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Abstract 
Over the past two decades, the demand for network interconnects, for both 

communication systems and intra/on-chip data links, increased in terms of 

capacities and bandwidth. To transmit digital signal over an optical traveling wave, 

the optical wave should be modulated using the digital electronic signal. An electro-

optical modulator is responsible for switching the optical wave to pass or block it 

depending on the information digital signal. Such modulators are the key 

components in any optical communication system, since they convert the digital 

electronic signals to optical signals to travel over the optical fibers for long 

distances with minor losses. On chip level, copper interconnects are the bottleneck 

for the next generation technology because of their losses, dispersion, and speed. 

This has paved the way for replacing them with optical interconnects. Electro-

optical modulators are the workhorses of such interconnects.   

To achieve the goal of replacing electrical interconnects with optical ones, a 

high level of integration should be accomplished. This can be only achieved by 

combining both optical and electrical components on the same substrate. Thus, 

silicon photonics is being a prominent candidate for this technology because of its 

low cost, and CMOS compatibility.  

Silicon as active material for optical modulation has a lot of limitations such as 

weak electro-optic effects and slow response of plasma dispersion effect. This 

raised the necessity for studying other novel alternative materials such as organic 

polymers, indium-tin-oxide (ITO), and vanadium dioxide.  

In this dissertation, novel electro-optical modulators, based on different active 

materials and different structures, are proposed. The main concern in these 

designs is the compatibility with the wide spread silicon CMOS technology. These 

modulators rely on the plasmonic theory to confine light beyond the diffraction limit. 



 

xiii 

 
We introduce four high performance electro-optical modulators that operates under 

the telecommunication wavelength (1550 nm).  

An organic hybrid-plasmonic optical directional coupler is designed and 

studied. The power-splitting mechanism based on the change of the polymer 

electro-optical characteristics upon applying an external electric field. A finite 

element method with a perfect matching layer used to simulate this design. An 

extinction ratio of 14.34 dB is achieved for 39 μm modulation length.  

Two hybrid silicon electro-optical modulators are introduced and analyzed. The 

active material for these designs is Indium-Tin-Oxide. The first is based on tri-

coupled waveguides with electrical tuning mechanism that is designed to change 

both the coupling conditions and introduces additional intrinsic losses. Based on 

this design, extinction ratio of 6.14dB and insertion losses of 0.06 dB are realized 

at 21 µm modulator length; as well as, extinction ratio of 11.43 dB and insertion 

losses of 1.65 dB are realized at 34 µm modulator length. The second device is an 

electro-absorption modulator, based on dielectric slot waveguide with an ITO 

plasmonic modulation section. An extinction ratio of 15.49 dB and an insertion loss 

of 1.01 dB can be achieved for 10 μm long modulation section. Modal and finite 

difference time domain analysis were performed to verify and simulate both 

designs. 

Last but not least, an optical switch based on a hybrid plasmonic-vanadium 

dioxide waveguide is presented. The power-attenuating mechanism takes the 

advantage of the phase change properties of vanadium dioxide that exhibits a 

change in the real and complex refractive indices upon switching from the dielectric 

phase to the metallic phase. An extinction ratio per unit length of 4.32 dB/μm and 

insertion loss per unit length of 0.88 dB/μm are realized. Also, Modal and finite 

difference time domain analysis are taken up to study and optimize this design.  

The proposed silicon electro-optical modulators can potentially play a key role 

in the next generation of the on-chip electronic-photonic integrated circuits.   
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 Introduction 
Optical signals have a very long history. Smoke signals were used by ancient 

people to transmit messages from a mountain top to another mountain top. In ancient 

China, soldiers, along the great wall, signaled fire smoke to send alerts of enemy 

attacks from tower to tower [1], [2].  

Since that time, many efforts exerted to develop optical communications systems. 

The challenge was to develop an information carrying channel, that is cheap, reliable, 

could be used for long distances at high data rate. This made possible by the total 

internal reflection. This phenomenon makes light reflect, rather than refract, when 

attempting to pass from transparent optical medium to a less optical density medium. In 

1854, John Tyndall showed the guidance of light inside a transparent medium with an 

optical density discontinuity at boundaries [3], [4].  

Optical fibers use total internal reflection phenomenon to keep light trapped inside 

the denser glass, the core. Optical fibers have two main advantages. they are costly 

effective and have low attenuation.  

Nowadays, an optical fiber cable is made of a hair-thin strands of plastic or glass, 

known as optical fibers. One optical fiber cable can have as many as several hundreds 

of strands. Each strand can carry about 25,000 calls; an entire cable can carry several 

million calls [5].  

1.1 The role of modulators in optical communication systems 
Over the past two decades, the demand increased for telecommunication 

network capacities and bandwidth. For example, in carrier networks, data traffic 

increases at a rate of 60% per year [6]. Also, the rising cloud-based computing is 

expected to increase the machine-to-machine data traffic by 90% per year [6]. Cisco 

forecasts data traffic to be 20.6 zettabytes per year by the year of 2021 [7].  

To fit with these growing bandwidth demand, electronic baseband systems are 

replaced by optical broadband systems. Optical communication systems have many 

advantages, such as low cost, high bandwidth, low transmission losses for long 

distances. To transmit digital electronic signal over optical traveling wave, the optical 

wave should be modulated using the electronic signal. 
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The simplest optical modulation scheme is the Direct Laser Modulation, which is 

based on directly controlling the drive current to change the intensity of the output 

optical wave. This technique has many drawbacks like the bandwidth and extension 

ratio limitations, and signal distortion due to frequency chirping [8]. 

The second scheme is the external modulation, where a continuous wave laser is 

used to emit optical wave and the modulation is done by an external modulator. The 

modulator is responsible for switching the optical wave to pass or block it depending on 

the information signal [8]. A general model of optical communication 

(transmitter/receiver) system with external modulator is depicted in Figure 1.1. A 

modulator is a key component in any optical communication systems; it’s role is very 

similar to that of a transistor in electronic circuits [6].  

 
Figure 1.1 - A schematic of A general model of optical communication (transmitter/receiver) 

system with external modulator. 

Square blocks indicate the system components and the circular blocks indicate the system input and output signals. 

Thus, the need to developing external modulators is increasing as the demand for 

optical communication systems is increasing. Modern optical communication systems 

are moving towards integrating dense optical modulators to reduce both the energy 

consumption and the cost.   

1.2 The role of modulators as interconnects 
The growing demand for high-capacity signal processing systems has increased 

over the past decades and has led to the miniaturization of transistors. Performance 
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limitations are mainly due to the electrical copper interconnects associated properties, 

such as RC delay, signal distortion, and power consumption [9], [10]. Replacing copper 

wiring with optical interconnect layer can transcend these limitations. Low signal 

distortion can be obtained at very high frequencies (>10GHs) and long distances (>1 

cm). [10] 

The prospect expansion in supercomputers will demand high bandwidth 

interconnects to connect central-processing-unit (CPU) to another, CPU to memory, and 

node to another node in the cluster [11]. The bandwidth limitations and the high power 

consumption of the electrical interconnects affect the operating speeds of the 

processors. High speed electro-optical modulators (EOMs) are the key components for 

the on-chip silicon photonic circuits since they interconnect the digital electronic and 

photonic worlds by modulating optical signals by electrical signals. 

To achieve the goal of replacing electrical interconnects with optical ones, a high 

level of integration should be accomplished. This can be achieved only by using mono- 

lithic integration; all optical and electrical elements are incorporated on the same 

substrate. These elements include light sources, electro-optical modulators, and 

detectors.  The material for such substrate, nowadays, is silicon (Si) [12].  

1.3 Silicon photonics and plasmonics 
During the same time that demand for optical communication systems increased, 

noteworthy development has happened in the field of silicon photonics. The material 

system used for electronic circuitries for many decades, now is used to build optical 

integrated devices and circuits.  Silicon photonics is very appealing since it uses the 

existing CMOS-VLSI technology, and cheaper for mass production. Also, silicon is 

almost transparent at the telecommunication wavelengths.  

So far, many Si EOMs have been developed based on carrier concentration 

change effect including, but not limited to, Mach–Zehnder interferometers (MZIs), ring 

resonators, and metal-oxide- semiconductor capacitors [13]–[18]. Although modulators 

based on MZIs are promising in terms of modulation speed and optical bandwidth, they 

suffer from the large device footprints. While modulators based ring resonators have 

very narrow bandwidth [19].  
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To overcome these drawbacks, different designs have been studied [16], [20]–

[24]. Among these designs, modulators based on directional couplers attract the 

attention because of their relatively small sizes and high bandwidth [25], [26]. 

The minimum size offered by Silicon photonics to guide light efficiently is about 

200 nm due to the diffraction limit of the light. Moreover, due to the weak linear and 

quadratic electro-optic effects in silicon, silicon-based optical modulators have large 

footprint [19], [22], [27]–[29]. These issues restrict the dense integration of optical 

modulators. This directed the research toward studying plasmonic materials and how to 

be combined with silicon-based EO modulators.  

Since the discovery that light waves can propagate in the highly confined space 

at the interface between conductors and dielectrics, known as surface plasmon 

polariton (SPP), research in field of plasmonics has grown rapidly. Plasmonics offer 

curtailing the footprint of optical photonic modulators. Many Plasmonic materials have 

been investigated such as graphene, Silicon-germanium, vanadium dioxide, Gallium-

doped zinc oxide, organics, III–V semiconductors and transparent conducting oxides 

(TCOs) [20], [30]–[37]. 

As shown in Figure 1.2, plasmonics are the solutions for the increasing demand 

of  high operation speed and small size. They can work as a bridge between the speed 

of dielectric photonics and the size of silicon electronics [38]. The operation speed of 

silicon electronics is limited by the delay time of the electronic interconnects ( to about 

10 GHz); as well as, the size of the photonic devices is limited by the diffraction limit of 

light [39]. 

 
Figure 1.2 - Schematic summarizing the chip-device technologies for speed and size domains. 
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Adapted from [39]. 

Although, plasmonic electro-optic modulators can support  very high modulation 

bandwidths, they have a high insertion losses because of the high field enhancement in 

the plasmonic metal based configurations [40]. This is a critical issue that raises the 

need for a low insertion loss optical modulators with high extinction ratio.  

1.4 Thesis structure  
In this chapter, the significance of electro-optical modulators for optical 

communication systems and for interconnects was emphasized. Also, the role of silicon 

photonics in revolutionizing the next generation of technology.  

In the next Chapter 2 a brief background about the mechanisms, materials, and 

structures used for optical modulation is presented. In chapter 3, state-of-art EOMs are 

introduced. 

In Chapter 4, an organic hybrid-plasmonic optical directional coupler is proposed 

and studied.  

In Chapter 5, accurate description of epsilon-near-zero (ENZ) effect in indium-tin-

oxide is discussed. Also, two hybrid silicon electro-optical modulators based on Indium-

Tin-Oxide are proposed. The first is based on tri-coupled waveguides with electrical 

tuning mechanism that is designed to both the coupling conditions and introduces 

additional intrinsic losses. The second device is an electro-absorption modulator, based 

on dielectric slot waveguide with a plasmonic modulation section. 

An optical switch based on a hybrid plasmonic-vanadium dioxide waveguide is 

presented in Chapter 6.  

Last but not least, in Chapter 7, a brief summary and concluding notes are 

conveyed. 
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 Background 
 

There are three fundamentals to describe optical modulators: 

1. the modulation mechanism 

2. the waveguide design 

3. the martial 

In this chapter, most of the mechanisms, designs, and materials related to optical 

materials will be reviewed. Furthermore, the key operating characteristics of optical 

modulators will be discussed.  

2.1 External modulation mechanisms 
Light can be modulated externally using different physical mechanisms, 

depending on the material used for modulation. Some transparent materials change 

their optical prosperities when subjected to an external perturbation, such as electric 

field, an acoustic wave, or increase in temperature. Acousto-optical effect and thermo-

optical effect are discussed briefly since they are outside the thesis’ focus.   

2.1.1 Acousto-Optical effect  
Some optical materials change their real and complex refractive indices when 

sound (acoustic) wave travels within, this phenomenon is known acousto-optical effect. 

Sound waves travel in the material crystal through the material’s crystal compressions 

and rarefactions. Sound waves cause molecules to vibrate around their equilibrium, 

altering the polarisability and the refractive indices [12].  

Acoustic wave takes time to travel across the light beam, limiting the switching 

speed and the modulation bandwidth [41]. Also, Si crystals does not utilize acousto-

optical effect [12]. Consequently, CMOS optical modulators cannot be realized based 

on acousto-optical effect.  

2.1.2 Thermo-optical effect 
Thermo-optical effect is based on the fact that the refractive index of the material 

varies with the temperature. When the temperature increases, free carrier distribution 

changes, band-gap shrinks, and the crystal expands. 
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Studies shows that thermo-optical effect in Si is eight times higher than silica-

based materials [42]. For Si, the refractive index variation as a function of temperature 

in in the range of 10-4 K-1 at 1.55 "m [43].  

