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ABSTRACT 

Density functional theory (DFT) has been regularly exploited for meticulous studying of 

complex surface interactions at a molecular orbital scale. However, DFT calculations usually yield 

inaccurate thermodynamics results that contradict experimental findings. A clear example is the 

CO adsorption puzzle caused by the wrong estimation of adsorption sites, especially for the (111) 

transition metal surfaces. The puzzle is still not fully resolved and a complete adsorption picture is 

yet to be reported.  

Herein, we demonstrate the reliability of DFT calculations for the study of local bond 

properties, despite the wrong energetics predictions. We also highlight the importance of 

considering a comprehensive analysis of all the possible adsorption sites over distinctive surface 

facets. Each surface facet, with its unique arrangement of atoms, results in a varying adsorbate 

behavior, although the same adsorption site is studied. Investigating these variations gives insights 

about the influence of surface atomic arrangement on the orbitals’ interactions. Within the 

investigation, it is found that the varying density of orbitals, with the matching symmetry for 

interaction at different adsorption sites, affects the magnitude of orbital interaction, and thus, acts 

as an additional factor for determining the site preference. Based on the frontier (5σ and 2π*) orbital 

energy description, calculated using RPBE functional, new perceptions to the understanding of the 

adsorption puzzle have been exposed. In addition, we emphasize the significance of considering a 

holistic analysis of adsorbate orbitals, not only limited to the main CO frontier orbitals. This 

approach leads to a better understanding of the surface bonding and CO final structure. This 

investigation can help in providing guidelines for innovating design principles for materials, based 

on the required adsorbate behavior and charge transport phenomena, to be used for catalysis and 

sensors applications. 
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Chapter 1 
 

Introduction 

1.1 Scope of the Thesis 

This thesis is aimed at addressing the carbon monoxide (CO) adsorption 

mechanisms from a fundamental level of molecular orbital interactions and charge transfer. 

This study is executed from an entirely “theoretical” perspective, where theoretical 

methods are utilized for system modeling and electronic structure calculations. The results 

are then investigated to provide theoretical physical chemistry insights on the adsorption 

picture of molecules on surfaces. Building a complete molecular orbital picture of 

adsorption mechanism is, indeed, insightful for enhancing the understanding of surface 

interaction that can he applied in several applications, most importantly; catalysis. 

Specifically, the work in this thesis focuses on transition metals as the substrate surfaces 

for adsorption investigations of CO molecules.  

Solids are widely used as catalysts. At their surfaces and interfaces, most of the 

important chemical reactions in nature and technology take place. The solid surface 

provides a fertile platform where multiple step reactions can take place1–3.  Many important 

phenomena, such as electrode processes, corrosion, heterogenous catalysis, crystallization 

and dissolution occur at solid interfaces. The acceleration rate of chemical reactions 

occurring at the solid surface is strongly dependent on the type of surface.  That is why 

industry heavily relies on solid catalysts to produce most of its important chemical 
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products. In order to manipulate the surface chemical product and its rate of production, 

the type of solid and the of surface must be meticulously studied. The field of surface 

chemistry, which is the science of surface and interface interactions, is thus a significant 

field and is hugely exploited in industry. 

In order to understand surface reactions, we need to draw a complete picture of the 

fundamental atomic and molecular interactions at the surfaces4. Understanding the 

chemical interactions from molecular orbital principles can help in determining the final 

properties and reactivity of the adsorbed entities. Complex electronic structure 

investigations, thus, require tools with high accuracy that can grasp the detailed electronic 

structure perturbations and charge transfers5,6. In order to make a profound theoretical – 

molecular orbital based – analysis, investigation of ground state energies and the electronic 

structures of the isolated CO molecule, the bare metal surface, and the CO-metal complex 

is required7. Also, the contribution of individual atomic orbitals of both the substrate and 

adsorbate atoms must be explicitly studied in order to develop a consistent electronic 

structure model of CO adsorption8. This explicit electronic structure and atomic population 

analysis was believed to be experimentally impossible until the appearance of x-ray 

emission spectroscopy (XES), which was utilized by scientists during the last two decades, 

enabling them to extend the conceptual model of the surface chemical bond5,6. However, a 

lot of complications and inabilities, while studying particular atomic and molecular 

orbitals, were evolving that still make it difficult to reach the ultimate goal of a complete 

understanding of CO adsorption on metal surfaces. Therefore, a more insightful technique 

that can provide a better detailed investigation of the electronic structure, accurately, is still 

needed.  
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What directly comes into mind is the use of the well-known computational method, 

the density functional theory (DFT). This technique provides additional tools that can be 

utilized for both detailed quantitative and qualitative analysis of the CO adsorption on 

different surface facets and adsorption sites. This makes DFT applicable to offer a wider 

insight of the underlying physical chemistry of the adsorption mechanisms from a 

molecular orbital level.  Although DFT can provide the detailed molecular orbital 

calculations required, accuracy related problems are noticeable, making the dependence on 

this technique for bonding analysis purposes rather questionable9.  The well-known 

inherent problem of DFT is that it fails to describe the correct position of energy levels for 

the studied system.  This inaccuracy of DFT calculations can result in wrong energetics 

calculations, and consequently, wrong site preference of CO adsorption. This problem is 

manifested in the CO adsorption on the (111) transition metal surface facets, often referred 

to as the CO adsorption puzzle10–12. 

In the present thesis, we demonstrate how we can utilize DFT to carry reliable and 

meticulous investigations of electronic and structural properties of adsorbates when 

interacting with transition metal surfaces. Also, we demonstrate how we can exploit the 

inaccuracies in the predicted electronic structures to decipher the DFT adsorption puzzle 

and to gain a deeper understanding of the molecular interactions at surfaces. 
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1.2 Surface Interactions 

A variety of materials can make up the surface, including pure metals such as Cu 

and Pt, ionic such as TiO2, covalent bonded solids such as Si and Ge, or semimetal such as 

graphene. Not only does the catalyzed chemical product depend on the nature of the 

surface, but also it depends on the amplitude of overlap between the electron clouds of the 

surface and adsorbate species. If the amplitude of electron cloud overlap is above a certain 

threshold, then the type of interaction is called “chemisorption”, and if the overlap of 

electron clouds is negligible, then the type of adsorption is then called “physisorption”13. 

Chemisorption and physisorption are thus the main two categories of adsorption on surface. 

Since physisorption is a weak Van der Waals interaction that induces negligible structural 

changes on the adsorbed species, in most of the catalysis applications the focus is usually 

on chemisorption processes, as the higher degree of interactions induces both structural 

and electronic changes on both the surface and adsorbate species essential for producing 

the required chemical product.  

In chemisorption, where the surface-chemical bond is strong, the investigation of 

perturbations occurring to the geometric and electronic structures of the metal and 

adsorbate species is the focus of this thesis. Despite the fact that the surface atoms of the 

substrate are bound together by highly delocalized valence electrons that form the metallic 

bonding, the adsorbate molecule can form local bonds with the surface atoms, similar to 

those formed in organometallics.   

When a molecule is adsorbed on the surface, both structural and electronic 

perturbations occur for both the substrate and adsorbate molecules1. During the adsorption 
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process, the adsorbing molecule may dissociate and violent things can happen to the 

surface too; phonons and electron-hole pairs can be excited, charge can be exchanged 

between the surface and adsorbate molecules, and new electronic states can be formed due 

to the surface chemical bond. Therefore, a detailed understanding of the electronic structure 

of atoms and molecules is essential for a meticulous description of the surface chemical 

bonding. That is why, for a deep and detailed understanding of the surface chemical 

bonding, essential tools for describing the electronic structure of atoms and molecules from 

a molecular orbital level are essential.  

1.2.1 Theoretical Studies for Surface Interactions 

The study of molecular surface science has made huge progress in the past 40 years. 

This development can be attributed to the revolution of experimental techniques that 

resulted in a significantly better understanding of the fundamental knowledge of simple 

model systems. In addition, the last 20 years have witnessed a similarly rapid development 

in the theoretical quantum mechanical based methods, such as density functional theory 

(DFT)14. The theoretical methods provided an extra dimension to obtain wealthy 

investigation and analysis of data, that resulted in a deeper and more meticulous 

understanding of the surface chemical phenomena. The purpose of the present investigation 

is to show how we can utilize theoretical methods, such as DFT, along with the existing 

experimental techniques for a deeper understanding of surface chemical bonding and how 

it can be applied in a range of applications, such as electrochemistry, environmental 

science, semiconductor processing, and heterogenous catalysis.  
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The knowledge of the geometrical surface and adsorbate structures is the 

elementary step towards a correct description of the electronic structure and the associated 

chemical properties of surface-adsorbate complex. These structures are obtained using 

experimental techniques or by using ab initio methods that obtains the lowest energy 

configuration by varying the position of atoms while calculating the surface energies. Once 

the ground state configuration is optimized, the obtained structure then forms the basis of 

the calculation of electronic and chemical properties. Despite the simplicity and 

effectiveness of the theoretical model of the ground state configuration, experimental tests 

for these structures is essential to validate the integrity of the calculations1.  

The importance of the surface structure is manifested on the adsorption site, or 

“active site”, upon which adsorption occurs. It is found that the adsorption process is 

significantly modified according to the active-site. In heterogenous catalysis, key steps of 

surface chemical interactions occur at specific active sites. Thus, the understanding of the 

effect of the geometry of the active site is essential for the development of catalytic 

materials1. 

1.3 Electronic Structure Investigations 

The main approach to study local bonding properties is through the investigations 

of the electronic structure of the specific atoms and the specific interacting orbitals. In this 

chapter, the pros and cons of experimental and theoretical techniques used for electronic 

structure analyses are presented and compared in terms of accuracy, convenience, and 

reliability. XES techniques has been utilized by Nilsson and Petterson15–17 to test for the 
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assumptions for the proposed adsorption models, such as the Blyholder model18, which 

assumes a simple two-step charge σ donation and a 2π* back-donation interaction. The 

nature of the new electronic states formed upon adsorption were also tested and the 

perturbations to the remaining orbitals were also monitored. The XES analyses conclusions 

reported that the simplistic Blyholder model is actually neither correct nor complete; 

incorrect in the sense that the σ donation is a rather repulsive interaction and the description 

of the backdonation should involve all the π orbitals and not only the 2π* orbital. Based on 

the breakage of the Blyholder model assumption, new – more complete – picture of the 

surface chemical bond for CO on transition metal surfaces.  

1.3.1 Experimental Techniques 

X-ray spectroscopy (XAS), X-ray emission spectroscopy (XES)1,7,19–22, and laser-

induced desorption23 yield experiments are the main techniques utilized to investigate 

electronic structure for the analysis of the bonding processes24. Before the introduction of 

photoelectron spectroscopy (XPS) in the early 20th century, the XES tool was the method 

of choice for studying electronic structure in matter25.   
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XAS is used to investigate the unoccupied density of states, where a core electron 

gets excited to an empty level. XES, on the other hand, is used to investigate the occupied 

density of states, where an electron in a higher occupied state relaxes to  fill the position 

(core-hole) of a precedingly excited core electron by XAS. Figure 2. and Figure 1 show 

the three chronological steps of core electron excitation by XAS to higher level above the 

fermi level, then the formation of a core-hole at the original position of the excited core-

electron, which is followed by the relaxation of an electron at higher occupied state by XES 

to take the core-hole position, resulting in an emitted photon.   

   

Figure 2 XAS process occurring when a core electron is excited to a higher 
unoccupied level and the formation of a core-hole at the original position21 

Figure 1. XES process occurring when an electron relaxes to the core-hole21 
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1.3.2 Theoretical Techniques 

Despite the great advancements in experimental techniques, these techniques are 

not sufficient to grasp the complete electronic structure picture required. Due to dipole 

selection rules, only specific angular momentum contributions can be observed15. 

Therefore, the behavior of certain atomic orbitals cannot be monitored and investigated. In 

addition, mixing of different atomic orbitals usually take place, which makes viewing the 

complete electronic structure picture very complex; subtraction of spectra is then 

required17. Therefore, XES applied to monolayers and surfaces can be experimentally very 

demanding. Furthermore, adsorption of molecules can only be studied on the 

experimentally preferred adsorption sites, and the freedom of further “imaginal” 

investigations on thermodynamically un-preferred sites cannot be achieved. 

On the other hand, theoretical methods can fill all the gaps in experimental 

techniques. Using theory, we can generate pure, complete, and symmetry-resolved spectra, 

which offers a wider insight for the underlying physical chemistry of the adsorption 

mechanisms from a molecular orbital level17. The spectra of individual orbitals – the 

density of states (DOS) data - can then be summed up and compared to experimental data. 

Additionally, we can theoretically study adsorption on the thermodynamically non-

preferred adsorption sites, which can answer the question of why molecules tend to prefer 

adsorption on specific adsorption sites over the others. Computational chemistry tools have 

developed into a powerful tool for meticulous atom by atom investigations. A common 

practice that has been employed is to utilize both experimental and computational 
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techniques for a more profound investigation. A calibration of theoretical methods (DFT) 

against experiment and the details of the remaining orbitals’ contributions can be obtained 

from various orbital symmetries.   

Although DFT can provide the detailed molecular orbital calculations required, but 

accuracy related problems are noticeable, making the dependence on this technique for 

bonding analysis purposes rather questionable4,26.  There are two challenges that face the 

theoretical description of the surface-adsorbate complex: first is the correct description of 

electronic bandgap between the HOMO-LUMO orbitals’ positions of the adsorbed 

molecule, and second is the correct description of the electronic structure of the transition 

metals. Because of their open d-shells and accompanying spin-coupling, near-degeneracy 

and dynamical correlation problems, predictions of the electronic structure of transition 

metals is rather difficult17. Consequently, most semilocal exchange-correlation (xc) density 

functionals underestimate surface energies and predict them to be more stable than they 

actually are26. Correct description of adsorbate-substrate interactions was only achieved 

using more accurate Hybrid functional calculations, only for Cu with its closed d-shell 

configurations and failed with other open d-shell transition metals27. Therefore, theoretical 

adsorption investigations on Cu can provide a good reliability for comparisons with more 

reactive metals, such as Ni and Pt.  
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1.4 Carbon Monoxide as an Adsorbate 

The mostly studied prototypical model in Surface Chemistry field is the adsorption 

of the CO molecule. In chemistry, we always aim for the simplest models for scientific 

investigations.  In addition, the complexity of adsorption investigations grows steeply with 

the number of atoms within the adsorbate molecule3. However, this simple model must be 

easily and clearly tested experimentally. For example, taking H as the simplest model for 

adsorption can be valid, however, H atoms are exceptionally weak scatterers of electrons 

and have no electronic core level17. So, it is extremely difficult to utilize spectroscopic 

techniques to investigate the adsorption of H atoms on surface. On the other hand, the most 

studied molecular adsorbate structure is the CO. From a structural perspective, the CO 

molecule is a rather simple species with two distinct atoms; carbon and oxygen. 

