pineau and Lacroix, 2007).  

 

Moreover, the M1 phenotype has been found to express cell surface and intracellular 

receptors such as, CD45 (lymphocyte common antigen), CD11b (integrin family member) 

and inducible nitric oxide synthase 2 (iNOS2) which aids in the pro-inflammatory 

mechanism. On the other hand M2 phenotype releases anti-inflammatory cytokines as 

interleukin 4 (IL-4), interleukin 10 (IL-10) and interleukin 13 (IL-13) (Witcher et al., 

2015). Thus, it appears that microglia play a vital role in the inflammatory cascade 

following SCI that can be either pro inflammatory or anti-inflammatory. 

 

1.1.5.5 Astrocytes and Glial Scarring: 

Following injury, the blood spinal cord barrier is disrupted (for up to 2 weeks) as a result of 

both mechanical forces and the influx of inflammatory mediators (Renault-Mihara et al., 

2008). The activation and recruitment of astrocytes to the injury leads to reactive 

astrogliosis, and glial scarring where astrocytes hypertrophy occurs with the production of 

intermediate filaments as glial fibrillary acidic protein (GFAP) and vimentin ( Wilhelmsson 

et al., 2004), extracellular molecules such as, chondroitin sulfate proteoglycan (CSPG) 

which inhibit axonal regeneration ( Schwab et al., 2006). In this manner, Astrocytes build a 

wall around the injury site preventing axonal regrowth  as shown in figure 5 (Anwar et al., 

2106).  

 

 

 

 



13 
 

 

Central cavitation takes place days to weeks after the primary SCI (Oyinbo, 2011). It is 

manifested by an expansion of the SCI lesion size leading to the formation of a cavity 

much larger size than the initial scar (Fehlings and Nguyen 2010).  

 

Reactive astrocytes role is rather confusing. On one hand, they are implicated in tissue 

integrity preservation (Faulkner et al., 2004), regulation of excess neurotransmitters 

production and in the release of extracellular matrix (Von Boxberg et al., 2006). While, On 

the other hand, reduction of reactive astrogliosis by inactivation of CSPG  (Menet et 

al.,2003) or blocking Calcium channels (Lee et al., 2000), decreases the obstruction of the 

glial scar against axonal sprouting and regrowth (Von Boxberg et al., 2006). 

 

Wide arrays of genes are upregulated upon reactive astrogliosis (Zamanian et al., 2012), 

e.g. intermediate filament proteins as GFAP, nestin, vimentin, Cytokine, and s100 

(Zamanian et al., 2012). These genes are shown to form a complex enhancing damaged 

membranes repair (Rezvanpour et al., 2011).  

 

1.1.5.6 Inhibitory Molecules: 

Two main groups of molecules inhibit axonal regeneration; the first is the proteoglycans. 

These are composed of a protein core linked through four sugar moieties to a 

glycosaminoglycan (GAG) chain which contains repeated disaccharide units (Johnson-

Green et al., 1991). These molecules have demonstrated an inhibitory profile following 

CNS injury. They are mainly expressed by astrocytes, meningeal cells and oligodendrocyte 

precursors (Fawcett and Asher, 1999). They are composed of four main groups; Dermatan 

sulphate proteoglycans (DSPGs), Heparan Sulphate proteoglycans (HSPGs), Keratan 

sulphate proteoglycans (KSPGs) and Chondroitin sulphate proteoglycans (CSPGs) 

(Jhonson-Green et al., 1991). CSPGs are the most studied group and it includes: Brevican, 

Aggrecan,   Neural/Glial antigen 2 (NG2), Versican, Neurocan and Phosphacan.  
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On one hand, these molecules are important for pathfinding and guidance (Fukuda et al., 

1997), but on the other hand, CSPGs rich areas can inhibit axonal growth (Faissner and 

Steindler, 1995). 

 

The second group is the myelin associated molecules. Nogo A is one example of this 

group. It is a membrane protein which is expressed by oligodendrocytes and some neurons, 

it causes growth cone collapse and growth inhibition, when it binds to its specific receptor 

named NgR1 in the neuron's membrane (Schwab, 2004).Another molecule in this group is 

the myelin associated glycoprotein (MAG) which is stored in Myelin that surrounds the 

CNS axons and is also originally produced by oligodendrocytes (Silva et al., 2014). It is 

regarded as one of the strongest inhibitors of white matter regeneration (Silva et al., 2014). 

 

1.1.5.7 Apoptotic cell death: 

Cell death after the mechanical trauma to the spinal cord is either due to necrosis which 

follows inflammation and cell membrane rupture (Oyinbo 2011), or due to apoptosis 

(Johnson et al., 2005), which begins within hours following SCI (Oyinbo 2011).The key 

players in apoptosis are caspases (Green 1998). Caspase 8 and 9 are the initiator caspases 

(Adjan et al., 2007), leading to further activation of caspase 3 (Wu et al., 2003). This in 

turn cleaves several downstream substrates that are crucial for apoptosis (Zhang et al., 

2012). TNF-α acts as a mediator of apoptosis, through its death domain on its surface 

receptor TNFR1 (Zhang et al., 2012). However, there are conflicts regarding its capacity as 

being both pro and anti-apoptotic (Genovese et al., 2009). 

 

1.1.5.8 Demyelinating Surviving Axons: 

Oligodendrocytes cell death by excitotoxicity, apoptosis, inflammatory cytokines and free 

radicals can cause demyelination of the axons which survived the initial trauma (Oyinbo 

2011) as shown in figure 5. Demyelination is evident in the subacute and chronic SCI 

phases (Guest et al. 2005) and it is due to oligodendrocytes loss in white matter rostrally 

and caudally weeks post SCI (Grossman et al. 2001).  
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1.1.6 Oxidative damage in SCI: 

The spinal cord and CNS in general has high lipid content (in Myelin) and high oxygen 

need, rendering it easily susceptible to cell damage by lipid peroxidation (Tian et al., 2004). 

Following SCI, ROS overwhelm the antioxidant buffering mechanisms causing lipid 

peroxidation, cell lysis, and organelle damage and calcium imbalance as shown in figure 6. 

Thus antioxidant therapies such as high dose methyl prednisolone (MP) are currently the 

only useful medical intervention to enhance neuroprotection in SCI patients (Shan et al., 

2010). 

 

Free radicals cause a chain reaction which starts by absorbing an electron from a lipid 

molecule, eventually leading to membrane lysis, necrotic cell death  and mitochondrial 

dysfunction (Sullivan et al., 2007), with an increase in intracellular calcium levels 

activating proteases and consequently breaking down cytoskeletal proteins as shown in 

figure 7 (Xiong et al., 2007). 
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Figure 5 : Key players in SCI and glial scar formation. Demyelination, necrosis and axonal 

destruction takes place along with recruitment of microglia and astrocytes, leukocytes 

(neutrophils, macrophages, lymphocytes, natural killer cells). Reproduced from Anwar et 

al., 2016 with Permission. 

 

 

 

These lipid peroxidation end products can be inactivated by a number of enzymes as 

glutathione-s-transferase, aldehyde reductase and aldehyde dehydrogenase (Ayala et al., 

2014). ROS are also inactivated by other antioxidant defense systems such as glutathione 

peroxidase, catalase and superoxide dismutase, and other antioxidant mechanisms as 

vitamins A, E, and C , flavonoids and carotenoids as well (Bains and Hall, 2012) .  
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Figure 6 : Damage caused by oxidative stress following SCI. Oxidative stress causing 

neuronal death through DNA damage, mitochondrial dysfunction, protein aggregation and 

apoptosis. This damage can be prevented by phytodrugs. Reproduced from (Pérez-

Hernández et al., 2016 with Permission.  
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Figure 7: Oxidative damage cascade leading to Calcium influx causes rapid calpain 

activation. Excess calcium is taken up by mitochondria elevating mitochondrial nitric oxide 

synthase (NOS) which compete for O2 radical forming peroxynitrite (PON). PON derived 

radicals partially inhibit calpain initially but then, sustained oxidative stress potentiate 

cellular damage outweighs the initial calpain inhibition causing further cytoskeletal 

degradation. Reproduced from   Xiong et al., 2007 with permission. 

 

 

 

1.1.7 Role of TNF alpha following SCI: 

Tumor necrosis factor alpha (TNF-α) is one of the most well characterized cytokines. 

However, to date there is no obvious agreement or consensus on its role in acute CNS 

injury (Oyinbo, 2011). Its levels are elevated following SCI reaching its peak within one 

hour after primary injury (Dinomias et al., 2009).Most studies suggest that its production at 

the site of injury exacerbates tissue damage in SCI (Pan et al. 2003, Paterniti et al. 2009). 

TNF α potentiates Wallerian degeneration of axons and activates recruitment of 
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macrophages and Schwann cells at the injury site (Sebastian and Schroeter 2003).It also 

increases the level of hyperalgesia and central sensitization through stimulation of synaptic 

transmission (Kawasaki et al., 2008). 

 

Yakovlev and Faden showed that TNF-α mRNA levels were elevated 30 minutes following 

SCI at the injury site and that the extent of injury was proportional to the level of TNF-α 

message (Yakovlev and Faden, 1994). Paterniti et al. demonstrated that elevation of TNF α 

in a spinal cord trauma model which was accompanied by an elevation in myeloperoxidase 

activity (MPO) – a marker for polymorphonuclear leukocyte accumulation 24 hours post 

injury (Peterniti et al. 2009). 

 

1.1.8 Current Interventions in Spinal Cord Injury: 

As the primary injury to the spinal cord cannot be prevented it can only be minimized 

through surgical intervention by means of surgical decompression or stabilization of the 

vertebrae. Currently there are no generalized standards of care regarding decompression 

surgery regarding indications and timing of interventions (Li & Walker et al., 2014). Many 

questions remain unanswered in this regards, as the optimal timing of intervention to gain 

neuroprotective effect or even if the intervention itself is recommended or not (Silva et al., 

2014). 

Many strategies have been developed to minimize the extent of secondary injury, and 

enhance the therapeutic outcomes. Methylprednisolone is the most widely prescribed 

pharmacological agent for SCI yet it is the most controversial. It has many advantages as 

its ability to inhibit lipid peroxidation, limit inflammatory response, sustain the blood-

spinal cord barrier and enhances blood flow (Tator, 1998). Other approaches include 

altering neuro-inflammation by means of immune-modulators such as minocycline 

(Schwartz and Yoles 2006) or promoting M2 macrophage phenotype through 

administration of granulocyte colony stimulating factor (G-CSF) within 72h following SCI 

(Guo et al., 2013). 
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Other mechanisms were adopted to enhance regeneration and myelination following SCI 

via creating a more suitable environment for axonal regeneration (Thuret et al. 2006). 

Nogo-A suppression (Freund et al., 2006), stem cells (Webb et al., 2010), and human 

embryonic stem cells (hESC) derived oligodendrocyte progenitor cells (OPCs) 

transplantation (Keirstead et al., 2005). Using Neurotrophins (Sharma, 2007),Autologous 

Activated Macrophages (Bomstein et al., 2003), reducing neuro-inflammation (Bracken 

2012, Das et al., 2011), preventing free radical damage (Bains and Hall, 2012), and 

excitotoxicity (Mazzone and Nistri, 2011), and improving blood flow ( Ritz et al., 2010), as 

well as targeting the local immune response (Varma et al., 2013), have all been used 

following injury with great variability in improving motor function, decreasing lesion 

volume, enhancing axonal regeneration and myelination. 

