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Abstract 

Improving the performance of solar energy harvesting martials is a challenge facing 

the renewable energy industry. Over the past few decades, metal oxides have been 

extensively explored as photoelectrodes for solar-driven production of fuel due to their 

exceptional stability, semiconducting properties, abundance, and low cost. However, most 

metal oxides have absorption activity that is limited to the ultraviolet spectral region because 

of their wide band gap (> 3.0 eV). This is inconvenient because the ultraviolet spectral region 

contains only 3-5% of all incident solar energy. The current semiconductor technologies resort 

to either (i) doping as a means of narrowing the band-gap and enhancing light absorption, or 

(ii) decoration with metals to enhance charge separation. In the first part of the thesis, the 

synthesis of highly ordered titanium oxynitride nanotube arrays sensitized with Ag 

nanoparticles (Ag/TiON) was studied for the first time.  Ag/TiON proved to be an attractive 

class of materials for visible-light-driven water splitting. The nanostructure topology of TiO2, 

TiON and Ag/TiON was investigated using FESEM and TEM. The X-ray photoelectron 

spectroscopy (XPS) and the energy dispersive X-ray spectroscopy (EDS) analyses confirm the 

formation of the oxynitride structure. Upon their use to split water photoelectrochemically 

under AM 1.5 G illumination (100 mW/cm2, 0.1 M KOH), the titanium oxynitride nanotube 

array films showed significant increase in the photocurrent (6 mA/cm2) compared to the TiO2 

nanotubes counterpart (0.15 mA/cm2). Moreover, decorating the TiON nanotubes with Ag 

nanoparticles (13 ±2 nm in size) resulted in exceptionally high photocurrent reaching 14 

mA/cm2 at 1.2 VNHE. This enhancement in the photocurrent is related to the synergistic effects 

of Ag decoration, nitrogen doping, and the unique structural properties of the fabricated 

nanotube arrays. In the second part of the thesis, the effect of Ni alloying with Cu on the 

electrochemical reduction of CO2
 was studied. The GAXRD analysis confirmed the formation 

of mixed Cu-Ni catalysts. Linear sweep scans showed the Cu70Ni30 to have the lowest 

overpotential (-0.5VNHE) and highest cathodic current (-1.8mA/cm2). Chronoamperometry 

measurements, at -0.5 VNHE in CO2-saturated 0.1M KOH, confirmed similar pattern when no 

limiting current was observed for the electrochemical reduction of CO2. This volcano effect of 

exceptionally high current and low overpotential was unique for 30% Ni and was attributed 

to CO2 adsorption and superior charge transfer kinetics.  
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1 Chapter 1: Introduction 

1.1 The Energy Challenge 

It is not news that the world’s oil and gas prices are continuously rising due to their imminent 

exhaustion but more importantly, their demand is also increasing with the rise in population 

and the rise in energy demanding technologies. According to the world population count 

reported by the United nations, the world witnessed its greatest population burst in history 

from about 1.6 billion in 1900 to about 6 billion in 2000. Additionally, the industrial revolution 

of the 18th and 19th century relied on coal fuel energy; meanwhile the 20th century shifted to 

liquid fuel and natural gas. In 2009, the Association for the Study of Peak Oil & Gas (ASPO) 

projected that the oil and gas reserves would run out in 35-37 years. The forecast continued 

to state that by 2115 all three major fossil fuels will be depleted. Therefore, fossil fuel reserves 

are running out and we need to find alternative methods for fuel generation 1, 2. 

Other unforeseen circumstances to our dependence on fossil fuels is its direct contribution to 

the greenhouse effect. Where 70% of the greenhouse effect results from CO2 gas, the main 

byproduct of burning fossil fuels. Trapped CO2 gas helps store more of the sun’s heat energy 

leading to an increase in the earth’s average temperature and the melting of the polar icecaps, 

this in turn leads to an increase in sea level. CO2 emissions in the Arab world are also on the 

rise. Figure 1.1 summarizes CO2 emissions from the Arab world. With Saudi Arabia being the 

highest producer of oil and gas, Egypt is the second most emitter of CO2. Therefore, research 

initiatives in Egypt have been directed towards alternative clean energy. Due to this rise in 

CO2 levels, the US increased vegetative landscapes to lower CO2 through plant 

photosynthesis. Similar initiatives in the Arab world will hopefully follow 3, 4.  
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Figure 1.1 CO2 emissions of industrial countries in the Arab world from year 1995 to 2015 4. 

 

1.2 Fuels for Energy 

The world first started reviewing this energy crisis when Nobel prize winner, Rick Smalley 

studied renewable energy sources as alternatives to fossil fuels back in 1992. It was studied 

that the world needs to find new sources of energy that are not coal, petroleum or natural 

gas. The new source needs to be clean and renewable such as solar, geothermal or wind 

energy. This new renewable source needs to be usable, storable, clean, high in energy density 

and be able to provide the projected energy demand of the 28 TWy for year 2050. Therefore, 

a switch from traditional energy sources must be made 1. Current energy sources and energy 

projections for 2050 are summarized in Figure 1.2. Figure 1.3 shows how our dependence on 

our existing energy technologies should change 5. 
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Figure 1.2 Summary of traditional and renewable energy sources 5 

 

Figure 1.3 The world’s dependence on energy sources and projections for 2050 5. 
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1.2.1 Hydrogen 

Hydrogen is important for many applications such as power generation, domestic and 

industrial uses, vehicles, navigation and space. More detail about these six main fields is 

illustrated in Figure 1.4 6.  

 

Figure 1.4 Importance of Hydrogen in the economy 6 

Hydrogen gas is a simple molecule composed of two hydrogen atoms. Hydrogen is not a 

primary source of energy like electricity. However, it can be used as an energy carrier. This is 

due to it having the highest unit energy per mass [lower heating value (LHV) and higher 

heating value (HHV)] of all the fuels as compared in Table 1.1 1. Hydrogen can be easily 

transported as a gas, liquid or metal hydride. This makes hydrogen particularly attractive for 
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the transportation industry as it can be utilized by fuel cells to generate electricity 7. The 

current technologies used to produce hydrogen all rely on non-renewable sources of energy 

and may lead to carbon dioxide gas production. Carbon Dioxide is the main contributor to the 

greenhouse effect and we need to find efficient methods to reduce it back to usable fuel. 