Particularly, the CO adsorption on transition metal surfaces is important in the 

heterogenous catalysis context.  

Other than the theoretical convenience of CO adsorption model for the theoretical 

description of adsorption, the adsorption of CO is also a vital case study in surface science. 

This is because CO adsorption is considered an essential part in CO oxidation catalysis 

applications. One of these applications is the CO2 electro-reduction (ER) into hydrocarbon 

(HC) fuel28,29. This reaction has a considerably low overall efficiency, and an optimum 

catalyst that can improve the efficiency to the extent that is high enough to be 

commercialized is yet to be discovered. CO2 ER process to HC involves multiple reaction 

steps, and the protonation of CO*, that occurs after the formation of CO on the electrode 
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surface, is considered the rate limiting step. In addition, catalysis using transition metals 

has been widely utilized to lower the emissions of CO in automobile exhausts.  

1.4.1 CO Molecular Orbital Picture 

As depicted in Figure 3, the CO molecule is formed by the triple bonding of one 

carbon atom with one oxygen atom. Eight molecular orbitals are formed by the interaction 

of the occupied s and p orbitals of oxygen and carbon. The internal C-O triple bond is held 

by the fully occupied 1π and 3σ orbitals. One of internal triple bond is due to an oxygen 

dative (coordinate) covalent bonding. That dative bonding causes the formation of a dipole 

moment towards the carbon end, despite the higher electronegativity of oxygen.  The 

highest occupied molecular orbital (HOMO) is the 5σ, while the lowest unoccupied 

Figure 3. On the right side, the molecular orbital diagram of the CO is presented. On the upper left 
side, the Lewis structure of the CO molecule is presented. On the lower left side, the CO 
geometrical molecular orbital structure is presented. 
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molecular orbitals are the 2π* orbitals. The HOMO and LUMO orbitals play an essential 

role in the interaction with the atoms of solid surfaces.  

1.5 CO Adsorption Model 

The single most successful model that provides a valid description of the adsorption 

mechanism is the Blyholder model of CO adsorption18. The Blyholder model, has been further 

refined by Nilsson and Petterson to make the combined Blyholder-Nilsson-Petterson (BNP) 

model15.  

1.5.1 The Blyholder Model 

As depicted in Figure 4, the Blyholder model describes the adsorption process 

through a two-step reaction; beginning with a donation of electrons from the 5σ orbital of 

Figure 4.  Schematic of the Blyholder model 5σ donation (red arrow) followed by the 
backdonation to the 2π* orbitals (yellow arrows). 
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the CO to the metal followed by a back-donation of charge from the metal to the 2π*. In 

the adsorption model, synergism between σ and π is achieved, where the internal C-O bond 

is weakened due to the increased population of 2π* due to charge back-donation from the 

metal atoms. This claim can be validated by observing the degree of internal bond 

weakening as the coordination number increases. For symmetry arguments, the vertically 

directed 5σ interaction is particularly strong for atop adsorption. As the coordination 

number increases, the 2π* orbitals have more significant spatial proximity to the metal d-

orbitals, where the degree of back-donation increases with the increase of the number of 

bonding metal atoms, as shown in Figure 5. This increase of the number of bonding atoms 

results in an increased population of the 2π* orbitals, which results in the weakening of the 

internal C-O bond, due to its antibonding character. 

1.5.2 The Nillson-Petterson Model 

The simplistic Blyholder model has been refined by Nilsson and Petersson15, who 

succeeded in extending the conceptual model of the surface chemical bond. In their studies, 

they showed that the adsorbate substrate complex is destabilized by σ- interactions and 

stabilized by π-interactions. They also proved that the π-bonding is manifested through the 

creation of a dπ band formed by the hybridization of the 1π and 2π orbitals with the metal 

d-states. The σ-bonding, on the other hand, is formed due to the formation of a dσ band 

formed by the hybridization of the 4σ and 5σ orbitals with the metal d states. The balance 

between σ- repulsion π-attractions is what governs the equilibrium properties of the CO 

adsorbed on metals and their adsorption energies. 
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Therefore, both the Blyholder and Nilsson-Petersson models concentrate mainly on 

the interaction of frontier orbitals with the metal d-states, while overlooking the interaction 

with the broad metal sp states. Stroppa et al27 showed that the 2π* cannot interact with the 

s or pz orbitals for top-site adsorption, however for high-coordination sites, 2π*-spz are 

stronger, since antisymmetric combinations are available at these sites.   

 
 
 

 
 

 

 

 

 

 

 

 

Figure 5. Internal C-O bond length increasing with the increase of the 
coordination number. 
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Chapter 2 
 

Background* 

2.1 Theoretical Methods 

The total energy of the system is the fundamental quantity that can lead us to grasp 

all of the static properties of that system and can further lead us to predict the changes 

occurring on a time scale. The accuracy of the theoretical predictions for a system, 

therefore, basically relies on the accuracy of the energy description. For a system 

containing a number of particles, the energy of the system, is solely described as the 

summation of the kinetic energy of the individual particles and the potential energy 

experienced by each particle1–3. If an interaction between particles of the system exist, the 

potential energy term becomes more complicated to describe.  The potential energy term 

can become even more complicated when dealing with quantum mechanical particles, like 

electrons. In this case, the kinetic and potential energy terms of these massless particles are 

described by quantum mechanical wave-equations that govern the system dynamics of 

systems.  

Quantum mechanics is considered the most profound scientific advancement of the 

20th century4; experimental observations have confirmed that this theory of matter 

profoundly and accurately describes the universe in which we live in.  For a non-relativistic 

system, the ground-state energy can be obtained by simply solving the Schrodinger 

equation. For a system of one or two particles, the Schrodinger equation can be solved 

* Parts of this chapter were published in the following book chapter: Kareem M. Gameel*, Sarah A. Tolba*, Basant A. 
Ali, Hossam A. Almossalami, Nageh K. Allam, “The DFT+U: Approaches, Accuracy, and Applications”, Book 
Chapter in the “DFT Calculations: Recent Progresses of Theory and Application” Intech Book, Edited by Gang Yang, 
May 2018.  
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exactly, and the ground state energy and the properties of the system can be theoretically 

correctly predicted. However, for a system larger than that, exact solution for the energy 

of the system becomes unattainably complex and approximations have to be employed.  

2.1.1 The Hamiltonian 

The Hamiltonian is the central quantity of any theoretical treatment; it contains all 

the information about the system under consideration with all the details of fundamental 

interactions present in that system. When the Hamiltonian is defined, all the chemical and 

physical properties of the system can be derived. Since we are dealing with systems that 

are composed of atoms and electrons for surface science, this microscopic scale is governed 

by quantum mechanical laws of physics, and therefore, must be described by solving the 

Schrodinger equation. Therefore, for surface science theoretical investigations, we need to 

define the appropriate Schrodinger equation and Hamiltonian with their specific forms for 

describing surfaces4,5. The first step towards making the solution of the Schrodinger 

equation more tractable is the decoupling of the electronic and nuclear motion using the 

Born-Oppenheimer approximation.  

2.1.2 The Schrodinger Equation 

The most critical part of the Schrodinger equation for solid state physics or 

chemistry computations is the electrostatic interaction term. In the case of considering only 

valence electrons interactions, relativistic effects are usually neglected. As a preliminary 
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step for simple description of the Hamiltonian, we neglect any magnetic (spin) effect for 

both valence and core electrons. With nuclei and valence electrons being set, the system 

can be described with a non-relativistic time independent Schrodinger equation with a 

Hamiltonian with a well-defined form of five terms, two of them are kinetic energy terms 

and the other three are potential energy terms:  

   
 

Each of the four terms is described by the following formulae, while neglecting the spin 

property for the sake of simplicity and clarity:  

 
 

The atoms are numbered in capital letters indices, i.e. ZI stands for the charge of 

the Ith electron. For the Vn-e and Ve-e expressions, the factor of ½ is introduced to cancel 

out the double counting of interaction between the same pair of particles. By defining 

those four terms, we can, in principle, solve the many-body Schrodinger equation and get 

the energy of the system using the Hamiltonian: 

H = Tn +Te +Vn−n +Vn−e +Ve−e

Tn =
PI
2

2MII=1

L

∑

Te =
pi
2

2mi=1

N

∑

Vn−n =
1
2

ZIZJe
2

RI − RJI≠J

N

∑

Vn−e = −
ZIe

2

ri − RIi,I
∑

Ve−e =
1
2

e2

ri − rji≠ j
∑

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.1) 
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However, for the above expressions for electronic kinetic and potential energies, 

all physical information is included except for the symmetry of the wavefunctions. Since 

electrons are fermions, quantum statistics should be included, such as the Pauli principle. 

This proper consideration of the quantum statistics leads to the inclusion of an important 

energy term known as the exchange-correlation term that significantly affects the so-called 

effective Hamiltonian. In addition, usually relativistic effects are neglected, and only in the 

cases of heavier elements with very localized wavefunctions considered for core electrons, 

relativistic effects become more significant and needs to be considered because of the high 

kinetic energies of the core electrons due to localization. These effective terms are derived 

from the energy difference (energy cost) between the energies of the system with and 

without the inclusion of quantum statistics.  

Solving the many-body Schrödinger equation is unfortunately impossible in its 

closed form and a hierarchy of approximations that can make the solution possible within 

an acceptable accuracy must be employed. The primary step in this hierarchy is the so 

called Born-Oppenheimer approximation5.  

2.1.3 Born-Oppenheimer Approximation 

Generally, atoms have a mass that is 104 to 105 times larger than the mass of an 

electron, except for hydrogen and helium, which makes the kinetic energy of electrons 102 

to 103 times larger than the nuclei5. Therefore, we can suppose that the electron follows the 

motion of the nuclei almost immediately and that the electrons are in their ground state for 

HΦ(R,r) = EΦ(R,r) (2.7) 
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any configuration of the nuclei. The electronic state then defines the potential in which 

electrons move. Therefore, the separation of time scales of processes involving electrons 

and atoms is the key idea behind the Born-Oppenheimer or adiabatic approximation.  

Now, the new Hamiltonian will be short of one kinetic energy term, which is that 

of the nuclei. Implying that nuclei are pictured static and that only electrons are moving. 

So, the new Hamiltonian, with fixed nuclear coordinates {R} is now called the electronic 

Hamiltonian He and will look like this: 

 
 
In the above equation, the Ee ({R}) is the electronic potential in which nuclei are moving, 

i.e. the Ee ({R}) is the Born-Oppenheimer energy surface.  

To probe nuclear motion, the so called “atomic” Schrodinger equation must be 

solved, where quantum effects in the atomic motion are neglected and classical equations 

of motion are solved for the nuclear motion. The validity of the Born-Oppenheimer 

approximation is hard to prove since it neglects electronic transitions due to nuclear 

motion, which makes it difficult to describe process involving electronic transitions. 

Nonetheless, the Born-Oppenheimer approximation is successful for the theoretical 

prediction of surface processes5.  

2.1.4 Structure of the Hamiltonian 

The Born-Oppenheimer approximation implies that nuclear positions are fixed and 

that we can now solve for the so-called electronic Hamiltonian. The electrons in the system 

are now moving in an external electrostatic potential determined by the fixed atomic 

He({R})ψ (r,{R}) = Ee({R})ψ (r,{R}) (2.8) 
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positions. In addition, these fixed atomic positions determine the symmetry properties of 

the Hamiltonian.  

Systems studied in surface science are composed of two entities that are described 

by two distinctive computational methods; the molecules are treated with quantum 

chemistry methods, while surfaces are handled using solid state methods. These different 

methods exist because of the different degrees of freedom possessed by each entity; the 

atom or molecule interacting with the surface has an infinite number of degrees of freedom, 

while the solid-state surface has only few degrees of freedom. Handling both subsystems 

in one model, thus, represents a real challenge for any theoretical treatment. One initial 

step that can drastically simplify the system model and as well reduce the computational 

cost is the consideration of symmetry.  

 The determination of the total energy of a system is the fundamental preliminary 

step for the theoretical treatment of any property of that system. The electronic structure is 

the basic property that is used for determining the total energy. The electronic structure 

methods are divided into two main categories: wave-function and electron-density based 

methods that originate from quantum chemistry and solid-state physics, respectively. Since 

solid surfaces have periodic structure, density functional theory (DFT) methods dominates 

theoretical surface science.  

2.2 Density Functional Theory 

Density functional theory (DFT) is the most convenient and computationally least 

expensive tool utilized by computational materials researcher for electronic structure 
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calculations for ground state many-body systems4,6–9. Instead of the wavefunctions as the 

fundamental variable for solving the Schrodinger equation, DFT solves the many-body 

problem using electronic charge density as the fundamental variable6,7,9,10. This simple 

(clever) idea originates from the fact that the electronic structure is unique for each type of 

material. In the same context, the density of electrons is also unique for each type of 

material. Therefore, by merely considering the electronic density, we can uniquely and 

distinctively describe materials properties using density functional theory.  

 The fundamental goal of quantum mechanics is to solve the Schrodinger equation 

through solving for the many-body wavefunctions. However, the wavefunction for any set 

of coordinates cannot be directly observed. In principle, the quantity that can be measured 

is the probability of N electrons are existing at a particular set of coordinates, r1, . . . , rN . 

This probability is equal to	Ψ*( r1, . . . , rN)Ψ(r1, . . . , rN). It is worth-noting that, in quantum 

mechanics, electrons are indistinguishable, so we don’t care which electron is labelled 

electron 1 and which is labelled electron 2. Therefore, the quantity of physical interest is 

basically the probability of N electrons, labelled in any order, have the coordinates r1, . . . 

, rN. A typically related quantity of that probability of existing N electrons is the density of 

electrons at a particular region of space, n(r)4.  The density of electrons can be written in 

terms of the summation of individual electron wavefunctions that are occupied by 

electrons.  Therefore, the term inside the summation is the probability that a distinct 

electron in an distinct wave function is located at position r, written as follows: 

 
 

n(r) = 2 ψ i
*(r)∑ ψ i (r) (2.9) 
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Since electrons are fermions with a spin ½ property, the Pauli exclusion principle 

states that no two electrons with the same spin can occupy the same orbital (wavefunction), 

which is the reason why the factor of 2 appears in the equation. This spin effect is a purely 

quantum mechanical phenomenon that has no classical counterpart. The electron density 

n(r) is a function of only three spatial coordinates that contains a wealth amount of 

information that is physically observable from the full wavefunction solution to the 

Schrodinger equation, which is a function of 3N coordinates. 

2.2.1 From Wavefunctions to Electron Density 

The first, and one of the two fundamental mathematical theorems of DFT, theorem 

proved by Hohenberg and Kohn states the following4:  

“The	ground-state	energy	from	Schrodinger’s	equation	is	a	unique	functional	of	the	

electron	density.”	