 

Very few studies were advanced to clinical trial stage, e.g. the Sygen Multi Center Acute 

SCI study, which used variable doses (200, 300, and 600 mg IV) of 

monosialotetrahexosylganglioside GM-1 for 56 days . This study did not show a significant 

clinical efficacy of GM-1 but proposed  a trend in favor of (GM-1) regarding  American 

Spinal Injury Association  (ASIA) motor, pin prick and light touch scores, contribution to 

neurological recovery and enhancing bowel / bladder function and improving sacral 

sensation as well (Chinnock and Roberts, 2005; Geisler et al., 2001). Rho antagonist 

(BIOAXONE BIOSCIENCES INC, Cethrin®) is another example for a clinically tested 

drug in SCI that was found to enhance neuronal growth (Dergham et al., 2002). Thus more 

research and clinical trials are needed to validate the benefit and efficacy of current 

proposed treatments for SCI. 

 

1.1.9 SCI Models  

Models of SCI aim at simulating human SCI injuries as much as possible (Cheriyan et al., 

2014). The following are some examples of these models shown in figure 8. 

Compression and Contusion models:  It induces acute transient SCI via weight drop 

apparatus, air gun devices, or electromagnetic impactors (Cheriyan et al., 2014). This 
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model is clinically relevant as most of human SCI are caused by rapid movements, bone 

fractures and consequent impact of bone fragments (Allen, 1911). It is characterized by 

rostral and caudal spread of tissue damage from lesion epicenter, disruption of white matter 

axons and cell death of grey matter neurons, intra-parenchymal hemorrhage, glial 

activation, macrophage recruitment and oligodendrocyte apoptosis (Anwar et al., 2016). In 

some cases contusion is followed by sustained compression of the spinal cord. 

Experimentally this is simulated through clip compression (Rivlin and Tator 1978), balloon 

compression (Vanický et al., 2001) or calibrated forceps compression (Plemel et al., 2008). 

It induces vascular derangements, ischemia and hemorrhagic necrosis (Anwar et al., 2016). 

Distraction model: it entails stretching of the spinal cord to induce tension forces that 

mechanically tear the spinal tissues leading to SCI (Silberstein and McLean 1994). 

Dislocation: Involves displacement of the vertebra causing trauma to the cord which leads 

to astrocytic activation, vascular impairment in grey matter and apoptosis (Anwar et al., 

2016). No surgical exposure is needed for this type of SCI model; however, more research 

is required to validate its reproducibility (Cheriyan et al., 2014). 

 

Transection models: Complete or partial transaction is not regarded as clinically pertinent 

models; however, they have been vastly used to study neuronal outcomes following injury 

(Chriyan et al., 2014). These models are useful in studying axonal degeneration and 

regeneration following SCI (Anwar et al., 2016). 

  

Chemical model:  Such as injection of phopholipase A2 to induce inflammation (Liu et al., 

2006), or inducing oxidative damage through injection of hydroxyl peroxynitrite into the 

rat’s gray matter. (Bao et al., 2003) 

Ischemia reperfusion injury: induced by aortic cross clamping causing neuronal and 

vascular damage, it is regarded as a non-reproducible model (Anwar et al., 2016). 
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Figure 8 : Different models of rat SCI. . Reproduced from Anwar et al., 2016 with 

Permission. 

 

 

1.2 Curcumin 

Phytodrugs represent an important approach in CNS disorders due to their neuroprotective 

abilities. Many plants’ raw extracts or their pure isolated compounds have demonstrated 

effective neuroprotective properties in neurodegenerative diseases (Pérez-Hernández et al., 

2016). Silymarin administration (400mg/kg/day for 3 days) increased glutathione and 

superoxide dismutase (SOD) levels in aged rats brains (Galhardi et al., 2009).  While daily 

doses (15 mg/kg) of Vincamine in rats reduced iron levels by 50% thus reducing oxidative 

stress resulting from iron deposition in neurodegenerative diseases (Fayed, 2010).  

Resveratrol a Mediterranean traditional phytophenol present in grapes has also shown 

neuroprotective traits. In focal cerebral ischemia model resveratrol significantly minimized 

infarction size suggesting a potent neuroprotective effect due to its antioxidant, anti-platelet 

and vasodilating effect in focal cerebral ischemia model (Huang et al., 2001). 
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Gingerol, a compound of Ginger  which is extracted from the root of Zingiber officinale 

was shown to inhibit LPS induced  cyclooxygenase 2 (COX-2) level of expression in U937 

cells subjected to lipopolysaccharides , thus suggesting a role as an anti-inflammatory 

inhibiting  prostaglandin E2 (PGE2) (Lantz et al., 2007). 

Curcumin was first isolated by Vogel and Pelletier in 1815 in an impure form, later on both 

its chemical structure and synthesis were confirmed in 1910 and 1913 by Lampe et al. The 

first study for its use in human disease was published in 1937 (Oppenheimer, 1937). 

Throughout the last 60 years, over 3000 studies have described its variable biological 

activities as an antioxidant, antifungal, antibacterial anti-proliferative, pro-apoptotic,  

antiviral and other activities, consequently exhibiting medicinal benefit in 

neurodegenerative diseases, cardiovascular diseases, diabetes , psoriasis and  lung fibrosis 

and other diseases (Aggarwal and Harikumar, 2009). This pleiotropic nature of curcumin 

has been attributed to its ability to interact with multiple targets including inflammatory 

cytokines, growth factors, transcription factors, apoptosis related proteins, adhesion 

molecules, kinases and others (Zhou et al.,2011). 

 

Curcumin is a bis α, β unsaturated β diketone. Curcumin is one of turmeric constituents. 

Turmeric powder consists of 4% curcuminoids, 70% carbohydrates, 6%proteins, 5% resins, 

4% fat and 10% moisture as shown in figure 9. Curcumin has also been used over the past 

centuries in Ayurveda or Ayurvedic medicine where it showed a great therapeutic efficacy 

in different respiratory conditions, liver disorders, diabetic wounds, anorexia and 

rheumatism (Araujo and Leon 2001). In Chinese medicine it has been used for abdominal 

pain (Aggarwal, Takada & Oommen, 2004) while in Hindu medicine it was applied for 

swellings and sprains (Araujo and Leon 2001). In the Orient it was mainly used as an anti-

inflammatory (Aggarawal et al. 2003). 

 

Many other therapeutic effects of Curcumin have been documented, such as its role as an 

antioxidant ( Liu et al., 2013 ; CONEAC et al., 2017), anti-inflammatory (Machova et al., 

2015; Gokce et al., 2016), hepatoprotective (Palipoch et al., 2014),  anticarcinogenic ( Rao 
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et al. 1995), hypoglycemic (Chuengsamarn et al., 2012), renoprotective (Ueki et al., 2013),  

in cardiovascular diseases (Ahuja et al., 2011) and anti-arthritic (Dcodhar et al. 2013). 

Studies show that Curcumin can promote neurogenesis in the adult hippocampus (Kim et 

al. 2008), inhibition of astrocyte expression, and preventing death of hippocampal cells by 

Kainic acid (Shin et al. 2007). Curcumin is characterized by a good safety profile 

demonstrated in animal (Qureshi et al. 1992) or human studies (Lao et al. 2006). 

 

 

Figure 9 : Composition of turmeric powder. . Curcuminoids constitute about 5 % of 

turmeric components while the major constituent of turmeric is carbohydrates (70%) 

Reproduced from Farooqui 2013 with Permission. 

 

1.2.1 Curcumin Structure: 

The main constituents of commercially available curcumin are; Curcumin I (77%), 

Curcumin II called demethoxycurcumin (17%) and Curcumin III called 

bisdemethoxycurcumin (3%) as shown in figure 10, where these curcuminoids collectively 

are found in 3-5% of Turmeric (Goel et al. 2008).  This yellow complex has multiple 

names, e.g. yellow ginger, Indian saffron, yellow root or kacha haldi. 

Curcumin powder is soluble in organic solvents as dimethyl sulfoxide, ethanol and acetone 

but insoluble in water or ether, it  has a melting point of 183
ο
C, a molecular weight of 

368.37 g/mol  and a molecular formula of C21H20O6 (Goel et al. 2008). 
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Curcumin is more stable at acidic PH while unstable at basic and neutral PH where it is 

degraded to ferulic acid and feruloylmethane .If placed in phosphate buffer systems of PH 

7.2, it is degraded rapidly within 30 minutes (Wang et al., 1997). 

 

Figure 10 : Different chemical structures of Curcuminoids. Curcumin I compose about 

(77%) of the total curcuminoids, Curcumin II (demethoxycurcumin) and Curcumin III 

(bisdemethoxycurcumin) are present in smaller ratios. Reproduced from Farooqui 2013 

with permission. 

 

Curcumin degradation is slow at PH 1-6 which mimics the stomach PH.  While one of the 

major Curcumin metabolites called tetrahydrocurcumin is more stable at neutral or basic 

PH (Pan et al. 1999), keeping its antioxidant abilities (Somparn et al., 2007). 

 

Curcumin has shown to exhibit poor bioavailability for three main reasons: its poor 

absorption, rapid metabolism in the liver and rapid systemic elimination due to its short 

half-life (Bisht and Maitra 2009). Curcumin has shown to be highly tolerable. Phase 1 and 

2 clinical trials of Curcumin have been carried out on patients with advanced colorectal 

cancer for 4 months at variable doses (500, to 12000 mg/day) showed no toxicity (Cheng et 

al. 2001). It showed that the serum concentration peaks at 1-2 hours following oral intake 

of Curcumin, followed by gradual decline within 12 hours (Jiao et al., 2009). 
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Curcumin metabolites do not have the same power or activity as the parent molecule where 

it has been reported that the reduced or conjugated forms of Curcumin do not have the 

same inhibitory effect on inflammatory enzymes expressed in human colon cells culture 

(Ireson et al. 2001).  

 

To make the best use of its therapeutic properties, many approaches have been proposed to 

enhance Curcumin’s bioavailability, e.g. using an adjuvant as Piperine which interferes 

with the process of glucuronidation in the liver and intestinal metabolism, and complexing 

Curcumin with phospholipids. (Indena, Meriva®) - A phosphatidylcholine-Curcumin 

complex- showed plasma concentration and area under the curve (AUC) were 5 times 

higher than free Curcumin (Marczylo et al., 2007), hence showing an enhanced 

bioavailability pattern. 

 

Also, preparing Curcumin liposomes and nanoparticles have been reported to remarkably 

increase free Curcumin’s bioavailability (Gota et al., 2010). Where  mean peak plasma 

concentration of 650 mg of solid lipid Curcumin nanoparticle (SLCP) was 22.43 ng/ml 

while the same quantity of the unformulated  Curcuminoid extract (95%) was undetectable; 

however, the study reported remarkable inter-individual variability in the two tested groups 

proposing complex absorption kinetics (Gota et al., 2010). 

 

1.2.2 Curcumin as an Antioxidant and Anti-Inflammatory: 

 

Curcumin is a highly pleiotropic molecule that affects variable molecular targets involved 

in neuro-inflammation, oxidative stress and neuroplasticity (Farooqui 2010). Curcumin 

possesses anti-inflammatory and anti-oxidative powers by downregulating enzymes as 

lipoxygenase (LOX), COX2 and inducible nitric oxide synthase (iNOS), these enzymes 

enhance the generation of several inflammatory mediators as leukotrienes, cytokines and 

TNF α (Farooqui et al. 2013). 
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Curcumin was shown to protect biological membranes including neural membranes against 

peroxidative damage, due to its ability to scavenge free radicals resulting from peroxidation 

(Menon and Sudheer, 2007). This unique ability is due to the presence of functional groups 

including carbon-carbon double bonds, β diketo group and phenyl rings to which hydroxyl 

and methoxy groups are attached (Menon and Sudheer, 2007; Indira Priyadarsini et al., 

2003).  This remarkable antioxidant capability is comparable to Vitamin E (Nimse et al., 

2015)  

 

A study was performed to evaluate the antioxidant potential of Curcumin in rat SCI model 

demonstrated that SOD level was higher in the Curcumin group compared with MP group. 