Production of Hydrogen from water and the reduction of carbon dioxide is promising and 

efficient, only when using clean renewable solar energy, for example wind and tidal energy8,9. 

Table 1.1 A comparison of common fuels and their properties 1. 

Fuel 
LHV 

(MJ/kg) 
HHV 

(MJ/kg) 

Stoichiometric 
Air/Fuel 

Ratio (kg) 
Combustible 

Range (%) 

Flame 
Temperature 

(°C) 

Min. 
Ignition 

Energy (MJ) 

AutoIgnition 
Temperature 

(°C) 

Methane 50.0 55.5 17.2 5–15 1914 0.30 540-630 
Propane 45.6 50.3 15.6 2.1–9.5 1925 0.30 450 
Octane 47.9 15.1 0.31 0.95-6.0 1980 0.26 415 
Methanol 18.0 22.7 6.5 6.7-36.0 1870 0.14 460 
Hydrogen 119.9 141.6 34.3 4.0-75.0 2207 0.017 585 
Gasoline 44.5 47.3 14.6 1.3-7.1 2307 0.29 260-460 
Diesel 42.5 44.8 14.5 0.6-5.5 2327  180-320 

1.2.2 Carbon dioxide 

Carbon dioxide (O=C=O) is a molecule present in the earth’s atmosphere at 0.039% and serves 

mainly as a source of carbon for plant photosynthesis. It is a colorless odorless gas that is 

constantly rising in our earth’s atmosphere due to the burning of fossil fuels from non-

renewable sources of energy like for example, coal and petrol. Current global CO2 emissions 

are approximately 37 billion tons and is estimated to reach over 50 billion tons in the next 

twenty years 10. CO2 is the main contributor to global warming and the earth has seen a rise 

in temperature of about 0.6K in the last century. Reducing current Carbon dioxide levels may 

be addressed using systems that burn fossil fuels more efficiently; using carbon free sources; 

or using post emission carbon capture technologies 11. Other approaches include carbon 

sequestration, carbon dioxide absorption into chemical solvents and solid materials.  
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1.3 Solar-driven fuel production 

When we think about solar energy we need to understand that while the sun can provide 

direct energy e.g. photovoltaics and thermal energy absorbers. Its energy may also be 

converted into chemical fuels. 

1.3.1 Hydrogen 

Water is the most abundant molecule on earth. It contains two atoms of hydrogen and one 

atom of oxygen. The splitting of water has been vastly sought for more than 200 years as a 

means of hydrogen production. Electrolysis of water with an energy of 1.229 eV (STP) breaks 

away the tightly bound hydrogen in water, liberating H2 gas. The reaction below describes the 

energy transfer: 

H2O(l) + electrical energy → H2(g) + ½O2(g) 1.1 

Since the sun can not directly split water molecules into oxygen and hydrogen, a light 

absorbing material (such as chromophore, semiconductors or dye) must be used to harvest 

the suns energy and form electron/hole pairs. In 1972, Honda and Fujishima were the first to 

use TiO2 as anode and Pt as cathode in aqueous electrolyte. This was the first time a 

photoelectrochemical (PEC) cell setup was designed to split water 12. In this setup (Figure 1.5) 

oxygen was formed at the TiO2 anode and hydrogen was formed at the Pt cathode. In 

comparison, TiO2 showed better stability in water than silicon (Si) and gallium arsenide 

(GaAs), but suffers poor efficiency of about 0.1%. this restriction in performance is now 

understood to be a limitation in the semiconductor material and in the mechanism of the 

water splitting which will be discussed in Chapter 2. 
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Figure 1.5 PEC three electrode setup  

Despite it’s low efficacy the research of Honda and Fujishima has opened the doors to many 

future investigations of semiconductors and their properties in water splitting. This thesis is 

an attempt to explore these properties. 
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1.3.2 Carbon dioxide 

Carbon dioxide is the oxidized byproduct of fossil fuel combustion and the most stable form 

of this gas. The only possible way to convert and recycle this product is to chemically reduce 

it. There are many attempts to reduce this gas into usable fuel 13. Like the splitting of water, 

the reduction of carbon dioxide to hydrocarbons is a thermodynamically uphill process (ΔG° 

= -394.359 kJ/mol), requiring many steps. The best case would be a setup that allows for the 

splitting of water to liberate hydrogen and the use of this hydrogen for carbon dioxide 

reduction (as shown in Figure 1.6). This is only economically feasible if the input of energy is 

none other than solar energy, mimicking natural photosynthesis. All other sources of CO2 

reduction are economically unfeasible. 

  

Figure 1.6 Photoelectrocatalytic CO2 reduction setup 14 

However, the reduction reaction of CO2 isn’t straight forward. A multitude of probable 

reactions take place and the formed products may undergo further reduction (Figure 1.7). 
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Therefore, understanding the reduction of CO2 and tuning the yield selectivity is an unclear 

and relatively new and challenging field of research. 

 

Figure 1.7 Proposed reaction pathways for the CO2 reduction in aqueous or gaseous systems 15. 
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2 Chapter 2: Scientific Background & Literature 

This chapter presents literature pertaining to scientific background and the fabrication 

and modifications made to titanium dioxide. This chapter pertains to the experimental work 

and discussions covered in this thesis. The use of titanium dioxide semiconductors in the solar 

water splitting and photoelectrocatalytic carbon dioxide reduction will be discussed. TiO2 is a 

wide band-gap material and is therefore a non-conductive metal at STP. TiO2 exists in three 

crystal configurations; Rutile, Anatase and Brookite; having band-gaps of 3 eV, 3.2 eV and 3.11 

eV, respectively. These three configurations contain both covalent and ionic bonds between 

the Ti and O atoms. In Figure 2.1, each blue octagon comprises of one Ti and six O atoms 16, 

17. Therefore, each Ti atom has six bonds with O and each O has three bonds with Ti atoms. 

Brookite Rutile Anatase 

   

Figure 2.1 TiO2 crystal structures: Rutile and Anatase (tetragonal) and Brookite (orthorhombic)17  

Nanotechnology is the science of studying and manipulating molecules at the nanoscale (1-

100nm).  The purpose is to fabricate novel devices with improvement in properties, over the 

bulk materials. Through structural modification of the surface, the surface to volume ratio 

increases and increases the materials’ sensitivity to physical, chemical or biological reactions. 