What this theory implies is that the ground-state electronic structure 

(wavefunctions), which is unique for each material, can be mapped to the ground-state 

electron density, which is also unique for each material. To put it in a mathematical form, 

Hohenberg and Kohn states that the ground state energy E is a function of electron density 

n(r), E[n(r)]. So, E is a function of another function n(r), and the function of a function is 

called a “functional”; and that’s where the name of the density functional theory comes 

from.  
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Since any material is uniquely described by its unique electronic structure, which 

is now also mapped to its unique electronic density, all the properties of any material are 

uniquely determined by its ground-state electronic structure (and electronic density). 

Therefore, in order to find the properties of a material, instead of solving the Schrodinger 

equation by finding the wavefunction of 3N variables, we can instead solve by finding the 

electronic density which is a function of 3 spatial coordinates. For example, for a 

nanocluster consisting of 100 Pd atoms with more than 23,000 dimensions, the problem 

can be reduced to merely 3 dimensions using the electronic density.  

The Hohenberg-Kohn theorem have paved the way to the new idea of the one to 

one mapping of the ground-state wavefunction to the ground-state electronic density that 

can be employed to solve the Schrodinger equation. However, the theorem says nothing 

about what the functional actually is. In order to find the set of wavefunction n(r) that 

corresponds the “true” ground-state electron density, the second Hohenberg-Kohn theorem 

introduced the variational principle to the energy functional stating the following4:  

The electron density that minimizes the energy of the overall functional is the true 

electron density corresponding to the full solution of the Schrodinger equation. 

So, the electron density is varied until the energy from the functional is minimized, 

which corresponds to the ground-state electron density. The ground-state energy of the 

system is then written in terms of single-electron wavefunctions, Ψi(r), where these 

functions collectively define the electron density, n(r). The energy functional is then 

written as a function of two terms; mathematically known and unknown terms.  
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The known term includes four contributions, written in order from left to right in 

equation (2.11): the electronic kinetic energies, the electron-nuclear Coulomb interactions, 

the electron-electron interactions, and the nuclear-nuclear interactions, as follows:  

 

The second term in the complete wavefunction, EXC[{Ψi}], is the exchange and 

correlation energy functional, which includes all the quantum mechanical effects that are 

not included within the known term. Kohn and Sham (KS) showed that the task of finding 

the right electron density can be expressed by solving a set of equations, in which each 

equation only involves a single electron:  

 

This equation only depends on three spatial variables that define the position vector 

r. There are three potential energy terms in the left hand-side bracket. The first one, V(r), 

is the electron-nuclear interaction energy term, which is the interaction between the 

electron and the collection of nuclei; this term is part of the known energy functional. The 

second term is, VH(r), is the Hartree potential term, which is defined by:  

E[{ψ i}]= Eknown[{ψ i}]+ EXC[{ψ i}]

Eknown[{ψ i}]=
h2

m
ψ i
*∇2∫

i
∑ ψ id

3r + V (r)n(r)d 3r∫

+ e
2

2
n(r)n(r ')
r − r '

d 3rd 3r '∫∫ + Eion

[ h
2

2m
∇2 +V (r)+VH (r)+VXC (r)]ψ i(r) = ε iψ i(r) (2.12) 

(2.10) 

(2.11) 
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This term defines the electronic interaction between a single electron and the mean-

field (total density) defined by all electrons in the system. This Hartree term, thus, adds an 

extra interaction, called the self-interaction, which is due to the inclusion of all the electrons 

in the mean-field interacting with the electron considered for interaction. Therefore, the 

electron interacting with itself becomes part of the VH. The correction of this self-

interaction is the inscribed inside the VXC term, which defines the exchange and correlation 

contributions to the single electron KS equations.  

So, in order to solve the KS equation, we need to define the Hartree potential VH, 

and to know the VH, we need to define the true ground-state electron density. This electron 

density is, however, only found after knowing the single electron wavefunctions, which are 

only found by solving the KS equations. So, in order to find the solution of this dilemma, 

we define the following closed loop algorithm, which is defined by the set of the following 

steps:  

1- Make an initial guess of the electron density, n(r). 

2- Compute the Hartree potential VH, which is a function of the guessed electron 

density, n(r). 

3- Solve the set single-electron KS equation and get a set of single electron wave 

functions Ψi(r) 

VH (r) = e
2 n(r ')
r − r '

d 3r∫ (2.13) 
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4- Calculate the new electron density, n(r), defined by the calculated set of single 

electron wave functions Ψi(r). 

5- Plug in the new calculated density n(r) and recalculate the VH, and repeat steps 

3 and 4, until the plugged-in n(r) is equal to the calculated n(r) from the set of 

single electron wave functions Ψi(r) à Self-consistent solution. 

However, there are many questions that need to be answered before starting this 

algorithm: 

• How close should the plugged in and calculated electron-densities be, so 

we can define it as a self-consistent solution? 

• How can we make an accurate first guess of the initial electron density?  

2.2.2 The Exchange-Correlation Functional 

The true existence of the exchange-correlation (xc) functional, proved by 

Hohenberg and Kohn, is simply not known. The development of a functional that describes 

the true nature of the xc interaction is currently one of the most active areas of quantum 

chemistry research.  However, there is a single case, where the true xc energy can be known 

exactly: the uniform electron gas. In this case, the electron density, n(r), is constant at all 

points in space. In real materials science, variations of electronic densities do exist, making 

the free gas constant electron density an ideal, yet not practical, special case. However, the 

uniform electron gas provides a way to practically use the KS equations. Practically, at 
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each special position in the system, we define a known xc-potential from the uniform 

electron gas at the electron density observed at that position.  

 
 

Basically, this approximation uses only the local density to define the approximate 

xc functional à Local Density Approximation (LDA). Unfortunately, the LDA functional 

still do not capture the true nature of the xc functional. Although, we did not yet reach the 

true mathematical formulation of the xc functional that can work for all systems, there are 

a number of approximate systems that are widely adopted by theoretical materials 

researchers, which are found to give fairly accurate (reliable) results. So, the primary skill 

that the theoretical “users” of these functionals is to know how and when to use the existing 

xc functionals. One of the most popular functionals that use the information about the local 

electron density and the local gradient in the electron density is the generalised gradient 

apporximation (GGA). There are many physical system cases, where GGA gives more 

accurate results than LDA, but this is not always true. There are many ways in which the 

electron density gradient can be defined, and that’s why there are a large number of distinct 

GGA functionals that produce different results a particular configuration of atoms.  

The wave function of an N-particle system is an N-dimensional function. In order 

for the wavefunction to correctly provide a correct quantum mechanical description of an 

N-electron system, these wavefunctions must mathematically satisfy the real electronic 

properties, which should also be true for any approximate form of the wavefunction that 

we construct.

VXC (r) =VXC
elec.gas[n(r)] (2.14) 
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2.3 DFT Electronic Structure Problem and Corrections 

The attainment of a correct description of electronic structure is critical for 

predicting further electronic-related properties, including intermolecular interactions and 

formation energies. The chapter begins with an introduction to the formulation of density 

functional theory (DFT) functionals, while addressing the origin of bandgap problem with 

correlated materials. Then, the corrective approaches proposed to solve the DFT band-gap 

problem are reviewed, while comparing them in terms of accuracy and computational cost. 

The Hubbard model will then offer a simple approach to correctly describe the behavior of 

highly correlated materials, known as the Mot insulators. Based on Hubbard model, 

DFT+U scheme is built, which is computationally convenient for accurate calculations of 

electronic structures. Later in this chapter, the computational and semi empirical methods 

of optimizing the value of the Coulomb interaction potential (U) are discussed, while 

evaluating the conditions under which it can be most predictive. The chapter focuses on 

highlighting the use of U to correct the description of the physical properties, by reviewing 

the results of case studies presented in literature for various classes of materials.  

2.3.1 Accuracy of DFT Electronic Predictions  

Although DFT calculations’ accuracy is acceptable as long as structural and 

cohesive properties are concerned, it dramatically fails in the prediction of electronic and 

other related properties of semiconductors up to a factor of two11. However, reaching a 



44 

 

correct description of electronic structure is critical for predicting further electronic-related 

properties, including intermolecular interactions and formation energies. In order to solve 

this problem, computationally heavier jobs must be employed, using either larger basis sets 

or hybrid functionals, which include the solution of the exact Hartree-Fock (HF) equations, 

in order to reach relatively higher accuracies4. Nevertheless, in some cases, even solving 

exact HF equations can fail in correctly predicting the bandgap for a certain class of 

semiconductors that possess strong correlations between electrons, such as Mott 

insulators12,13. Consistent research efforts have been employed in order to formulate more 

accurate functionals, by using corrective approaches or alternatives to the density 

functionals. The applicability of these alternatives and corrections has large dependence on 

the type of the system studied, its size and complexity, and the computational cost required. 

One of the corrective approaches employed to relieve the DFT electronic bandgap problem 

is the DFT+U correction method, which is the focus of this chapter. Compared to the 

alternative approaches, such as the hybrid functionals and the post-Hartree-Fock methods, 

DFT+U correction has proved to be as reliable as the other methods, but with a critical 

advantage of considerably lower computational cost. By successfully correcting the 

electronic structure of the studied system using the U correction, further accurate 

predictions of intermolecular interactions and formation energies can be reached13. In 

addition, the U correction can further enhance the description of physical properties, other 

than the electronic structure, including magnetic and structural properties of correlated 

systems, the electron transfer energetics, and chemical reactions. However, one of the 

drawbacks of the Hubbard method is that it fails in predicting the properties of systems 

with more delocalized electrons, such as metals. The relative success of the DFT+U method 
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is related to its straightforward approach to account for the underestimated electronic 

interactions by simply adding a semi-empirically tuned numerical parameter “U”12. This 

interaction parameter can be easily controlled, making the DFT+U method a tool to give a 

qualitative assessment of the influence of the electronic correlations on the physical 

properties of a system.  

One of the mostly implemented methods in the DFT+U realm is the LDA+U 

method. It is widely used due to its simple implementation on the existing LDA codes, 

which makes it only slightly computationally heavier than the standard DFT computations 

14. In this chapter, we discuss the fundamental formulation of the LDA+U method and 

examine its applicability for practical implementations for different classes of materials, 

where DFT is usually found to be impractical. Popular cases of DFT shortage are discussed 

including materials with strong correlations, defective solid-state materials, and 

organometallics, while reviewing literature case studies that studied these classes of 

materials with DFT+U calculations. The methodology of optimizing the U correction is 

inspected, where it can be either formulated from first principles or achieved empirically 

by tuning the U value, while seeking an agreement with experimental results of the 

system’s physical properties. In this chapter, we also present a review of the practical 

implementation of U, while assessing its corrective influence on improving the description 

of a variety of physical properties related to certain classes of materials. In addition, the 

effect of the calculation parameters on the chosen U value is discussed, including the choice 

of the localized basis set and the type of DFT functional employed.  
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2.3.2 Standard DFT Problem 

Using exact HF or DFT solutions, the aim is always to reach, as close as possible, 

the exact description of the total energy of the system. Unluckily, reaching this exact 

energy description is impossible and approximations have to be employed. In DFT, 

electronic interaction energies are simply described as the sum of classical Columbic 

repulsion between electronic densities in a mean field kind of way (Hartree term) and an 

additive term that is supposed to encompass all the correlations and spin interactions7. This 

additive term, namely the exchange and correlation (xc), is founded on approximations that 

have the responsibility to recover the exact energy description of the system. This 

approximated xc functional is a function of the electronic charge density of the system, and 

the accuracy of a DFT calculation is strongly dependent on the descriptive ability of this 

functional of the energy of the system8. It is generally difficult to model the dependence of 

the xc functional on electronic charge density, and thus, it can inadequately represent the 

many-body features of the N-electron ground state. For this reason, systems with physical 

properties that are controlled by many body electronic interactions (correlated systems) are 

poorly described by DFT calculations. For these systems, incorrect description of the 

electronic structure induces the so-called “bandgap problem,” which in turn, imposes 

difficulties in utilizing DFT to predict accurate intermolecular interactions, formation 

energies, and transition states14.  

The problem of DFT to describe correlated systems can be attributed to the 

tendency of xc functionals to over-delocalize valence electrons and to over-stabilize 

metallic ground states12,13. That is why DFT fails significantly in predicting the properties 
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of systems whose ground state is characterized by a more pronounced localization of 

electrons. The reason behind this delocalization is rooted to the inability of the 

approximated xc to completely cancel out the electronic self-interaction contained in the 

Hartree term; thus, a remaining “fragment” of the same electron is still there that can induce 

added self-interaction, consequently inducing an excessive delocalization of the wave 

functions13. For this reason, hybrid functionals were formulated to include a linear 

combination of a number of xc explicit density and HF exact exchange functionals, that is 

self-interaction free, by eliminating the extra self-interaction of electrons through the 

explicit introduction of a Fock exchange term. However, this method is computationally 

expensive and is not usually practical when larger, more complex systems are studied. 

Nonetheless, HF method, which describes the electronic structure with variationally 

optimized single determinant, cannot describe the physics of strongly correlated materials 

such as the Mot insulators. In order to describe the behavior of these systems, full account 

of the multideterminant nature of the N-electron wave function and of the many-body terms 

of the electronic interactions is needed12. Therefore, it is predicted that applying DFT 

calculations using approximate xc functionals, such as LDA or GGA, will poorly describe 

the physical properties of strongly correlated systems.  

2.3.3 Mot insulators and the Hubbard model  

According to the conventional band theories, strongly correlated materials are 

predicted to be conductive, while they show insulating behavior when experimentally 

measured. This serious law of the band theory was pointed out by Sir Nevil Mot, who 
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emphasized that interelectron forces cannot be neglected, which lead to the existence of 

the bandgap in these falsely predicted conductors (Mot insulators)15. In these “metal-

insulators,” the bandgap exists between bands of like character i.e., between sub-orbitals 

of the same orbitals, such as 3d character, which originates from crystal field splitting or 

Hund’s rule. The insulating character of the ground state stems from the strong Coulomb 

repulsion between electrons that forces them to localize in atomic- like orbitals (Mot 

localization). This Coulomb potential, responsible for localization, is described by the term 

“U,” and when electrons are strongly localized, they cannot move freely between atoms 

and rather jump from one atom to another by a “hopping” mechanism between neighbor 

atoms, with an amplitude t that is proportional to the dispersion (the bandwidth) of the 

valence electronic states. The formation of an energy gap can be settled as the competition 

between the Coulomb potential U between 3d electrons and the transfer integral t of the 

tight-binding approximation of 3d electrons between neighboring atoms. Therefore, the 

bandgap can be described by the U, t and an extra z term that denotes the number of nearest 

neighbor atoms as13:  

 

Since the problem is rooted down to the band model of the systems, alternative 

models have been formulated to describe the correlated systems. One of the simplest 

models is the “Hubbard” model2. The Hubbard model is able to include the so-called “on-

site repulsion,” which stems from the Coulomb repulsion between electrons at the same 

atomic orbitals, and can therefore explain the transition between the conducting and 

insulating behavior of these systems. Based on this model, new Hamiltonian can be 

Egap =U − 2zt (2.15) 
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formulated with an additive Hubbard term that explicitly describes electronic interactions. 