2.1.3 Electro-optical and electro-absorption effects  
Some materials change their optical properties when subjected to external 

electric field. Appling electric field to such materials produces forces that alter the 

orientations, the shapes, and/or the positions of the molecules. The atomic response to 

the external electric field results in displacing atoms and electrons away from their 

equilibrium positions. Certain materials change their refractive index when an external 

electric field is applied. Other materials modify their absorption when an external electric 

field is applied; this is known as electro-absorption effect.  

These two effects have been extensively studied as the foundation of the 

integrated optical modulators and the optical communication systems [44]. Both electro-

optical effects and electro-absorption effect are very fast with sub-picosecond time 

response [6]. The speed of modulators based on these effects are restricted by 

technological limitations, rather than the basic effects themselves [6].  

2.1.3.1 Electro-optical effects 
Electro-optical effect is based on change of the optical properties upon on 

applying external electric field to the material; it controls the intensity, phase and/or 

polarization. Electro-optical effect can be either linear or quadratic [12]. The linear 

electro-optic effect is known as Pockels effect; the quadratic electro-optic effect is 

known as Kerr effect. 

Since the refractive index # changes slightly with the applied electric field, it can 

be expanded with Taylor’s series as in (2-1):   

    # $ ≃ 	# −	(
)
*#+$ −	(

)
,#+$)    (2-1) 

where  r is the Pockels coefficient and ξ is the Kerr coefficient [12].  

2.1.3.1.1 Pockels effect 
Pockels effect is found in materials with crystals that does not have inversion 

symmetry (centro-symmetric structure) and electro-optical polymers [6]. When the 

second term in Equation 1 is many orders of magnitude higher than the third term, the 

medium is considered as Pockels medium.  
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Pockels effect is sensitive to the direction of the applied electric field as well as 

the polarization of the propagating light [6]. The most commonly used electro-optical 

materials based on Pockels effect are lithium niobate (LiNbO3) and III-V 

semiconductors. Si does not have such effect due to its centro-symmetric crystal 

structure [12].  

2.1.3.1.2 Kerr effect 
In centro-symmetric crystal materials, the second term in Equation 1 vanishes 

and the refractive index depends on the third term [12]. Kerr effect is common in all 

transparent nonmetallic materials. The applied electric field breaks the symmetry of the 

crystal and, sequentially, allows for change in the refractive index [6].  

The kerr effect in Si carefully studied and modeled by Soref and Bennet [19]. 

They studied the change in the refractive index in a crystalline silicon at room 

temperature. The study shoes that the change in the refractive index is in the range of 

10-4 at an electric field around 106 V/cm; this value of electric field is beyond the 

breakdown value in lightly doped Si. 

2.1.3.2 electro-absorption effect 
Electro-absorption effect, also based on applying external electric field to the 

material2, is when the change in the refractive index is due to Kramers-Kronig 

transformation of the absorption band edge. In bulk semiconductors it is known as 

Franz–Keldysh effect [44].  

An applied electric field causes a distortion of the energy bands (conduction and 

valence) in semiconductors, thus the photo-absorption coefficient (α) rises when the 

band edge energy threshold shifts towards lower energies. Photons can tunnel across 

the bandgap with energies lower than band-to-band. This results in both phase and 

intensity modulation [6].  

When in direct band gap semiconductors, α increases steeply, while in indirect 

bandgap semiconductors, such as Si, α has a smaller increase [12].  

                                                
2
 Both electro-optical and electro-absorption effects are based on applying external electric field to the 

material. A small terminology note: most of the time electro-optical effect refers to the linear Pockels 
effect and the quadratic Kerr effect [44]. In other contexts, the the linear Pockels effect, the quadratic Kerr 
effect, electro-absorption effect, and carrier density effects are referred to as electro-optic effects [6].  
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2.1.4 Carrier density effects 
Carrier density in semiconductors is related to several effects: bandgap 

shrinkage, band filling, and free-carrier absorption (plasma dispersion effect) [6]. The 

optical properties can be changed by injecting free carriers to the un-doped material or 

by removing free carriers from the doped materials. This mechanism exploits changes 

in the density of the free carriers in the semiconductor material to modulate the real and 

imaginary parts of the refractive index [35]. Photons are absorbed by the free carriers 

causing intra-band transitions.  

 Electrical inducing of the carriers can be through either injecting in PIN diodes or 

the field effect formation, carrier-depletion and accumulation, in metal-oxide-

semiconductors (MOS) and reverse-biased PIN junctions. This imposes major speed 

limitations due to the lifetime of the carriers.  

Due to the strong  coulombic effects in the crystalline Si, free carrier 

concentration effect is the most important modulation mechanism affecting the real and 

imaginary parts of the refractive index of Si [12]. However, the speed is limited due to 

the lifetime of the carriers which is in the range of 1 ns–10 ns for pure Si [6]. Free carrier 

concentration effect can be theoretically described using  the Drude model [45], [46].  

2.2 Different optical modulators structures  
Linear and quadratic electro-optic effects change the phase of the optical wave; 

detecting such a phase change is very complicated since it requires coherent optical 

receiver. Hence, several modulation designs developed to modulate the intensity of the 

light using the phase change produced from electro-optic effects.  

2.2.1 Electro-absorption Modulator (EAM) 
EAMs are based on Electro-absorption materials to modulate the intensity of the 

light directly. The design is very simple: it is one waveguide (WG) with two electrodes 

for applying the electric field to modulate the intensity. 

III-V material are the best materials used to build EAMs. Such modulators are 

very compact, with high extinction ratios, and need low drive voltages [6]. Figure 2.1 

shows the general schematic and transfer function of EAM.  
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Figure 2.1 - General electro-absorption modulator (a) schematic and (b) transfer function. 

Adapted from [6]. 

2.2.2 Mach-Zehnder (MZ) modulator   
MZ interferometers are very successful modulators since they use the phase 

change to modulate the intensity directly. Light enters the modulator from one WG, then 

the light splits into two WGs (arms) of the interferometer. Linear and/or quadratic EO 

effects are used to modulate the phase of the light traveling in one of the arms to be 

completely out of phase with respect to the other arm.   At the output, the two arms 

merge recombining the light again.   

In 1x1 designs, depending on the modulation state, light recombines either 

constructively or destructively. Thus, the intensity of the light is modulated. In the off-

state, light in the two arms are in phase, light is transferred to the output port 3. In the 

on-state, light in the two arms are out of phase, light is radiated. In 1x2 designs, the light 

gets out either from the first arm of from the other depending on the modulation state.  

Figure 2.2 shows the general schematic and transfer function of MZ 

interferometer modulator.  

                                                
3
 Throughout the whole thesis, off-state and on-state are referring to the states with external modulating 

voltage is off and on, respectively, not the optical power.  
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Figure 2.2 - General Mach-Zehnder interferometer modulator (a) schematic and (b) transfer 

function. 

Adapted from [6]. 

2.2.3 Resonant modulator 
Resonant modulators are based on the operation principle of optical filters; they 

work on band-pass filters. The input optical frequency is very close to the filter’s band-

pass frequency. When the modulation is turned on, the filters frequency shifts, changing 

the transmission properties.  

The resonant modulator, such as ring resonator modulator, the input, multiple 

wavelength, power couples from the input/output WG to the ring. If, for example, certain 

wavelength /0 satisfies (2-2), /0 will be suppressed in the ring, while the rest of the 

wavelengths will couple back to the output WG.  

     /0 = 	
2344		5

6
       (2-2) 

When the modulation voltage is applied to the electrodes, the effective refractive 

index of the ring changes, the optical path length changes varying the resonant 

frequency. Figure 2.3 shows the general schematic and transfer function of ring 

resonator modulator. 
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Figure 2.3 - General ring resonator modulator (a) schematic and (b) transfer function. 

Adapted from [6]. 

Not only rings can be implemented for resonant modulators, but also different 

other designs can be implemented such as discs and Fabry-Perot resonators [6].  

2.2.4 Directional coupler (DC) modulator 
Another design worth mentioning for modulators is the Directional couplers. 

Directional couplers’ structures involve two identical adjacent WGs that come close to 

each other, creating a coupling environment [47]. This results in two modes; a 

symmetric (even) mode, with an effective refractive index greater than that of a single 

waveguide, and an anti-symmetric (odd) mode, with an effective refractive index smaller 

than that of a single waveguide.  

The interaction between these modes results in the power being fully coupled to 

the other channel after a specific distance, the beating length, (LB) defined as:  

     78 = 	
9

)(23;3<=	2>??)
        (2-3) 

Where / is the wavelength of the optical wave, and neven and nodd are the effective 

refractive indices of the fundamental symmetric mode and anti-symmetric mode 

respectively.  

The amount of the power couples from one arm to the other can be controlled by 

applying voltage to one of the arms. In other words, applying voltage to the electrodes 

changes the effective refractive indices of the fundamental symmetric and anti-

symmetric modes resulting in changing the LB. thus, the amount of the power couples 

from the first WG to the other changes. Figure 2.4 shows the general schematic and 

transfer function of DC modulator. 
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Figure 2.4 - General directional coupler modulator (a) schematic and (b) transfer function. 

2.3 Materials 
The most important aspect in designing any modulator is the material. The 

modulator material determines most of its characteristics and properties. It determines 

the electro-optic effects possible, the complexity of its fabrication, and its reliability. 

Modulator materials should have some basic requirements such as transparency at the 

operating wavelength and strong electro-optic effect. There are also some technological 

requirements such as the fabrication methods, and the stability over operating 

temperature range [6]. In this section, the major classes of materials used for 

modulators will be reviewed.  

2.3.1 Inorganic crystals 
From the prospective of modulators inorganic crystals are either lithium niobate 

(LiNbO3) or everything else.  

2.3.1.1 Lithium niobate (LiNbO3) 
LiNbO3 is very common for conventional commercial modulators. It is very 

developed and many designs are based on it [48]. It satisfies all the fundamental 

requirements mentioned before; it is transparent over a wide range of frequencies, has 

strong Pockels effect, and can be easily fabricated [6]. More importantly, LiNbO3 is not 

compatible with the wide spread CMOS technology. 

LiNbO3, also, has some problems. It is a ferroelectric material; it has an electric 

dipole built-in that strongly depends on the temperature [49].  
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2.3.1.2 Other inorganic crystals  
There are others inorganic crystals that studied and used for optical modulation 

such as potassium titanyl phosphate (KTP) and lithium tantalite (LiTaO3). Their EO 

coefficients are very similar to LiNbO3 and have better power handling prosperities [6].  

There are other inorganic crystals with even higher EO coefficients. For example, 

barium titanate has EO coefficient that is 58 times the EO coefficient of LiNbO3 [6]. It is 

very useful for low voltage modulators [50]. However, it has many drawbacks; its 

dielectric constant fluctuates with frequency and it is very temperature dependent 

especially over room temperatures.  

2.3.1.2.1 Vanadium dioxide (VO2) 
A worth mentioning inorganic crystal, that is believed to revolutionize the photonic 

industry, is vanadium dioxide. It is considered as a phase change material. It undergoes 

a transformation from semiconductor state to metallic state when subjected to external 

stimulus, such as change in temperature and potential difference [51]. It has been 

integrated with photonic structures to achieve optical modulation [52].  

The change in the complex refractive index of VO2 is in the range of unity. 

Modulators based on VO2 as the plasmonic material have shorter device length 

compared with other active materials. Yet, VO2 has high material absorption in the 

semiconductor state, which leads to high propagation losses [51].  

2.3.2 Semiconductors 
Semiconductors are very attractive for both the photonics and electronics 

industries. Semiconductors offer, more EO effects, compared to insulators, such as 

electro-absorption and carrier density effects. They offer integration not only with 

electronic circuitries, but also with lasers.  

2.3.2.1 III-V Semiconductors 
So far, these materials are the most important materials in the photonic world; 

most lasers, detectors, transistors and modulators are made in these materials. The III-

V semiconductors are the compounds of the third and fifth group elements in the 

periodic table, such as gallium arsenide and indium phosphide. They are available in 

wafers. The most common optical modulators built in these materials are EAMs. In III-V 
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semiconductors, the quadratic EO effect is better than the linear EO effect, but it is 

associated with absorption [6].  

2.3.2.2 silicon 
Silicon is the base for electronic industry. Thus, it is very appealing for integrated 

optics. However, its EA effects are very weak. As discussed in the previous section, the 

linear EO effect is not present, the quadratic EO and EA effects are very weak. Carrier 

density effect is used to achieve modulation in Silicon. 

 Silicon is not the best material for designing optical modulators. The research 

has moved toward hybrid designs, where silicon is combined with other materials with 

strong EO effects. Hybrid designs have many advantages such as the low optical losses 

of silicon, the integration with electronic circuits, and the strong EO effects of the active 

materials.  

2.3.3 Polymers  
Polymers are organic insulating materials, that uses linear Pockels effect to 

modulate light. Usually, they are prepared in liquid form, then spun over the substrate 

and then cured to form thin films. WGs based on polymers have very low propagation 

loss at the telecommunication wavelength.  