Therefore, many structural devices such as nanoparticles, nanowires and nanotubes are 
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fabricated on the nanoscale for biological and chemical applications. Similarly, the 

photocatalytic activity of TiO2 can be improved by nanostructures such as nanotubes. 

2.1 Heterogenous catalysis 

Palmisano and Sclafani defined heterogenous photocatalysis as “a catalytic process during 

which one or more reaction steps occur by means of electron–hole pairs photo generated on 

the surface of semiconducting materials illuminated by light of suitable energy.” 18. This 

differs from thermal catalyzed reactions by having various product selectivity. 

2.1.1 Principles of photocatalysis 

Characteristic of each semiconductor is its band gap, which is defined as the energy difference 

(ΔEg) between the valence band (VB) and the conduction band (CB). VB is the value of the 

highest electron occupied molecular orbital, whereas the CB is the value of the lowest 

electron unoccupied molecular orbital. When a semiconductor is illuminated with photons of 

energy equal to or greater than the band gap, electron/hole pairs are generated, as depicted 

in Figure 2.2 19. When these electron/hole pairs reach the surface, they react with adsorbed 

species to induce favorable redox reactions. Thermodynamically, holes will oxidize adsorbates 

when the VB has a more positive redox potential and the CB will reduce an adsorbate when 

its redox potential is more negative. The electron/hole pair will recombine in the absence of 

a species to interact with, after the termination of light. An example of oxidation is the 

liberation of O2 and an example of reduction is the liberation of H2, from H2O. in the presence 

of CO2, the photocathode may also be used to reduce CO2 to hydrocarbons such as HCOOH, 

HCOH, CH3OH and CH4. 
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Figure 2.2 Schematic representation of the generation of electron/hole pairs upon illuminating a semiconductor. (1) Light 
generated electron/hole pair (2) electrons and holes move to the surface of the material (3) electrons reduce and holes 

oxidize adsorbed species (4) unused electron/hole pairs recombine 19 

Other factors that influence a photocatalytic reaction are 20: 

• Temperature and concentration of the reactants affects the reaction kinetics; 

• pH of the supporting electrolyte 

• an oversupply of photons increases recombination 

To improve the light capturing capabilities of semiconductors, other components may be 

added to improve the overall efficiency and adapt each system to its applications. Most 

semiconductors studied are wide band-gap metal oxide semiconductors that absorb in the 

UV region of the light spectrum. Sensitizing these systems with metals and light absorbing 

dyes extends their light sensitivity to the visible region of the light spectrum, as shown in 

Figure 2.3. A dye is incorporated to absorb visible light (λ 450-700nm) then injects the electron 

in the semiconductor. S0 = ground state, S1 = excited state and S+ = one electron oxidized state 
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of the sensitizer. Electrons then transfer to the metal surface where H2 evolution is then 

catalyzed from an aqueous solution 21. 

 

Figure 2.3 Schematic of a metal-semiconductor dye sensitized system 22 

Other binary systems combine a wide band-gap with a narrow band-gap semiconductor. 

Visible light is absorbed by the narrow band-gap semiconductor and generated electrons are 

then injected into the wide band-gap semiconductor, as depicted in Figure 2.4. This may help 

in electron hole separation where the hole interacts with the electron donor (D) 22. 

 

Figure 2.4 Schematic of a binary semiconductor system of TiO2/CdS and the evolution of Hydrogen upon visible light 
absorption 22. 

The third system involves doping of the semiconductor with transition metals cations to 

introduce new states is the forbidden region of the band-gap. These new states allow visible 

light to excite electrons into the CB as depicted in Figure 2.5. 
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Figure 2.5 Schematic of transition metal (Ni) doping to tune absorption from λ < 370nm to λ < 500nm 22. 

Another approach to narrowing the band-gap of semiconductors is the substitution of some 

oxygen of the metal oxide structure with elements such as nitrogen, sulfur or carbon amongst 

others. This is particularly effective in band-gap narrowing because the p orbitals of the 

substitution are located right above the p orbitals of the oxygen in the VB, as depicted in 

Figure 2.6. 

 

Figure 2.6 Schematic of band-gap narrowing though anion substitution 22. 
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2.1.2 Thermodynamics of water splitting 

For water splitting, the change in Gibb’s free energy is positive (ΔG = 238 kJ mol−1). Therefore, 

at standard temperature and pressure the splitting of water is not a spontaneous process and 

requires the input of energy or external bias according to the Nernst equation. 

H2O(l/g) + electrical energy → H2(g) + ½O2(g),  ΔG = n F Vrev 2-1 

In the above equation, n is the number of electrons involved in the net reaction; F is Faraday’s 

constant. Vrev is the input of volts needed. While Vrev is theoretically calculated at 1.229 VNHE, 

a bias of about 1.6V is required to overcome other resistances in the system. The objective in 

such systems is to optimize the materials in the best way to minimize this needed external 

bias as much as possible. Photoelectrochemical systems that incorporate a semiconductor as 

anode and a metal as cathode, are immersed in aqueous electrolyte and illuminated with a 

light source. Once connected, the system undergoes an equilibration of electrostatics across 

the solid-liquid interfaces. This equilibration process is given by the Nernst expression: 

𝐸𝑟𝑒𝑑𝑜𝑥 = 𝐸𝑟𝑒𝑑𝑜𝑥
° +

𝑅𝑇

𝑛𝐹
+ ln (

𝐶𝑜𝑥
𝐶𝑟𝑒𝑑

) 2-2 

Where, 𝐸𝑟𝑒𝑑𝑜𝑥 is the half-cell reduction potential at T  the temperature of operation in kelvin; 

𝐸𝑟𝑒𝑑𝑜𝑥
°  is the standard half-cell reduction potential; R is the universal gas constant; n is the 

number of electrons swapped in the reaction; F  is Faraday constant; Cox and Cred are the 

physical concentrations of the oxidized and reduced species of the redox couple, respectively. 