The additive Hubbard Hamiltonian can be written in its simplest form as follows13:  

 

As predicted, the Hubbard Hamiltonian should be dependent on the two terms t and 

U, with <i.j> denoting nearest-neighbor atomic sites and c†, c, and n are electronic creation, 

annihilation, and number operators for electrons of spin on site i, respectively. The hopping 

amplitude t is proportional to the bandwidth (dispersion) of the valence electrons, while 

the on-site Coulomb repulsion term U is proportional to the product of the occupation 

numbers of atomic states on the same site. The system’s insulating character develops when 

electrons do not have sufficient energy to overcome the repulsion potential of other 

electrons on neighbor sites, i.e., when t « U. The ability of the DFT scheme to predict 

electronic properties is fairly accurate when t » U, while for large U values, DFT 

significantly fails the HF method, which describes the electronic ground state with a 

variationally optimized single determinant, that cannot capture the physics of Mot 

insulators. 

2.4 The Hubbard Correction 

Inspired by the Hubbard model, DFT+U method is formulated to improve the 

description of the ground state of correlated systems. The main advantage of the DFT+U 

method is that it is within the realm of DFT, thus does not require significant effort to be 

implemented in the existing DFT codes and its computational cost is only slightly higher 

Hub = t (ci,σ
† ci,σ

( i, j ),σ
∑ + h.c.)+U ni↑ni↓

i
∑ (2.16) 
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than that of normal DFT computations. This “U” correction can be added to the local and 

semilocal density functionals offering LDA+U and GGA+U computational operations. 

The basic role of the U correction is to treat the strong on-site Coulomb interaction of 

localized electrons with an additional Hubbard-like term. The Hubbard Hamiltonian 

describes the strongly correlated electronic states (d and f orbitals), while treating the rest 

of the valence electrons by the normal DFT approximations. For practical implementation 

of DFT+U in computational chemistry, the strength of the on-site interactions is described 

by a couple of parameters: the on-site Coulomb term U and the site exchange term J. These 

parameters “U and J” can be extracted from ab initio calculations, but usually are obtained 

semi empirically. The implementation of the DFT+U requires a clear understanding of the 

approximations it is based on and a precise evaluation of the conditions under which it can 

be expected to provide accurate quantitative predictions12,13.  

The LDA+U method is widely implemented to correct the approximate DFT xc 

functional. The LDA+U works in the same way as the standard LDA method to describe 

the valence electrons, and only for the strongly correlated electronic states (the d and f 

orbitals), the Hubbard model is implemented for a more accurate modeling. Therefore, the 

total energy of the system (ELDA+U) is typically the summation of the standard LDA 

energy functional (EHub) for all the states and the energy of the Hubbard functional that 

describes the correlated states. Because of the additive Hubbard term, there will be a double 

counting error for the correlated states; therefore, a “double-counting” term (Edc) must be 

deducted from the LDA’s total energy that describes the electronic interactions in a mean 

field kind of way12.  
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Therefore, it can be understood that the LDA+U is more like a substitution of the 

mean field electronic interaction contained in the approximate xc functional. Nonetheless, 

the Edc term is not uniquely defined for each system and various formulations can be 

applied to different systems. The most dominant of these formulations is the FLL 

formulation16–18. It is based on the implementation of fully localized limit (FLL) on systems 

with more localized electrons on atomic orbitals. The reason for this formulation popularity 

is due to its ability to expand the width of the Kohn Sham (KS) orbitals and to effectively 

capture Mot localization. Based on this formulation, the LDA+U can be written as:  

 

where 𝑛mlσ are the localized orbitals occupation numbers identified by the atomic 

site index I, state index m and by the spin 𝜎. In equation (4), the right-hand side second 

and third terms are the Hubbard and double counting terms, specified in equation (3). The 

dependency on the occupation number is expected as the Hubbard correction is only 

applied to the states that are most disturbed by correlation effects. The occupation number 

is calculated as the projection of occupied KS orbitals on the states of a localized basis set:  

 

where the coefficients f kvσ represent the occupations of KS states (labeled by k-point, band, 

and spin indices), determined by the Fermi-Dirac distribution of the corresponding single-

ELDA +U[ρ(r)]= ELDA[ρ(r)]+ EHub[{nmm
Iσ }]− Edc[n

Iσ ]

ELDA+U [ρ(r)]+ [U
l

2
nm
lσnm '

lσ ' −U
l

2
nl (nl −1)

m,σ ≠m ',σ '
∑ ]

l
∑

nm,m '
lσ ' = fkv

σ
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σ
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particle energy eigenvalues. According to this formulation, the fractional occupations of 

localized orbitals is reduced, while assisting the Mott localization of electrons on particular 

atomic states12.  

Although the above approach- described in equation (4.5) - is able to capture Mott 

localization, it is not invariant under rotation of the atomic orbital basis set employed to 

define the occupation number of n in equation (5). This variation makes the calculations 

performed unfavorably dependent on the unitary transformation of the chosen localized 

basis set. Therefore, “Rotationally invariant formulation” is introduced, which is unitary-

transformation-invariant of LDA+U16. In this formulation, the electronic interactions are 

fully orbital-dependent, and thus considered to be the most complete formulation of the 

LDA +U. However, a simpler formulation that preserves rotational invariance, which is 

theoretically based on the full rotationally invariant formulation, had proved to work as 

effectively as the full formulation for most materials17. Based on the simplified LDA+U 

form, it has been customary to utilize, instead of the interaction parameter U, an effective 

U parameter: Ueff =U - J, where the “J” parameter is known as the exchange interaction 

term that accounts for Hund’s rule coupling. The Ueff is generally preferred, because the J 

parameter is proven to be crucial to describe the electronic structure of certain classes of 

materials, typically those subject to strong spin-orbit coupling.  
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2.4.1 Solving the CO Adsorption Puzzle with the U Correction 

Studying surface chemistry is of great significance for enhancing the overall 

efficiency of many electrochemical applications19–21. In catalysis, for example, 

understanding the adsorption mechanism of species on catalytic surfaces – mainly 

electrodes - is essential in order to formulate a design principle for the prefect catalyst that 

can reach the optimum efficiency for a desired electrochemical process22–24. Typically, the 

adsorption of CO on metal surface is widely acknowledged as the prototypical system for 

studying molecular chemisorption25–28. Despite the extensive experimental studies, 

grasping the complete theoretical description of the “bonding model” has not yet been 

reached, due to the inability of experimental tools to fully describe the details of molecular 

orbital interactions and to make a profound population analysis, which is based on studying 

the electronic structures of the substrate and surface particles 31, 32. To this end, DFT can 

be utilized to explicitly describe electronic structures of the system particles in greater 

details, which can help in extending the conceptual model of CO chemisorption 33–38. 

Unfortunately, due to the inherent wrong description of the electronic structure by DFT, 

wrong predictions of CO preferred adsorption sites are observed that contradict 

experimental results, especially for the (111) surface facets of transition metals, leading to 

the so called “CO Adsorption Puzzle” 29–31. The root of this DFT problem resides on the 

fact that both local density and generalized gradient approximation functionals 

underestimate the CO bandgap, predicting wrong positions of the CO frontier orbitals, 

which results in an overestimated bond strength between the substrate and surface 

molecules32.  
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One of the popular solutions that has been exploited by researchers to resolve the 

adsorption site prediction puzzle is the DFT+U correction32,33. In this approach, the 

position of the 2π* orbital is shifted to higher values, by adding the on- site Coulomb 

interaction parameter. By doing so, the interaction of CO 2π* orbital with the metallic d-

band will no longer be overestimated, bringing the appropriate estimation of the CO 

adsorption site. Kresse et al.34 first implemented this method, and successfully obtained a 

site preference in agreement with experiment, emphasizing that the use of such a simple 

empirical method is able to capture the essential physics of adsorption. DFT calculations 

utilizing GGA functionals predict adsorption on the three fold hollow-site for Cu(111) and 

in the bridge-site on Cu(001), instead of the experimental on-top site preference. 

Reference33 implanted Kresse’s method to investigate the adsorption of CO on Cu(111) 

and (001) surfaces with 1⁄4 monolayer (ML) coverage on different adsorption sites. In that 

Figure 6.  Schematic sketch of the molecular eigen-states of the CO molecule. The DFT + 
U technique shifts the LUMO orbitals to higher energies, but the energies of the occupied 
orbitals remain the same. 
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study, the HOMO-LUMO gap of the isolated CO molecule was demonstrated to be 

increased by increasing the value of U. Also, upon changing the U value, the corresponding 

adsorption energies of the CO over the different adsorption sites were calculated.  

Reviewing the Cu(111) surface results, 5 different U values (0.0, 0.5, 1.0, 1.25 and 

1.5 eV) were used in the calculations. It was observed that only 20 meV changes in the 

adsorption energy (higher coordinated hollow sites) for U = 1.25 eV and 0.03 eV for U = 

1.5 eV. Nonetheless, the absolute value of adsorption energy decreases linearly with 

increasing U, where the rate of reduction is found to be larger for higher coordinated sites. 

It was observed that the site-preference between top and bridge sites to be reversed around 

the U value of 0.05 eV, while between the top and hollow sites around U = 0.45 eV. 

Concerning the adsorbate (surface) description in the study, the calculated interlayer 

relaxations were the same as that calculated using the GGA (PW91) functional without the 

U correction. Not only does the U correction help in solving the adsorption puzzle 

dilemma, but it can also enhance the description of other related properties, such as the 

calculated work function and the vibrational spectra for the CO- metal complexes.  
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Chapter 3 
 

Literature Survey 

The CO adsorption on transition metal surfaces show fascinating complexities; it 

may adopt one-fold (atop), two-fold (bridge), or three-fold or four-fold (hollow) 

coordination sites depending of a number of parameters, including: type of the substrate 

material, the kind of surface, and the surface coverage1. For example, CO 

thermodynamically prefers to adsorb ontop sites at all Cu surfaces, whereas CO preference 

changes with the change of the surface facets for Ni; preferring atop-site at Ni(100), the 

bridge-site at the Ni(110), and the hollow-site at the Ni(111)1. The different measured 

relative energetics at these sites are interpreted by the electronic structures. DFT 

calculations, however, were able to reproduce experimental findings correctly at particular 

surfaces, while incorrectly predicting energetics at other surfaces that resulted in wrong 

site-preference predictions. However, if the limitations of computational theories are 

understood, they can be exploited to provide quantitative structural information that can 

considerably help in extending the conceptual model of the CO adsorption.  

3.1 The CO Chemisorption Model 

The Blyholder model frontier orbitals two-step bonding process is a rather simple 

yet not complete description of the bonding mechanism. Previous work by Fohlisch et al2–

4 had refined the Blyholder model showing a contribution of the 1π, 2π*, 4σ and 5σ orbitals 

with the metal d-states and verified a full orbital mixing of the CO σ- and π-orbitals. 

Stroppa et al5 further refined the model by verifying the contribution of the broad metal sp 
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states in the interaction by their hybridization with the CO σ- and π-orbitals. Our electronic 

structure and charge distribution results support these claims and verify the contribution of 

all metallic states and CO orbitals with different magnitudes, depending on their respective 

energy levels and geometrical positioning. Furthermore, the depiction of orbitals other than 

the frontier (5σ and 2π*) orbitals is rather essential for interpreting the discrepancies in the 

charge transport and the adsorbate final geometry results, which are found when the 

adsorption at the same adsorption site on different surface facets is compared. Several later 

models confirmed the hybridization of all the initial orbitals of the CO molecule. Orbital 

mixing between the CO 5σ and 4σ were noticed from both experimental and theoretical 

studies, based on a detailed orbital interaction and its energetics studies 3,6,7. In addition, 

the attractive nature of the 5σ interaction was criticized and a rather repulsive nature is 

Figure 7. Schematic of the Blyholder Model and the Nilson-Pettersson Model1 
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extensively discussed by Bagus et al8,9. Regarding the nature of the CO π-orbitals, later 

studies confirmed a perturbation of the complete π -orbital framework upon adsorption, 

where the hybridization between the 1π, 2π*, and the metallic dπ - orbitals is experimentally 

observed, in agreement with the original Blyholder model.  

 A more accurate description of the orbitals interactions became only possible in the 

early 2000s, after the application of the X-ray emission spectroscopy (XES) in the 

adsorbate electronic structure investigations. XES allows for an atom- and symmetry 

projected analysis of the adsorbate valence states.  Fohlisch et al exploited experimental 

XES technique along with ab initio DFT calculations to test the validity of the original 

Blyholder model and the later Frontier orbital descriptions of the adsorption mechanism.  

Based on their rigorous electronic structure investigations, the new Blyholder-Nilsson-

Petersson (BNP) model was proposed, which provides a more complete molecular orbital 

picture of the adsorption mechanism. The BNP model rather claims the hybridization of 

both the σ and π orbitlas of the CO molecule. Using XES, π and σ systems were allowed 

to be studied independently. In both the π- and σ- systems, full hybridization of the 

participating molecular orbitals was observed.  In the π -system, the simple 2π* back-

donation picture agreed with the observed XE spectral results at π -symmetry. For the 2π* 

back-donation to be confirmed, the 2π* orbitals were expected to largely polarize towards 

the C end, however, the contrary was observed and the 2π* orbital rather polarized towards 

the oxygen atom. In addition, the repulsive nature of the σ-interaction was confirmed by 

the observed depopulation of the whole s-system, including the 4σ, 5σ, and the d orbitals 

with σ symmetry (dσ) orbitals, where orbitals are depleted to minimize the repulsion. Based 

on these observations, the adsorption energetics were concluded declaring an attractive 
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(stabilizing) π -interactions that is compensated with a repulsive (destabilizing) σ 

interaction. The balance between the stabilizing and destabilizing interactions explains the 

measured weak substrate-adsorbate bonding. Regarding the CO molecule, the internal C-

O bond carried by π -interaction is found to be weakened upon adsorption, whereas the 

bond carried by σ-interaction is strengthened.  

In the following section we are going to survey the experimental methods utilized 

to draw the most updated model, which is the Nilsson-Petersson Model.  

Figure 8. Experimental and theoretical spectra of the CO in the gas phase1. 
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3.2 The Nilsson-Petersosn Model 

The molecular orbital picture of the chemisorption process is mainly drawn from 

the electronic structure data coming from the XES spectra. Figure 8 shows the XES spectra 

for the π and σ systems. Since XES enables us to study each system independently, we are 

going to begin with analyzing the π-system and then dwell into the σ-system.  

3.2.1 The π-system 

From the π- symmetry XE results in Figure 8, we observe a dominant 1π state for 

the chemisorbed CO for both C and O XE spectra. New states are observed towards lower 

binding energies, which differ in O and C spectra; these new states are denoted as the dπ 

band. At the bottom of the dπ band, i.e. at higher binding energies, we observe intensity 

only in the O spectrum, which is denoted as a lone-pair state of π-symmetry at 4.5 eV. 