Malondialdehyde (MDA) exhibited the lowest levels in Curcumin group. It was concluded 

that Curcumin exhibits an antioxidant capacity against oxidative damage following SCI 

(Kavakli et al., 2011) 

 

Neuro-inflammation is a natural defense mechanism aiming at isolating the injured tissue 

from the healthy tissue; unfortunately it might cause the destruction of the injured and 

healthy tissues (Correale and villa 2004). Upon CNS injury, the main mediators of 

inflammation are astrocytes and microglial cells. Upon injury, these cells enhance the rapid 

release of a number of cytokines/ chemokines which degrade the neural membrane, help 

release arachidonic acid and lyso-phosphatidylcholine (Farooqui 2013). Arachidonic acid is 

consequently oxidized to the pro-inflammatory eicosanoids as prostaglandins, leukotrienes, 

and thromboxanes by the help of COX and LOX. On the other hand, 

lysophosphatidylcholine enhances the synthesis of the pro-inflammatory platelet activating 

factor. Thus this cascade of events intensifies an aggressive neuro-inflammatory process 

(Farooqui 2013). 

 

Inflammation is finally terminated by a process of resolution through the release of anti-

inflammatory mediators as IL-10, resolvins, protectins and lipoxins (Farooqui 2010) and 
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this process is a turning-off mechanism held by neural cells for the purpose of limiting 

tissue injury (Farooqui 2013). 

 

Curcumin has displayed a remarkable anti-inflammatory potential. It decreases linoleic acid 

conversion to arachidonic acid (Farooqui 2013). It also blocks the ability of macrophages 

to uptake arachidonic acid therefore limiting its ability for eicosanoids production. 

Curcumin can also inhibit cyclooxygenases and lipoxygenases and thus inhibit 

prostaglandins and leukotrienes synthesis (Rajasekaran, 2011). 

 

Previous studies also demonstrated that dietary Curcumin decreased phospholipase A2, 

phospholipase C and prostaglandin E2. Moreover products of the lipoxygenase and 

cyclooxygenase as prostaglandin E2 and 15 (S) hydroxyeicosatetraenoic acid from 

arachidonic acid was reduced  in  colonic mucosa and tumors in Curcumin fed animals 

versus control group (Rao et al., 1995). 

 

Curcumin also showed the ability to decrease COX at the transcriptional level. A study by 

the American Association for cancer research (AACR)  on human colon cancer cells 

concluded that Curcumin reduced COX-2 expression on the mRNA level in a time and 

dose dependent manner and inhibited cell growth as well (Goel et al. 2001).  

 

1.2.3 Molecular Targets of Curcumin: 

 

Curcumin has proved to be a highly pleiotropic molecule that can interact with multiple 

molecular targets. Curcumin can bind directly to these targets or act indirectly through 

modulation of their activities (Zhou et al., 2011).  

 

From the proteins that act directly with Curcumin: DNA polymerase (Takeuchi et al. 2006), 

lipoxygenase (Skrzypczak et al. 2003) and tubulin (Gupta et al. 2006). It has been proven 
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that Curcumin can bind to different divalent metal ions as well as Fe, Cu, Mn and Zn 

(Ishihara and Sakagami 2005). 

 

Curcumin might activate or attenuate the activity of different transcription factors 

depending on the particular target. For instance, a Curcumin analogue has shown an ability 

to suppress the activity of nuclear factor kappa B (NF-KB) by inhibiting its nuclear 

translocation in Mouse RAW 264.7 and its downstream inflammatory cytokines as tumor 

TNF α , Interleukin 1β (IL-1 β) and interleukin 6 (IL-6) in macrophage cells and it was 

found to be even more potent than Curcumin (Olivera et al., 2012). Therefore, inhibiting 

the activation of many genes responsible for proliferation and cell survival as Cyclin D1, 

IL-6, COX-2 and matrix metallopeptidase (MMP 9) , thus arresting the cell cycle, induces 

apoptosis and inhibiting cell proliferation (Aggarwal &Takada et al., 2004; Wang et al., 

2015). 

 

Curcumin loaded solid-lipid nanoparticles reduced the expression of pro-inflammatory 

cytokines in serum as TNF-α, IL-6 and IL-1β, increased expression of anti-inflammatory 

IL-10 cytokine (Wang et al., 2015). 

 

In a study that aimed at revealing the key players behind the anti-inflammatory mechanism 

of Curcumin, Curcumin suppressed COX-2, inducible nitric oxide synthase (iNOS) 

mediators of inflammation. The study suggested that this effect was in part due to Janus 

Kinase/Signal Transducer and Activator of Transcription (JAK-STAT) inflammatory 

cascade inhibition in the brain microglial cells (Kim et al., 2003). Curcumin also 

suppressed (STAT-3) phosphorylation significantly and showed anti-proliferative effect 

assessed by Cyclin D1 in lung adenocarcinoma cells (Alexandrow et al., 2012). 

 

Peroxisome proliferator- activated receptor gamma (PPAR-ɣ) is a member of a large and 

diverse group of proteins factors called the nuclear receptor family of transcription factors. 

It regulates different functions as inflammation, apoptosis, cell differentiation and lipid 
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metabolism (Farooqui 2013). Its main role is to downregulate macrophage, microglial 

activation and cytokine expression by inhibiting the activity of some transcription factors 

as NF- kB, activator protein 1 (AP-1) and STAT proteins (Ricote et al. 1998; Aggarawal et 

al., 2007). Xu et al have shown that Curcumin induces PPAR-ɣ gene expression in 

activated hepatic stellate cells (HSCs) (Xu et al., 2003). In another study, Curcumin 

activated PPAR-ɣ cells inhibited Moser cells (human colon cancer cell line) and could 

suppress cyclin D1 and  epidermal growth factor receptor (EGFR) gene expression (Chen 

and Xu 2005). 

 

The limited regenerative ability of the injured axons following damage or injury to the 

brain and spinal cord in the adult mammalian CNS is due to the inhibitory effect of various 

neurite outgrowth inhibitors at the injury site consequently impairing axonal regeneration 

and causing functional deficits (Kohta et al., 2009). Besides the myelin associated 

inhibitory molecules, extracellular matrix molecules also play a growth impeding role as 

well. Astrocytic activation and the release of extracellular matrix inhibitory molecules as 

CSPGs (Kohta et al., 2009), causes further impediment to axonal regeneration (Yamashita 

et al., 2005; Yiu and He, 2006). 

 

Zheng and Chen concluded that Curcumin could enhance PPAR-ɣ activity in HSCs thus 

inducing apoptosis and suppressing cell proliferation and extracellular matrix (ECM) gene 

expression. They also concluded that PPAR-ɣ activation by Curcumin could interrupt 

transforming growth factor (TGF-β) pathway leading to the inhibition of connective tissue 

growth factor (CTGF) expression which is originally responsible for ECM overproduction 

(Zheng and Chen, 2006). Yuan et al. also demonstrated a correlation between TGF-β 

inhibition by Curcumin and decreasing the deposition of CSPG of the extracellular matrix, 

reducing glial scar formation and enhancing innervations in SCI (Yuan et al. 2015), this 

renders the environment more suitable for axonal regeneration following injury. 
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Nuclear factor E2 related factor-2 (Nrf2) is a transcription factor that controls basal levels 

of expression of a number of antioxidant genes as well as enhancing the expression and 

upregulation of a number of detoxifying, antioxidant and cytoprotective genes that reduce 

tissue injury (Element 2004). Moreover, it is proposed that Nuclear Factor E2 Related 

Factor-2/ Antioxidant Response Element (Nrf2/ ARE) activation within the astrocytes 

enhances neuroprotection to neurons through mediating the expression of genes essential 

for maintaining redox potential and scavenging of free radicals (Kraft et al. 2004). 

 

Curcumin leads to increasing Nrf-2 level thus enhancing its binding to ARE and increasing 

the expression of heme – oxygenase 1 (HO-1) in both neural and non-neural cells through 

activating UDP-glucuronosyltransferase (UGT) which is responsible for detoxification of 

many toxins present in our daily diet where HO-1 plays a pivotal role in cytoprotection 

from toxins of either endogenous or exogenous origin thus enhancing neuroprotection 

(Hatcher et al. 2008; Scapagnini et al., 2011).  

 

Growth factors together with their receptors play a crucial role in the normal differentiation 

and growth process. Any irregularities in these molecules function or expression can cause 

abnormalities in development which might lead to malignant transformation (Witsch et al., 

2010). Curcumin can regulate the expression of these growth factors thus demonstrating 

anti-invasive, anti-proliferative and anti-angiogenic effects (Zhou et al., 2011). 

 

The epidermal growth factor receptor (EGFR, ErbB, and Her 1 in humans) is an integral 

protein kinase of the plasma membrane that comprises multiple autophosphorylation sites 

(Scaltriti and Baselga 2006). It was recently demonstrated that EGFR inhibition blocked 

pro-inflammatory cytokine secretion from reactive astrocytes and inhibited reactive 

astrogliosis as well in a scratch wound model in vitro, and reduced neuronal loss and 

demyelination which was concurrent with improvements in hind limb motor function and 

in bladder function as well in SCI rat model, thus proposing that EGFR inhibition might be 

a promising potential after CNS injury (Li & Li et al., 2014). Thus, if Curcumin has an 
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inhibitory effect on EGFR, this might provide a new mechanism of how Curcumin can 

impede the undesirable effects of reactive astrogliosis and enhance axonal regeneration. 

 

In human astroglioma cell lines, Curcumin strongly suppressed phorbol 12-myristate 13-

acetate (PMA) induced phosphorylation of extracellular signal–regulated kinases (ERK) , 

c-Jun N-terminal kinase (JNK) and p38  mitogen activated protein Kinase (MAPK) thus 

suppressing MMP-9 enzymatic activity, mRNA and protein level as well as shown in 

figure 11 (Woo et al.,2005). This suggests that Curcumin can suppress AP-1 and NF-KB 

through inhibiting MAPKs pathway consequently adding to Curcumin’s potent anti-cancer 

and anti-inflammatory effects (Zhou et al. 2011). 

 

Figure 11 : Curcumin effect on MAPK signaling pathway in human astroglioma cells. The 

figure shows MMP-9 signaling pathways in PMA treated U87MG cells. Curcumin inhibits 

(PMA) induced phosphorylation of ERK, JNK and p38 MAP kinase thus suppressing 

(MMP-9) enzymatic activity, mRNA and protein level, Reproduced from Woo et al., 2005 

with permission. 

 

Pro-inflammatory cytokines as TNF-α, IL-1β and IL-6 are molecules produced excessively 

after severe injury or infection and they participate significantly in the development of 

systemic and local inflammation which might result in organ failure (Munford and Pugin 

2001). The gene and protein cytokine expression is tightly regulated in the producing cells, 
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and one of the critical steps in this regulation is gene transcription, thus manipulating and 

regulating some of the transcription factors as NF-KB is a suggested strategy in controlling 

the inflammatory response (Baeuerle and Henkel 1994). Several research groups have 

demonstrated the ability of Curcumin to act as a potent anti-inflammatory by modulation of 

various inflammatory cytokines production (Chen et al., 2008). Both in vitro and in vivo 

studies have shown that Curcumin has a profound inhibitory effect on TNF-α production 

(Zhou et al., 2011). Curcumin prevented the release of pro-inflammatory cytokines, PGE2 

and nitric oxide (NO) in a dose dependent manner. Curcumin also attenuated inducible NO 

synthase and cyclooxygenase-2 expression on mRNA and protein levels (Park, 2007). 