This equilibration is achieved by the transfer of charge between the interfaces resulting in 

band bending within the semiconductor phase. Before and after connection illustrations are 

depicted in Figure 2.7 (a) n-type (b) p-type semiconductors. As charge transfers, band bending 

continues until Fermi Level of the system = 𝐸𝑟𝑒𝑑𝑜𝑥. This band bending results in a region at 
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the interface know and the depletion layer, because it is depleted of electrons. This absence 

of electrons creates a region of positive charge within the semiconductor at the interface. 

This positive charge is counteracted by negative ions from the electrolyte solution that attach 

on to the semiconductor surface forming the Helmholtz layer 

(a) 

 

(b) 

Figure 2.7 The semicondictor electrolyte interface before & after connection for (a) n-type and (b) p-type semiconductors23 

At illumination, flat bending is reduced due to the generation of electrons, and the electric 

field of the depletion layer at the interface helps in separating the electrons that migrate to 

the surface from the holes that move to the bulk. It is clear to see now that the forward and 

reverse currents in the connected system are at balance and there is no net current flow at 

equilibration. This remains true if this semiconductor-liquid interface is not disturbed by an 

external bias. As shown in Figure 2.8(a), the fermi level of an n-type semiconductor is more 

positive that the redox potential of H+/H2, therefore the electrons of the semiconductor don 

not have enough energy to reduce the H2 in the solution and the water splitting reaction 

cannot proceed without an external anodic bias, as shown in Figure 2.8(b). An external anodic 
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bias shifts the fermi level of the cathode more negative allowing the reduction of H2 and water 

splitting now proceeds under illumination. 

(a) (b) 

 

Figure 2.8 A connected n-type semiconductor (a) under illumination and (b) under illumination with anodic current 6. 

Therefore, as explained above, an external bias may be needed in such n-type semiconductor 

systems to drive electrochemical processes. These systems may be used to drive oxidation 

and reduction processes such as water splitting and carbon dioxide reduction, with an anodic 

and cathodic bias respectively. Figure 2.9 shows the effect of positive and negative bias on an 

n-type semiconductor and how it relates to the 𝐸𝑟𝑒𝑑𝑜𝑥 of the system.  

 

Figure 2.9 Electrolyte interface for n-type semiconductor under (a) no bias (b) anodic bias and (c) cathodic bias; the arrows 
indicate the size and magnitude of the observed current 23. 



18 

2.1.3 Thermodynamics for the photocatalytic reduction of CO2 over TiO2 

In a photoelectrochemical cell, when incident light illuminates TiO2, electrons (e−) and 

positive holes (h+) are formed (2.3): 

2𝑇𝑖𝑂2
ℎ𝑣
→  𝑒𝑐𝑏

− (𝑇𝑖𝑂2) + ℎ𝑣𝑏
+ (𝑇𝑖𝑂2) 2.3 

Thereby, exciting and cleaving bonds of Ti4+ to Ti3+ as below (2.4): 

[(𝑇𝑖4+ − 𝑂2−)
ℎ𝑣
→ (𝑇𝑖3+ − 𝑂−)∗] 

2.4 

Those generated charges are kept separated by the electric field created within the 

semiconductor because of band bending (as explained in Section 2.1.2 and shown in Figure 

1.6). Holes interact with water adsorbed on the catalyst surface, leading to O2 and H+ 

evolution (2.5). 

H+ ions and CO2 molecules then interact with the generated electrons, to form •H radicals and 

•CO-2 radical, respectively (2.6 and 2.7). 

𝐻+ + 𝑒−
ℎ𝑣(𝑇𝑖3+−𝑂−)

∗

→          𝐻•  2.6 

𝐶𝑂2 + 𝑒
−
ℎ𝑣(𝑇𝑖3+−𝑂−)

∗

→          𝐶𝑂2
−•  2.7 

The •CO-2 (carbon dioxide anion radical) may go through an array of reactions with the •H 

(hydrogen radical), as depicted earlier in Figure 1.7. These photocatalytic reactions involve 

eight electron transfers and may follow one or a combination of the equations below to result 

in a crowd of different products.  

 

2𝐻2𝑂 + 4ℎ
+
ℎ𝑣(𝑇𝑖3+−𝑂−)

∗

→          4𝐻+ + 𝑂2 2.5 
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2.8 

2.9 

2.10 

2.11 

2.12 

2.13 

To make matters even worse, TiO2 is a semiconductor and its photocatalytic property is also 

affected by its band-gap and wave length and intensity of the light used. Other factors include: 

• pH; 

• pressure; 

• temperature;  

• CO2/H2O mole ratio; 

• formed intermediates that act as precursors for other products. Thereby, affecting the 

final selectivity of the products formed; 

• duration. 

Modifying TiO2 with plasmonic metal co-catalysts such as Cu 24, is also an approach used to 

improve light absorbance and enhance charge separation (Figure 2.10). Thereby, improving 

the reaction kinetics for CO2 reduction. (more on that in Section 2.4) 
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Figure 2.10 Schematic showing the reduction of CO2 on Cu/TiO2 system 25 

2.2 Anodization of Titanium 

There are many techniques that result in size controlled, well ordered TiO2 nanotubes (TNTs). 

The first TNTs were fabricated using a nanotube template. The template was a porous alumina 

layer made by anodizing an aluminum foil substrate 26. Then the TNTs were deposited in the 

template by electrochemical deposition and the template was dissolved. Another method is 

the direct anodization of a titanium metal foil. In this process, the metal foil is oxidized when 

connected as anode in a two-electrode setup. When this oxidation takes place in an 

appropriate electrolyte, the process leads to nanotubes. Fluoride based electrolytes are used 

to etch TiO2 leaving behind an array for TNTs on top of the titanium substrate 27, 28. Nanotube 

length, thickness and pore size are affected by applied voltage, anodization time, 

temperature, electrolyte composition. 
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The work of Zwilling and co-workers in 1999, revealed the importance of electrolyte 

composition and fluoride ion concentration on the morphology of the TNTs. They studied 

various electrolyte compositions on various metals (titanium, aluminum and 

titanium/aluminum). It was observed that fluoride ions cause the subsequent formation and 

dissolution of a TiO2 layer on the Ti metal, resulting in the formation of TNTs.  In the absence 

of fluoride ions, the formed TiO2 layer don’t not dissolve and no nanotubes were formed 29. 