Close to the Fermi level (at the top of the band), intensity becomes present in both C and 

O spectra. Upon adsorption, the 1π forms a bonding combination to the metal d-orbitals, 

where the overlap is maximized through internal polarization. Next, we are going to study 

the orbital contour plots in order to gain more insights about orbitals polarizations (Figure 

9) 

From the orbital plots we can observe the 1π becoming more polarized towards C 

in comparison with the free molecule. Simultaneously, a lone pair state is formed on the 

outer atom with large Ni d-character. Upon adsorption, the 2π* polarized towards the O 

atoms, which is opposite to the 1π polarization towards the C end. Thus, we have the so-

called orbital rotation between the 1π and 2π* orbitals. At the bottom of the d-band (dπ-b) 
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the nodal plane coincides with the carbon atom forming the oxygen lone-pair. As we go to 

the top of the band (dπ-t), the nodal plane becomes more located between the C and O 

atoms4.  

3.2.2 The σ-system 

Investigating Figure 8 XE spectrum of σ-symmetry we can observe the 4σ five 

times larger than the 5σ. It’s worth-noting that the relative strength of the 4σ and 5σ in the 

O XES after adsorption is a measure of the degree of polarization. Upon adsorption, the 4σ 

becomes even weaker than the 5σ, where both the peaks of the 4σ and 5σ orbitals deviate 

Figure 9. Contour plots for CO π-orbitals in the gas phase and adsorbed on Ni13 and Cu26 
clusters. Different colored lines denote different phases of the wave-functions1 
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from their original energy positions in the free CO molecule. The upshift of the 5σ to higher 

binding energies was interpreted as a sign of attractive 5σ dative bonding10–14, however, 

the correct interpretation for this is that the entire σ system show internal redistribution so 

that it can minimize the adsorbate-metal repulsion1,3. This interpretation is evidenced by 

the polarization of the 5σ away from the C atom and towards the O atom, where it changes 

character from antibonding to bonding, leading to a higher binding energy. This is clearly 

elaborated in the orbital plots in Figure 10 

3.2.3 Charge Density Difference Analysis 

From total plot in the uppermost figure of the total charge density difference plots 

in Figure 11, we can observe a loss and gain of charge in all atomic centers. There also 

Figure 10. Contour plots for CO σ-orbitals in the gas phase and adsorbed on Ni13 and Cu26 
clusters. Different colored lines denote different phases of the wave-functions.1 
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seem a small gain in charge between Ni and C. The small gain has been discussed in terms 

of electron pair creation due to the suggested σ donation. In addition, there also seems to 

be a gain of charge in the π-symmetry, which supports the back-bonding idea into the 2π* 

orbitals. Theoretically, however, it is possible to calculate charge densities of the π and σ 

systems individually. In the charge density difference plot of the σ-symmetry, we can 

observe the entire σ-system, including the dσ orbitals, losing charge upon adsorption1. This 

depopulation of σ- and d-orbitals occurs in order to minimize the repulsion. Since the 

depopulation involves the 3d and 4s orbitals of the Ni atoms, the Ni-Ni bonds get weakened 

Figure 11. Charge density difference plots of CO adsorbed on Ni13 cluster. Regions of electron 
less are indicated with red color and regions of electron gain are indicated with blue color.1 
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as a consequence of the interaction with the CO molecule. On the other hand, the entire π-

system gains charge, where the π interaction forms a bonding combination between the CO 

2π* and the Ni 3d orbitals. It is also revealed that the 2π* becomes populated by 22%, 

whereas the 1π gets depopulated by 10%, giving a net gain of 10% population in the π-

system1,4.  

3.3 Gap in Research and Thesis Approach 

The adsorption mechanism is solely controlled, and thus described, by the 

electronic interaction between the substrate atoms and the adsorbing molecule15,16. 

Different adsorption mechanisms take place depending on the thermodynamically 

preferable adsorption site(s)17–19. For each adsorption site, unique changes for both the 

substrate and the adsorbed molecule take place, including changes in the electronic, 

vibrational, charge distribution, and structural properties20–23. Predicting these changes for 

the adsorbed molecule is critical for the study of catalytic behavior of different materials24–

27. Based on the required changes that occur upon interaction, innovative design principles 

of materials to be used in a wide range of applications can be realized28,29.  

Density functional theory (DFT) is an ideal computationally convenient method for 

generating the required detailed electronic structure for describing the CO adsorption 

process30. However, DFT may fail to describe the correct position of energy levels for the 

studied system resulting in wrong energetics calculations, and consequently, wrong site 

preference for the CO molecule31,32. This problem is manifested in the CO adsorption on 

the (111) transition metal surface facets, often referred to as the CO adsorption puzzle33,34. 
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The root of this DFT problem resides on the fact that both local density and generalized 

gradient approximation functionals fail to predict the correct positions of the CO frontier 

orbitals, 5σ (HOMO) and 2π* (LUMO). These orbitals are located closer to the fermi level, 

making the 2π* orbital very close in energy to the metal d-band, which results in an 

overestimated bond strength of the 2π*-d-band bonding interaction35. In addition, because 

of their open d-shells and accompanying spin-coupling, near-degeneracy and dynamical 

correlation problems, predictions of the electronic structure of transition metal surfaces 

presents another challenge for theoretical calculations. Consequently, most semi-local 

exchange-correlation (xc) density functionals underestimate surface energies and predict 

them more stable than they actually are. Different approaches were employed to solve the 

puzzle, either by manually shifting the CO bandgap using the DFT+U approach31,36,37, or 

by utilizing expensive hybrid functional calculations16,38,39. However, despite the more 

accurate CO bandgap description by hybrid functionals, the correct site preference on (111) 

surfaces was not possible for open d-shell transition metals and was only correct for metals 

with closed d-shell configuration, such as Cu, making it an ideal choice for open d-shell 

transition metals. Therefore, additional factors, other than the accuracy of the frontier 

orbital energy description, must be considered for a better understanding of the adsorption 

puzzle.  

For pure DFT calculations without corrections, in the study done by Schimka et 

al35, it was shown that density functionals with low or no gradient corrections predicted 

reasonable surface energies, while vastly overestimating their bond strengths. This bond 

overestimation is logical, because of the previously stated CO 2π* orbital downshift error. 
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On the other extreme, for semi- local functionals with strong gradient corrections, surface 

energies were found to be overly-stabilized, however, the adsorption energies predictions 

were considerably improved. This improvement in adsorption energetics can be interpreted 

as a cancelation of error by making the surface artificially more stable using strong gradient 

functionals to counteract the over- strengthened adsorption bond. Therefore, for the 

purpose of studying surface interactions, a computationally convenient shortcut is to 

employ a density functional with strong gradient corrections - in our case RPBE - to obtain 

accurate energetics results. It is worth-mentioning, though, that incorrectly predicting site 

preferences do not necessarily imply poor description of surface chemical phenomena40, 

which is also proved in our results, where the heat of adsorption is found to act as sole 

descriptor for the site preference, without interfering with the mechanism of adsorption at 

different sites. 

3.3.1 Thesis Approach  

Herein, insights on the arrangement of surface atoms as an overlooked parameter 

that extensively contributes to the surface bonding mechanism were demonstrated, which 

in turn constitutes the adsorption thermodynamics and the preferred adsorption site. Within 

the present investigation, the reliability of DFT calculations for the description of surface 

interactions is validated, despite the expected inaccurate energetics and site preference 

calculations. We further exploit the inaccurate frontier orbital energy description to explain 

the resulting contradicting site preferences. To investigate the effect of both the surface 

type and adsorption site on the adsorption mechanism and energetics, a comprehensive 
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DFT study for CO adsorption on all available adsorption sites over distinctive surface 

facets, (100), (110), and (111) surfaces10,41,42 is presented. At each surface and for each site, 

adsorption mechanisms are analyzed from molecular orbital and charge transport 

principles. This comparison is also extended by spotting alterations in CO non-frontier 

orbitals, such as the 3σ and 1π, for similar adsorption sites at different surfaces, which is 

found essential for understanding alterations caused by varying arrangements of surface 

atoms.  
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Chapter 4 
 

Computational Methods 

As discussed in chapter 1, DFT and experiment have often been teammates in 

successful surface science projects. In this section, the methods of applying practical DFT 

calculations on solid surfaces is displayed and to describe molecular surface interactions. 

4.1 Slab Models and Periodic Boundary Conditions 

Solid surfaces are treated as a solid-state material that is described by geometrical 

symmetry that can minimize the number of atoms in the system1. The periodicity of the 

system should be utilized to provide infinite three-dimensions. However, for surfaces, the 

system is infinite in two dimensions and finite in the third dimension along the surface 

normal. There are computational codes that apply periodic boundary conditions on two-

dimensions only, however most of the codes, and the one used in this thesis project, apply 

boundary conditions in all three dimensions. The problem with the periodicity of the third 

dimension along the surface normal can be easily solved by using the vacuum slab trick. 

As illustrated in Figure 12, the supercell presented consist of a five-layer slab with a 

vacuum space with a specific height that separates the upper surface layer from the lowest 

surface layer of the repeated slab on the vertical axis along the surface normal. In the “slab 

model”, the super cell is repeated in all three dimensions and the vacuum height is chosen 

such that the electron density tails off to zero in the vacuum space and the top of the surface 

slab has no effect on the bottom of the upper next slab.  
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Figure 12. Slab supercell model used for surface energy calculations.1 

 
Therefore, the slab model defines a series of stacked solid material separated by vacuum 

spaces as represented in Figure 13. 

Intuitively speaking, to ensure no interaction between two neighboring slabs, one 

can choose a very large vacuum height, however, the bigger the vacuum space the larger 

the computational cost of your calculation. So, the conventional practice is to find the 

minimum vacuum space that minimizes the computational requirements and at the same 

time the space that is enough to make the charge density to keep the charge density inside 

the vacuum space close to zero2.  
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Realistically, the surface interactions include the upper surface and the bottom 

layers with a slab thickness of at least microns thick2, which is far away from any 

computationally practically large number of layers. So, the larger the number of layers the 

better your model is. Another way to tackle this problem, the surface energy or the 

adsorption energy can be tested at different layer thicknesses until there is no more change 

in the value of the tested property after increasing the slab thickness.  

4.2 K-point Sampling for Surfaces 

For both the bulk and surface models, the Monkhorst – Pack method can be 

employed for choosing the k points for calculations. Since the supercell has a one long 

Figure 13. Showing 25 replicas of the original supercell with the bold frame. The 
grey region indicates the surface thickness, while the white region indicates the 
vacuum thickness1. 
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dimension in the direction normal to the surface, in the reciprocal space, there this 

dimension will be the short dimension. If the vacuum slab is large enough to keep the 

electron density close to zero a short distance from the edge of the slab, we will then need 

no more than just one k point in the surface normal direction. Therefore, it is convenient to 

use an MxN x1 k-point mesh, where M and N are chosen to adequately sample k space in 

the plane of the surface1.  

4.3 Surface Relaxation 

Since the coordination of the atoms at the surface is reduced compared to the atoms 

of the bulk, then it is expected that the spacing between the layers near the surface be 

somewhat different from those in the bulk. This phenomenon is referred to as “Surface 

Relaxation”, and the primary step before carrying any surface calculations is to characterize 

this relaxation. In Figure 14, on the left side, the original slab model without relaxation 

with the same spacing between layers is shown, while on the right side, we show the top 

three layers are allowed to relax, while the bottom three ones are fixed in their positions. 

The relaxed surface must then have a lower energy than that of the original slab. This 

relaxation can be reached by performing energy minimization as a function of the positions 

of the atoms in the slab model. This is done by considering the bottom layers of the 

supercell as bulk atoms that are constrained to their ideal bulk positions, while the upper 

layers representing the surface and are allowed free motion in space. 
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Figure 14. On the left is a schematic of the ideal surface without relaxation; on the right is the 

relaxed surface with the upper two layers getting constrained1 

 
 After performing energy minimization, it is usual observe the spacing between the 

upper three layers getting narrower than that of the bulk. The new spacing is often 

expressed as a percentage of the original bulk spacing, with negative values indicating 

contraction and positive values indication expansion.  

4.4 Surfaces Classified by Miller Indices 

There are many ways in which the bulk can be cleaved into different facets with 

unique geometrical atomic arrangements. Each way of cleaving the surface is given a 

specified notation to define how the surface to be cleaved will be defined. The miller 

indices are defined by the reciprocal of the point of intersection with the axes. For example, 

the (111) surface cleavage is shown in Figure 15a, where the intercepts are at the points 

(1,1,1) making a triangular surface. Similarly, in Figure 15c, the (001) surface is shown, 

which cuts the z-axis at 1 and is infinite in the other two axes; in this case the reciprocal of 
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these (1/∞, 1/∞, 1/1) gives (0,0,1). Finally, in Figure 15c (110) plane, the surface cuts the 

x and y axes at 1 and is infinite in the z-axis; so, (1/1,1/1,1/∞) will give (110) notation in 

the Miller indices.  

4.5 Applied Surface Computations 

In this project, Materials Studio software was for DFT calculations. The 

calculations were carried out employing the CASTEP computational package.  

Figure 15. Shows the miller indices notation for surface cleavages that form (a) the (111) surface, 
(b) the (100), and (c) (110).1 
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4.5.1 Optimizing the Bulk Solid Substrate 

The first step to applying surface computations is to prepare the bulk structure of 

the substrate model. One can either build the crystal structure of the bulk by inserting the 

lattice parameters of the crystal structure of the metal used and the space-group. The bulk 

crystal structure of Cu is taken in our calculations from the library of solids saved on 

Materials Studio. The space-group of the Bulk Cu is FM-3M (255) with lattice 

experimental parameters of 3.89 Å. For accelerate the computational time, we took 

advantage of the symmetry of the FCC crystal structure, and the computations were run on 

by converting the conventional cell into its primitive form.    

The calculated lattice parameters after geometry optimizations is 3.615, which 

denotes an accuracy of 93%. 

Figure 16. Geometrically Optimized Bulk Cu Crystal 
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4.5.2 Building and Optimizing the CO molecule 

Since the CASTEP package we are using can only work with periodic systems, the 

CO molecule being a non-periodic system will be dealt with in a special treatment. In order 

to optimize the CO molecule, we must put it in a crystal structure, so we can exploit the 

periodicity of the crystal structure for the CASTEP calculations. In this case we build a 

crystal structure with lattice parameters of 8 Å, which is large enough to ensure no CO-CO 

interactions vertically or horizontally.  

The experimental C-O bond length is 1.1283 Å, while the calculated bond length 

after optimization is 1.145 Å, which denotes a calculation accuracy of 98.5%. 

4.5.3 Building and Optimizing Surfaces 

Figure 18 shows how the (110) surface is cleaved from the bulk of the Pd metal3. 