 

Another group of inflammatory cytokines are the interleukins which play a crucial role in 

the regulation of the inflammatory response and in the signaling pathways as NF-kB and 

STATs which are involved in angiogenesis and tumor invasion (Dinarello, 2006). In an 

experiment done on TNF-α treated cells, Curcumin could attenuate expression of TNF α 

induced interleukin 1β (IL-1β) and interleukin 6 (IL-6) by inhibiting activation of NF-kB 

and MAPKs pathway (JNK, p38, MAPK, ERK) (Cho et al., 2007). A summary of 

Curcumin various targets is highlighted in figure 12. 

 

Curcumin is able to form chelates with transition metals due to the presence β unsaturated 

β-diketone moiety. Metal chelates of Curcumin with Cu
2+ 

, Fe
2+ 

, Mn
2+ 

, Pb
3+ 

 Have been 

reported (Gupta et al., 2011). A study showed that Curcumin mononuclear complex with 

copper has anti-oxidant properties superior to Curcumin. The complex protected the cells 

against superoxide dismutase and glutathione peroxidase initially induced by radiation 

(Kunwar et al.,2007).Manganese complexes with Curcumin and its derivatives showed a 

potential capacity of protecting brain lipids from peroxidation (Sumanont et al., 2004).  

 

Curcumin was found to bind to DNA via guanine and adenine N7 (major groove) and 

thymine O2 (minor groove) and to the phosphate (PO20 backbone as well. Curcumin 

binding to RNA was through H-bond to uracil O2 besides guanine and adenine N7 binding 
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as well as to the phosphate backbone (Nafisi et al., 2009). Further investigation is needed to 

explore the outcomes of Curcumin DNA binding especially regarding its noticeable nuclear 

localization and presence in tumor cells (Gupta et al., 2011). 

 

Figure 12 : Molecular targets of Curcumin. Curcumin can either upregulate or down 

regulate various molecular targets as Nrf2 and NF-kB respectively inducing a number of 

biological effects as antioxidant and anti-inflammatory. It also targets a number of 

cytokines, enzymes and growth factors affecting several biological processes. Reproduced 

from Shen et al., 2013 with permission 

 

 

The role of Curcumin with DNA and other molecules still looks confusing and definitely 

more investigation in this arena is a necessity to clarify exactly the risk benefit ratio of 

Curcumin as a therapeutic agent either alone or in combination.  
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STUDY OBJECTIVES 

 

The aim of this study is to investigate the role of Curcumin on the inflammatory and 

oxidative components of the secondary injury cascade following primary SCI in a rat 

model. We specifically aimed at comparing the effect of local application of Curcumin 

directly on the injury site with that of Dietary Curcumin supplement, by comparing the 

change in oxidative stress and inflammatory markers before and after Curcumin treatment. 
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CHAPTER 2: Materials and Methods 

 

2.1 Establishment of SCI model: 

A randomized controlled animal study using Female Sprague Dawley rats weighing 

approximately 150gm-200 gm were purchased from Ain Shams University, Cairo. The 

animals were allowed free access to food and water before surgical procedures. All 

experiments were performed according to the NIH (PHS Policy on Humane Care and Use 

of Laboratory Animals, 2015 (US Department of Health and Human Services 2015) and 

international guiding principles for biomedical research involving animals December 2012. 

All rats were anesthetized with ketamine (75 mg/kg) intraperitoneally. After shaving and 

cleaning the skin with Betadine, skin and muscle incision was made over the mid-dorsal 

section of the back. Laminectomy was performed at T9-T10 thoracic vertebral levels. The 

dura was incised longitudinally and spinal cord injury was performed by right side lateral 

hemisection using micro-iris scissors at T9-T10 level, Tail wagging reflex and hindlimb 

retraction proposed successful model establishment. Muscles and skin were then sutured in 

layers. All animals received analgesia (Voltaren 15 mg/kg) and local with systemic 

antibiotics (10 mg/kg) (Nair et al., 2016) were given post injury to prevent either surgical 

or urinary tract infections. Bladder evacuation was performed as needed during the 

experiment.  

Two time points were investigated at our study and animals were grouped as follows::  

 

● Control group n=15 normal rats and n=15 sham surgery rats (skin and muscle 

incision with no injury to the cord).   

● Two Injury groups n=15 (at each time point) with lateral hemisection level at days 1 

and 7 (SCI 1d and SCI 7d)  

● Two local treatment groups  n=15 (at each time point) with Curcumin (Curcuma 

longa extract, Herb Pharm, Williams, OR) 200 mg/kg single dose (Yuan et al., 

2015) at the injury site immediately after injury (SCI+CUR 1d and SCI+CUR 7d) 
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● Dietary supplement group n=15 (SCI+ Diet 7d) where crude Curcumin (Imtinan, 

Egypt) was mixed with diet for one week before and one week after injury as 10% 

of daily feed. 

At the time of analysis, an average of 4-6 rats were used for each marker where rats were 

sacrificed with IP ketamine overdose after 1 day or 7 days for sample collection, the spinal 

cord was exposed at the injury site where a segment including the injured area was 

removed and properly preserved. 

 

2.2. Oxidative Stress Parameters: 

   2.2.1 Malondialdehyde test by Thiobarbituric Acid Assay 

 

Malondialdehyde (MDA) is an end product of lipid peroxidation. The level of 

Malondialdehyde was determined using Thiobarbituric acid (TBA) assay 

(BIODIAGNOSTIC). TBA reacts with Malondialdehyde (MDA) at 95°C for 30 minutes 

forming a colored reactive product that can be measured. 

Spinal cord samples were homogenized in ice cold Phosphate buffered saline (PBS, pH 

7.4) supplemented with protease cocktail inhibitor (Sigma-Aldrich). Samples were 

centrifuged at 10000 g for 15 minutes at 4°c. The supernatant was then removed to be used 

in the assay at -80 °c. Thiobarbituric acid (TBA) reacts with malondialdehyde (MDA)   at 

95°C for 30 minutes forming a reactive product of a pink color that can be measured at 534 

nm.so samples were incubated with TBA for 30 minutes in boiling water and absorbance 

was measured at 534 nm.  Samples were run in duplicates. MDA is expressed as nmol/ 

gram wet tissue. 

2.2.2 Total Antioxidant Capacity: 

 

The total antioxidant capacity in spinal cord samples (TAC) was determined using 

colorimetric assays (BIODIAGNOSTIC). This test is used as a measure of the ability of 

antioxidant systems in a sample to buffer increased reactive oxygen species (ROS). 
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The principle of the test is that exogenous H2O2 is added where a part of it is removed by 

the power of the antioxidants in the sample and the residual amount is determined in a 

colorimetric manner through an enzymatic reaction that converts 3,5,dichloro -2- 

hydroxybenzene sulphonate into a colored product. 

 

Spinal cord tissue samples were homogenized in ice cold Phosphate buffered saline (PBS, 

pH 7.4) supplemented with protease cocktail inhibitor (Sigma-Aldrich). On performing the 

assay samples were centrifuged at 10000 g for 15 minutes at 4°c. The supernatant was then 

removed to be used in the assay at -80 °c. Samples were run in duplicates. TAC is 

expressed as mM/L. TAC and MDA assays were analyzed at Cairo University Research 

Park, Faculty of Agriculture, Cairo University using STAT LAB SZSL60-Spectrum. 

 

2.3 Inflammatory Markers Testing by Enzyme Linked Immunosorbent Assay 

(ELISA): 

 

Spinal cord samples (including the injury epicenter) were homogenized using ice cold PBS, 

PH7.4 supplemented with protease cocktail inhibitor (Sigma -Aldrich) and centrifuged at 

10000 g for 15 minutes at 4°c. The supernatant was then removed to be evaluated for  

TNF-α enzyme linked immunosorbent (ELISA) assay kit (WKEA MED SUPPLIES 

CORP, New York, USA), and IL-6 ( R&D systems, R6000B ) according to the 

manufacturer’s guidelines. 

 

Briefly, the microplate is coated with an antibody specific to TNF α or IL-6 Standard 

dilutions were prepared according to the manufacturer’s guidelines, samples were diluted 

1:5 using calibrator diluent, wells were washed and conjugate ( HRP enzyme catalyzed  

conjugate) was added followed by incubation. Finally substrate solution was added and 

incubated followed by stop solution where OD readings were determined. All samples were 

run in duplicates. Finally, the concentrations of the samples were calculated from the 

constructed standard curve represented as Pg/ml. 
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2.4 Neurological evaluation 

In our study, a neurological assessment using modified Tarlov Criteria (Shi et al., 2010) 

was performed.  The criteria were as follows: 0 (no movement), 1 (minimal movement), 2 

(good movement), 3 (stand and walk but cannot hop) and 4 (normal). A behavioral 

assessment using the grid walk (sensorimotor test) and the inclined plane test (motor test) 

was also conducted by 7 days treatment compared to simple injury group. 

2.5 Histological Staining 

Following anesthesia, rats were sacrificed and the spinal cord sections surrounding the 

injury epicenter were removed, dehydrated, embedded in paraffin and cryosectioned into 5 

μm thick sections. Pathologic changes of the spinal cord were detected using hematoxylin 

and eosin staining.  Histological examination of spinal cord sections for local treatment and 

dietary treatment groups to be completed. 

 

2.6. Statistical Analysis: 

 

All results were tabulated and statistical analysis was performed using IBM SPSS program 

(SPSS Inc., Chicago, IL, USA) , version 20, and all graphs were done using Microsoft 

Excel 2010. Quantitative data was represented as Mean ± Standard Deviation. 

One-way ANOVA test was used to compare means of quantitative variables. If ANOVA 

test was positive, Dunnett post Hoc test was used to identify the variable that made the 

significant change. Independent t-test was used to compare means of quantitative variables 

within SCI and SCI+CUR groups. All p-values are two-sided, and difference was 

considered statistically significant if p≤0.05 (95% confidence interval). 
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CHAPTER 3: RESULTS 

 

 3.1 Effect of Local and Dietary Curcumin on Oxidative Stress Markers in Spinal 

Cord Tissue 

 

To study the effects of Curcumin on oxidative damage following SCI, we measured MDA 

and TAC levels in spinal cord tissue at 1 and 7 days post injury after local treatment  (200 

mg/kg) with Curcuma longa extract (Herb pharm, Williams, Oregon). For the dietary 

supplement with crude Curcumin MDA and TAC levels were measured only at 7 days post 

injury. 

In this section results are demonstrated for: 

 1 day after SCI: Control group, Injury (SCI group) and Local treatment group 

(SCI+CUR). 

 7 days after SCI: Control group, Injury (SCI group), Local treatment group 

(SCI+CUR) and Diet Supplement group (SCI +Diet). 

Groups will be referred to as Control, injury (SCI), local treatment (SCI+CUR) and Dietary 

supplement (SCI + Diet). 

 

  3.1.1 Local Curcumin Significantly Decreases MDA Levels 1 Day after SCI  

 

Malondialdehyde (MDA) was measured in spinal cord tissue samples in all groups; control, 

injury at 1 and 7 days (SCI 1 day and 7 days), local treatment (200 mg/kg SCI + CUR 1 

day and 7 days), and Dietary supplement group (SCI+ Diet) using Thiobarbituric Acid 

assay (TBA) assay and expressed as nmol/g wet tissue. As shown in figure 13, 1 day after 

SCI, MDA levels in SCI group were significantly elevated compared to control group (P < 

0.01). Following local treatment (SCI+CUR), MDA levels were significantly lower when 

compared to SCI group p<0.05. Tables are represented in appendix. 
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3.1.2 Local Curcumin Significantly Decreases MDA levels 7 Days after SCI 

 

At day 7 following local treatment (SCI+CUR), MDA levels were significantly lowered 

when compared to SCI p< 0.05. However, diet supplement (SCI +Diet) did not induce a 

significant reduction in MDA levels when compared to SCI group as shown in figure 14. 