Later work studied the effect of pH and electrolyte base (aqueous and non-aqueous 

electrolytes). Studies showed that a neutral pH allows tubes to reach >2µm in length. This is 

particularly interesting because tube length in aqueous acidic media, is limited. It is 

limited/short because the high currents observed in aqueous electrolytes results in faster 

etching/dissolution and shorter tubes. However, neutral pH helps slow down this dissolution 

resulting in longer tubes 30-33. 

Alternatively, the use of non-aqueous organic electrolytes also influences the length and 

morphology of the TNTs. For non-aqueous organic electrolytes, the absence of both water 

and high conductivity leads to reduced oxide formation and dissolution when compared to 

aqueous electrolytes. Additionally, the higher viscosity of non-aqueous organic electrolytes 

reduces ion movement inside the tubes leading to smoother tube walls 27, 30-32, 34, shown in 

Figure 2.11. 
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Figure 2.11 SEM images of (a) aqueous and (b) non-aqueous TNTs 32 

2.2.1 Anodization parameters 

As mentioned above, nanotube length, thickness and pore size are affected by many factors 

such as applied voltage, anodization time, temperature, electrolyte composition. These 

parameters have been investigated in many studies. 

Many parameters overlap in their effect on the final structure. Therefore; while keeping all 

other parameters constant (as explained above); electrolyte type, pH and Fluoride 

concentration affects the rate of oxide formation and dissolution. Constant voltage is used to 

control the diameter of the tube. The result are size uniform tubes with large pore size at 

higher voltages and small pores at lower voltage 29. On the other hand, constant current leads 

to tubes of non-uniform diameter because of the changing voltage needed to maintain a 

constant current 27. Finally, duration of anodization and tube length are directly proportional 

32, 35-37. 



23 

2.3 Ordered TiO2 Nanotube arrays in photocatalysis 

To harvest more of the sun’s energy, the material’s thickness needs to be large. However, in 

the bulk the distance travelled by the holes to the surface of TiO2 (to oxidize water) is 

relatively increased as shown in Figure 2.12(a). This in turn increases the chances of 

recombination, especially if the material is rich in defects. One nanostructure solves this 

problem. One-dimensional nanostructures can offer the depth needed to harvest the sun’s 

energy while allowing the generated holes to travel a short distance (in the range of nm) to 

the surface, as shown in Figure 2.12(b). Thereby, uncoupling the two processes of charge 

collection and generation that are coupled in bulk structures.  

 

Figure 2.12 Comparison of (a) bulk and (b) 1D nanostructures in decoupling of charge generation and charge collection 38. 

In Figure 2.12(b), the longest distance travelled by a generate charge is from the center of the 

tube of radius LD. Where: LD is the diffusion length in meters; D is the diffusivity in m²/s and 𝜏 

is the lifetime in seconds. 

𝐿 =  √𝐷𝜏 Equation 2-14 

The diffusion length of a material is a very important parameter in nanotube synthesis. Ideally, 

the thickness of the tube wall needs to not be greater than 2LD to avoid recombination.  
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2.3.1 Modifying TiO2 nanotubes 

While TiO2 is well known for its oxidative properties and excellent stability in aqueous media, 

its wide band-gap limits the absorption of this semiconductor to the UV region of the light 

spectrum. It was shown by S. Sakthivel et al. 39 that metal decorated TiO2 can absorb more 

light and get excited by lower energies. This is due to the localization of the metal’s energy 

levels within the TiO2, where the VB electrons of the metal can then be easily excited into the 

CB of TiO2 as was previously discussed in Section 2.1.1 and shown in Figure 2.13. Another 

benefit to this localization effect is, less recombination. 

 

Figure 2.13 Semiconductor (a) without any doping, (b) with Nitrogen doping to narrow the band-gap by introducing states 
above the VB, (c) Incorporation of metal dopants leads to hybridization of orbitals and a higher VB, (d) narrowing of the band-
gap by inducing oxygen vacancies to introduce impurity states below the EF 40. 
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An alternative class of solar energy conversion materials is transition metal oxynitrides. Since 

metal-nitrogen bond has higher potential energy than metal-oxygen bond, oxynitrides 41-48 

have narrower band gap energies compared to their metal oxides counterparts. Additionally, 

oxynitrides are stable in alkaline media making them ideal water splitting photoelectrodes 41-

44. Particularly, titanium oxynitride (TiON) is a promising material for visible light absorbtion 

and appropriate band-edge positions for water splitting 45-48. Vitiello et al. 46 used NH3 

nitridation to fabricate TiON nanotube arrays from anodized Ti foil. Their TiON showed 

enhanced photoelectrochemical properties and significant visible light response. Efficient 

nanostructured mesoporous TiON thin films were reportred by Ferrero et al. 47. The films 

resulted in a shift of the titania absorption edge, due to the introduction of N atoms. 

Alternatively, Kim et al. 48 used Ti-N substrates to fabricate Ti-O-N nanotubes via anodization, 

resulting in a significant visible light photoresponse. Asahi et al. 49 reported that N-doped TiO2 

has an influence on the photocatalytic activity for the decomposition of acetaldehyde and 

methylene blue at wavelengthes up to 550 nm.  Recently, Gebauer et al. 50 have investigated 

the oxygn reduction reaction (ORR) on N-doped titanium dioxide. It was found that N-doped 

titanium oxide significantly improve the ORR performance compared to non-doped TiO2. 

Decorating TiON materials with nanoparticles and/or sensitizers 51, 52 has also been recently 

proposed as an effective method to enhance the surface catalytic activity of a plethora of 

materials 53-56. Hiroaki et al. 54 have examined the effect of Ag nanoparticles (NPs)-decorated 

TiO2 nanotube arrays. This hybrid device resulted in higher photocatalytic activity and solar 

energy conversion efficiency (~ 3.5 µA) compared to bare TiO2 electrode (~ 0.5 µA) 54-56.This 

enhanced catalytic effect was related to the formation of hydroxyl radicals, which were made 

possible through better charge-transfer processes 57, 58. 
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In summary, amongst the many material requirements for photoelectrochemical reactions 

the two most important are (i) a well-suited band-gap that is narrow enough to absorb 

maximum light (≈2 eV) and is well positioned (as explained above) to allow theses generated 

electron/hole pairs to split water (ii) minimizing bulk and surface recombination’s by lowering 

material defects and facilitating faster charge transport. The wide band-gap of TiO2 is well 

suited for this band-gap engineering. That is why research is still ongoing to reach an optimum 

efficiency though the metal decoration of TiON nanotubes.  