Using the same method, we cleaved the bulk at the (100), (110), and (111) surfaces. While 

Figure 17. Optimized CO molecule; CO molecules placed at the corners of the 
crystal with lattice parameters of 8 Å. 
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cleaving the surface, we choose the slab thickness which constitutes the number of layers 

we need to model in our slab.  

 

Figure 18. Showing a cleavage of the metal bulk FCC crystal at the (110) plane.3 

Choosing the Optimum Number of Layers  

As previously discussed, the larger the thickness of the surface slab, the more 

accurate your calculations are, however, on the expense of larger computational 

requirements. To test for the optimum thickness required for our calculations, we carried 

out adsorption energy calculations for 3-layers, 4-layers, and 5-layers slab models for the 

(100) surface to test for the minimum number of layers that can describe the system with 

the required accuracy. In all cases, the upper two layers were allowed to relax, while the 

lower surfaces were fixed in their fractional positions.  
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Although the three surfaces produced different surface energy results, which was 

expected because of the different number of atoms, when ontop adsorption is compared, 

the most accurate result that is closer to experiment was found at the 3-layer system.    

Building the Vacuum Slab 

For each of the 3 facets, a vacuum slab of 10 Å thickness is built, which ensures no 

interactions between the surfaces at periodic boundaries.  

Figure 19. Optimized slab models. From left to right, the 3-layer, 4-layer, and 5-layer slab 
models. The grey colour of the atoms upper to surfaces denotes is specified for the relaxed 
atoms, while red colour specifies the constrained atoms of the lower 
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4.5.4 Adding CO to Different Adsorption Sites 

 
 

Figure 20 shows an example of how one can add the CO molecule on the short-

bridge site of the Pd(110) surface. ZC-O denotes the internal C-O bond length, which is put 

in accordance to the optimized free CO molecule in our calculations. dPd-C is the metal-CO 

distance; this distance is specified in our calculations from the experimental data, which is 

1.90 Å. In Figure 21-23, a selected set of figures showing the positions of the CO molecules 

at different adsorption sites at different surfaces is presented.  

 

 

 

 

Figure 20.  Schematic of the geometrical procedure of adding the 
C and O atoms on the short-bridge site of the (110) surface. 
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Top-Site Adsorption 

The ontop adsorption shows a slight tilting of 3 degrees from the vertical position as 

shown in Figure 21 

 
 
 
 

 

Figure 21. Optimized Ontop CO-Cu(100) complex; (T: Top). 
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Bridge-Site Adsorptions 

 
 
 
 

Figure 22. Optimized bridge sites at different copper surfaces; (T: Top, B: Bridge, SB: 
Short bridge, LB: Long bridge). 
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Hollow-Site Adsorptions 

At the (111) surface, the difference between the fcc and hcp hollow site adsorptions 

is that at the fcc, there is no Cu atom beneath the adsorbed CO molecule at the second 

layer, whereas, for the hcp, there exist a Cu atom beneath CO molecule at the second layer. 

 

Figure 23. Optimized hollow sites at differrent copper surfaces; (H: Hollow). 
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4.5.6 Calculating Adsorption Energies 

Density functional theory calculations have been performed within the generalized 

gradient density approximation in the revised Perdew-Burke-Ernzerhof parametrization, 

RPBE, as modified by Hammer et al4. Calculations were done using the Cambridge Serial 

Total Energy Package, CASTEP, and employed ultrasoft pseudopotentials. To study the 

effect of adsorption on the adsorbed molecule, the electronic structure of CO is first 

calculated as an isolated (free) molecule and then studied after adsorption within the metal-

adsorbate system. This procedure is also implemented for each of the (100), (110), and 

(111) surface facets. Over each surface, the chemisorption process on all the available 

adsorption sites – top, hollow, and bridge – are calculated. In order to exclude the CO-CO 

interactions that can make the electronic structure analysis more complex, the adsorption 

mechanism is studied for surfaces with a 1⁄4 monolayer coverage5.  

The adsorption process is modelled on a 3-layer supercell slab, separated by 

vacuum of 10 Å thickness, with the bottom layer atoms fixed in position and the top two 

layers and the CO molecule are allowed to relax. To confirm the sufficiency of the 3-layer 

substrate model, adsorption energies are calculated for 4-layer and 5-layer slab models, 

where accurate adsorption energies are found within good agreement with experimental 

and theoretical values reported in references6,7. The energy cut-off has been fixed for all 

surfaces at 580 eV, which is found reliable to give converged results for the systems 

considered. Using the Monkrokhst-Pack scheme for performing Brillion zone integrations, 

the k-point sampling is varied, while performing energy calculations for the isolated CO 

molecule, clean surfaces, and CO-substrate complexes at different surfaces. The converged 
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k-point samplings used for the results presented are (3x3x1) for the (100) and (111) 

surfaces, and (2x3x1) for the (110) surface, keeping the k-point separation fixed for all 

systems at 0.07 Å-1. The effect of the deformation energy of the Cu model after CO 

adsorption was checked by recalculating the adsorption energies with the substrate atoms 

frozen in space. The deformation energy of Cu atoms is found to contribute very little 

change (~0.05 eV) to the adsorption energy values, insignificant to affect the site 

preference.  

The adsorption energy is calculated by subtracting the energy of the surface-

adsorbate complex from the summation of the individual clean surface and CO molecule 

energies before adsorption, as follows: 

 

 
 

 
 Since chemisorption is an exothermic reaction, the calculated adsorption energy 

will have a negative value, which means that when the CO molecule and the surface 

interact, they become more stable than they are individually.  

 
 
 
 
 
 
 
 

EAds = Ecomplex − (Esurface + ECO ) (4.1) 
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Chapter 5 
 

Results and Discussion 

CO adsorption on both Cu and Ni (100), (110), and (111) surfaces has been 

extensively studied using Kohn-Sham density functional theory calculations. A holistic 

analysis of adsorption energies, charge transfer, and structural changes has been employed 

to highlight the variations in adsorption mechanisms upon changing the surface type and 

the adsorption site.  Each surface, with its unique arrangement of atoms, resulted in a 

varying adsorbate behavior, although the same adsorption site is considered. This directly 

reflects the influence of the atomic arrangement on the substrate-adsorbate interactions. 

Site-interactions are rigorously investigated from molecular-orbital and charge transfer 

principles taking into account the fundamental interaction of frontier orbital (5σ and 2π*) 

orbitals. By considering the effects surface atomic arrangement and the density of metal 

interacting orbitals, along with the relative d-5σ and d-2π* energy spacings, the calculated 

adsorption preferences to higher coordination sites is explained, which also revealed 

valuable interpretations to the renown DFT CO adsorption puzzle.   In addition, we studied 

the perturbations occurring upon adsorption to the 3σ and 1π orbitals, which hold the 

internal C-O bond. Studying 3σ and 1π orbitals perturbations provided wealth theoretical 

interpretations to the varying behavior of the adsorbate molecule when similar adsorption 

sites are compared at different facets. 

 

* Parts of this chapter were published in the following paper: Kareem M. Gameel, Icell M. Sharafaldin, Amr U. 
Abourayya, Ahmed H. Biby, Nageh K. Allam, “Unveiling CO Adsorption on Cu Surfaces: New Insights from 
Molecular Orbital Principles”, PCCP Journal 
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5.1 Energy Calculations 

Tables 1-3 from the left to right columns, show the energy results of the free CO 

molecule, the clean surface, the surface-adsorbate complexes, and the calculated adsorption 

energies according to equation (4.6). Rows highlighted in yellow denotes the adsorption 

sites with the lowest adsorption energies, i.e. the preferred adsorption site.  

 

Table 1. Cu(100) Adsorption Energies 

 Ads. Site CO Cu (100) Cu(100)-CO Eads 100 
Top -596.0095 -20175.078 -20771.64 -0.5524 
Bridge  -596.0095 -20175.078 -20771.562 -0.474 
Hollow -596.0095 -20175.078 -20771.328 -0.2399 

 

Table 2. Cu(110) Adsorption Energies 

 Ads. Site CO Cu(110) Cu(110)-CO Eads 110 
Top -596.0095 -20172.813 -20769.506 -0.6836 
SB -596.0095 -20172.813 -20769.676 -0.8536 
LB -596.0095 -20172.813 -20769.1 -0.2782 
Hollow -596.0095 -20172.813 -20768.886 -0.06414 

 Figure 24. Adsorption sites Arrangement of Cu surface atoms at the (100), (110), and (111) 
facets; (a: ontop, b: bridge, b’: long-bridge, b”: short-bridge, c: hollow, c’: hcp, c”, fcc). 
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Table 3. Cu(111) Adsorption Energies 

 Ads. Site CO Cu (111) Cu(111)-CO Eads 111 
Top -596.0095 -20175.91 -20772.199 -0.2797 
Bridge -596.0095 -20175.91 -20772.236 -0.3168 
fcc -596.0095 -20175.91 -20772.307 -0.3877 
hcp -596.0095 -20175.91 -20772.296 -0.3767 

5.2 Geometrical Results 

Tables 4-6 present the geometrical data. The depth is calculated as the reciprocal of 

the vertical height above the metal surface. The Depth column for each surface is calculated 

as the reciprocal of the vertical length between the carbon end of the molecule and the 

metal surface. 

 

Table 4. Cu(100) Geometrical Results 

Adsorption Site C-O M-CO Vertical Length Depth 

Top 1.158 1.867 1.87 0.54 

Bridge 1.171 2.014 1.55 0.65 

Hollow 1.188 2.212 1.27 0.79 
 

Table 5. Cu(110) Geometrical Results 

Adsorption Site C-O: M-CO Vertical Length Depth 

Top 1.156 1.857 1.857 0.539 

Short 1.173 1.972 1.86 0.67 

Long  1.178 2.082 1.34 0.744 

Hollow 1.191 2.45 0.80 1.25 
 

 

 



98 

 

Table 6. Cu(111) Geometrical Results 

Adsorption Site C-O: M-CO Vertical 
Length 

Depth 

Top 1.159 1.856 1.85 0.54 

Bridge 1.176 1.982 1.47 0.68 

hcp 1.183 2.055 1.38 0.72 

fcc 1.183 2.044 1.37 0.73 

5.3 Charge Transfer Data 

Tables 7-9 show the orbital charge transfers for Cu atoms and CO molecule. 

Table 7. CO-Cu(100) Charge Transfer 

Orbitals top bridge hollow 
CO – s orbital -0.26 -0.29 -0.29 
CO – p orbital 0.38 0.58 0.74 
Total CO Gain 0.12 0.29 0.45 
Cu – s orbital -0.29 -.28 -0.32 
Cu - p orbital 0.33 0.16 0.10 
Cu - d orbital -0.15 -0.18 -0.22 
Total Cu Loss -0.11 -0.30 -0.44 

 

Table 8. CO-Cu(110) Charge Transfer 

Orbitals top Short-bridge Long-
bridge 

Hollow 

CO – s orbital -0.24 -0.28 -0.29 -0.31 
CO – p orbital 0.35 0.57 0.64 0.74 
Total CO Gain 0.11 0.29 0.35 0.43 
Cu – s orbital -0.14 -0.16 -0.22 -0.36 
Cu - p orbital 0.12 0.04 -0.02 0.06 
Cu - d orbital -0.09 -0.18 -0.11 -0.14 
Total Cu Loss -0.11 -0.30 -0.34 -0.43 
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Table 9. CO-Cu(111) Charge Transfer 

Orbitals top bridge hcp fcc 
CO – s orbital -0.28 -0.31 -0.32 -0.30 
CO – p orbital 0.39 0.62 0.69 0.68 
Total CO Gain 0.11 0.31 0.37 0.38 
Cu – s orbital -0.23 -0.29 -0.33 -0.32 
Cu - p orbital 0.21 0.11 0.07 0.09 
Cu - d orbital -0.09 -0.12 -0.11 -0.14 
Total Cu Loss -0.11 -0.30 -0.37 -0.37 

5.4 Validating the Accuracy of Results 

From the results presented in Table 10, we can see that the calculated C-O and Cu-

C bond lengths in a very good agreement with experimental value. The calculated 

adsorption energies of CO are in reasonable agreement with the experimental adsorption 

energies; on Cu(111) surface, the adsorption energy is underestimated by ~0.14 eV 

compared to the experimental values, whereas adsorption energies at the Cu(100) are found 

in good agreement with the experimental values. 

According to the Blyholder model1, the surface bonding is depicted through a two-

step interaction process initiated by a 5σ charge donation followed by a 2π* back donation. 

As the adsorption coordination number increases so does the overlap between the metal 

states and the LUMO 2π* orbitals. Since the 2π* is an anti-bonding orbital, any charge 

added through back- donation results in a C-O internal bond stretching, implying a more 

dissociative fashion. The results in Figure 25 shows a linear correlation between the charge 

transfer from the metal surface to the CO molecule and the stretching of the C-O bond- 
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length, as the coordination number increases. The change in depth of adsorption and the 

Metal-C bond length also verify a direct relation with charge back-donation, which is 

attributed to the degree of overlap between metal orbitals and the CO 2π* antibonding 

orbitals. The results of the calculated Mulliken population support this claim, indicating an 

increase in the charge gained by the CO-p orbitals, which forms the 2π*, as the coordination 

number increases. On the contrary, the data of the adsorption energies (Eads), Figure 25a, 

indicates no correlation with the coordination number or charge transfer, when different 

Table 10. Structural and Energy Results, adsorption energy, Cu-C bond lengths (dCu-C), and C-O bond 
lengths (dC-O) results are displayed. At a coverage of Θ= ¼ ML, theoretical and experimental data from 
literature are compared with our calculated results. The theoretical data from literature are selected from 
ref.6, where RPBE functional is utilized with projected augmented plane waves at 450 eV energy cutoff. 
The experimental data are put in square brackets; bond lengths are on average within an accuracy of 0.1 
Å. The numbers put in bold correspond to the preferred adsorption sites.  
 

 Literature Calculations 

Surface Site 
Adsorption 

energy 
(eV) 

dC-O (Å) dCu-C (Å) 
Adsorption 

energy 
(eV) 

dC-O (Å) dCu-C (Å) 

 
Cu(100) 

Top 

-0.565 
[-0.53, -

0.57] 
Ref.7,8 

1.162 
[1.13, 1.15] 

Ref.9 

1.87 
[1.90, 1.92] 

Ref.9,10 
-0.5524 1.158 1.867 

Bridge -0.545 1.176 2.01 -0.474 1.171 2.014 
Hollow -0.471 1.200 2.18 -0.2399 1.188 2.212 

 
Cu(110) 

Top [-0.63] 
Ref.7 

[1.11] Ref. 
11 

[1.87] 
Ref.11. -0.6836 1.156 1.857 

Bridge - - - -0.8536 1.173 1.972 
Long-
bridge - - - -0.2782 1.178 2.082 

Hollow - - - -0.06414 1.191 2.45 

Cu(111) 

Top 

-0.42 
[-0.43, -

0.52] Ref. 
7,12,13 

1.162 
 

1.187 
[1.91] 
Ref.14 

-0.2797 1.159 1.856 

Bridge 0.39 1.179 2.01 -0.3168 1.176 1.982 
hcp -0.45 1.185 2.08 -0.3767 1.183 2.055 
fcc -0.46 1.185 2.08 -0.3877 1.183 2.044 

 



101 

 

 surface types are compared. These results imply that the adsorption energetics cannot be 

used as a descriptor for the bonding mechanism, but rather as a solo descriptor for the site 

preference and stability of the adsorption reaction. The results of Föhlisch et al2 confirm 

this conclusion, where the C-O stretch frequency shift differed only marginally upon 

adsorption on Cu and Ni surfaces, whereas the adsorption energy had doubled. Thus, they 

showed that the C-O bond strength is not related to the adsorption energy and that no 

conclusions about the bonding mechanism can be drawn from the Eads results.  