Tables are represented in appendix. 

 

 

 

Figure 13: MDA levels in spinal cord tissue 1 day after SCI.  MDA levels for Control, SCI, 

SCI+CUR in homogenized spinal cord tissue. MDA represented as nmol/g wet tissue 

weight. n = (4-6), all samples were run in duplicate. Error bars are standard deviation 

(**p<0.01 vs. control group and # p<0.05 vs. SCI group). (One way ANOVA, Dunnett post 

hoc, Independent t-test). 
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Figure 14 : MDA levels in spinal cord tissue 7 days after SCI. MDA levels measured for 

Control, SCI, SCI+CUR and SCI+Diet groups in homogenized spinal cord tissue. MDA 

represented as nmol/g wet tissue weight. n = (4-6), all samples were run in duplicate. Error 

bars are standard deviation (#p<0.05 vs SCI group). (One way ANOVA, Dunnett post hoc). 
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3.1.3 Total Antioxidant Capacity 1 Day after SCI and Local Curcumin Application 

Total antioxidant capacity (TAC) was measured to detect the effect of Curcumin as an 

antioxidant following SCI. TAC was measured as mM/L of homogenized tissue samples.  

An elevation in TAC might be an indication of an antioxidant capacity exerted by 

Curcumin treatment. As shown in figure 17 at day 1 after SCI, TAC levels were 

significantly lowered in all injury and treatment groups compared to control p < 0.01 as 

shown in figure 15. After local treatment (SCI +CUR), no significant elevation in TAC 

levels was detected when compared with SCI group. Tables are represented in appendix. 

  

3.1.4 Local Curcumin and Diet supplement significantly elevate TAC 7 Days after 

SCI. 

 

TAC levels were significantly decreased in SCI + local treatment group (SCI+CUR) when 

compared to control group p<0.01 at 7 days after SCI. However, TAC levels  were 

significantly elevated by local treatment regimen (SCI+CUR)  p< 0.05 and  by Dietary 

supplement group (SCI + Diet) p< 0.01 compared to SCI group as shown in figure 16. 

Moreover, TAC levels were significantly elevated by diet supplement when compared to 

local treatment regimen p<0.01 as sown in figure 16. Tables are represented in appendix. 
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Figure 15 : TAC levels in spinal cord tissue 1 day after SCI. TAC levels measured for 

Control, SCI, SCI+CUR in homogenized spinal cord tissue. TAC represented as Mm/L. n = 

(4-6), all samples were run in duplicate. Error bars are standard deviation.(**p<0.01 vs. 

Control group.(One way ANOVA, Dunnett post hoc, Independent t-test) 
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Figure 16: TAC levels in spinal cord tissue 7 days after SCI. TAC levels measured for 

Control, SCI, SCI+CUR and SCI+Diet in homogenized spinal cord tissue. TAC 

represented as Mm/L. n = (4-6), all samples were run in duplicate. Error bars are standard 

deviation. (**p<0.01 vs.Control, ##p<0.01 vs. SCI group, #p<0.05 vs. SCI group, ɵ 

p<0.01vs.SCI+CUR group). (One way ANOVA, Dunnett post hoc). 
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3.2. Effect of Curcumin on Inflammatory Cytokines Expression in Spinal Cord Tissue 

 

To determine the effect of Curcumin on the inflammatory process following SCI, we 

measured TNF α and IL-6 levels in spinal cord tissue after local treatment   

 TNF α levels were measured at 7 days post injury for both local treatment (SCI + 

CUR 200 mg/kg) with Curcuma longa extract (Herb pharm, Williams, Oregon) and 

dietary supplement regimen (SCI + Diet) (1 day TNF α values to be completed). 

 IL-6 levels were measured for 1 day and 7 days local treatment (SCI +CUR 200 

mg/kg) with Curcuma longa extract (IL-6 levels for Dietary supplement group to be 

completed). 

 

3.2.1 Local Curcumin and Diet Supplement Significantly Decrease TNF α Expression 

Levels  

TNF α levels were measured in rat spinal cord tissue in control, injury and treatment groups 

using Enzyme Linked immunosorbent Assay (ELISA). TNF α was measured as Pg/ml. 

As shown in figure 17 at 7 days after SCI, TNF α levels were significantly elevated in SCI 

group p< 0.01 compared to control group. Upon treatment,  TNF α levels were significantly 

lower in local treatment (SCI+CUR) and Diet supplement groups (SCI+Diet) compared to 

SCI group p<0.01. Tables are represented in appendix. 
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Figure 17: TNF α expression levels in spinal cord tissue 7 days after SCI by ELISA. TNF 

alpha levels for Control, SCI, SCI+CUR and SCI+Diet in  homogenized spinal cord tissue 

represented as Pg/ml. n=(4-6),all samples were run in duplicate. Error bars are standard 

deviation. **p< 0.01 vs. control, ##p< 0.01 vs SCI. (One way ANOVA, Dunnett post hoc). 

 

 

 

 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70
TN

F 
 α

   
P

g/
m

l 

TNF α Expression Levels  in Spinal Cord Tissue - 7 Days 

Control

SCI 7 Days

SCI+CUR 7 Days

SCI+DIET 7 Days

   ** 

  ## 

      ## 



48 
 

 

3.2.2. IL-6 Expression Levels 1 Day after SCI and Local Curcumin Application 

 

IL-6 expression was measured in rat spinal cord homogenized tissue samples using ELISA. IL-6 is 

expressed as Pg /ml.  At 1 day after SCI, IL-6 levels were significantly elevated in SCI and 

local Curcumin treatment (SCI+CUR) compared to control group p< 0.01 and p < 0.05 

respectively. No significant lowering of IL-6 values was detected upon local treatment (SCI+CUR) 

when compared to SCI group at 1 day as shown in figure 18. Tables are represented in appendix. 

3.2.3 Local Curcumin Significantly Decreases IL-6 Levels 7 Days after SCI  

At 7 days, IL-6 levels were significantly elevated in SCI and local treatment group 

(SCI+CUR) compared to control group P<0.01. Upon local treatment, IL-6 levels were 

significantly lowered compared to SCI group P< 0.05 as shown in figure 19. Tables are 

represented in appendix. 

 

 

Figure 18 : IL-6 Expression levels in spinal cord tissue 1 day after SCI measured by 

ELISA. IL-6 levels for Control, SCI, SCI+CUR in homogenized spinal cord tissue 

represented as Pg/ml. n=(3), all samples were run in duplicate.Error bars are standard 

deviation. (*p< 0.05, ** p<0.01 vs. Control group).(One way ANOVA, Dunnett post hoc, 

Independent t-test). 
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Figure 19 :  IL-6 expression level in spinal cord tissue 7 days after SCI measured by 

ELISA. IL-6 for Control, SCI, SCI+CUR and SCI+Diet in homogenized spinal cord tissue 

represented as Pg/ml. n=(3), all samples were run in duplicate. Error bars are standard 

deviation. (**p<0.01 vs. Control, # p< 0.05 vs SCI group). (One way ANOVA, Dunnett 

post hoc, Independent t-test). 

 

 

 

 

 

 

 

 

 

 

 

0

50

100

150

200

250

300

350

400

450

IL
-6

   
 P

g/
m

l 
IL-6 Expression levels in Spinal Cord Tissue - 7 Days 

Control

SCI 7 Days

SCI+CUR 7 Days

  ** 

** # 



50 
 

3.3 Neurological Function Evaluation 

 

In our study, behavioral assessment has shown that Curcumin treatment groups exhibit a 

trend towards improved functional activity in treatment groups relative to injury groups. 

However, our results didn’t evaluate the functional improvements on longer term, yet an 

improvement upon injury was noticed when treatment groups were compared to injury 

group 7 days after SCI 

Thus a complete behavioral assessment was not presented. However, this is a long term 

study and since our main goal is to compare between dietary regimen and local regimen we 

assume that motor function test starting at 7 days would reflect more reliable data 

especially regarding diet supplement regimen. Thus, in order to validate our data we intend 

to complete the neurological assessment applying the scoring system between different 

groups on longer term to obtain a more descriptive and accurate data on the effect of 

Curcumin treatment on neurological function. 

 

3.4 Histology 

 

Spinal cord sections were examined  by hematoxylin and eosin staining. Normal spinal 

cord sections and spinal cord sections following SCI were examined. Following injury, the 

normal spinal cord structure was impaired where both grey matter and white matter were 

damaged; pronounced cavitation was detected accompanied by neuronal degeneration. 

Normal and injured spinal cord sections are shown in figures 20 and 21 respectively. 
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Figure 20 : Hematoxylin and Eosin Staining Sections of Normal spinal cord.  Spinal cord 

sections around injury were removed dehydrated, embedded in paraffin and cryosectioned 

into 5 μm thick sections. The normal tissue shows preserved tissue with the normal 

arrangement of the white matter, grey matter and neurons. (Magnification X40) 
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Figure 21 : Hematoxylin and Eosin staining for spinal cord tissue following SCI.  Spinal 

cord tissue was damaged with impairment of both white matter and grey matter with 

noticeable cavitation and neuronal degeneration. (Magnification X40) 
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CHAPTER 4: DISCUSSION 

 

 

Spinal cord injury is a debilitating condition characterized by a series of complex series of 

events, the primary injury causes tissue damage, axons demyelination, and cell membrane 

damage enhancing the initiation of secondary injury cascade (Kwon et al., 2004). 

Secondary damage involves multiple events such as ionic imbalance, release of free 

radicals, glutamate excitotoxicity, blood-spinal cord barrier damage and inflammation.  

These events are mediated and potentiated by glial cells, macrophages and T-lymphocytes 

(Anwar et al., 2016). It is well established that reduction of secondary tissue damage is a 

prime goal in treating spinal cord injury (Dumont et al., 2001). 

 

The main focus of our study was to study the effects of Curcumin on two of the main 

hallmarks of secondary SCI; the inflammatory process and the oxidative damage.  Our 

second goal was to find if dietary supplement of Curcumin would have a similar role to 

direct local application.  

 

Curcumin is a naturally occurring nonsteroidal that manifests an array of beneficial 

pharmacological effects as anti-inflammatory, antioxidant, anticarcinogenic and anti-

bacterial functions (Shishodia 2013). Thus detecting a potential role for Curcumin in spinal 

cord injury might add a potential tool in ameliorating the damaging cascade of events in 

SCI, as well as other CNS conditions thought to be caused by inflammation and oxidative 

damages. It has been proposed in several studies that curcumin administration enhances 

neuroprotection by decreasing inflammatory response, oxidative stress damage, glial scar 

formation and enhancing motor recovery as will be discussed below. 

 

This study focuses on detecting the hypothesized role of Curcumin as a neuroprotective 

agent through its anti-inflammatory and an antioxidant effect. The main findings of this 
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study were as follows: 1) a significant increase in inflammatory and oxidative markers was 

noticed following injury, MDA, TNF α and IL-6 respectively. 2) Elevation in TAC levels 

following treatment specifically by 7 days. 3) Curcumin local treatment regimen showed an 

anti-inflammatory and antioxidant potential 4) Dietary curcumin supplement showed a 

beneficial effect; however, we conclude that both regimens need further modification. 

 

Following SCI, a milieu is developed that shifts the balance pro-oxidant/ antioxidant 

towards oxidative stress (Bains and Hall, 2012). It results from failure of free radicals 

scavenging capacity. Free radicals cause lipid peroxidation and protein damage within 

spinal neurons, glia and other cells (Fatima et al., 2015). In SCI rat models, 

Malondialdehyde (MDA) elevation has been documented following injury (Varija et al., 

2009).  MDA is an aldehyde end product of lipid peroxidation in SCI and is regarded as an 

evidence of oxidative stress in rat SCI models (Liu et al., 2013, Kim et al., 2014).  