Polymers have many advantages, such as they can be spun on films over any 

substrate forming active layer. They have high EO coefficients as high as five times 

higher than LiNbO3 [53]. There is one main drawback to polymers which is thermal 

instability [54]. Chemical engineers study new forms of polymers to optimize the tradeoff 

between the EO coefficient and thermal instability [6]. Also, polymers suffer from weak 

optical power handling [55].  

2.3.4 Transparent conducting oxides (TCOs) 
TCOs are very promising because they are CMOS compatible. Indium-tin-oxide 

(ITO) is the most widely used TCO. Using ITO as the plasmonic material for EOM 

attracted a lot of research due to its wide bandwidth [34]. Yet, it suffers from high 

insertion losses due to the strong field enhancement in the lossy plasmonic 

waveguides. 

Carrier density of ITO can be utilized when used in MOS-structures [56]. ITO 

exhibits high electrical conductivity and has plasma frequency upon applying electrical 
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(gate) voltage, which results in epsilon-near-zero (ENZ) effect [57], [58]. In other words, 

formation of this accumulation layer can tune plasma frequency and permittivity 

significantly. ITO modeling is discussed in details in Chapter 5.  

2.4 Key operating characteristics of optical modulators 
In this section common optical modulators characteristics and performance 

measurements are discussed. These factors are very important for designing and 

evaluating EOM.  

2.4.1 Extinction ratio (ER) 
Extinction ratio is defined as the output optical power when the modulator is 

operating at the “off-state” to the output optical power when the modulator is operating 

at the “on-state.” It should be measured at low-frequency operation or DC [6]. ER, 

always stated in decibels, is given by:  

     $AB8 = 10	 log
H>44
H><

     (2-4) 

where IJKK and IJ2 are the output optical power at the odd-state and on-state, 

respectively [59].  

ER is very important because low ER causes power penalty in digital 

communication systems [6]. Higher ER is always required for optical modulators.  

2.4.2 Insertion loss (IL) 
Insertion loss is another important parameter for EOM. It is defined as the input 

optical power to the output optical power when the modulator is operating at the “on-

state.” IL is defined in decibels as: 

     L7B8 = 10	 log HM<
H>NO

     (2-5) 

where I02 and IJPQ are the input optical power and the input optical power at the off-

state, respectively [60]. 

IL is very important for the power efficiency factor. The performance of the 

modulator is determined output optical power. The higher the IL, the more powerful the 

light source is required to achieve high performance.  
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2.4.3 Energy consumption and modulation speed limit 
Energy consumption is a very important parameter for EOMs because it 

determines its modulation speed limit. Energy consumption is related to the 

Capacitance and the modulation voltage of the modulator. The energy consumption per 

bit can be estimated using:  

      $
RST = 	

UVW

)
      (2-6) 

where C is the capacitance of the modulator and V is the modulation voltage. 

The modulation speed limit is defined as:  

 X6YZ = 	
(

)[	∙	]U
     (2-7) 

where R is the resistance of the device including the interconnects and C is the 

capacitance of the modulator.  
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 Recent advances in electro-optical 
modulators 

Many research groups have reported electro-optic modulators with speeds 

exceeding 10 GHz. In this chapter, some of these state-of-the-art electro-optic 

modulators will be reviewed. The modulators reviewed are based on different structures 

and across several active materials4. As discussed earlier, pure silicon linear electro-

optic effect is not found; quadratic electro-optic effect is weak at the telecommunication 

wavelength, so silicon-based optical modulators have large footprint [19], [22], [27]–[29]. 

Plasma dispersion effect is the most common modulation mechanism in Silicon [12]. 

However, the speed of these devices is limited. 1 GHz –10 GHz, due to the lifetime of 

the carriers [6]. This raised the necessity for investigating other novel alternative active 

materials [20], [30]–[37]. Organic polymers, Indium-tin-oxide (ITO), and vanadium 

dioxide are among the materials investigated for modulation applications [61], [62]. 

3.1 Silicon based electro-optical modulators 
Plasmonic designs that uses Si as the active material are proposed. 

“PlasMOStor” is based on modulating plasmonic waves in Ag/SiO2/Si/Ag MOS vertical 

configuration [63]. The schematic for this design is shown in Figure 3.1(a). This design 

is not easy to integrate to standard Si chips [64]. This plasmonic modulator can achieve 

extinction ratio approaching 10 dB with a potential for gigahertz modulation bandwidth. 

This design is not easy to integrate to standard Si chips [64].  

 Zhu et al. fabricated a CMOS nano-plasmonic modulator based on a horizontal 

metal-insulator-silicon-insulator-metal slot waveguide [64]. The modulation mechanism 

is based on electricaly inducing free charge accumulation layer at the Si/insulator 

interface. The design is 4 μm long and offers a 3 dB/μm extinction ratio per unit length. 

Its speed is less than 1 GHz and is not easy to fabricate. The schematic for this design 

is shown in Figure 3.1(b). 

                                                
4
 The designs chosen based on the relevancy to the thesis work. 
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Figure 3.1 - Plasmon EOMs that uses Si as the active material. (a) Cross-sectional schematic of 

the Ag/SiO2/Si/Ag MOS vertical configuration (plasmostor). (b) top view and cross-sectional of the 

metal-insulator-silicon-insulator-metal Si nano-plasmonic electro-absorption modulator.  

Adapted from American Institute of Physics  and American Chemical Society with permissions [63] and [64]. 

In order to overcome these speed limitations, different active materials have been 

studied, such as organic polymers, inorganic crystals, and transparent conducting 

oxides (TCOs) and  [20], [30]–[37]. Hybrid Modulator designs offers high operation 

speeds compared to designs that use Si as active materials.  

3.2 EOP based electro-optical modulators 
Among organic polymers, Kim et al, engineered an electro-optical polymer (EOP) 

based on self-organized molecular glasses that is thermally stable [53]. This polymer 

has an excellent optical transparency and an electro-optic coefficient of r33 =  300 pV/m, 

that is five times higher than LiNbO3. Many electro-optical modulators are based on this 

EOP [65], [65]–[68]. 

Among these designs, Sun et al. proposed an modulator based on silicon-

polymer-metal hybrid plasmonic waveguide [66]. The device length is 13 μm. The 

device has an insertion loss of 7.7 dB and an extinction ratio of 12 dB. The speed of the 

device is only 90 GHz. The schematic is shown in Figure 3.2 (a). Its modulation 

properties are summarized in Table 3-1.  

Another design based on this EOP was proposed by Janjan et al. [65]. It is a ring 

resonator modulator based on polymer filled hybrid plasmonic waveguide. The device 

has a footprint of 11.2 μm2; � 2.3 dB insertion loss and � 8 dB extinction ratio are 

achievable at the telecommunication wavelength. The schematic of this device is shown 

in Figure 3.2(a); as well as, its modulation properties are summarized in Table 3-1.  
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Also, Zografopoulos realized a directional coupler based modulator using this 

EOP. An extinction ratio of 22.2 dB is achieved at 52.7 μm device length. The 

modulation properties are summarized in Table 3-1.  

 
Figure 3.2 - EOP based plasmonic modulators. (a) schematic view of silicon-polymer-metal hybrid 

plasmonic EO modulator. (b) Schematic of the ring resonator modulator based on polymer-filled 

hybrid plasmonic waveguide.  

Adapted from Institute of Electrical and Electronics Engineers and Springer International Publishing AG. with 
permissions [66] and [65]. 

3.3 ITO based electro-optic modulators 
Another optical active material that is used, recently, for modulation is ITO; many 

devices are realized [40], [69]–[73]. Among these designs, Zhao et al. proposed an EA 

modulator based on a hybrid Si slot waveguide [74]. This device is based on 2D 

electromagnetic simulations. The length of the device is estimated to be from 1.25 to 

1.42 μm and achieving 6 dB and 1.3 dB for insertion loss and an extinction ratio, 

respectively. The modulation properties are summarized in Table 3-1. 

Lee et al. fabricated and tested “PlasMOStor” modulator [75]. The device is 

based on an Au plasmonic slot waveguide filled with ITO. The schematic of this 

modulator is shown in Figure 3.3 (a). The modulation properties are provided in 

Table 3-1. The measurements demonstrate that a 0.45 dB insertion loss and � 2.71 dB 

extinction are realized for a 10.28 μm device length. 

Another group, realized an EO modulator based on an ITO-integrated directional 

coupler [73]. The schematic of this modulator is shown in Figure 3.3 (b). This device 

achieves �1 dB insertion loss and �6 dB extinction for a 5.6 μm device length. The rest 

of modulation properties are provided in Table 3-1.  
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Figure 3.3 - ITO based plasmonic modulators. (a) Cross-sectional schematic view of the 

“plasmostor” based on Au plasmonic slot waveguide filled with ITO.  (b) Bird’s eye view of the 

silicon electro-optic modulator based on an ITO-integrated tunable directional coupler. 

Adapted from IOP Publishing and American Chemical Society with permissions [73] and [75]. 

3.4 VO2 based electro-optic modulators 
The last plasmonic active material to be considered throughout the thesis is 

vanadium dioxide. As discussed in the previous chapter, it is believed to revolutionize 

the photonic industry due to its transformation from dielectric state to metallic state. 

Many EOMs based on this phase change property were realized [51], [52], [76]–[79].  

Markov et al. presented an EO modulator based on near-field plasmonic coupling 

in Au hybrid plasmonic waveguide [80]. The coupling is between a thin film of vanadium 

dioxide on a silicon substrate and gold nanodisks. The schematic of this device is 

shown in Figure 3.4 (a). The modulation properties are summarized in Table 3-1.  

Another design which is based on Ag hybrid plasmonic waveguide was fabricated 

[81]. The results are very promising in terms of bandwidth. Also, 20 dB modulation 

depth is achieved at a very low voltage of 400mV. The rest of modulation properties are 

provided in Table 3-1.  

 Wong et al. studied and proposed an EOM based on hybrid plasmonic surface 

plasmon polariton (HPSPP) waveguide with a VO2 layer on the top [82]. What is 

interesting about this design is that the mode is confined in the silicon layer to minimize 

the insertion losses resulting of the mode confinement in the VO2 layer. The schematic 

of modulation section of this device is shown in Figure 3.4 (b). The device is compact 

with a 2 μm modulation length. The modulator achieves �2.8 dB insertion loss and �7.6 

dB extinction ratio. The modulation properties are summarized in Table 3-1.  
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Figure 3.4 - VO2 based plasmonic modulators. (a) Schematic view of Au nanodisks hybrid 

plasmonic waveguide.  (b) Schematic of the modulation section of the electro-optic modulator 

based on HPSPP/VO2 waveguide. 

Adapted from OSA Publishing and American Chemical Society with permissions [73] and [75].
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Table 3-1 – Comparison of the modulation properties for different EOMs utilizing different active materials that have been reported and related 

to the scoop of the thesis. 

Device type  Active 
material  

Experimental/ 
theoretical  

Operation 
wavelength 
[μm] 

ER 
[dB] 

IL 
[dB] 

Device  
length/ 
footprint 

Modulation 
Voltage [V] 

Energy/
bit 
[fJ]  

Speed  

Cu hybrid plasmonic 
waveguide [64] 

Si 
 

Experiment  1.55  
 

1.9 1 3 μm <�4  ** <1 

silicon-polymer-metal hybrid 
plasmonic waveguide [66]  

EOP Theoretical 
(FEM) 

1.55 12 7.7 13 μm 6 24.4 90 GHz 

Polymer-Filled Hybrid 
Plasmonic ring waveguide [65] 

EOP Theoretical  1.55 �8  �2.3  11.2 μm2 6 3.6 1 THz 

directional couplers enhanced 
with a layer of electro-optic 
polymer [83] 

EOP  Theoretical 
(FEM) 

1.55 22.2 2.8 52.7 μm 3.1 62 Tens of 
GHz 

ITO based on a hybrid Si slot 
waveguide [74] 

ITO Theoretical 
(2D) 

1.55 �6  �1.3 1.25 to 
1.42 μm 

�2–4  ** ** 

Au plasmonic slot waveguide 
[75] 

ITO Experimental 1.55 2.71 0.45 10.28 μm �1.2  4 <100 GHz 

ITO-integrated directional 
coupler [73] 

ITO Theoretical 
(FEM) 

1.55 �6 �1 5.6 μm 2.3 330 25.68 
GHz 

Plasmonic nanodisk chain 
Si-Au-VO2 [80] 

VO2 Theoretical 
(3D FDTD) 

1.55 8.9 12.5 0.56 μm 0.4 ** �1 GHz 

Ag hybrid plasmonic 
waveguide [81] 

VO2 Experimental 1.55 16.1 6 7 μm 400×10-3 ** 400×10-9 
GHz 

Si wire/VO2 waveguide [82] VO2 Theoretical 
(3D FDTD) 

1.55 7.6 2.8  2 μm ** 250  
 

~1 GHz 
 



 

  
24 

 

 Organic based electro-optical modulators  

Design 1: Hybrid silicon plasmonic organic directional coupler based 
modulator 5 

Abstract 

In this chapter an organic electro-optical modulator based on hybrid-plasmonic 

directional coupler is proposed. The directional coupler is based on silicon-polymer-

metal hybrid plasmonic waveguides. The power power-splitting mechanism utilizes the 

electro-optical properties of the embedded polymer layer to tune the power upon 

applying external electric field. The directional coupler based modulator operates under 

the telecommunication wavelength (1550 nm). A finite element method with a perfect 

matching layer (PML), are taken up to simulate and analyze the electro-optical 

modulator. 