2.4 Photocatalytic Reduction of CO2 over TiO2 

Carbon dioxide is a very stable molecule and its reduction requires the input of high energy 

in the form of temperature and pressure. However, since CO2 can be activated by light there 

is huge potential for its the photocatalytic reduction. The first study of the photocatalytic 

reduction of CO2 in water was conducted in 1997, using TiO2 and various other 

semiconductors 20. The studies were run under mercury and xenon lamps. The products of 

the reduction were formaldehyde (HCHO), formic acid (HCOOH), methyl alcohol (CH3OH), and 

trace amounts of methane (CH4). SiC gave high yields of formaldehyde and methyl alcohol. 

This is observed in SiC because its CB edge is more negative than the HCHO/ H2CO3 redox 

potential (Figure 2.14). However, this is not observed in WO3 where the CB is more positive 

than the HCHO/ H2CO3 redox potential and methyl alcohol is absent 59. Similar wide band-gap 

material such as SrTiO3 were studied by Halmann et al. 60. SrTiO3 has CB at a more negative 

potential (vs NHE) than the redox potential of CH3OH/H2CO3. Therefore, excited electrons of 

SrTiO3 can reduce carbon dioxide. This further stress the importance of band edge positions 

for CO2 reduction as well. Halmann et al. 61 also studied the effect of doping TiO2 with metals 

such as Cr, V and Ru. Due to the shifting of the energy bands, there was an observed increase 



27 

in the production yields of methanol, formic acid and formaldehyde, when doping with Ru. 

The complex cascade of reactions, as described in Section 2.1.3, leads to a horde of products 

that are sometimes stable or unstable and may transform to other products that may be 

quantifiable or not. The position of the CB (where all the photogenerated electrons reside) vs 

the redox potential (of the products to be formed) is one but not the only factor in this 

complex reactant system. 

 

Figure 2.14 Various semiconductors used in CO2 reduction and their conduction and valence band positions at pH 0 relative 
to NHE 62 

Anatase TiO2 was studied as a photocatalyst for the reduction of CO2. The large band-gap 

catalyst was found to be effective in methane formation, but the reaction depended on a few 
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variables: (i) temperature, (ii) H2O/ CO2 ratio, (iii) type of metal catalyst used. It was observed 

that the best H2O/ CO2 ratio was 5:1 and that the addition of Pt metal catalyst increased the 

yield of methane compared to methanol. A further study of the reaction intermediates was 

conducted and revealed that methane formation likely resulted from the reaction between 

carbon radicals and hydrogen 63, 64. 

2.4.1 Copper as catalyst 

In the early CO2 reduction work of Hiro et al., it was shown that there is a difference between 

Cu and Ni product selectivity: on Cu, suitably negative potentials (>1V vs RHE) are needed to 

produce CH4, while at those highly negative potentials H2 is predominantly evolved on Ni 

surfaces. Figure 2.15 shows the product distribution and current efficiency on Cu surfaces, 

with methane and hydrogen being the dominant products at higher potentials 65.  

 

Figure 2.15 Current efficiency of products formed from the electrochemical reduction of CO2 on Cu surfaces 65. 
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Copper is on top of a volcano-type relationship between metals for their theoretical 

overpotential and Ni is an excellent cost-effective alternative to Pt for Hydrogen evolution 

(shown in Table 2.1). Researchers have since turned to alloying as a means of reducing this 

overpotential. Alloys of Cu with Sn, Pb, Zn, Cd, and Ag were studied 66. The alloys highly 

influenced the selectivity and overpotential.  

Table 2.1 Faradic yields of various metal catalysts as reported by Hori et al. 67. 

 

The exploration of materials that meet the requirements for efficient CO2 reduction is a 

challenge. It is clear from Figure 2.15, that hydrogen evolution is an important precursor for 

hydrocarbon formation. In Figure 2.15, hydrogen evolution precedes all other hydrocarbon 

formation. It also declines as hydrocarbon yield rises, signifying that the formed hydrogen is 

channeled towards hydrocarbon formation.  
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2.4.2 Metal-doped TiO2 

The effect of Cu as a co-catalyst to CO2 reduction was then studied.  In 1994, Adachi et al. 

68 studied the effect of Cu loading on TiO2 powder. The powder was suspended in a 

saturated and pressurized CO2 solution and illuminated with a Xenon lamp. The products 

formed were methane and ethylene. When the Cu loading was increased to 2.0 wt.% 

methanol was observed at 118 µmol/g after 6 hours of UV lamp illumination 69. This yield 

was even higher than sol-gel TiO2 and TiO2 P25. Similarly, as shown in Figure 2.16 the 

addition of Cu oxides to TiO2 allows the reduction of CO2 to various hydrocarbons. 

 

Figure 2.16 Band-gap alignment for Cu/TiO2 systems 70 
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It is important to understand how the Schottky barrier created in a metal/semiconductor 

system helps trap electrons and results in the redistribution the electric charge. Figure 2.17 

shows the Schottky barrier created in n-type and p-type semiconductor systems with a low 

work function and high work function metals. Figure 2.17 (c) is an illustration of the Cu/TiO2 

system, where electron trapping in Cu is observed as the generated electrons from TiO2 move 

into the metal and thereby reducing recombination with the holes. As a result, the quantum 

efficiency was 10 % and the energy efficiency was 2.5%. 

  

Figure 2.17 (a) and (b) are low work function metals with n-type and p-type semiconductors, respectively. (c) and (d) are 
high work function metals with n-type and p-type semiconductors, respectively 71. 
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It is also suggested that Cu2O, as a dopant, is the most effective electron trapper. The Cu+ 

state in Cu2O has the highest positive potential and is therefore effective as an electron 

trapper. This however is a double-edged sword, because the dopants with the most positive 

potential will attract the electrons and this may make it difficult for the electrons to travel on 

the catalyst surface and hence lead to electron/hole recombination 72. 