 

In the present study Curcumin showed a noticeable antioxidant effect; however, varied 

depending on the treatment regimen applied. After injury, MDA levels were significantly 

elevated by 1 day compared to the control group, this is consistent with other studies which 

show that ROS generation in rat model is characterized by an elevation in MDA 

accompanied with reduction of antioxidant markers as superoxide dismutase (Paterniti et 

al., 2009; Liu et al., 2013; Guo et al., 2014). Xu et al. showed that 6 h after spinal cord 

compression injury, MDA levels were elevated in a modest; however, a significant manner, 

this elevation was also detected by immunohistochemical staining in motor neurons (Xu et 

al., 2005) 

 

We noticed that in Curcumin local treatment groups (SCI +CUR 200 mg/kg), MDA levels 

were significantly lowered compared to injury groups either at 1 day or 7 days. This is 

consistent with other studies where Kavakli et al. reported a decrease in MDA level 24 h in 

serum post Curcumin treatment in a weight drop SCI model where Curcumin was given 
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200 mg/ kg orally (Kavakli et al., 2011). Sanli et al. reported similar findings following 

Curcumin administration 300 mg/kg intraperitoneally (Sanli et al., 2011). 

  

At 7 days we noticed a significant decline in MDA levels following local treatment 

compared to injury and control groups. This is not consistent with the findings of Kim and 

colleagues, who report a significant elevation in MDA level by 1 week that only lowered 

significantly at 2 weeks when compared to vehicle group (Kim et al., 2014). However, their 

findings were based on plasma levels and not in cord tissue as our current study.  Another 

possibility is the difference in the model used where Kim et al used an aneurysm clip 

compression SCI model, while we used a hemisection model. 

 

Curcumin Dietary supplement given 7 days before and 7 days after injury, did not affect 

MDA levels significantly when compared to 7 days injury group. We assume that the 

dietary regimen that we applied was not capable enough of affecting MDA values post 

injury. Moreover, Dietary supplement with crude Curcumin was introduced to the animals 

ad libitum, thus a variation between the amounts of Curcumin between animals might have 

affected the overall effect. Although our goal was to test the potential neuroprotective 

effects of Curcumin when used as a dietary supplement, we recommend to avoid such 

variability by introducing Curcumin in a consistent and reproducible manner by gavage as 

previously described (Reeta et al., 2009; CONEAC et al., 2017). 

 

Total antioxidant capacity (TAC) represents the synergistic effect between different 

antioxidants (Valkonen and Kunsi, 1997).  At 1 and 7 days, we noticed a significant 

decrease in TAC values in all injury and treatment groups when compared to control group 

except in the dietary supplement group where higher TAC values were detected. However, 

when comparing to injury group 7 days after SCI, both local treatment (200 mg/kg) and 

Dietary supplement induced a significant elevation in TAC values compared to 7 days 

injury group. Moreover TAC levels in Diet supplement groups were more significantly 

elevated when compared to local treatment group. 
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We assume that this effect by the Curcumin dose we used (200 mg/kg) was masked at 1 

day by the surge of oxidative damage that follows injury; however, by 7 days this surge has 

subsided due to the initial treatment and Curcumin treatment possibly had a delayed effect. 

 

Al Rubaei and colleagues detected higher TAC and lower MDA levels in Curcumin treated 

groups when compared with H2O2 experimentally induced oxidative stress group in liver 

tissue homogenate (Al Rubaei et al., 2014). In a rat inflammation model, oral Curcumin in 

carboxy-methylcellulose (150 mg/kg), liver Total antioxidant capacity (TAC) was 

increased significantly in Curcumin treatment groups where samples were collected 15 min 

to 3h after Curcumin treatment, while serum TAC levels in Curcumin/carboxy-

methylcellulose group and inflammation were lower than Curcumin only group  (CONEAC 

et al., 2017). 

 

In this context we have to highlight three main points. First, at 1 day local treatment the 

significant decrease in MDA was not accompanied by significant TAC elevation when 

compared to injury group. Second, at 7 days local treatment (200 mg/kg) we noticed that 

TAC was significantly elevated and MDA was significantly lowered as compared to 1 

week injury group. Third, dietary Curcumin supplement elevated TAC significantly; 

however, MDA levels were not significantly lowered when compared to SCI group 

 

Regarding the first point, MDA lowering might be attributed to an increased activity of  a 

certain antioxidant enzyme such as SOD or Catalase which were reported to be elevated by 

Curcumin treatment in other SCI models, (Cemil et al., 2010; Kavakli et al., 2011; Kim et 

al., 2014) . Hence, MDA might have been affected by a certain enzyme (s) rather than the 

total antioxidant capacity in the spinal cord tissue 

 

Following dietary Curcumin supplementation, although TAC levels were significantly 

elevated, MDA values were not significantly lowered compared to 1 week injury group. 
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We assume that in the dietary supplement group the elevation of TAC was still not enough 

to cause MDA lowering, or possibly this elevation in TAC levels was not enough to induce 

the expression of antioxidant enzymes that affects MDA levels. Another possibility is that 

crude forms of Curcumin have a mix of active ingredients that induce various biochemical 

effects, therefore we recommend using a pure form of Curcumin extract, or other Curcumin 

derivatives such as (CNB-001; 500 ppm) should be considered. This derivative is more 

stable and enhances neuroprotection as well (Liu et al., 2008; Wu et al., 2011). 

 

A proposed mechanism of Curcumin is that it enhances the activation of nuclear factor 

erythroid 2-related factor (Nrf2). Elevation in the level of antioxidant enzymes is regulated 

through antioxidant response element (ARE) that is present in the regulatory region of 

genes of antioxidant enzymes (Nguyen et al., 2003). ARE is an enhancer of a number of 

phase II antioxidant enzyme genes as Hemeoxygenase, reduced nicotinamide adenine 

dinucleotide phosphate quinine oxidoreductase and glutamate cysteine ligase (Wilson, 

1997). When Nrf2 dissociates from kelch-like ECH associated protein 1 (keap1), it is 

translocated to the nucleus and binds to ARE enhancing the transcription of downstream 

target genes (Motohashi and Yamamoto 2004). 

 

A study by Jiang and colleagues was the first to report the effect of Curcumin on Nrf2 in 

astrocytes, demonstrating that Curcumin enhanced phase II enzymes induction in Nrf2 +/+ 

astrocytes where this effect was not evident in Nrf2 -/- astrocytes suggesting that Curcumin 

enhances Nrf2 cytoprotective role in astrocytes. Moreover, Curcumin inhibited reactive 

oxygen species (ROS) in Nrf +/+ Astrocytes and not in Nrf -/- Astrocytes. They propose 

that this effect can add a lot to Curcumin therapeutic value especially as it can be a part of 

human diet or daily supplement with low toxicity (Jiang et al., 2011). 

 

Jin et al. also demonstrated that Curcumin (IP injections 100mg/kg) enhanced of Nrf2 

activity in SCI vascular clip compression model reduced locomotor impairment, apoptosis 

and spinal cord edema (Jin et al., 2014). 



58 
 

 

Other markers may also be used to evaluate oxidative stress following SCI and treatment 

efficacy, such as superoxide dismutase (SOD) (Kavakli et al., 2011) and hemeoxygenase 

(HO-1) (Diaz-Ruiz., 2013). The main identified free radicals are: superoxides (O2°--), 

hydroxyl radical (° OH), hydrogen peroxide (H2O2), Peroxynitrite (ONOO -) and nitric 

oxide (°NO) (Yang et al., 2013) where mainly the superoxide (Liu et al., 1998) and 

hydroxyl radical (Bao and Liu, 2004) are the most damaging and play the main role within 

the other ROS following SCI. They are produced by a complex system of enzymes in both 

microglia and immune cells as: nicotinamide-adenine dinucleotide phosphate (NADPH) 

oxidase, xanthine oxidase and cyclooxygenase (Bains and Hall, 2012). 

 

Levels of TNFα are elevated following SCI, reaching its peak within one hour after 

primary injury (Dinomais et al., 2009). It is released faster than other inflammatory 

cytokines (Feldman, 2008) and it activates several other cytokines and growth factors 

release as well as immune cells recruitment. This chief role made TNF α an attractive target 

in inflammatory conditions including SCI (Esposito and Cuzzocrea, 2011). Studies suggest 

a dual role of TNFα. For instance, it is suggested that it might exert deleterious effects in 

acute phase versus beneficial effect in chronic phase after SCI (Chi et al., 2010) or exerting 

anti-apoptotic effect through TNFR-NF𝛋B signal transduction pathway (Kim et al., 2001). 

 

TNF α is secreted by microglia and it stimulates glutamate release which in turn through 

metabotropic glutamate receptors enhances more TNFα release. Consequently, it acts on 

astrocytes inducing glutamate release and upregulating its levels consequently. Due to this 

excitatory elevation, calcium entry is elevated causing excitotoxicity and neuronal death, 

thus TNF α links neuro-inflammation and excitotoxic effects (Olmos and Lladó, 2014). 

 

Initially TNFα is synthesized as transmembrane protein where its extracellular domain is 

cleaved by matrix metalloprotease TNFα converting enzyme into the soluble form where 

TNFR1 signaling activates a number of transduction pathways as: JNK, NF- 𝛋B, ERK and 
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p38 MAPK (Byun et al., 2012; Olmos and Lladó, 2014) which makes it somehow 

ambiguous to clearly define which of them impacts TNF α expression (Olmos and Lladó, 

2014). For instance, a study reported that TNF α expression was prevented through 

inhibition of MEK/ERK pathway. They also showed that NF-𝛋B binding to DNA which is 

initially activated by interferon gamma (IFN Ɣ) is completely dependent on TNFα release 

via MEK/ERK pathway in BV-2 microglial cell line (Mir et al., 2009). NF-𝛋B pathway 

regulates promoters of cytokines producing genes as TNFα, IL-6 and IL-1β (Hang et al., 

2004). This cascade amplifies initial inflammation and aggravates consequences in SCI 

following the initial trauma (Ni et al., 2015). 

 

The production of IL-6 is in part modulated by many factors as IL-1b and TNFα. IL-6 

production was correlated with glial scar formation (Brunello et al., 2000). IL-6 knockout 

caused astrogliosis suppression (Klein et al., 1997). Besides, following SCI noticeable 

impedance of axonal growth was detected in mice with increased IL-6 signals (Lacroix et 

al., 2002). 

 

In the present study, TNFα levels were measured at 7 days in all groups (control, SCI, 

SCI+ local treatment and SCI+ Dietary supplement). TNF α levels were significantly 

elevated at 7 days injury in SCI group compared to control group. Further analysis is 

planned to evaluate 1 day expression across different groups. 

 

IL-6 expression was significantly elevated in all groups either SCI (1 day and 7 days) or 

SCI +local treatment 200 mg/kg at 1 day and 7 days when compared to control group.  

However, data regarding Dietary supplement is not represented for IL-6 and yet to be 

completed. 

 

The present data is consistent with previous reports that demonstrated alteration in the 

levels of inflammatory cytokines following SCI. In an SCI clamp model, serum levels of 

TNFα, IL-6, IL-10 and IL-1a gradually increased at 24h reaching peak at 3 days. Pro-
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inflammatory cytokine expression started lowering at day 7, although shown to remain 

significantly higher than control group, and stabilizing at day 28 (Geng et al., 2015). In an 

SCI weight drop contusion model, IL-6 receptor expression quantified by western blot was 

increased 8 fold within 12 hours following injury when compared to before injury (Okada 

et al., 2004). In an aneurysm clip compression model showed that inflammatory cytokines 

including TNFα, NF-𝛋B and IL-1β increased at 1 hour after injury and peaking at 12 hours 

SCI (Yuan et al., 2015). Guo and colleagues also showed an elevation in TNFα and IL-6 

mRNA levels at 2h and 6 h respectively following spinal cord contusion, as well as, a 

significant increase in the TNF α and IL-6 protein levels at 24 hours following SCI (Guo et 

al., 2014). 