4.1.1 Introduction 

The growing demand for high capacity systems resulted in replacing electronic 

baseband systems with optical broadband systems. Optical communication systems are 

superior to electronic communication systems in many aspects such as high bandwidth, 

low cost, and low transmission losses for long distances. In an optical communication 

system, switching and modulation are principle operations [6].  

Electro-optical modulators (EOMs) attracted a lot of research interest. Many 

aspects should be considered while designing an EOM such as high bandwidth, high 

extinction ratio, low insertion loss and CMOS-compatibility.  

During the same time that demand for optical communication systems increased, 

noteworthy development has happened in the field of silicon photonics. The material 

system used for electronic circuitries for many decades, now is used to build optical 

integrated devices and circuits.  Silicon photonics is very appealing since it uses the 

existing CMOS-VLSI technology, and cheaper for mass production. Also, silicon is 

almost transparent at the telecommunication wavelengths.  

Many configurations and designs for Si-based optical modulators have been 

developed, including, but not limited to, Mach–Zehnder interferometer (MZI), ring 

                                                
5 

Parts of this section were previously published in [A] and [B].  
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resonator, metal-oxide- semiconductor capacitor, and micro-disk structure [20]–[23], 

[28], [84]–[86]. MZIs are not effective due to its large sizes; as well as, disk and ring 

resonators are not effective due to their narrow bandwidth [19]. For a compact 

modulator with a high bandwidth, modulators, based on plasmonic electro-optic 

waveguides, have been studied [24], [30], [61], [63], [70], [87], [88]. Among plasmonic 

electro-optic modulators, directional coupler based modulators show promising results 

both in terms of size and bandwidth [40], [68], [89]. 

Pure silicon linear electro-optic effect is not found; quadratic electro-optic effect is 

weak at the telecommunication wavelength, so silicon-based optical modulators have 

large footprints [19], [22], [27]–[29]. Plasma dispersion effect is the most common 

modulation mechanism affecting thr refractive index of silicon [12]. However, the speed 

of these devices is limited, 1 GHz –10 GHz, due to the lifetime of the carriers [6]. This 

raised the necessity for investigating other novel alternative active materials [20], [30]–

[37]. 

LiNbO3 is very common for conventional commercial modulators. It is very 

developed and many designs are based on it [48]. It satisfies all the fundamental 

requirements mentioned before; it is transparent over a wide range of frequencies, has 

strong Pockels effect, and can be easily fabricated [6]. However, LiNbO3 is not 

compatible with the wide spread CMOS technology. LiNbO3 is, also, temperature 

sensitive [49].  

Introducing polymers to optical modulation, the fundamental requirements can be 

achieved without compromising the CMOS compatibility.  

Polymers offer very high Pockels coefficients up to 300 pV/m [90], [91] and a 

purely electronic hyperpolarisability [92]. These advantages can offer modulation 

speeds up to 150 GHz depending on the capacitance of the device. Polymers also offer 

moderate refractive indices around n ≈ 1.6. Brosi et al. proposed the concept to 

combine both silicon and polymers to attain high speed modulation [93].  

Polymers have low dispersion profile in the range of telecommunication 

wavelength and large electro-optic coefficient. Switching time and frequency depend on 

many factors, such as response time of the electro-optic polymer materials [68]. Since 

the response time of almost all polymers as fast as femtosecond, we can consider that 

there is no delay between the change of the electric signal and that of the refractive 
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index of the electro-optic polymer [94]. Then, the effective refractive index of the 

plasmonic mode can be modulated effectively.  

Although, plasmonic electro-optic modulators can support  very high modulation 

bandwidths, they have a high insertion losses because of the high field enhancement in 

the plasmonic metal based configurations [40]. This is a critical issue which raises the 

need for a low insertion loss plasmonic optical modulator with high extinction ratio.  

To satisfy this need, in this work we introduce an electro-optic plasmonic 

modulator. The modulator is based on a directional coupler which supports a symmetric 

and an anti-symmetric modes when no external voltage is applied. The power splitting 

mechanism of the modulator is based on changing the refractive index of the EOP by 

applying external electric field such as that one mode is allowed to propagate. A finite 

element method with a perfect matching layer (PML) absorbing boundary condition is 

used to simulate and calculate the insertion losses, propagation losses and the power 

splitting ratios between the two channels. We have succeeded in designing a hybrid 

silicon plasmonic organic directional coupler based modulator with 14.34 dB extinction 

ratio of the power on the on-state to the off-state at the length of the modulator, 39 μm. 

We estimated the insertion losses to be 2.298 dB.  

In the next section, the design will be introduced; then, the principle of operation 

will be discussed. In the third section, results are presented. Finally, in the fourth section 

a brief summary and concluding notes are conveyed. 

 

4.1.2 Design 

The proposed directional coupler is based on creating two high index EOP 

waveguides surrounded with low index regions as shown in Figure 4.1. 
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Figure 4.1 - (a) Schematic layout (Bird’s eye view) and (b) cross-sectional of the proposed electro-

optic plasmonic directional coupler modulator. 

 
The device can be fabricated on silicon-on-insulator standard wafer. A thin layer 

of an electro-optic polymer (EOP) is spin-coated on the top of silicon; EOP is etched 

over two regions defining the low height (high index) regions. Finally, a silver layer is 

deposited on the top of  EOP regions to define the guiding regions.  

 

4.1.2.1 Principle of operation 

The optical wave is confined in the EOP layer of the high index (low height) 

regions. One mode is excited through the first waveguide. When there is no external 

electric field is applied, the power couples back and forth from one waveguide to the 

other.  

The modulation technique is based on applying a positive electric field to one of 

the waveguides and a negative electric field to the other waveguide while keeping the Si 

layer grounded. Applying electric fields in such a way changes the refractive index of 
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the EOP in these two waveguides due to the Pockels effect [95]. This results in 

changing the effective refractive indices of the symmetric and anti-symmetric 

propagating modes.  

Drude model is used to describe the change in the refractive index of the EOP. 

The refractive index of the EOP is npoly =  1.65 and its electro-optic coefficient r33 = 300 

pV/ m [91]. The polymer has an excellent optical transparency (has negligible lose) at 

the telecommunication wavelength range [96]. Also, Sellmeier model used to describe 

the dispersion of Si and SiO2 [97].  

When applying electric field to the EOP layer, the refractive index changes as in:  

     ∆"#$%& 	= 	
1

2
	"+,-.

2	/33	123     (4-1) 

Modal analysis used to optimize the dimensions. To realize a compact coupler 

design, the beating length LB is reduced by decreasing the gap width. The optimized 

gap width is 500 nm because further reduction results less confinement of the mode in 

the low height regions and the more confinement in the gap between the two low height 

regions; Thus, the effect of applying external electric field will become of less 

effective.  The dimensions that have great effects on the effective refractive index are hh 

and hl. The dimension hl is set as small as possible to reduce the voltage needed to 

generate change in the refractive index of the EOP.   

The design goal is to match the effective refractive index of the low region (hl) for 

the negatively biased state to that of the high regions (hh). The height hh is set to be 125 

nm to be large enough to raise the difference between hh and hl for two reasons. Firstly, 

to avoid contact of the metal layers of the high regions with low regions; secondly, to 

avoid electric field confinement between the metal edges. For wg = 500 nm, wwg= 300 

nm, and hh= 125 nm, the effective refractive index of the high region (hh) is 1.656 and 

the effective refractive index of the low region (hl) when a negative voltage is applied 

changes from 1.65 to 1.664. Figure 4.2 shows the dependence of the effective refractive 

index on hl for the biased low region versus the effective index of hh equals 125 nm for 

the unbiased low region. It is evident from the graph that the point of operation is where 

the effective indices are equal; at which hl= 60 nm. Figure 4.3 shows the effective 

refractive indices for each regions for both the off and on states.  
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Figure 4.2 - Dependence of the effective index on hl for the negatively biased low region vs the 

effective index of hh equals 125 nm for the unbiased low region. 

 

 

Figure 4.3 - the effective refractive index of each region for (a) the off and (b) on states. 

 

4.1.2.2 Single channel waveguide 

The electric filed mode profile of a single waveguide is shown in Figure 4.4. The 

optical power is confined in the low height (hl) polymer region. 

Mode analysis shows that the real part of the effective index of the mode in 

Figure 4.4 is 2.703 for the off-state and 2.732 for the on-state; and the propagation 

losses are calculated, to be 0.0587 dB/μm and 0.0722 dB/μm for the off-state and the 

on-state respectively.  
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Figure 4.4 - The field distribution (|Ez|) of the single channel mode at the off-state. 

4.1.2.3 Two channel waveguide 

4.1.2.3.1 Off-state 

When there is no external electric field is applied to the two waveguides (off-

state), the refractive index of the polymer is the same everywhere. The input mode is 

excited through one of the waveguides. This mode resolve into two, even and odd, 

modes. Figure 4.5 shows the electric filed mode profile of those two modes, namely, the 

even (symmetric) mode with an effective index equals 2.7612, and the odd (anti-

symmetric) mode with an effective index equals 2.703.  

 

 

Figure 4.5 - The z-component of the field for (a) the even mode in the off state, (b) the odd mode in 

the off-state. 

 

 

4.1.2.3.2 On-state 

When the external electric fields are applied to the two waveguides (on-state), the 

refractive index of the polymer in the two, low height, waveguides changes. This 

changes the effective refractive indices of the even and odd modes. Consequently, the 
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power splitting ratio and the beating length changes.  Figure 4.6 shows the change in 

polymer refractive index; as well as, Figure 4.7 shows the electric filed mode profile of 

the even and odd modes in the on-state. . 

 

Figure 4.6 - The refractive indices of the polymer at the on-state. 

 

Figure 4.7 - The z-component of the field for (a) the even mode in the on-state, (b) the odd mode in 

the on-state. 

 

4.1.3 Modulation properties of the electro-optic plasmonic directional 

coupler 

The eigenvalue expansion method is used to study the coupling properties and 

the performance of the modulator. The modal excitation of the single waveguide port is 

excited. These waveguides can be easily excited using dielectric silicon waveguide [98]. 

This mode splits into two modes; then, their propagation along the directional coupler is 

monitored. At the off-state, the optical power couples from the first waveguide to the 

other waveguide at the coupling length lc equals to 13 μm, as shown in Figure 4.8.  
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Figure 4.8 - channel 1 propagating power along the directional coupler for the off and on states of 

operation. 

 
Figure 4.9 - The field profiles at a propagation distance equal to 3 Lc for (a) the on and (b) off 

state. 

 
The propagation length for this modulator is chosen to be 3 Lc where the 

extinction ratio of the power at the first channel on the on-state to the off-state equals 

14.34 dB. The insertion losses are estimated to be 2.298 dB. 

The electric field needed to generate that change in the EOP refractive indices 

and respectively results in this extinction ratio are calculated. Then a positive voltage of 

5.87 V should be applied between the metal (Ag) layer of the first waveguide and a 

negative voltage of 5.87 V should be applied to the metal layer of the second waveguide 

while keeping the Si layer grounded.  

4.1.4 Conclusion 

An organic electro-optical modulator based on hybrid-plasmonic directional 

coupler is studied and verified numerically using finite element tool. The power splitting 
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mechanism utilizes the Pockels effect of the polymer when an external electric field is 

applied. An extinction ratio of 14.34 dB and insertion loss of 2.298 dB are achieved at 

39 μm modulator length. The level of the applied modulating voltage is calculated to be 

around 6 V.  
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 ITO based electro-optical modulators 

ITO modeling 
The active material used in the designs proposed in this chapter is indium-tin-

oxide (ITO). Then, accurate description of the carrier accumulation is crucial before 

studying the modes. 

Carrier density of the ITO can be utilized when used in MOS-structures [56]. ITO 

exhibits high electrical conductivity and has plasma frequency upon applying electrical 

(gate) voltage, which results in epsilon-near-zero (ENZ) effect [57], [58]. In other words, 

formation of this accumulation layer can tune plasma frequency and permittivity 

significantly.  

The relative permittivity of the ITO can be described by the Drude model as in (5-

1) [70]: 

	 ϵ5 = ϵ6-
89:

8:-;<8
;      (5-1) 

where =6 =3.9 F/m is the high-frequency dielectric constant, > =1.8×10
14

 rad s
-1

 is the 

electron scattering rate, ω is the frequency of the light, and A# is the plasma frequency. 