(a) 

(b) 

(c) 

Figure 25. Bond lengths and Adsorption Energies, Depth, and Charge Transfer a, Internal C-O bond length on 
the right y-axis (in black) and adsorption energy on the left y-axis (in red).  X- axis notations (T: top, B: bridge, 
SB: short-bridge, LB: long-bridge, H:  hollow). b, Adsorption depth and metal-CO bond lengths. c,. Charge 
transferred from the metal surface to the adsorbate molecule 
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In order to grasp a detailed chemisorption picture based on DFT electronic structure 

investigations, it is necessary to understand how DFT inaccurate prediction of electronic 

structures directly influences the chemisorption thermodynamics, which in turn leads to 

contradicting site preference estimations. By doing so, we can verify that the accuracy of 

electronic structure picture will only affect the site preference without affecting the local 

bond-characteristics that is unique for each adsorption site.  

5.5.1 Interpreting the CO Adsorption Puzzle 

Previous experimental measurements have indicated that, at low surface coverage, 

the CO molecule prefers on-top adsorption site for all Cu surface facets. However, our DFT 

calculations predict an on-top site preference for the Cu(100) surface only, while predicting 

short- bridge and hollow (fcc) site preferences for the Cu(110) and Cu(111) surfaces, 

respectively. The reason behind the contradicting results can be directly attributed to the 

inaccurate electronic structure predicted by the semilocal density functional calculations. 

Figure 26. Ontop and Bridge Adsorption. a, Distribution of surface atoms and their 
accompanied orbitals at the (100),(110), and (111) facets; b, CO 5σ and 2π* orbitals overlap with 
the metallic d-orbitals with the right symmetry on the top and bridge sites. 
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However, even with the use of more accurate hybrid Hartree-Fock density functionals 

calculations, correct site preferences are only obtained for closed d-shell orbitals and fail 

to predict correct site preferences for other transition metals, especially at the (111) surface. 

For this reason, other bonding parameters must be considered along with the electronic 

properties to decipher the CO adsorption puzzle.  

Comparing HSE03 calculation results, done by Stroppa et al27, with our semilocal 

RPBE density functional calculation results, we can observe discrepancies in the predicted 

CO 5σ-2π* gap and their relative positioning with respect the Cu d-band center for the 

Cu(111) surface. As shown in Figure 27, the 2π* orbital is downshifted closer to the d-

center and the 5σ-d-center gap is extended. Thus, RPBE calculations make the 2π*-d-

orbital overlap more favorable, and contrariwise, make the 5σ-d- orbital interaction less 

favorable, compared to the HSE03 calculations. For each surface facet, orbitals energy 

calculations show that the d-center positioning relative to the 5σ and 2π* orbitals to be 

changing according to the surface type, as shown in Figure 27. From the same figure, we 

can find that the (110) surface has the widest 5σ-d gap, while having the narrowest 2π*-d 

gap, compared to the other surfaces. Although the 2π*-d energy gap is still larger than that 

of the 5σ-d gap, the spatial proximity between the CO 2π* and the dxz/dyz orbitals of the 

nearest two neighboring Cu atoms (Figure 26) makes the 2π*-d overlap more favorable. At 

the short-bridge, the CO molecule can adsorb deeper getting closer the metal d-orbitals. 

Therefore, the factor of energy proximity due 2π*-orbital, due energy shifting closer to the 

d-center, added to the factor of spatial proximity between 2π*-dxz/dyz orbitals at the short- 
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bridge site, make the 2π*-dxz/dyz more significant than the 5σ- dz2 interaction and results 

in the short-bridge site preference at the (110). At the (100) surface, the most stable 

adsorption site is found to be the top site, despite the fact that the orbital concentration at 

the (100) bridge site is equal to that of the (110) short-bridge site. This inconsistency is 

attributed to the relative orbitals’ energy positioning (Figure 27); the 5σ-d gap is noticeably 

shorter at the (100) surface compared to the (110) surface. Therefore, at the (100), the 

spatial factor of higher d- orbital density at the bridge-site is not sufficient for the 2π*- 

dxz/dyz interaction to surpass the 5σ-dz2 orbital overlap at the top site, leading to a top-

site preference.  

For the (111) surface, Figure 24a elaborates a higher orbital density at the bridge 

and hollow sites, compared to the other surfaces. This makes the metallic d-orbitals 

spatially closer to the CO 2π* orbitals. Thus, the narrowing of the 2π*-d energy gap makes 

Figure 27. Frontier Orbitals and d-center Energies. Orbitals energies as calculated by reference 
3 vs. RPBE calculated energy description for CO adsorbed and Cu (100), (110), (111) facets. 



105 

 

the higher coordination sites more favorable for adsorption, which is confirmed in Figure 

25a. Consequently, the compressed atomic stacking of the (111) surface reflects the reason 

behind stubborn favor of higher coordination sites by DFT calculations, even when more 

expensive calculations are employed. Since the highest concentration of dxz/dyz orbitals is 

found at the hollow-site when compared to the top and bridge sites (Figure 26a), a more 

significant 2π*-dxz/dyz orbitals interaction can be claimed, favoring the hollow (fcc) site 

preference; nearly degenerate with the hollow (hcp) site.  

Since it is now proved that site-preference predictions are merely dependent on both 

the orbitals’ spatial and energy levels positionings, the contradicting site preferences do 

not necessarily imply inaccurate predictions of local bond properties. This is also proven 

by the absence of correlation between the adsorption energy and the structural and charge 

transport trends, elaborated in Figure 25. Therefore, we can reliably utilize DFT 

calculations to investigate complex bonding mechanisms from molecular orbital and 

charge transport principles, which brings more detailed insights on the bonding 

mechanism.  

5.5.2 Molecular Orbital and Charge Transport Insights  

A molecular-orbital bonding description can be drawn by analyzing the electronic 

structure perturbations and tracking the charge transport occurring upon adsorption. By 

doing so, we can interpret the data of charge transfer and structural changes presented in 

Figure 25 and get more detailed picture of electron transfer and orbital interactions within 
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the adsorbate- substrate complex atoms. The CO molecule is adsorbed on the surface 

towards the C end. Although oxygen is more electronegative, this adsorption orientation is 

energetically favored because of the dative O-covalent bonding within the C- O triple bond, 

forming a net dipole moment pointing towards the C end with larger magnitudes of the 5σ 

and 2π* orbitals 96. Upon increasing the coordination number, a general trend of increasing 

adsorption depths, C-O internal bond, and metal-CO bond lengths is depicted within each 

surface type, see Figure 25. The density of states (DOS) results of the adsorbate-substrate 

complex verifies a key contribution of the metallic d-states to the adsorption process, where 

the changes of the d-orbitals peaks are observed in all adsorption sites for all surfaces, 

manifested significantly at the on-top adsorption. Nonetheless, charge transfer data confirm 

an extensive contribution of metal sp-states in the bonding process. As the Cu d-states are 

fully occupied, the next energetically empty orbitals are the 4p states. Our population 

results show a substantial change in Cu sp-orbitals population as the coordination number 

increases, implying that the p-orbitals play a key role in the receiving charge from the CO 

5σ orbital, followed by charge back- donation through the d-2π* orbital overlap. This 

metallic sp- orbital charge transfer role is not significant when partially full d-transition 

metals are concerned. For example, in ref15, Ni surface was studied as a substrate and the 

metal contribution was found to be mainly through the partially full d-states. Thus, for Cu 

with fully occupied d-orbitals, the contribution of the empty 4p states become more 

significant.  

Exploring the adsorption mechanism for on-top adsorption over different facets, we 

can spot variations in the adsorbate final structure. In order to understand these varying 
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behaviors, we need to look beyond the frontier orbitals and investigate the non-frontier 

orbitals behavior. In principle, the stronger and shorter the adsorbate-substrate bonding is, 

the weaker and longer the internal C-O bonding gets. The internal C-O triple bond is carried 

by one 3σ orbital and two 1π orbitals. On all surface facets, the 3σ shifts to higher energies 

as the adsorption coordination number increases, i.e. 3σ becoming less stable, as shown in 

Figure 28a, c, and e. Since the 3σ is a bonding orbital, as the coordination number 

increases, the C-O internal bond becomes less stable, and the C-O bond length stretches 

(Figure 25a). Nonetheless, for the same coordination number (at the same adsorption sites), 

the behavior of the 3σ and 1π orbital is different on different surface facets. For example, 

when the on- top site adsorption is compared on the different facets, as shown in Figure 

28a, the shift of the 3σ orbital shows an inconsistent behavior over different surfaces. An 

extra feature, exclusive for the 1π, takes place differently at different adsorption sites, 

which is the broadening of the 1π peak. This broadening implies a splitting of the 

degeneracy of the two 1π orbitals, which reflects a less stable C-O bonding. We can now 

study each adsorption site at each surface one at a time, by analyzing the corresponding 3σ 

and 1π orbitals as follows:  

On-top adsorption for different facets:  

• At the Cu(110) Top, both the 3σ and 1π orbitals shifted to lower energies (Figure 

28a and b), implying a more stable C-O internal bond. This is confirmed by the 

elaborated shortest ontop C-O bond-length at the (110), as shown in Figure 25a. 
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• At the Cu(111) Top, both the 3σ and 1π orbitals shifted to higher energies (Figure 

28.a and b), implying a less stable C-O internal bond. This is confirmed by the 

elaborated longest Top C-O bond-length at the (111), as shown in Figure 25a.  

• At the Cu(100) Top, the 3σ nearly stayed in the same position and 1π orbitals shifted 

to lower energies (Figure 28a and b), also implying a stable C-O internal bond; 

slightly less stable than that of the (110). This is confirmed by the elaborated 

intermediate Top C-O bond-length at the (100), as shown in Figure 25a.  

Bridge adsorption for different facets:  

• Comparing the bridge sites at each surface, we can spot that the 3σ shifting to a 

higher (less stable) energy level at the (110) compared to the (100), confirming a 

stronger 2π*-d interaction at the bridge-site of the (110) that results in a weaker C-

O internal bond. The same behavior is adopted by the 1π shift at the (100) and 

(110), as depicted in Figure 28c and d. This overestimated 2π*-d interaction at the 

bridge-site of the (110) reflects why the short-bridge site is more favored at the 

(110) than the (100) surface, which resulted in a short-bridge site preference 

prediction that contradicts experimental ontop preferences. 

• The long-bridge at the (110) is uniquely studied and not to be compared with the 

previous bridge site adsorptions. The long-bridge adsorption shows an overlapping 

upshift of the 3σ with that of the (111) and the largest upshift of the 1π orbital, 
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making the C-O bond the least stable and results in the largest bridge C-O bond-

3σ 
 

3σ 
 

3σ 
 

1π 
 

1π 
 

1π 
 

(a) 
 

(c) 
 

(d) 
 

(b) 
 

(e) 
 

(f) 
 

Figure 28.  CO 3σ- and 1π- orbitals energy shift. a, 3σ energy shift when the CO is adsorbed ontop. b, 1π energy 
shift when adsorbed ontop. c, 3σ energy shift for CO adsorbed on the bridge-sites. d, 1π energy shift for CO 
adsorbed on the bridge-sites. e, 



110 

 

length, as shown in Figure 25a. This can be attributed to the large depth of the 

adsorbed CO molecule at the long-bridge, which makes it more prone to the 2π*-d 

orbital-field interactions that destabilizes the 1π orbitals degeneracy. The 

destabilization of 1π orbitals degeneracy can be depicted by the broadening of the 

1π peak, as shown in Figure 28d. Although the largest instability of the C-O bond 

is witnessed at the long-bridge site, this site interaction is not thermodynamically 

favored due to the considerably large distance between the C and substrate atoms, 

compared to the other bridge sites, as depicted in the large metal-CO bond length 

in Figure 25a. This reflects the significance of spatial proximity between 

interacting entities on their interaction thermodynamics.  

Hollow adsorption for different facets:  

• At the (111), both hcp and fcc shows exact upshifts of the 3σ and 1π, as shown in 

Figure 28e and f. This total upshift is larger than that of the bridge-site, which 

reflects a stronger 2π*-d interaction at the hollow site that results in a nearly 

degenerate fcc-hcp hollow site preference.  

• At the (100), the largest upshifts of the 3σ and 1π is displayed, without a significant 

broadening of the 1π peak. However, for the (110) hollow, the 1π orbital displayed 

the widest broadening, elaborated by the considerable reduction of the amplitude 

of the (110) 1π peak, compared to the other surfaces 1π peak amplitudes (Figure 

28 f). This significant broadening, although not shifted to higher energies, resulted 

in a less stable C-O bonding. From the C-O bond-lengths results at the different 
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hollow sites in Figure 25a, the longest C-O bond is found at the (110), which 

denotes that the effect of the 1π splitting has a more significant impact of the 

internal bond destabilization than the mere energy upshifts.  

5.6 CO Adsorption on Cu vs. Ni Surfaces  

At low coverages, the CO molecule prefers to adsorb on different sites at different Ni 

facets: on-top on the (100), bridge on the (110), and hollow on the (111). Our calculation 

predictions agree with the experimental results, except for the (100), where the hollow 

adsorption site is found to be the thermodynamically preferred site instead of the on-top, 

as shown in Figure 29c. Low coverage adsorption of CO on Cu is thermodynamically 

observed to occur at the on-top sites at all Cu facets. However, our DFT calculations 

predicts on-top site preference at the Cu(100) facet only, while predicting bridge- and 

hollow-site preferences at the Cu(110) and Cu(111) respectively. The charge transfer and 

structural predictions have a matching behavior that agrees with the Blyholder model 

bonding model, where at higher coordination sites the charge transferred from the metal to 

the CO molecule increases accompanied by internal C-O bond stretching, implying an 

increased charge population of the anti-bonding 2π* orbitals. Nonetheless, the bond 

stretching can additionally be attributed to the changes occurring to the 3σ and 1π bonding 

orbitals that hold the internal C-O bond. In reference5, the 1π orbitals becomes depleted 

from electrons upon adsorption, in addition, our previous study on Cu surfaces revealed 

significant 3σ and 1π destabilization upon adsorption, which varied at different adsorption-

sites, and were also observed to be varied according to the surface type even when the same 
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adsorption-site is compared. Thermodynamically, the change in adsorption energy with 

respect to the coordination number at different surfaces reveals no defined correlation 

between coordination number and adsorption energy. Therefore, from the adsorption 

energy results, we can determine the most stable adsorption site, however, we cannot utilize 

them to describe the local bond properties. To confirm this notion, the C-O bond length at 

the on-top adsorption on the Ni(100) is equal to that at the Ni(110), however, the adsorption 

Figure 29. CO Adsorption on Ni vs Cu. a, Internal C-O bond length. b, Charge transferred from the 
metal surface to the adsorbate molecule. c, adsorption energies (T: top, B: bridge, SB: short-bridge, 
LB: long-bridge, H: hollow). 
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at the Ni(110) is more stable by 0.2 eV , implying that the internal C-O bond strength is 

not related to the adsorption energy results. 