 

This documented variability in peak times may be due to differences in severity of injury 

between different SCI models. The first study to compare severity dependent expression of 

IL-1β, IL-6 and TNFα following SCI, used a graded SCI contusion model. On the gene 

level, IL-6 and TNFα mRNA levels were increased at 1, 3 h and peaked at 6 h post injury 

returning to baseline levels at 1 d flowing severe injury, while these levels were 

significantly lower in the mild injury group. On the protein level, the cytokines including 

TNFα and IL-6 showed a marked but transient increase following severe SCI while in the 

mild injury group no cytokines were detected by western blotting (Yang et al., 2005). 

 

The effects of Curcumin have been well documented; Chen et al. demonstrated that 

Curcumin treatment reduced IL-1β mRNA expression in astrocyte culture with no change 

in TNFα expression, while in microglia pretreatment with Curcumin decreased the elevated 

IL-1β and TNFα significantly (Chen et al., 2015). Another study showed that following 

contusion SCI TNFα is localized in the cytoplasm of the anterior horn neurons of the spinal 

cord and that the number of TNFα positive cells in gray matter was significantly elevated  

24 h  and at 3 d post injury. TNFα expression was significantly elevated at 3d and 5d 

(Zhang et al., 2015).   
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In our study we detected changes in TNF α and IL-6 in spinal cord tissue samples as an 

indicator for the inflammatory process following SCI hemisection model. After Curcumin 

administration, TNFα levels were significantly decreased in SCI + local (200 mg/kg) and 

SCI + diet groups when compared to 7 days SCI group. Furthermore at 7 days, IL-6 levels 

were significantly decreased Curcumin local treatment when compared to SCI group; 

however, at 1 day local treatment did not show a significant decrease. This might be due 

the strong recruitment of inflammatory cytokines by immune cells that might mask 

Curcumin effect. Nonetheless, Curcumin significantly lowered IL-6 level by 7 days, this 

might be explained by a delayed effect of curcumin that was not manifested at 1 day.  

 

Machova et al used a single local dose of Curcumin followed by daily IP administration of 

Curcumin daily for 28 days following SCI using a balloon compression model TNFα levels 

were only significantly decreased at days 1 and 14.  They demonstrated a transient 

elevation of TNF α levels between day 3 and 14; however, they assumed that it might be 

due to activation of the immune response cells which when stabilized TNFα levels 

decreased. They also proposed that Curcumin dose might have not been effective 

(Machova et al., 2015). They also demonstrated that IL-6 levels were significantly elevated 

upon treatment with curcumin when compared to vehicle control at days 14 and 28 

(Machova et al., 2015). It is worth mentioning that Machova et al. study used a different 

SCI model and a different Curcumin treatment regimen than the regimens we used in the 

present study. 

 

Machova et al. 2015 also showed that following treatment, no alteration was found in IL-6 

levels at days 1, 3, 7 and 10; however, its level was increased by days 14 and 28. They 

proposed that Curcumin might act more effectively in early stages or that its effect is for a 

distinct period of time, but their detection window was till 28 days so the early phase in 

their study was 7 days which is regarded as the delayed phase in our current study. 

However, we believe that further investigation is needed to validate IL 6 changes at 

different time points.  
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Yuan et al. demonstrated that TNFα besides other inflammatory cytokines were elevated 

significantly at the gene and protein levels following SCI through aneurysm clip 

compression where Curcumin was given as 300 mg /kg once daily for 7 days. The 

elevation at the protein level was documented as soon as 1 hour following injury with a 

peak elevation at 12 hours post injury followed by a decline; however, they reported that 

the expression remained high in their therapeutic detection window which was 72 hours. In 

their study they correlated these high cytokine levels by a strong inflammatory response in 

acute SCI. Moreover, the authors suggested a correlation between the higher cytokine 

levels including TNFα, IL-1β and NF- κB in the simple injury group and a larger glial scar 

area aggravating secondary damage and tissue necrosis (Yuan et al., 2015).  

 

Another study using vascular clip compression SCI model, showed that TNFα, IL-1β and 

IL-6 were elevated by 257.9%, 229.0% and 296.3% increase respectively compared to 

sham group. The authors suggested a mechanism behind this elevation, they showed that 

following SCI, an increased expression of toll like receptor 4 (TLR4) on the gene and 

protein level followed by upregulation of NF-kB was documented. In turn, this 

upregulation potentiates the activation of the inflammatory cytokines as TNFα which in 

turn activates NF-kB. Thus a positive feedback mechanism is initiated amplifying 

inflammation and exacerbating damage following SC I (Ni et al., 2015). Hence, they 

proposed that Curcumin therapeutic effect is due to modulation of TLR4/NF-𝛋B 

inflammatory pathway and (Ni et al., 2015). 

 

In a vascular clip compression model, Jin et al. showed that at 72 hours following injury, 

TNFα, IL-1β and IL-6 concentrations were significantly lower in the Curcumin treatment 

group when compared to the SCI group. Curcumin was administered in a similar dose to Ni 

et al. (intraperitoneally as 100 mg/kg in PBS including 1% DMSO). Jin and Colleagues 

demonstrated that curcumin administration up-regulated Nrf2 activity while NF-𝛋B activity 

was down regulated. They proposed that Curcumin beneficial effect was due to enhancing 
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the activity of Nrf2, decreasing NF-𝛋B and hence decreasing the activity of the 

downstream inflammatory cytokines (Jin et al., 2014). 

 

Cytokines specific mechanism of action in neurodegeneration is considered complex and 

still unclear. They can either act directly on neurons or indirectly through affecting blood 

flow, glia or brain vasculature. Cytokines can act on many levels exerting multiple actions 

on different cells eventually causing excess calcium release, apoptosis, enhancing calcium 

uptake and free radical production (Allan and Rothwell, 2001). 

 

In our study, neurological  assessment has shown that Curcumin treatment groups exhibit a 

trend towards improved functional activity in treatment groups relative to injury groups. 

However, our results didn’t evaluate the functional improvements on longer term , yet an 

improvement upon injury was noticed when treatment groups were compared to injury 

group 7 days after SCI 

A complete behavioral assessment was not presented as well. However, this is a long term 

study and since our main goal is to compare between dietary regimen and local regimen we 

assume that motor function test starting at 1 week would reflect more reliable data 

especially regarding diet supplement regimen .For instance another study performed the 

behavioral assessment at postoperative days 21 and 42 (Holly et al., 2012). 

 

Several studies show functional improvement following Curcumin treatment in various SCI 

models. Liu et al. performed a neurological assessment test on ischemia/ reperfusion (I/R) 

SCI model 48 hours following reperfusion. They showed that after Curcumin treatment, 

although neurological score was lower than sham group yet it was higher than that of the 

I/R group significantly (Liu et al., 2013). Ni et al. used Basso, Beattie and Bresnahan 

(BBB) locomotor scale to assess forelimb-hindlimb coordination, hind limb movements 

and whole body movements as well. By 72 h following SC compression injury, BBB score 

was nearly zero; however, after Curcumin treatment 100 mg/kg IP the score was 

significantly increased (Ni et al., 2015). In a left hemisection SCI model, daily Curcumin 
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treatment (40 mg/kg) starting 1 day before surgery and continued until 6 days, showed that 

Curcumin treatment was accompanied by improved BBB score of the affected hind limb on 

days 3 and 7 (Lin et al., 2011). Yuan et al also reported a dose effect correlation where 

higher Curcumin concentrations caused more improvement of functional recovery on the 

BBB score when compared with methylprednisolone (MP) or with the simple injury group 

starting from week one till week 8  (Yuan et al., 2015).  

 

Regarding the scope of our study, which is comparing the dietary regimen with local 

treatment regimen, a long term behavioral assessment should be considered to reliably 

evaluate if the regimens used would give a sustained motor function improvement or not. 

For instance Yuan et al. evaluated the effect of the given curcumin treatment from week 1 

till week 8 (Yuan et al., 2015). Besides, Holly et al. compared different groups for 

behavioral assessment on postoperative day 21 and 42 where they were detecting the effect 

of docosahexaenoic acid-curcumin (DHA-Cur) diet on enhancing neuroprotection in 

cervical spondylotic myelopathy (CSM) rat model (Holly et al., 2012). 

 

Potential limitations of our study could be the dietary regimen using crude turmeric which 

only contains 3-5 % Curcuminoids 60% of which is Curcumin (Gupta et al., 2013). Thus 

using  a more stable and efficacious form as CNB-001 used by Wu et al. study might have 

represented clearer results. Another limitation was not looking at time points between 1 day 

and 7 days as some markers in our study have shown a change by 7 days thus their 

fluctuation pattern before 7 days should be investigated. Moreover, time points beyond 7 

days should be considered as well for investigating the sustainability of Curcumin either 

biologically or regarding on motor function assessment following treatment. 

 

In another study, Curcumin was applied locally then systemically throughout the 

experiment (Machova et al., 2015). We should consider daily dosing or a sustained release 

formulation especially that Curcumin is rapidly degraded. However, we were trying to 

monitor if this initial dose would affect the oxidative and inflammatory processes 
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especially that it was applied locally and immediately post injury thus we assumed a local 

treatment regimen would be more effective than the oral or the systemic regimen. 

 

Thus, we believe that Curcumin has a great potential in CNS injury due its potential as an 

anti-inflammatory and anti-oxidant, although longer term investigation are necessary to 

evaluate the sustainability of Curcumin effects in CNS injury.  



66 
 

 CONCLUSION 

 

The results presented here reflect a role of Curcumin in alleviating oxidative damage and 

inflammation following SCI via lowering MDA, TNF α and IL-6 and elevating TAC. At 7 

days following treatment we noticed that Curcumin exerted better effect; however, we 

believe that further modifications to our studies should be implemented in future 

investigation. Overall in our current model, local treatment regimen (200 mg / kg) 

immediately after injury gave better results than Curcumin as a dietary supplement, 

suggesting that although Curcumin as a dietary supplement may have beneficial effects in 

general by increasing TAC; however, these benefits are not enough to reverse or reduce the 

inflammatory process and parenteral administration of Curcumin is needed.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



67 
 

FUTURE RECOMMENDATIONS 

 

Cumulative studies demonstrate a beneficial therapeutic potential of Curcumin following 

SCI (Cemil et al., 2010; Kavakli et al., 2011; Machova et al., 2015; Yuan et al., 2015). Our 

study has shown that curcumin might alleviate the consequences of oxidative and 

inflammatory processes which are two main hallmarks of secondary spinal cord injury.  

 

Many mechanisms have been proposed for its beneficial role yet a verification of the 

mechanism through which it affects its targets has not been fully described or validated 

where some recent reports have described Curcuminoids as pan assay interference 

compounds (PAINS) (Baell and Walters 2014).  Thus understanding Curcumin and its 

mechanism of action towards its targets should be a priority in the ongoing research 

evaluating its efficacy and potential. 

 

To get results that are more descriptive for the role of Curcumin in SCI we recommend that 

a new Curcumin delivery system as liposomal curcumin should be used for local treatment 

regimen. Liposomal Curcumin formulation demonstrated a remarkable enhancement of 

curcumin bioavailability in cells.  