The plasma frequency depends on electron concentration (n) and is defined as in (5-2) 

[99]:  

      ωB =
CD:

EFG∗;      (5-2) 

where I∗ = 0.35 IJ is the electron effective mass in ITO, K is the electron charge, =J is 

the permittivity of free space, and IJ is the mass of electron.  

The electron (carrier) concentration depends on the applied gate voltage (MN) and 

the design. In the proposed design, the ITO layer is separated from the Si layer by a 

thin hafnium oxide (HfO2) layer. The electron (carrier) concentration can be estimated 

by (5-3) [99]:  

      nQRR = nJ +
EF⋅UVWX:⋅YZ

D⋅[VWX:⋅[\]]
;     (5-3) 

where κ_`a: = 25 is the DC permittivity of the  HfO2, t_`a: = 5nm is the thickness of the 

HfO2 layer (of our proposed designs). The accumulation layer thickness is assumed to 

be 1 nm, as in [99].  
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Figure 5.1 - (a) The complex permittivity of the ITO as a function of V_g at 1.55 µμm (b) the optical 

properties of the ITO as a function of wavelength for the off- and on-states. 

 

Using Error! Reference source not found. to Error! Reference source not 

found., Figure 5.1(a) is plotted to show the relation between increasing Vg and the 

change in the complex permittivity of the ITO at 1.55 µm with the applied voltage (shows 

agreement with [73]). Increasing Vf leads to decreasing the real permittivity and 

increasing the imaginary permittivity of the ITO. At Vf = 2.35V, corresponding to nQRR ≅

6.4×10lJcm-n, the real permittivity reaches zero; thus, the ITO is considered an ENZ 

material. The ITO at this voltage acts as a metal instead of a dielectric. Figure 5.1(b) 

shows the optical properties of the ITO as a function of wavelength when there is no 

voltage applied (off-state) and when 2.35 V applied across the ITO (on-state) (shows 

agreement with [100]).  
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5.1 Design 2: Compact silicon electro-optical modulator using 
hybrid ITO tri-coupled waveguides6 

Abstract 

Silicon based electro-optical modulators are essential for optical communication 

systems. In this section, we present a silicon electro-optical modulator which is based 

on tri-coupled waveguides. Two of these waveguides are silicon-on-insulator slot 

waveguides separated by a hybrid Indium Tin Oxide intermediate waveguide. The 

silicon-on-insulator slot waveguides reaps the advantages of the high mode 

confinement. The power-splitting mechanism can be electrically tuned through applying 

external electric field to the intermediate plasmonic waveguide. The tuning mechanism 

is designed such that it will both change the coupling conditions and introduces 

additional intrinsic losses at the telecommunication wavelength (1550 nm). The 

modulator was optimized by 3D full finite difference time domain electromagnetic 

simulations. Extinction ratio of 6.14dB and insertion losses of 0.06 dB are realized at 21 

µm modulator length; as well as, extinction ratio of 11.43 dB and insertion losses of 1.65 

dB are realized at 34 µm modulator length. The proposed silicon electro-optical 

modulator can potentially play a key role in the next generation of the on-chip electronic-

photonic integrated circuits. 

5.1.1 Introduction  

Over the past two decades, the demand increased for telecommunication 

network capacities and bandwidth. For example, in carrier networks, data traffic 

increases at a rate of 60% per year [6]. Also, the rising cloud-based computing is 

expected to increase the machine-to-machine data traffic by 90% per year [6]. Cisco 

forecasts data traffic to be 20.6 zettabytes per year by the year of 2021 [7]. To cope with 

this growing bandwidth demand, electronic baseband systems are replaced by optical 

broadband systems. Optical communication systems have many advantages, such as 

low cost, high bandwidth, and low transmission losses for long distances. In this 

scenario, modulation and switching are the principal operations in optical 

communication systems. High speed electro-optical modulators (EOMs) play a key role 

since they act as transistors in electronic circuits [6]. EOMs have many advantages, for 

                                                
6
 Parts of this section were previously published in [C], other parts are under the submission to [E]. 
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on-chip and off-chip applications, such as high bandwidth, low-loss transmission, and 

robustly resistant to external electromagnetic interference. Besides the technical 

characters, compatibility with the existing standard CMOS-VLSI technology must be 

considered. Modern optical communication systems are moving towards integrating 

dense EOMs to reduce both the energy consumption and the cost.  

External optical modulation process involves controlling the optical properties of 

the optical carrier signal, such as amplitude, with a modulating information signal. Some 

external modulation techniques have been proposed utilizing electro-absorption and 

electro-optic (EO) effects [101]. Linear electro-optic effect (Pockels effect), is not found 

in silicon (Si) due to its centro-symmetric crystal structure [12]. Free carrier 

concentration change effect is the most important modulation mechanism affecting the 

real and imaginary parts of the refractive index of Si [12]. Carrier concentration change 

effect, known as plasma dispersion effect, is classified as electro-absorption 

mechanism. This mechanism exploits changes in the density of the free-carriers in the 

semiconductor material to modulate the real and imaginary parts of its refractive index 

[35].  

Electrical inducing of the carriers can be through the field effect formation in 

metal-oxide-semiconductors (MOS) structures [102]. So far, many Silicon-Based EOMs 

have been developed based on carrier concentration change effect including, but not 

limited to, Mach–Zehnder interferometers (MZI), ring resonators, and metal-oxide- 

semiconductor capacitors [13]–[18]. Although modulators based on MZIs are promising 

in terms of modulation speed and optical bandwidth, they suffer from the large device 

footprints. While modulators based ring resonators have very narrow bandwidth [19]. To 

overcome these drawbacks, different designs have been studied [16], [20]–[24]. 

However, the speed of these devices is limited due to the lifetime of the carriers which is 

in the range of 1 GHz –10 GHz [6].  

This raised the necessity for investigating other novel alternative materials [20], 

[30], [34]–[37]. Transparent conducting oxides (TCOs) are very promising because they 

are CMOS compatible. Indium-tin-oxide (ITO) is the most widely used TCO. The 

variation in free-carrier concentration renders the tunability of the ITO’s electrical and 

optical properties [102]. Integrating ITO as the plasmonic material for EOMs attracted a 

lot of research due to its wide bandwidth and high thermal stability [34]. Yet, it suffers 
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from high insertion losses due to strong field enhancement in the lossy plasmonic 

waveguide. 

To reduce the absorption propagation losses of the ITO-based waveguides 

without sacrificing bandwidth and modulation depth, the plasmonic ITO waveguide is 

used as intermediate coupler between the two main propagation slot waveguides. The 

slot waveguides will highly confine the optical power [103], [104]. The plasmonic 

intermediate waveguide can perturb the coupling environment and introduces losses as 

the optical power couples from one waveguide to the other. Another advantage of this 

design is that using a thin layer of ITO as the plasmonic material for the intermediate 

waveguide will produce high extinction ratio (ER) while limiting the capacitance. The 

goal is to reduce the overall capacitance of the device to reduce the power consumption 

and to increase the modulation speed. 

In this section, an electro-optic modulator based on tri-coupled waveguides is 

introduced. Two of these waveguides are based on slot waveguides which support 

symmetric and anti-symmetric modes; these two waveguides are separated by a 

plasmonic, ITO-based, intermediate waveguide. The effective refractive index of the slot 

waveguide can be matched to the effective refractive index of the plasmonic coupler. 

This can be achieved at different dimensions so that different outcomes can be realized 

based on this structure. The power splitting mechanism of the modulator is based on 

changing carrier density in the ITO layer of the plasmonic waveguide by applying 

external electric field that changes the refractive index of the modes and attenuates the 

power. A finite difference time domain (FDTD) tool with a perfect matching layer (PML) 

boundary conditions is used to simulate and calculate the insertion losses, propagation 

losses, and extinction ratios [105]. We realized two designs: 1) 6.14 dB ER for 21 µm 

length of the modulator and 2) 11.43 dB ER for 34 µm length of the modulator.   

In the next section, the properties of the active layer (ITO) will be presented; in 

section III, the structure and operating principle of the modulator will be introduced. In 

section IV, modulation properties of the electro-optic hybrid plasmonic modulator will be 

discussed. Finally, a brief summary and concluding notes are conveyed. 

5.1.2 Design and operation principle 

The proposed structure coupler is based on two slot waveguides which are 

separated by an ITO-based plasmonic waveguide. The design is shown in Figure 5.2. 
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The dimensions of the plasmonic waveguide can be adjusted, so the effective refractive 

index of the propagating mode, when no external electric field applied, matches the 

effective refractive index of the slot modes in the slot waveguides. This gives the 

environment for the power to couple back and forth from one slot waveguide to the 

other slot waveguide.  

 

 
Figure 5.2 - (a) Schematic layout (Bird’s eye view) and (b) cross-sectional of the proposed electro-

optic modulator. 

  

This can be fabricated by depositing SiO2 on the top of silicon-on-insulator 

standard wafer. Another Silicon wafer is then bonded on top of the SiO2 layer [106]. 

Mask is then used to etch Silicon over the middle coupler. Subsequently, a film is 

deposited to cover the whole wafer and then masks are used to pattern ITO, HfO2 and 

silver layers.  

5.1.2.1 Modal analysis 

A commercial-grade simulator eigenmode solver and propagator was used to 

study the slot waveguide and the plasmonic intermediate coupler [107]. Also, it was 
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used to adjust the dimensions so that the effective refractive index of the slot mode 

matches the effective refractive index of the propagating mode of the plasmonic coupler 

when there is no external electric field applied. 

5.1.2.1.1 Slot waveguide 

The slot waveguide consists of a 70 nm of SiO2 layer sandwiched between two 

300 nm layers of silicon. The width of the slot waveguide WSi-WG = 400 nm. Electric field 

profile of the slot mode shows that the light is confined in the SiO2 layer as shown in 

Figure 5.3(a). The refractive indices of the SiO2 and Si at the telecommunication 

frequency are 1.444 and 3.476, respectively [108], [109].  

5.1.2.1.2 ITO-based plasmonic waveguide 

The plasmonic intermediate coupler consists of 70 nm height of SiO2 layer topped 

with a 10 nm layer of ITO and 10 nm layer of silver (Ag). The ITO layer is isolated from 

the Ag layer with a 5 nm layer of Hafnium oxide (HfO2) dielectric material to keep the 

carriers at the ITO layer when applying electric field to the metal. The width of the 

plasmonic coupler WPl-WG = 300 nm. The refractive indices of the HfO2 and Ag at the 

telecommunication frequency are 1.980 and 0.14447+11.366i, respectively [110], [111]. 

The ITO was defined using the model described earlier in section II. Figure 5.3 shows 

the electric field mode profiles for the propagating modes (b) when there is no external 

electric-field applied to the waveguide and (c) when there is an external electric-field 

applied.  

 

 
Figure 5.3 - (a) Field distribution (|Ez|) of the slot mode for width 400 nm. Field distribution (|Ez|) 

for the propagating modes of the plasmonic waveguide for width 300 nm: (b) off-state and (c) on-

state. 
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When there is no external electric-field applied to the coupler (off-state), the 

electric field is confined in the SiO2 layer as shown in Fig. 3(b). When there is an 

external electric-field applied to the coupler (on-state), the electric field is confined in the 

ITO layer due to the formation of an accumulation layer at the ITO- HfO2 interface. 

The effective refractive indices and the propagation losses of these two modes 

are listed in Table 5-1. The propagation losses of the on-state are much higher than the 

propagation losses of the off-state state due to the introduced plasmonic effects. 

 

Table 5-1 Effective Refractive Indices And The Propagation Losses For The Modes Of The 

Plasmonic Waveguide. 

Mode Effective refractive 
index Propagation loss (dB/µm) 

Off-state 2.602 0.047 

On-state 2.563 1.258 

 

5.1.2.2 Modulator structure and principle of operation 

Changing the dimensions of both the slot waveguide and the plasmonic coupler 

changes the effective refractive index of the modes of each waveguide. Varying the 

widths can slightly change the effective refractive indices.  The height of the SiO2 layer 

is optimized so that the effective refractive index of the slot waveguide is approximately 

similar to the effective refractive index of the off-state mode of the plasmonic coupler. 

The effective refractive indices can be exactly matched by changing the widths. 

Figure 5.4 shows the effective refractive indices for the slot mode of the slot waveguide 

and the off-sate mode of the plasmonic waveguide versus the width of each waveguide.  
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Figure 5.4 - The effective refractive index of the slot mode and plasmonic (off-state) mode vs. 

width of the waveguide. The dashed lines indicate the dimensions for the two designs. 

5.1.2.2.1 Off state 

The plasmonic coupler is placed between the two slot waveguides. When there is 

no external electric field applied to the middle (plasmonic) coupler, the effective 

refractive indices of the two slot waveguides and the plasmonic coupler are almost the 

same. This results in two modes, even (symmetric) and odd (anti-symmetric) modes. 