In literature, 1D nanotube arrays of N2 doped TiO2 decorated with Cu and/or Pt nanoparticles 

were also studied in the reduction of gaseous phase CO2 with water vapor (Figure 2.18). The 

reported methane yield was 160 μL/gh amongst other hydrocarbons, following the chemical 

pathways proposed in Figure 2.19. This high yield was attributed to (i) the enhancement in 

light harvesting offered by the Cu and Pt nanoparticles; (2) the increase in surface area of the 

material due to 1D nanotubes, (iii) and the unique ability of TiO2 nanotubes to be long enough 

to absorb enough light to generate charges but also provide a wall thinness that is thin enough 

for those charges to interact with reactants before recombination. The quantum efficiency 

was about 0.74% 24.   
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Figure 2.18 One-dimensional TION nanotubes decorated with Cu nanoparticles surrounded by water vapor and CO2 under 
direct sunlight to for reduced products without external bias.24 

 

Figure 2.19 Proposed reaction of water splitting and CO2 reduction on TiO2 surface catalyzed with Cu 68 
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2.4.3 Bimetallic-doped TiO2 

Many metals have been studied as electrochemical catalysts for CO2 reduction 14, 73. One of 

the prominent metal electrocatalysts is Cu. As reported by Hori, for Cu CO formation 

dominates at relatively low overpotentials (above -1.2V NHE), while other hydrocarbons are 

formed at more negative potentials 74. An appealing property to Cu, is its high faradic 

efficiency towards methane and ethylene formation. However, Cu tends to be very sensitive 

to impurities in the electrolyte. These impurities lead to the reduction in the methane yield.   

Another widely studied catalyst is Nickel. It is a cheaper alternative to platinum due to its high 

hydrogen evolution activity at low overpotentials and its high CO adsorption strength in 

aqueous solutions. However, the high CO adsorption strength limits the long-term reduction 

of CO2 at the surface 75. It is also interesting to note that in comparison to Ni, Cu has a much 

weaker CO adsorption strength. Although Ni and Cu have many appealing properties as 

electrocatalysts, individually both metals have longevity and stability problems 74. 

Bimetallic TiO2-based electrocatalysts have been receiving a lot of attention lately because 

they were shown to possess several advantages over metal electrocatalysts such as: (1) 

improving the stability of CO2 reduction activity, which effectively solves the problem of metal 

electrocatalysts, (2) the ability to direct product selectivity 75, (3) their allowance for new and 

interesting properties resulting from the synergy of two metals 76, and (4) their abundance 

and low prices. Bimetallic electrocatalysts are considered a promising alternative to metals. 

For instance, alloying platinum with another metal can enhance its photocatalytic 

performance in terms of activity and selectivity, furthermore, bimetallic platinum is 
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significantly cheaper than pure platinum 76. Another example is Cu-Au alloy, it appears that 

increasing Au amount leads to an increase in CO formation in aqueous solutions 77.    

Titanium dioxide co-doped with bimetallics was studied in 2011. Bimetallic TiO2, co-doped 

with Cu and Ce was prepared by equivalent-volume incipient wetness impregnation and 

studied for the photocatalytic reduction of CO2. Methanol production reached 180.3 μmol/g 

of catalyst. This enhanced effect was attributed to the activation of H2O and CO2 molecules 

by Ce. Whereas, Cu acted as a channel of photogenerated electron thereby preventing 

recombination 78. 

In summary, wide band-gap semiconductors such as TiO2 are also perfectly suited for the 

photocatalytic reduction of CO2, because their VBs and CBs are sufficiently more negative and 

more positive than the oxidation and reduction potentials of CO2 in water. However, the 

requirement to using wide band-gap semiconductors is high light energy and this can be 

adjusted with the addition of co-catalysts that (i) help shift the absorption spectrum of the 

semiconductor (ii) tweak the selectivity of the formed products to yield usable hydrocarbons 

such as methanol and methane. 
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2.5 Scope and Objectives of the Thesis 

The scope of this thesis is to enhance the properties of semiconductors to split water and 

produce hydrogen. This generated hydrogen maybe collected and used as fuel, or it can be 

further used in the reduction of carbon dioxide into various hydrocarbon fuels. The current 

semiconductor technologies resort to (i) doping as a means of narrowing the band-gap and 

enhancing light absorption (discussed earlier in Section 2.1.1) or (ii) decoration with metals 

to enhance charge separation, as depicted in Figure 2.20b and c.  

a) No doping b) Nitrogen doping 

  

c) Nitrogen doping + Metal decoration 

 

Figure 2.20 Illustration of semiconductor band-gap engineering 
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To the best of our knowledge, there are no reports in literature on the synergistic effect of 

doping TiO2 to modify the band-gap and increase light absorption, while also decorating it 

with metal nanoparticles to enhance charge separation. Therefore, the logic question was: 

Can this synergism improve water splitting efficiency and tweak the selectivity of CO2 

reduction catalysts towards usable hydrocarbons? 

Chapter 3: Defines the experimental procedures used to synthesize and characterize the Ag-

decorated TiON and Cu-Ni TiON nanotubes for water splitting and CO2 reduction, respectively.  

Chapter 4: Presents and discusses the obtained results for the Ag-decorated TiON for water 

splitting. 

Chapter 5: Presents and discusses the obtained results for the Cu-Ni for CO2 reduction. 

Chapter 6: Mentions the important highlights of the work and discusses plans for future work. 
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3 Chapter 3: Experimental 

3.1 Materials and methods: 

3.1.1 Ag-decorated TiON nanotubes 

Titanium foil (0.25 mm thick, purity 99.8 %) was cut into portions and polished and cleaned 

by ultrasonication in acetone, ethanol and deionized water, respectively. Two- electrode 

electrochemical cell was used for anodization in which the Ti metal foil (positive electrode) 

and a platinum coil (negative electrode) were connected to a DC power supply at 30 V (Figure 

3.1). Ethylene glycol-based solutions containing 0.5M NH4F and 3ml H2O (optimized 

experimentally). All samples were anodized for 120 minutes at room temperature. 