 

For the dietary regimen we recommend the use of CNB-001 as used by Wu et al. (2011) 

that would enhance the stability and absorption of curcumin in the biological system. In the 

present study we measured the total antioxidant capacity; in future investigation we would 

recommend measuring antioxidant enzymes and investigate which of them is affected by 

Curcumin treatment following injury as SOD which was found to be elevated by Curcumin 

(Kavakli et al., 2011; Liu et al., 2013). 

 

Long term behavioral assessment using motor (inclined plane test), sensory (withdrawal 

reflex test) and sensorimotor tests (Grid walk test) is a future direction regarding our study 
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to detect if Curcumin dietary supplement or local treatment regimen would manifest 

sustained motor improvement. 

 

Measuring markers for astrogliosis and axonal sprouting as GFAP and GAP 43 (Growth 

Associated Protein 43) respectively is an important future investigation for the effect of 

Curcumin on the environment surrounding the injury site and whether Curcumin will 

contribute to enhancement of neurological recovery. 

 

Detecting time points before 1 day and between 1 day and 7 days would reflect a clearer 

idea on Curcumin’s effect in SCI. However, in this study our main scope was comparing 

between the dietary and local regimens so 7 days and beyond, in our view was suitable for 

the dietary supplement effect to be investigated. 

 

One of the major obstacles impeding Curcumin’s progress is its low bioavailability, rapid 

metabolism and poor absorption as well (Kong 2013). For this purpose Curcumin nano-

formulations have been developed to enhance its bioavailability and efficacy. This included 

liposomes, micelles,  nanocrystals and others (Rachmawati et al., 2013). 

 

Our results shows that Curcumin might exhibit an antioxidant and anti-inflammatory 

potential in SCI. Local treatment regimen demonstrated better results than diet supplement; 

however, we believe that further investigation is needed to unravel the mechanism by 

which Curcumin acts towards its targets. 
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APPENDIX 

1) MDA 1 day:  

Results are expressed as mean ± standard deviation 

Sig. = Significant , Sign.= Significance, N.S.= Not significant 

Table 1 : One way ANOVA 

Marker 
1 Day 

Control SCI SCI+CUR p-value Sig. 

MDA 414.83±126.8 835.67±61.5 493.60±75.2 0.004 Significant 

Statistical test used: One-way ANOVA 

p-value ≤ 0.05 considered statistically significant (95% confidence interval). 

   

Table 2:  Dunnett Post Hoc to identify variables that made significant change 

Marker 
1 Day 

Control SCI p-value Sig. SCI+CUR p-value Sig. 

MDA 414.83±126.8 835.67±61.5 0.003 Significant 493.60±75.2 0.611 N.S 

Statistical test used: Dunnett post Hoc test 

p-value ≤ 0.05 considered statistically significant different from control (95% confidence interval). 

 

Table 3:  Independent t-test 

 

 

 

 

 

 

Marker 
1 Day 

SCI SCI+CUR p-value Sig. 

MDA 835.67±61.5 493.60±75.2 0.011 Significant 

Statistical test used: Independent t-test 

p-value ≤ 0.05 considered statistically significant different (95% confidence interval). 
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2)  MDA 7 days 

Table 4: One way ANOVA 

Marker 
7 Days 

Control SCI SCI+CUR SCI+DIET p-value Sig. 

MDA 414.83±126.78 480.73±121.14 245.38±36.88 406.32±145.71 0.047 Significant 

Statistical test used: One-way ANOVA 

p-value ≤ 0.05 considered statistically significant (95% confidence interval). 

  

 Table 5: Dunnett Post Hoc to identify variables that made significant change 

 

Table 6: Dunnett Post Hoc to identify variables that made significant change 

Marker 

7 Days 

SCI SCI+CUR SCI+DIET 

Mean ±SD 
p-

value 
Sig. Mean ±SD 

p-

value 
Sig. Mean ±SD 

p-

value 
Sig. 

MDA 480.73±121.14  245.38±36.88  406.32±145.71  

SCI 480.73±121.14 ----- ----- 480.73±121.14 0.014 Sign. 480.73±121.14 0.563 N.S 

SCI+CUR 245.38±36.88 0.014 Sign. 245.38±36.88 ----- ----- 245.38±36.88 0.137 N.S 

SCI+DIET 406.32±145.71 0.563 N.S 406.32±145.71 0.137 N.S 406.32±145.71 ----- ----- 

Statistical test used: Dunnett post Hoc test 

p-value ≤ 0.05 considered statistically significant different (95% confidence interval). 

 

 

 

Marker 
7 Days 

Control SCI 
p-

value 
Sig. SCI+CUR 

p-

value 
Sig. SCI+DIET 

p-

value 
Sig. 

MDA 414.83±126.7

8 

480.73±121.1

4 

0.702 N.S 
245.38±36.8

8 

0.131 N.S 
406.32±145.7

1 

0.999 N.S 

Statistical test used: Dunnett post Hoc test 

p-value ≤ 0.05 considered statistically significant different from control (95% confidence interval). 
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3) TAC 1 day 

Table 7: One way ANOVA 

Marker 
1 Day 

Control SCI SCI+CUR p-value Sig. 

TAC 5.66±0.94 0.46±0.21 0.54±0.13 0.0001 Significant 

Statistical test used: One-way ANOVA 

p-value ≤ 0.05 considered statistically significant (95% confidence interval). 

 

Table 8: Dunnett Post Hoc to identify variables that made significant change 

Marker 
1 Day 

Control SCI p-value Sig. SCI+CUR p-value Sig. 

TAC 5.66±0.94 0.46±0.21 0.0001 Significant 0.54±0.13 0.0001 Significant 

Statistical test used: Dunnett post Hoc test 

p-value ≤ 0.05 considered statistically significant different from control (95% confidence interval). 

 

Table 9: Independent t-test 

 

 

 

 

 

 

 

 

 

 

 

Marker 
1 Day 

SCI SCI+CUR p-value Sig. 

TAC 0.46±0.21 0.54±0.13 0.577  Not significant 

Statistical test used: Independent t-test 

p-value ≤ 0.05 considered statistically significant different (95% confidence interval). 
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4) TAC 7 days 

Table 10: One way ANOVA 

 

Marker 
7 Days 

Control SCI SCI+CUR SCI+DIET p-value Sig. 

TAC 5.66±0.94 1.30±0.51 3.06±1.40 5.81±0.83 0.0001 Significant 

Statistical test used: One-way ANOVA 

p-value ≤ 0.05 considered statistically significant (95% confidence interval). 

 

Table 11: Dunnett Post Hoc to identify variables that made significant change 

     

Table 12: Dunnett Post Hoc to identify variables that made significant change 

 

 

 

 

 

Marker 
7 Days 

Control SCI 
p-

value 
Sig. SCI+CUR 

p-

value 
Sig. SCI+DIET 

p-

value 
Sig. 

TAC 5.66±0.94 1.30±0.51 0.0001 Sign. 3.06±1.40 0.002 Sign. 5.81±0.83 0.992 N.S 

Statistical test used: Dunnett post Hoc test 

p-value ≤ 0.05 considered statistically significant different from control (95% confidence interval). 

Marker 

7 Days 

SCI SCI+CUR SCI+DIET 

Mean ±SD 
p-

value 
Sig. Mean ±SD 

p-

value 
Sig. Mean ±SD 

p-

value 
Sig. 

TAC 1.30±0.51  3.06±1.40  5.81±0.83  

SCI 1.30±0.51 ----- ----- 1.30±0.51 0.024 Sign. 1.30±0.51 0.0001 Sign. 

SCI+CUR 3.06±1.40 0.024 Sign. 3.06±1.40 ----- ----- 3.06±1.40 0.003 Sign. 

SCI+DIET 5.81±0.83 0.0001 Sign. 5.81±0.83 0.003 Sign. 5.81±0.83 ----- ----- 

Statistical test used: Dunnett post Hoc test 

p-value ≤ 0.05 considered statistically significant different (95% confidence interval). 
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5) TNF α 7 days 

Table 13: One way ANOVA 

 

Marker 
7 Days 

Control SCI SCI+CUR SCI+DIET p-value Sig. 

TNF alpha 17.52±1.94 56.09±7.53 18.29±3.76 27.17±5.50 0.0001 Significant 

Statistical test used: One-way ANOVA 

p-value ≤ 0.05 considered statistically significant (95% confidence interval). 

 

Table 14: Dunnett Post Hoc to identify variables that made significant change 

Marker 
7 Days 

Control SCI 
p-

value 
Sig. SCI+CUR 

p-

value 
Sig. SCI+DIET 

p-

value 
Sig. 

TNF alpha 17.52±1.94 56.09±7.53 0.0001 Sign. 18.29±3.76 0.994 N.S 27.17±5.50 0.067 N.S 

Statistical test used: Dunnett post Hoc test 

p-value ≤ 0.05 considered statistically significant different from control (95% confidence interval). 

 

Table 15: Dunnett Post Hoc to identify variables that made significant change 

Marker 

7 Days 

SCI SCI+CUR SCI+DIET 

Mean ±SD 
p-

value 
Sig. Mean ±SD 

p-

value 
Sig. Mean ±SD 

p-

value 
Sig. 

TNF alpha 56.09±7.53  18.29±3.76  27.17±5.50  

SCI 56.09±7.53 ----- ----- 56.09±7.53 0.0001 Sign. 56.09±7.53 0.0001 Sign. 

SCI+CUR 18.29±3.76 0.0001 Sign. 18.29±3.76 ----- ----- 18.29±3.76 0.114 N.S 

SCI+DIET 27.17±5.50 0.0001 Sign. 27.17±5.50 0.114 N.S 27.17±5.50 ----- ----- 

Statistical test used: Dunnett post Hoc test 

p-value ≤ 0.05 considered statistically significant different (95% confidence interval). 
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6) IL-6 1 day 

 

Table 16: One way ANOVA 

Marker 
1 Day 

Control SCI SCI+CUR p-value Sig. 

IL-6 53.23±5.55 327.99±58.93 244.81±90.51 0.009 Significant 

Statistical test used: One-way ANOVA 

p-value ≤ 0.05 considered statistically significant (95% confidence interval). 

 

 

Table 17: Dunnett Post Hoc to identify variables that made significant change 

Marker 
1 Day 

Control SCI p-value Sig. SCI+CUR p-value Sig. 

IL-6 53.23±5.55 327.99±58.93 0.008 Significant 244.81±90.51 0.019 Significant 

Statistical test used: Dunnett post Hoc test 

p-value ≤ 0.05 considered statistically significant different from control (95% confidence interval). 

 

Table 18: Independent t-test 

Marker 
1 Day 

SCI SCI+CUR p-value Sig. 

IL-6 327.99±58.93 244.80±90.51 0.315  Not significant 

Statistical test used: Independent t-test 

p-value ≤ 0.05 considered statistically significant different (95% confidence interval). 
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7) IL-6  7 days 

 Table 19: One way ANOVA 

Marker 
7 Days 

Control SCI SCI+CUR p-value Sig. 

IL-6 53.23±5.55 349.56±43.17 214.18±82.07 0.0001 Significant 

Statistical test used: One-way ANOVA 

p-value ≤ 0.05 considered statistically significant (95% confidence interval). 

 

Table 20:  Dunnett Post Hoc to identify variables that made significant change 

Marker 
7 Days 

Control SCI p-value Sig. SCI+CUR p-value Sig. 

IL-6 53.23±5.55 349.56±43.17 0.0001 Significant 214.18±82.07 0.009 Significant 

Statistical test used: Dunnett post Hoc test 

p-value ≤ 0.05 considered statistically significant different from control (95% confidence interval). 

 

 Table 21: Independent t-test 

Marker 
7 Days 

SCI SCI+CUR p-value Sig. 

IL-6 349.56±43.17 214.18±82.07 0.020 Significant 

Statistical test used: Independent t-test 

p-value ≤ 0.05 considered statistically significant different (95% confidence interval). 
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