Figure 5.5 shows the z -component of the electric field for the symmetric and the anti-

symmetric modes when there is no electric field applied over the middle waveguide.  

 
Figure 5.5 - Field distribution (|Ez|) for (a) the even and (b) the odd mode in the off-state. 

 

5.1.2.2.2 On state 

Applying electric field over the intermediate coupler accumulates free-carriers at 

the ITO-HfO2 interface which results in confining the electric field in the ITO layer. This 

changes the effective refractive indices and the losses of the even and odd modes. 

Consequently, it affects the length of the modulator. Figure 5.6 shows the z -component 
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of the electric field for the symmetric and the anti-symmetric modes when there is 

electric field applied over the middle waveguide.  

 
Figure 5.6 - Field distribution (|Ez|) for (a) the even and (b) the odd mode in the on-state. 

Table 2 summarizes the properties of the even and odd modes for the off- and 

on-states. Additionally, overlap analysis is performed to calculate the power coupling 

between these modes and the input mode, exciting the slot mode through one of the 

slot waveguides (input waveguide). The results for this analysis are also included in 

Table 5-2.   

 

Table 5-2 - Comparison between the even and odd modes for the off- and on-states. 

State  Mode Effective refractive index Propagation loss 
(dB/µm) 

Power coupling from 
the input mode 

Off-state even 2.652  0.0036 77.1 
 odd 2.556 0.0004 19.8 
On-state even 2.644+0.0157i 0.5549 77.2 
 odd 2.555+0.0017i 0.0620 19.6 

5.1.2.2.3 Principle of operation 

The modal excitation of the modulator is done by exciting the slot mode through 

the input waveguide (extended waveguide). Such waveguide can be excited using 

dielectric silicon waveguide [98]. The power couples from one of the slot waveguides to 

the other passing through the middle plasmonic coupler. Once the electric field is 

applied over the middle coupler, the propagation losses increase. Thus the power 

couples from one arm to the other will decrease and the coupling length will change. 

Moreover, the power is not confined in the SiO2 layer, which also decreases power 

coupling between the two arms.  
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Figure 5.7 shows electric field intensity, with respect to the input intensity, at the 

center of the SiO2 layer of the input waveguide along the propagation length when there 

is no voltage and with applied voltage across the middle coupler.  

 

 
Figure 5.7 - The normalized intensity, with respect to the input, of the guided mode at the center of 

the SiO2 layer of the input waveguide as a function of the propagation length for the off- and on-

states, for D1. The dashed line indicates the length for D1. 

5.1.3 Modulation properties of the electro-optic modulator 

As shown in Figure 5.4 matching between the effective refractive indices for the 

slot mode of the slot waveguide and the off-sate mode of the plasmonic coupler at 

different widths can be achieved. Therefore, different designs can be realized based on 

this structure. In this section we studied all the aspects for WSi-WG = 400 nm and WPl-WG 

= 300 nm (D1). Matching the effective refractive indices at different widths will change 

the effective refractive indices of the even and odd modes, the power coupling from the 

input mode, and the propagation losses. Thus, the length of the modulator as well as 

the extinction ratio will differ.  

The relation between the widths of the waveguides and the modulation properties 

is studied. Firstly, increasing the widths will reduce the power coupling between the 

input mode and the even mode and consequently increases the coupling with the odd 

mode. This also reduces the difference between the even and the odd modes. Thus, the 

length of the modulator coupler increases. However, increasing the length of the 

modulator increases the extinction ratio. Secondly, reducing the widths, beyond 300 for 

the plasmonic waveguide and 400 for the slot waveguide, most of the power will couple 

to the even mode and it does couple to the other waveguides. The power mainly 

propagates in the input waveguide and small portion dissipates to the other two 

waveguides. Another design is also studied, WSi-WG = 600 nm and WPl-WG = 675 nm 
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(D2). This design achieves around 50% coupling to the even mode and 50% coupling to 

the odd mode.  

 
Figure 5.8 - The normalized intensity, with respect to the input, of the guided mode at the center of 

the SiO2 layer of the input waveguide as a function of the propagation length for the off- and on-

states, for D2. The dashed line indicates the length for D2. 

 

Figure 5.7 and Figure 5.8 were used to optimize the modulator length that results 

in maximum extinction ratio. From Figure 5.7, the length of the modulator is 21 µm (~ 

coupling length) for D1. Similarly, from Figure 5.8, the length of the modulator is 34 µm 

for D2. A commercial-grade simulator based on the finite-difference time-domain 

method was used to calculate the insertion losses, and extinction ratios at the 

modulation length [112].  

5.1.3.1 Insertion loss 

The results for the insertion losses (IL) for both designs are shown in Figure 5.9.  

At 1.55 µm, the IL are 0.06 dB and 1.65 dB for D1 and D2, respectively.  

 

 
Figure 5.9 - Insertion losses of both designs as function of wavelength. 
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5.1.3.2 Extinction ratio 

Extinction ratio (ER) is the most important parameter for the modulator since it is 

the ratio between the power at the output port at the off-state to that at the on-state. 

Figure 5.10 shows the results for the ER for both designs as a function of wavelength. 

The ER for D1 is 6.1 dB and for D2 is 11.43 dB, at the operating wavelength (1.55 µm). 

 

 
Figure 5.10 - Extinction ratio of both designs as function of wavelength. 

 

Previous results are based on 2.35 V applied across the ITO plasmonic 

waveguide. Digital modulation can be realized by plotting ER versus the modulation 

voltage. Changing the applied voltage changes the ER as shown in Figure 5.11 at the 

operating wavelength (1.55 µm). The ER is saturating above 2.35. Digital modulation is 

confirmed based on the steep slope and the saturation effect that split ER into two 

distinguishable states; a transparent transmitting state at low voltages (below 1.5 V) and 

an absorbing saturating state above 2.35 V.  

 

 

Figure 5.11 - Extinction ratio of both designs as function of the applied voltage at 1.55 µm. 
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5.1.3.3 Energy consumption and modulation speed 

The modulation speed of any optical modulator is related to the capacitance and 

resistance of the device. Capacitance and the modulation voltage are related to energy 

consumption. The modulation speed limit is defined as fmax=(2oRC)
-1

 . The energy 

consumption per bit can be estimated using E/bit = (CV2
)/2.  

Electrostatic RC analysis, performed with finite element method using a 

commercial solver, was used to calculate the capacitance C of the intermediate 

plasmonic coupler as 33.6 fF for D1 and 11.4 fF for D2 [113].  

The applied voltage is 2.35 V and the resistance of the device is assumed to be 

100 Ω, including the interconnects. This yields to fmax ≈ 47.5 GHz for D1 as well as fmax ≈ 

140 GHz for D2. Furthermore, E/bit = 67.1 fJ/bit for D1 and E/bit = 22.7 fJ/bit for D2. 

Figure 5.12 shows the distribution of the electric field in the dielectric and air domain 

surrounding the intermediate plasmonic coupler.  

 
Figure 5.12 - Electrostatic potential contours in the dielectric and air domain surrounding the 

intermediate plasmonic coupler. 

5.1.3.4 Summary 

Table 5-3 summarizes the modulation properties of the two designs. 

 

Table 5-3 - Summary of the modulation properties for both designs at the operating wavelength. 

Design Length of the 
modulator (µm) 

Insertion  
loss 
(dB) 

Extinction  
ratio 
(dB) 

fmax 
(GHz) 

E/bit 
(fJ/bit) 

-·-·- D1 21 0.06 6.14 47.5 67.1 
····· D2 34 1.65 11.43 140 22.7 

 

5.1.4 Conclusion 

A low insertion loss compact silicon electro-optic modulator is studied, using a 

finite difference time domain method with perfect matching layer (PML) absorbing 
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boundary conditions. The modulator is based on two silicon slot waveguides separated 

by an ITO based plasmonic waveguide. The power tuning mechanism is based on 

carrier accumulation at the ITO-dielectric interface through applying external electric 

field. To employ Drude model, the real part of the permittivity of the ITO layer, which can 

reach zero (epsilon-near-zero ENZ effect) by electrical tuning of the carrier 

accumulation layer, is verified. Thus, optical power experiences attenuation as it 

propagates along the modulator. Different designs can be realized based on this design. 

6.14 dB ER and 0.06 dB IL realized at 21 µm modulator length. 11.43 dB ER and 1.65 

dB IL realized at 34 µm modulator length. Electrical voltage of 2.35 V is applied to the 

plasmonic coupler. The devices show satisfactory performance in terms of extinction 

ratio and foot print. Also, broadband operation of this modulator is promising. Such 

hybrid silicon-on-insulator modulators offer bridging existing electronic and photonic 

platforms. A new stages of integration will ultimately set.  

5.2 Design 3: High-speed hybrid plasmonic electro-optical 
absorption modulator exploiting epsilon-near-zero effect in ITO7 

Abstract 

Using transparent conducting oxides (TCOs), like indium-tin-oxide (ITO), for 

optical modulation attracted research interest because of their epsilon-near-zero (ENZ) 

characteristics at telecom wavelengths. Utilizing indium-tin-oxide (ITO) in multilayer 

structure modulators, optical absorption of the active ITO layer can be electrically 

modulated over a large spectrum range. Although they show advances over common 

silicon electro-optical modulators (EOMs), they suffer from high insertion losses. To 

reduce insertion losses and device footprints without sacrificing bandwidth and 

modulation strength, slot waveguides are promising options because of their high 

optical confinement. In this section, we present the study and the design of an electro-

optical absorption modulator based on electrically tuning ITO carrier density inside a 

MOS structure. The device structure is based on dielectric slot waveguide with an ITO 

plasmonic waveguide modulation section. By changing the dimensions, the effective 

refractive indices for the slot mode and the off-sate mode of the plasmonic section can 

be matched. When applying electric field to the plasmonic section (on-state), carriers 

                                                
7
 Parts of this section were previously published in [D], other parts are under the submission to [F].  
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are generated at the ITO-dielectric interface that result in changing the layer where the 

electric field is confined from a transparent layer into a lossy layer. A finite difference 

time domain method with perfect matching layer (PML) absorbing boundary conditions 

is taken up to simulate and analyze this design. An extinction ratio of 15.5 dB is 

achieved for a 10-μm-long modulation section, at the telecommunications wavelength 

(1.55 μm). This EOM has advantages of simple design, easy fabrication, compact size, 

compatibility with existing silicon photonics platforms, as well as broadband 

performance. 

5.2.1 Introduction 

Optical modulators are very vital to silicon photonics, as they provide a bridge 

between the photonic world and the digital electronic world [114], [20]. Electro-optical 

modulation includes controlling the amplitude, polarization and/or phase of the optical 

signal with a modulating electrical signal [115]. There are many techniques for optical 

modulation such as electro-optic (EO), electro-absorption, and thermo-optic effects [6], 

[23].  

The carrier concentration change effect is classified as electro-absorption 

mechanism. Alternatively called plasma dispersion effect, this mechanism controls the 

concentration of the free electrons and holes in semiconductor materials to control the 

real and imaginary parts of their permittivity [116]. This effect in silicon limits the 

modulation speed due to the lifetime of the carriers which is in the range of 1 GHz –10 

GHz [6]. Thus, the demand raised for investigating new plasmonic materials with larger 

linear and non-linear optical properties. Transparent conducting oxides (TCOs) are 

among the materials investigated for modulation applications [24], [37], [61], [62], [86], 

[100], [103].  

TCOs are very encouraging because of their CMOS compatibility. Having plasma 

frequency close to the telecommunication wavelengths, TCOs are very suitable for 

modulation applications in the near infrared (NIR) [24], [40], [74], [117], [118].  This 

means that changes in the carrier accumulation strongly affect the optical properties of 

the TCOs [58], [71]. Also, carrier accumulation processes in the TCOs are ultrafast; 

electro-optical modulators based on TCO as the plasmonic material offer modulation 

speeds in the range of THz [34], [75].  
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Using Indium-tin-oxide (ITO), the most known TCO, as the plasmonic material 

attracted the attention because of its high bandwidth [24]. Though, strong field 

enhancement in the lossy ITO based waveguide contributes to high insertion loss.  

A reliable EOM should have a small footprint, high speed, high extinction ratio 

(ER), low insertion loss (IL) and low energy consumption. ITO based plasmonic 

absorption modulators have been suffering from a critical trade-off between the 

modulation speed and insertion loss [24], [34], [117], [119]. To reduce the insertion loss 

while maintain high modulation speed, in this section, we introduce an ITO based 

plasmonic absorption modulator built on slot waveguide structure. The modulator is 

based on silicon on insulator slot waveguide with an ITO based plasmonic modulation 

section. Slot waveguide structure of the modulator is promising because of its high 

optical confinement, resulting in low insertion loss. The modulation mechanism is based 

on changing carrier density in the ITO layer of the plasmonic section by applying 

external electric, changing the refractive index of the modes and attenuating the power. 