5.6.1 Angular Momentum Contributions in Charge transfer 

The tables in this section presents the charge transfer results in the metal s, p, and d 

orbitals. In the column in the middle (sp), the total charge gain/loss in the sp states is 

presented. The column at the far right, represents the net charge gain/loss at the metal 

surface. These results can give us insights on the true nature of the σ-interaction. 

 
 
 
 

Figure 30. CO Adsorption on Ni vs Cu. a, Metal-C bond length. b, Depth of Adsorption (T: top, B: 
bridge, SB: short-bridge, LB: long-bridge, H: hollow). 
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Cu Charge Transfers 

Table 11. Cu(100) Atomic Orbitals Charge Distribution 

Cu100 s p sp d net 

top -0.29 0.33 0.04 -0.15 -0.11 

bridge -0.28 0.16 -0.12 -0.18 -0.3 

hollow -0.32 0.10 -0.22 -0.22 -0.44 
 

 

Table 12. Cu(110) Atomic Orbitals Charge Distribution 

Cu110 s p sp d net 

top -0.14 0.12 -0.02 -0.09 -0.11 

sb -0.16 0.04 -0.12 -0.18 -0.3 

Lb -0.22 -0.02 -0.24 -0.11 -0.35 

hollow -0.36 0.06 -0.3 -0.14 -0.44 
 
 
 

Table 13. Cu(100) Atomic Orbitals Charge Distribution 

Cu111 s p sp d net 

top -0.23 0.21 -0.02 -0.09 -0.11 

b -0.29 0.11 -0.18 -0.12 -0.3 

hcp -0.33 0.07 -0.26 -0.11 -0.37 

fcc -0.32 0.09 -0.23 -0.14 -0.37 

Ni Charge Transfers 

Table 14. Ni(100) Atomic Orbitals Charge Distribution 

Ni100 s p sp d net 

top -0.22 -0.02 -0.24 0.07 -0.17 
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bridge -0.3 -0.21 -0.51 0.14 -0.37 

hollow -0.39 -0.3 -0.69 0.14 -0.55 
 
 
 

Table 15. Ni(110) Atomic Orbitals Charge Distribution 

Ni110 s p sp d net 

top -0.11 -0.05 -0.16 -0.09 -0.25 

sb -0.18 -0.18 -0.36 -0.18 -0.54 

Lb -0.42 -0.2 -0.62 -0.11 -0.73 

hollow -0.39 -0.13 -0.52 -0.14 -0.66 
 
 

Table 16. Cu(111) Atomic Orbitals Charge Distribution 

Ni 111 s p sp d net 

top -0.16 0.06 -0.1 -0.09 -0.19 

b -0.25 -0.08 -0.33 -0.12 -0.45 

hcp -0.28 -0.14 -0.42 -0.11 -0.53 

fcc -0.27 -0.12 -0.39 -0.14 -0.53 
 

5.7 The Blyholder-Nilsson & Peterson (BNP) Model 

Since its formulation in the 1964, Several later models and refinements have been 

proposed, with most of them in agreement with the original Blyholder model. Some of the 

models that are conforming under the name “Blyholder Model” are principally in 

disagreement with the original Blyholder model. In these models, only the frontier (5σ and 

2π*) orbitals of the CO molecule are modified during the chemisorption process through a 

simple 5σ donation to the substrate atoms followed by a 2π* backdonation, whereas the 
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original Blyholder rather proposes a hybridization of the CO π-orbitals with the metallic d-

orbitals to form a dπ band. Nonetheless, the reason why the simple, yet inaccurate, frontier 

orbital model adopted was commonly accepted and adopted in literature as it was validated 

for a number of reasons. First, because of the observed population of charge at the 2π* 

orbitals that increases with the increase of the coordination number. Also, due to the shift 

of 5σ orbital to higher binding energies upon adsorption, which was interpreted as a sign 

of attractive 5σ donation. Furthermore, results from theory indicate that adsorption 

energetics can be described in terms of the positions of the 2π* and the metal d-band center 

only. All these findings supported the simple 5σ donation and 2π* backdonation model, 

where the other orbitals are not affected by the interaction. 

Within the BNP, the energetics of adsorption is depicted as the result of the 

synergism between σ-repulsion and π-attraction, where both of the two interactions 

increase with the increase in the substrate coordination number.  Therefore, at any surface, 

the adsorption site on-which the π-attraction surpasses the σ-repulsion the most will be the 

most energetically favored site for adsorption. Nonetheless, the character of σ-interaction 

as attractive or repulsive is still a controversial issue, whereas the attractive nature of π-

interaction is generally accepted.  

For the σ-interaction being considered to be having an entirely repulsive nature 

within the BNP model, the CO preference of on-top adsorption at all surfaces, was 

interpreted due to the increased σ-repulsion at higher Cu coordination that exceeds the 

increase in π-attraction, leading to the preference of low Cu coordination sites. At longer 

molecule-metal bond distances the Pauli repulsion becomes smaller, and since the Cu-CO 

bond distances are larger than that of Ni (see Figure 30c), σ-repulsion in Cu is expected to 
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be smaller. In addition, although Cu has a nearly closed d-orbital occupancy compared to 

a d8.4 occupancy in Ni, charge population of the empty Cu 4p-orbitals is detected upon 

adsorption, which can be inferred as a bonding 5σ donation to the empty Cu p-orbitals. 

Based on the Cu 4p charge gain, we can now assume that the σ-interaction in Cu is both 

partially repulsive and partially attractive, with a more dominant repulsive nature. 

Repulsive in the sense of Pauli-repulsion between 5σ and the d-orbitals, and attractive via 

the charge donation from the 5σ to the sp-states of the Cu atoms. The p-gain is also 

observed to be decreasing at higher Cu coordination, implying that the 5σ partial attraction 

decreases at higher Cu coordination, which implies a larger 5σ interaction dominancy at 

lower coordination sites. The larger 5σ partial attraction at lower Cu coordination can 

interpret the on-top site preference that is experimentally found at all Cu surfaces, where 

the 5σ interaction with metallic pz becomes more pronounced, due to matching symmetry.  

On the other hand, the p-states of Ni is found to be depopulated of charge upon adsorption, 

in contrary to what happens in Cu, see tables 11-16. Also, the Ni 3p charge depopulation 

is found to be increasing at higher Ni coordination. The Ni p-orbitals depopulation can be 

interpreted as a sign of a repulsive σ-interaction, where orbitals are depleted from charge 

to minimize the repulsion as much as possible, and can also be interpreted as a sign of a 

stronger π-bonding interaction, where charges are spread across the dπ band.  
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Energetically, when we compare the orbital energy positions in Ni and in Cu, see 

Figure 31, we can observe that d-2π* gap is on average shorter by 0.72 eV in Ni, leading 

to a generally enhanced π-interaction in Ni. The enhanced π interactions in Ni is reflected 

in the larger C-O bond lengths when compared with Cu, as seen in Figure 29. More 

significantly, the 5σ orbital energy is further away from d-center in Ni by an average of 

2.17 eV than in Cu, leading to a significantly weaker 5σ-d interaction in Ni than in Cu. The 

proximity between the CO 5σ and the Cu d-center makes the σ-interaction stronger, with a 

stronger partial σ-attraction at lower Cu coordination. Whereas the proximity between the 

Figure 31. CO frontier orbitals energy levels relative to the metal surface d-band center 
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2π* and the Ni d-center implies a stronger π-interaction that is enhanced at higher Ni-

coordination. 

5.7.1 Interpreting the CO Adsorption on Ni using the BNP Model 

Comparing the CO adsorption on Ni(100) and Ni(110), we can see that, at the 

Ni(100), the 5σ-d gap is narrower by ~0.5 eV and that the d-2π* gap is wider by the same 

value. Thus, compared to the Ni(110), the π- attraction is weaker and the σ-repulsion is 

stronger, leading to generally  less thermodynamically favored adsorption on the Ni(100) 

compared to the Ni(110). The stronger π-interaction at the Ni(110) can be validated by the 

more stabilized adsorption energies at the Ni(110) compared to the Ni(100).  Since, the σ 

interaction in Ni is depicted to be fully repulsive with no partial attraction, the CO would 

favor to adsorb on a site where the π-interaction is strong enough to give the largest net 

attraction. Since π-interaction is stronger at higher Ni coordination, on the Ni(100), the 

high coordination hollow-site becomes thermodynamically favored. Similar to the (100), 

at the Ni(110), the π-interaction at higher coordination is more favored, leading to the 

bridge-site preference. At the (110), the long-bridge and hollow adsorption sites cannot be 

considered as higher coordination sites as the M-C bond lengths are markedly larger 

leading to a significantly small overlap between orbitals and consequently, low adsorption 

energies. In the case of Ni(111), the same trend of higher-coordination sites preferences is 

expected, leading to the hollow-sites adsorption preferences. Based on the full repulsive 

nature of σ interaction in Ni, the hollow (hcp) adsorption site, where there is another Ni 

atom in the second surface layer beneath the CO, is more preferred than the hollow (fcc). 



120 

 

5.8 C-O bond-length Relation to Depth, Charge, and Metal-C bond-length 

To understand the final geometrical structure of the CO molecule, we need to 

consider the factors that are affecting the CO structure and that determines the value of the 

final C-O bond length. Here, we consider the charge transferred from the metal to the CO 

molecule (Q), the depth of adsorption (D), and the metal-CO (Lm-c) bond distance as the 

three main factors that are responsible for the C-O bond stretching. By adding those three 

factors into an equation that defines the final C-O bend-length, we can validate the relation 

between those three factors and the final C-O length (L). The equation is defined as follows: 

 

Where Lo is the initial C-O bond-length of the free CO molecule, and n is the 

empirical numerical factor with a value of 0.27 for both Ni and Cu. 

The results in Figure 32 show a matching behavior of the C-O bond length at 

different adsorption sites, in terms of variation with coordination number and amplitude. 

Only for the (110) surface, the amplitude of the C-O bonds is observed larger by ~ 0.03 Å. 

This amplitude shift can be attributed to the metal-CO bond distances that are generally 

larger than other surfaces, where other factors such as the dispersive van der Waal’s forces 

should be considered in the equation. Adding dispersion corrections is found to bring the 

adsorption energetics closer to experimental values is the consideration of dispersive, van 

der Waals forces14–16. Nonetheless, adding dispersion corrections still leads to an 

L = Lo +
QDn
Lm−c

(5.1) 
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overestimated prediction of adsorption energies16, which brings us back to the original 

problem with DFT inaccurate electronic structure predictions. 

 

 

 

 

 

 

 

Figure 32. C-O bond-length: DFT Predictions vs. Equation (5.1) Prediction 
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Chapter 6 
 

Conclusions and Future Work 

We can conclude that studying CO adsorption mechanisms and charge transport 

phenomena using DFT calculations is a rather reliable method, and the contradicting 

energetics predictions do not necessarily imply inaccurate description of the surface 

chemical phenomena. This conclusion is based on the evidenced absence of correlation 

between adsorbate behavior or charge transport with the calculated adsorption energies. 

Based on the generalized gradient RPBE calculations, structural, energetics, and charge 

transfer properties are investigated for all available adsorption sites over distinctive Cu 

surface facets; (100), (110), and (111).  

The study of the effect of varying surface facets on the adsorption process is 

demonstrated to be essential for a profound understanding of the adsorbed molecule 

behavior and final geometrical shape. The effect of surface atomic arrangement at different 

facets helped in getting insights on the reason behind the contradicting DFT site-preference 

predictions. It has been confirmed that the energy positioning of the frontier (5σ and 2π*) 

orbitals relative to the metallic d- band center is the determining factor for adsorption site 

preference. However, it is additionally claimed that the surface bonding magnitude is also 

affected by the density of overlapping metallic orbitals with the right symmetry to interact 

with the CO frontier orbitals. The interplay between the spatial and energy distance 

between interacting orbitals is a successful tool in explaining the on-top site preference 

prediction for the Cu(100) and the short-bridge and hollow site preferences predicted for 

the Cu(110) and Cu(111), respectively. The consideration of factors, such as the effect of 
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the distinctive atomic arrangements at different facets, must therefore be considered for a 

better analysis of the stubborn CO adsorption puzzle. Finally, the importance of 

considering orbitals other than the frontier orbitals, such as the 3σ and 1π orbitals, is 

verified to be essential for understanding the discrepancies between the adsorbate behavior 

at the same adsorption site at different facets. The behavior of the CO molecule is thus 

compared at each site in terms of the 3σ and 1π orbitals, which hold the internal C-O 

bonding. Since the 3σ and 1π orbitals holds the internal C-O triple bond, the different 

orbital behaviors at each site resulted in a different geometrical structure of the CO 

molecule. It is confirmed that the energy upshift of the orbitals reflects a destabilization of 

the internal bonding. In addition, the broadening of the 1π peak, which implies a splitting 

of the 1π orbitals, also reflected a C-O internal bond destabilization, however, the effect of 

the orbital splitting on the internal bond stability is found to be more effectual than the 

energy upshifts.  

In addition, the parameters that determine the final structural properties of the 

adsorbed CO molecule are validated with an empirical equation, where the increase of the 

adsorption depth and charge transfer from the metal orbitals to the CO molecule have 

proved a direct influence on the CO destabilization, whereas the increase of metal-carbon 

bond length had an inverse effect and lead to the stabilization of the CO molecule.  

In the future, we are aiming to expand this investigation to encompass a wider range 

of substrate materials, specifically transition metals with different occupancies of the d-

orbital. A further goal that we have is to deeply investigate the true nature of σ-bonding, 

which remains a controversy in literature till this date. In this work, we presented a 
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plausible assumption of a dual nature of the σ-interaction, with both attractive and repulsive 

characters that vary according to the type of substrate and adsorption site. This assumption 

is supported with our charge population data. However, to emphasize the true nature of σ-

bonding, further calculations of sub-orbitals energy perturbations are needed to be carried 

out meticulously. 

We hope that the presented new insights on the effect of surface atoms arrangement 

and the consideration of the full orbitals perturbations of the adsorbate molecule will open 

the doors for a more profound understanding of the surface chemical bonding
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