A finite difference time domain (FDTD) tool is used to investigate the optical properties 

of the proposed modulator [105]. An ER of 15.49 dB and IL of 1.01 dB were realized for 

10 μm length of the modulation section. The speed of the device is in the range of 

gigahertz; the energy consumption is also in the range of femto-joule per bit. 

5.2.2 Device structure  

5.2.2.1 Device layout 

The proposed design is based on slot waveguide. The input and the output ports 

are standard silicon on insulator slot waveguides. The modulation section is an ITO-

based slot hybrid plasmonic waveguide. The design is shown in Figure 5.13. 

This device be fabricated by depositing a layer of SiO2 on the top of silicon-on-

insulator standard wafer. Then, additional Silicon wafer is bonded on top of the SiO2 

layer [106]. Mask is then used to etch Silicon over the modulation section. Afterwards, a 

film is deposited covering the whole wafer and then masks are used to pattern ITO, 

HfO2 and silver layers over the modulation section. 



 

  
51 

 
Figure 5.13 - (a) side view and (b) Schematic layout (Bird’s eye view) of the proposed electro-

optical absorption modulator. 

5.2.2.2 Modal analysis 

The refractive indices of the Si, SiO2 and HfO2 are 3.47, 1.44 and 1.98, 

respectively. The refractive index of the ITO calculated through wavelength-dependent 

model described earlier. An Eigen mode finite difference solver is used to study the slot 

waveguide and the modulation plasmonic section. Also, it is used to match the effective 

refractive index and the width of the slot waveguide and the modulation section.  

The slot waveguides consist of a 70 nm of SiO2 layer sandwiched between two 

300 nm layers of silicon. The electric-field is confined in the SiO2 layer as shown in 

Figure 5.14(a). This mode has approximately no propagation losses.  

This section consists of 70 nm of SiO2 layer topped with a 10 nm layer of ITO 

and 10 nm layer of silver (Ag). The ITO layer is isolated from the Ag layer with a 5 nm 

layer of Hafnium oxide (HfO2) dielectric material to keep the carriers at the ITO layer 

when applying electric field to the metal.  

At the off-state, when there is no electric field applied, the mode is confined in the 

SiO2 layer as shown in Figure 5.14(b). When an external electric field is applied to the 
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modulation section, on-state, the mode is confined on the ITO layer, as shown in 

Figure 5.14(c), due to the accumulation of free carriers at ITO- HfO2 the interface.  

 

 
Figure 5.14 - (a) Field distribution (|Ez|) of the slot mode. Field distribution (|Ez|) of the plasmonic 

section modes: (b) off-state and (c) on-state. 

 
The effective refractive indices and the propagation losses of these modes are 

listed in Table 5-4. 

Table 5-4 - Effective refractive indices and the propagation losses for the modes. 

Mode Effective 
refractive index 

Propagation loss 
(dB/µm) 

Slot mode 2.632 ~ 0 
Plasmonic mode: off-sate 2.632 0.029 
Plasmonic mode: on-sate 2.598 1.854 

 

5.2.2.3 Optimization 

To minimize the coupling losses, from input and output ports to the modulation 

plasmonic section, the effective refractive index and the width were matched. This also 

minimizes the overall insertion losses of the modulator. Figure 5.15 shows the effective 

refractive indices for the slot mode of the slot input/output ports and the off-sate mode of 

the plasmonic modulation section versus the width of each waveguide. The width of the 

modulation adjusted to be 525 nm.  



 

  
53 

 
Figure 5.15 - The effective refractive index of the slot mode and plasmonic (off-state) mode vs. 

width of the waveguide. 

5.2.3 Principle of operation 

The excitation of the modulator is through exciting the slot mode in the input port. 

The power propagates through the slot waveguide till it reaches the modulation section. 

Since, the effective refractive index of the slot waveguide matches that of plasmonic 

modulation section, most of the power couples to the modulation section and 

propagates through the SiO2 layer. This results in very small insertion losses of the 

whole modulator.  

When an external voltage applied to the modulation section, an accumulation 

layer is formed at the ITO- HfO2 interface. Increasing the applied voltage decreases the 

real permittivity and increases the imaginary permittivity of the ITO. Using Drude model, 

the change in the real and imaginary permittivities of the ITO can be predicted [56]. 

When the applied voltage reaches 2.35 V, corresponding to electron (carrier) 

concentration of 6.4 x 10-20 cm-3, the real permittivity of the ITO reaches zero; 

accordingly, the ITO is considered an epsilon-near-zero material. 

Consequently, the power that couples from the input port to the modulation 

section propagates through the ITO layer which results in less coupling. Also, applying 

external electric field to the ITO-based modulation section introduces additional intrinsic 

losses.  

5.2.4 Results and Modulation properties 

Finite difference time domain simulations, with perfect matching layer (PML) 

absorbing boundary conditions, were carried out to simulate and analyze this design. An 
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ER of 2.3 dB and IL of 0.69 dB are achieved for a 1-μm-long modulation section, at the 

telecommunications wavelength (1.55 μm). Increasing the length of the modulation 

section increases the ER significantly. The ER and IL for different modulation section 

lengths are listed in Table 2. A figure of merit (FOM) should be described to evaluate 

the modulation performance. We defined FOM as the ratio between the ER and IL as 

3pq = 12/st. Also, FOM for different modulation section lengths is listed in Table 5-5. 

Figure 5.16 shows the normalized mode intensity, with respect to the input intensity, at 

the center of the SiO2 layer of the input waveguide along the propagation length when 

there is no voltage and with applied voltage across the modulation section. IL and ER 

as function of wavelength are shown in Figure 5.17 for the 10-μm-long modulation 

section. 

 

Table 5-5 - IL, ER, and FOM for different modulation section lengths. 

Length of the modulator 
(modulation section) (um) IL ER FOM 

1 0.69 2.3 3.34 
2 0.74 4 5.43 
3 0.75 5.64 7.49 
5 0.77 8.56 11.02 

10 1.01 15.49 15.34 
 

 

Figure 5.16 - The normalized intensity, with respect to the input, of the guided mode at the center 

of the SiO2 layer for (a) off- and (b) on-states. The dashed lines indicate the modulation section. 
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Figure 5.17 - IL and ER as a function of wavelength. 

 

The modulation speed is related to the capacitance and the resistance of the 

modulator as the modulation speed limit is defined as vwxy = 	 (2o	2z){|. Also, energy 

consumption is related to the capacitance and modulation voltage as the energy 

consumption per bit can be calculated using E/bit = zMl/2. Electrostatic RC analysis 

carried out with finite element method using a commercial solver, to calculate the 

capacitance of the modulation section. The capacitance for the 10 μm long modulation 

section is found to be 2.64 fF. The resistance of the modulator is assumed to be 100 Ω. 

This lead to fmax ≈ 600 GHz and E/bit = 7 fJ/bit.  

5.2.5 Conclusions 

An electro-optical absorption modulator based on ITO’s ENZ effect is studied. 

The design and the principle of operation are described. Modal and FDTD analysis were 

performed to verify and simulate the design.  An extinction ratio of 15.49 dB and an 

insertion loss of 1.01 dB can be achieved for 10 μm long modulation section. The 

design shows satisfactory results in terms of extinction ratio, insertion loss, foot print, 

and energy consumption. Also, this modulator has a potential for broadband operation 

due to the nonexistence of resonance effect. Such silicon-on insulator electro-optical 

modulators, with high extinction ratios, insertion losses, and low energy consumptions, 

are fundamental for bridging photonic platforms to the existing electronics. 
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5.3 Ring resonator based on this design 
Trials to construct a ring resonator modulator based in this design were 

performed. The input and the output waveguide are the slot waveguide, described in the 

previous sections, and the ring resonator is based on the ITO slot plasmonic 

waveguide, described in the previous sections. The trials showed that the ITO slot 

plasmonic waveguide is very lossy for a ring design.  

Another trials performed to study the ring resonator design based on the input 

and the output waveguide are ITO slot plasmonic waveguide, and the ring resonator is 

based on the slot waveguide. The trials showed that the slot waveguide cannot be 

implemented for ring resonator because its high bend losses.  
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 VO2 based electro-optical modulators 

Design 4: Hybrid plasmonic-vanadium dioxide electro-optical switch 
based modulator 8 

Abstract 

This work presents the study and the design of optical switch based on a hybrid 

plasmonic-vanadium dioxide waveguide. The power-attenuating mechanism takes the 

advantage of the phase change properties of vanadium dioxide that exhibits a change in 

the real and complex refractive indices upon switching from the dielectric phase to the 

metallic phase. The proposed switch designed to operate under the telecommunication 

wavelength. The switch was analyzed by 3D full electro-magnetic simulations. An ER 

per unit length of 4.32 dB/μm and IL per unit length of 0.88 dB/μm are realized for the 

proposed electro-optical switch. The proposed electro-optical switch has the 

advantages of small device foot-print, compatible with the existing VLSI-CMOS 

technology and broadband operation.  

6.1.1 Introduction 

Optical communications have revolutionized the telecommunication industry. 

Nowadays, optical communication systems are taking over traditional electronic 

baseband systems, due to the numerous advantages such as high bandwidth, relatively 

low transmission losses for long distances, low cost, and robustness to external 

electromagnetic interference. Electro-optical modulators (EOMs) are indispensable 

components for integrating photonic circuits with existing electronic circuitries [6]. 

Current optical communication systems are focusing on integrating dense EOMs to 

reduce both the cost and the energy consumption.  

All-silicon EOMs have been realized based on carrier concentration change effect 

including, but not limited to, Mach–Zehnder interferometers (MZI), ring resonators, and 

metal-oxide- semiconductor capacitors [13]–[15], [120]–[122]. Carrier concentration 

change effect, considered as electro-absorption mechanism, utilizes changes in carrier 

density to control the real and imaginary parts of the refractive index of silicon [35]. 

Designs based on MZIs are encouraging because of their wide bandwidth and high 

                                                
8
 Parts of this section are submitted to [G]. 
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modulation speeds. However, they have large footprints [123]. On the other hand, 

resonant EOMs have a very narrow bandwidth [123].  

The main issue with all-silicon EOMs is that their modulation speed are limited to 

few gigahertz due to the lifetime of the carriers [120], [123]. Also, they are sensitive to 

the fluctuations in the ambient temperature [124]. EOMs with higher modulation speed 

and less sensitive to the temperature are proposed using III-V materials such as lithium 

niobate and  gallium arsenide [125]. However, these materials are not compatible with 

the existing CMOS technology which hinders the integration for on-chip applications.  

Hybrid structures have been proposed by combining silicon with other novel 

materials such as organic polymers, graphene, indium-tin-oxide (ITO), and vanadium 

dioxide (VO2) [31], [69], [74], [81], [118], [126]–[128]. Such structures reap the 

advantages of overcoming silicon intrinsic limitations and maintaining CMOS 

compatibility.  

Vanadium dioxide (VO2), a phase change material, alters the real and complex 

refractive indices upon switching from the dielectric phase to the metallic phase [51]. 

VO2 has been emerging as a noteworthy candidate to combine with silicon in photonic 

devices due to its phase change property [129]. At room temperature, VO2 is in the 

insulator dielectric state. Its phase can be altered to a conductive metallic state. This 

insulator-metal phase change can be triggered thermally, optically, electrically, or 

mechanically on ultrafast time scales [130]–[137]. At the telecommunication wavelength 

(1.55 μm), its real refractive index drops from 2.86 to 1.66, and the imaginary part rises 

from 0.26 to 3.29 [138], [139]. This change in the refractive index is three to four order 

of magnitude higher than the maximum index change achievable by carrier 

concentration change effect is silicon. This feature enables designing optical modulators 

with high extinction ratio (ER) and small foot-print; however, the high absorption of VO2 

results in high insertion loss (IL) [79].  

Plasmonics offer a parallel path for realizing compact and low power EOMs 

through the high field confinement at the interface between conductors and dielectrics 

[140], [141]. Howver, plasmonic EOMs suffer from high insertion losses. Hybrid Si-VO2 

optical switches have been demonstrated utilizing the surface plasmon polariton 

propagating at the interface between silver and VO2 [81], [142]. Designing a hybrid 
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plasmonic-vanadium dioxide electro-optical modulator with high ER, low IL, and small 

footprint is very challenging. 

In this paper, we propose an electro-optical switch based on silicon-on-insulator 

rib waveguide coated with VO2 and metal layers. The optical wave is guided in the 

silicon layer. The refractive index of VO2 changes with the applied electric field; that 

results in changes in the mode profile which affects the power transmission. The 

change in the VO2 refractive index significantly changes the effective refractive index of 

the propagating mode as the mode changes from a photonic mode propagating in in the 

silicon layer to a plasmonic mode propagating at the Si-VO2 interface. A finite difference 

time domain (FDTD) tool with a perfect matching layer (PML) boundary conditions is 

used to optimize, simulate and calculate the insertion losses, propagation losses, and 

extinction ratios [105]. An ER per unit length of 4.32 dB/μm and IL per unit length of 

0.88 dB/μm are realized for the proposed electro-optical switch.  

In the next section, the design is illustrated. In section 3, the principle of operation 

is discussed. The optimizations and the modulation properties of the proposed design 

are demonstrated, respectively, in section 4 and 5. Finally, in section 6, brief summary 

and concluding notes are delivered. 

6.1.2 Design 

The proposed hybrid absorption switch is based on silicon-on-insulator (SOI) rib 

waveguide. To modulate the optical power, the modulation section is formed by coating 

the SOI rib waveguide with VO2 and metal layers as shown in Figure 6.1. The optical 

wave is guided in the Si-rib.  

This design can be fabricated on silicon-on-insulator (SOI) standard wafer. A 

thick layer of silicon is etched; then, selective etching is used to form lower part of the 

rib waveguide. VO2 layer is, then, vacuum-deposited coating the upper part of the Si-rib 

waveguide as shown in figure 1. Metal (silver) electrode was evaporated onto the 

surface of the VO2 layer.  

 



 

  
60 

 
Figure 6.1 - Schematic layout of the proposed hybrid electro-absorption switch. (b) Cross section 

view of the electro-absorption switch. 

  

6.1.3 Principle of operation 

The optical wave is excited through the SOI-rib waveguide. In the off-state, when 

there is no external electric field applied to the modulation section is applied, the optical 

wave propagates through plasmonic modulation section with minor losses The metal 

layer above the VO2 layer acts as metallic contact for applying the external electric field; 

the Si-rib waveguide is kept grounded. When an external electric field is applied to the 

metal layer, the VO2 layer switches from the dielectric phase to the metallic phase. 

Thus, the effective refractive index of the propagating mode changes; as well as, the 

losses upturns. This results in perturbing the propagating power.  

An Eigen mode finite difference solver is used to analyze the modes and 

calculate the losses [107]. The field distribution (|Ez|) of Si-rib input waveguide mode is 

shown in Figure 6.2.  
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Figure 6.2 - Field distribution (|Ez|) of the input mode of the Si-rib waveguide. 

 
The field distribution (|Ez|) of the modulation section modes, off-state and on-

state, are shown in Figure 6.3. The effective refractive indices and the propagation 

losses of these modes are summarized in Table 6-1. 

 
Figure 6.3 - Field distribution (|Ez|) of the propagating modes of the plasmonic modulation section: 

(a) off-state and (b) on-state. 

 

 
Table 6-1 - Effective refractive indices and the propagation losses for the modes at 1.55 µM 

Mode Effective 
refractive index 

Propagatio
n loss 

(dB/µm) 
Si-rib input mode 2.296 � 0 

Off-state modulation section 2.284 0.829 
On-state modulation section 2.166 3.785 
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6.1.4 Device optimization 

The main goal in designing an electro-optical modulator is 1) maximizing the 

extinction ratio (ER), 2) minimizing the insertion loss (IL) and 3) reducing the device 

foot-print. In the proposed design, three parameters (h1, h2, and w) need to be 

optimized.  

 

Two dimensional modal analysis is used to optimize the dimensions by defining 

modal figure-of-merit (FOMmodal). FOMmodal, as described in (1), is defined as the ratio of 

the modal propagation loss in the on-state to the modal propagation loss in the off-state. 

FOMmodal is a direct measure of the ER to the IL.  

 

    FOM	w$Éx% = 	
B5ÑBQfQ[;ÑC	ÖÑÜÜ	áàâäãåãç
B5ÑBQfQ[;ÑC	ÖÑÜÜ	áééâäãåãç

   (6-1) 

 

To optimize h2 and w, h1 is set to be 100 nm and the thickness of the VO2 layer is 

set to be 30 nm. Figure 6.4 illustrates the FOMmodal as a function of w for different 

values of h2.  

 

 

Figure 6.4 - FOMmodal versus the width of the Si-rib waveguide for different values for h1. 

 

 

The highest FOMmodal is achieved at h2= 50 nm and w = 500 nm. The mode 

vanishes when reducing h2 less than 50 nm as well reducing w less than 500 nm. 

Figure 6.5 shows the FOMmodal versus the thickness of the VO2 layer at h2= 50 nm and 

w = 500 nm. 
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Figure 6.5 - FOMmodal versus the thickness of the VO2 layer at h2= 50 nm and w = 500 nm. 

 
The insertion loss and extinction ratio increases as the thickness of the VO2 layer 

increases; however, the FOMmodal reaches its maximum value over the range from 50 to 

70 nm of thickness of VO2 layer. After 70 nm thickness the insertion loss rises rapidly 

reducing the FOMmodal. The thickness of the VO2 layer is selected to be 50 nm, because 

the thinner the VO2 layer, the less voltage needed to make the transition from the 

dielectric state to the metallic state. 

6.1.5 Modulation properties of the hybrid electro-optical switch 

Finite difference time domain simulations, with perfect matching layer (PML) 

absorbing boundary conditions, were conducted to simulate and analyze this design. 

Figure 6.6 shows the normalized mode intensity, with respect to the input intensity, at 

the center of the Si layer along the propagation length, for 1-μm long modulation 

section, when there is no external electric field and with applied external electric field 

across the modulation section. 
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Figure 6.6 - The normalized intensity, with respect to the input, of the guided mode at the center of 

the Si layer for (a) off and (b) on-states. The dashed lines indicate the modulation section. 

 
Figure 6.7 shows the IL and ER versus wavelength for 1 μm long modulation 

section at the telecommunication wavelength (1.55 μm). An IL of 0.97 dB and ER of 

4.85 dB are achieved for 1-μm long modulation section, at the telecommunications 

wavelength (1.55 μm). Both the IL and ER are almost constant over a wide range of 

bandwidth.  

 

 
Figure 6.7 - IL and ER as a function of wavelength for 1-μm long modulation section. 

 
Increasing the length of the modulation section increases the IL and the ER as 

illustrated in Figure 6.8. It is clear from the Figure 6.8 that the relation between the the 
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length of the modulation section and both the IL and the ER is linear. As illustrated, the 

proposed electro-optical switch has an IL per unit length of 0.88 dB/μm; as well as, an 

ER per unit length of 4.32 dB/μm. FOM is defined as the ratio between the ER and IL. 

For the proposed design, the FOM is almost constant, with value of 4.9, for different 

lengths of the modulation section. 

 

 
Figure 6.8 - IL and ER, at 1.55 μm, versus the length of modulation section. 

 
The phase transition from dielectric state to conducting state of VO2 can be 

produced by applying external electric field to the Ag contacts within nanosecond time 

scales [143], [144]. However, the modulation speed of the devices is limited by the 

relaxation time VO2 needs to restore its dielectric state [145]. The modulation speed of 

the proposed design is estimated to be 1 GHz based on experimental measurements of 

electro-optical modulators based on VO2 [144]. This limiting factor can be improved by 

integrating an electrical biasing to quickly root out excess carriers; this technique is 

used in carrier depletion type Si-optical modulators [37].  

Around room temperature, VO2 exhibits an electric field threshold of 6.5x10
7
 V/m 

[132]. The thickness of VO2 layer in the proposed design is 50 nm. Thus the required 

drive voltage of the proposed electro-optical switch is 3.25 V. 

6.1.6 Conclusion 

An electro-optic hybrid plasmonic switch based on the phase change properties 

of VO2 is developed and verified numerically using FDTD simulations. We demonstrated 

a 4.32 dB/μm ER per unit length and 0.88 dB/μm IL per unit length. The drive voltage 

calculated to be around 3.3 V. the proposed electro-optic switch exhibits a wide 
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bandwidth operation near the telecommunication wavelength. The design has 

advantages including, but not limited to, small device foot-print and compatibility to be 

integrated on-chip. Such hybrid plasmonic electro-optic switch based modulators, with 

high extinction ratios, insertion losses, and small foot-print are the milestone for 

integrating photonic circuitries to the existing electronic circuitries. 
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 Conclusions and future work  
Optical technology is revolutionizing both optical communication systems and on-

chip interconnects. Electro-optical modulators are key components in optical 

communication systems since they modulate digital electronic signals to optical signals 

to travel over the optical fibers for long distances with minor losses. Also, electro-optical 

modulators that can be integrated on the same substrate with electronic circuits offering 

solution to the bottleneck of on-chip copper interconnects.  

The same time the demand for optical interconnects increased, a remarkable 

expansion happened to the silicon photonics. The same material used for building 

electronic chips for decades is, now, mature enough to build optical integrated chips. 

Nowadays, integrated optoelectronics, integrated monolithically in Si, combine both the 

performance of photonics and the intelligence of electronics.  

Many Si EOMs are designed and studied utilizing carrier concentration change 

effect, the most important modulation mechanism affecting the real and imaginary parts 

of the refractive index of Si. This mechanism has a drawback that the life time of 

carriers limits the speed of the devices. This raised the necessity for investigating hybrid 

combinations of novel materials with silicon. This fulfils the functions silicon is incapable 

to provide alone. Organic polymers, indium-tin-oxide, and vanadium dioxide are among 

these novel materials. 

In this thesis, a brief background about the mechanisms, materials, and 

structures used for external optical modulation are presented. Also, state-of-art EOMs 

are introduced. After this, novel electro-optical modulators, based on different active 

material and structures, are proposed and studied.  

An organic hybrid-plasmonic optical directional coupler is studied utilizing the 

change of polymer electro-optic characteristics upon applying an external electric field. 

A finite element method used to simulate and study this design. For 39 μm modulation 

length, an extinction ratio of 14.34 dB is achieved.  

A low insertion loss compact silicon electro-optic modulator is studied, using a 

finite difference time domain method with perfect matching layer (PML) absorbing 

boundary conditions. The EOM is based on tri-coupled waveguides, two silicon slot 

waveguides separated by an ITO based plasmonic waveguide.  The electrical tuning 

mechanism is designed to both change the coupling conditions and introduce additional 
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intrinsic losses upon applying an external electric field to the middle ITO based 

plasmonic waveguide. Based on this design, extinction ratio of 6.14dB and insertion 

losses of 0.06 dB are realized at 21 µm modulator length; as well as, extinction ratio of 

11.43 dB and insertion losses of 1.65 dB are realized at 34 µm modulator length. 

A hybrid silicon electro-absorption modulator is introduced and analyzed. The 

device is based on dielectric slot waveguide with an ITO plasmonic modulation section. 

For 10 μm long modulation section, an extinction ratio of 15.49 dB and an insertion loss 

of 1.01 dB are achieved. Modal and finite difference time domain analysis were 

performed to verify and simulate the design. 

Optical switch based on a hybrid plasmonic-vanadium dioxide waveguide is 

presented. The power-attenuating mechanism takes the advantage of the phase 

change properties of vanadium dioxide that exhibits a change in the real and complex 

refractive indices upon switching from the dielectric phase to the metallic phase. Under 

the telecommunication wavelength, an ER per unit length of 4.32 dB/μm and IL per unit 

length of 0.88 dB/μm are realized. Finite difference time domain analysis used simulate 

and study the design. 

Different materials used for different device structures. Electro-optical polymers 

utilize linear Pockels effect with an electro-optic coefficient that is higher five times than 

lithium niobate. EOPs can be used in structures based on interference such as 

directional couplers and Mach-Zehnder interferometers. Electro-optical polymers based 

modulators have very low insertion loss. However, they have large device footprints 

since the modulation mechanism is based on changing the phase of the propagating 

waves. Also, devices based on EOPs are easier to fabricate compared with devices 

based on other active materials.  

Carrier density of ITO can be controlled when used in MOS-structures. ITO 

exhibits epsilon-near-zero effect. This effect is appealing for researches to tune the real 

and imaginary parts of the permittivity of the ITO. Devices based on indium-tin-oxide 

have high extinction ratios and small device footprints. Yet, they suffer from high 

insertion losses due to the strong field enhancement in the lossy plasmonic 

waveguides. These devices have a very high speeds. 

Vanadium dioxide is considered as a phase change material. It undergoes a 

transformation from semiconductor state to metallic state when subjected to external 
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stimulus. It can be used for electro-optic modulation. Devices based on VO2 have small 

footprints and high extinction ratios. Still, the modulation speed of such devices is 

estimated to be 1 GHz, based on experimental measurements, due to the relaxation 

time VO2 needs to restore its dielectric state. As extension to this work, a Si race-track 

resonator based modulator is to be studied featuring VO2 deposited on one of the 

straight sides of the race-track resonator.  

Fabricating these designs and to experimentally measuring all the parameters are 

planned as an extension to this work. Also, combining more than one active material in 

the same design is to be studied. 

The proposed electro-optical devices have the advantages of small device foot-

print and compatibility with the existing VLSI-CMOS technology. Also, broadband 

operation of these modulators are promising due to the nonexistence of resonance 

effect. Such silicon-on insulator electro-optical modulators with high extinction ratios, 

low insertion losses, and low power consumptions are fundamental for bridging photonic 

platforms to the existing electronics. A new stages of integration will ultimately set.  
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