  

Figure 3.1 Anodization Setup 

The resulting titanium oxide nanotubes were then annealed in ammonia flow (200 sccm) at 

600 C for two hours. The heating and cooling rates were as low as 2 C/min to preserve the 

POWER SUPPLY 

+ - 
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nanotubular architecture and avoid their detachment. As a reference, titanium oxide 

nanotubes sample was annealed in air (450 C and 2 C/ min for 2 hours).  

The Ag nanoparticles were prepared by the borohydride reduction method.  A 100 ml of 1 

mM AgNO3 (Sigma-Aldrich, 99,999 %) was added to a mixture of 30 ml of 2 mM NaBH4 (Sigma-

Aldrich, 98 %) under vigorous stirring. For the preparation of Ag decorated TiON nanotube 

arrays, 50 µl of Ag colloidal solution (the loading density is 3.42 x 1011 Ag NPs per 1 cm2 foil) 

was drop-casted onto the TiON foil and left to dry overnight (Figure 3.2). 

 

Figure 3.2 Ag decorated TiON nanotubes 
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3.1.2 Cu-Ni alloys for the CO2 reduction 

High purity Cu-Ni samples were received with varying ratios as listed in Table 3.1 

Table 3.1 Cu to Ni ratios of samples used 

 

Atomic Ratio 

% Cu % Ni 

Cu 100 - 

5% Ni 95 5 

10% Ni 90 10 

30% Ni 80 20 

70% Ni 25 75 

Ni - 100 

Samples were polished with fine emery paper then electropolished in 85% phosphoric acid 

solution at room temperature for 5 minutes. Samples were held at 4 volts for 5 minutes using 

titanium as the counter electrode.74 The samples were then double rinsed with distilled water 

and dried under a nitrogen stream.  

3.2 Characterization 

3.2.1 Ag-decorated TiON nanotubes 

Field emission scanning electron microscopy (FESEM) images and energy dispersive X-ray 

spectroscopy (EDX) measurements were carried out using a FEI electron scanning microscope 

in the Yousef Jameel Science and Technology Research Center (YJ-STRC) at the American 

University in Cairo. The powder Glancing Angle X-ray diffraction (GAXRD) measurements were 

carried out at room temperature using Rigaku Miniflex II diffractometer with Cu KαR radiation 
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at 30 kV and 20 mA between 2θ angles of 20 and 80O with scanning rate of 0.025o per step 

per second. X-ray photoelectron spectroscopy (XPS) measurements were carried out on 

Kratos Axis Ultra XPS with a monochromatic Al Kα radiation source (1486.6 eV) in a UHV 

environment (ca. 5x10-9Torr). Transmission electron microscopy (TEM) images were acquired 

by a FEI Philips Technai 20 transmission electron microscope with an accelerated voltage of 

200 kV. The optical absorption of the samples was measured using a Cary 5000 UV-Vis-NIR 

spectrophotometer. The J-V measurements were carried in a three-electrode electrochemical 

cell with a saturated calomel electrode (SCE), a platinum wire and the tested sample were 

used as reference, counter, and working electrodes, respectively. The area of the working 

electrode was 0.88 cm2 and that of the counter electrode was 3.15 cm2. The working 

electrode was immersed in 0.1 M KOH (Carl-Roth, Germany 99.98 %). The KOH solution was 

prepared from ultrapure water (18.2 MΩ cm at 25 °C, TOC < 1 ppb) and was purged with 

nitrogen gas during the measurement. A scanning potentiostat (Gamry 3000) was used to 

measure dark and illuminated currents at a scan rate of 10 mV/s. A 100 W ozone-free xenon 

lamp (Abet Technologies, USA) was used as the light source, with an AM 1.5 G filter to 

simulate sunlight at 100 mW/cm2.  
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3.2.2 Cu-Ni alloys for the CO2 reduction 

X-ray spectroscopy (EDX) measurements were carried out using a FEI electron scanning 

microscope. The powder Glancing Angle X-ray diffraction (GAXRD) measurements were also 

carried out at room temperature using Rigaku Miniflex II diffractometer with Cu KαR radiation 

at 30 kV and 20 mA between 2θ angles of 20 and 80° with scanning rate of 0.025° per step 

per second.  

Electrochemical measurements were conducted in a two-compartment glass H-Cell as shown 

in Figure 3.3. The glass cell was soaked in Aqua Regia (2:1, HCl:HNO3) overnight then boiled 

vigorously in water to remove any metal or carbon traces that may interfere with the results. 

The compartments were separated by a proton exchange membrane (Nafion 117) to avoid 

products in the working compartment from mixing and oxidizing at the counter electrode. 

The nafion membrane was cleaned by boiling it in 3%vol H2O2 solution for 1 hour.  The 

catholyte was prepared using 60mls of 0.1M KOH aqueous pre-electrolyzed solution 

saturated with 99.99% CO2 gas. The pre-electrolysis and saturation with CO2 gas were run 

overnight, simultaneously. The pre-electrolysis ensured that any trace metals in the prepared 

saturated solution were removed and the resultant solution was of high purity. The anolyte 

was 60mls of 0.1M KOH aqueous pre-electrolyzed but not saturated with CO2 gas. The 

potential of the cathode was held with respect to an Ag/AgCl reference electrode. 
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Figure 3.3 CO2 electrochemical reduction setup 

Linear Sweep voltammetry (LSV) was used to gain insight on the reduction reaction at various 

potentials. The potential was scanned at a sweep rate of 50 mV-s-1 from 0.2V to -1V NHE. This 

information can be very telling of reaction onset potentials and used to identify 

overpotentials and compare samples. Chronoamperometry was used to fix potential at a 

stationary electrode in an unstirred solution and the current produced was studied over a 

period. 
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4 Chapter 4: Silver Nanoparticles-Decorated Titanium Oxynitride 

Nanotube Arrays for Enhanced Solar Fuel Generation* 

  Figure 4.1a, shows an FESEM top-view image of the fabricated titanium oxide 

nanotubes. The well-aligned, densely packed nanotube arrays that are several microns long 

were formed and distributed uniformly with full coverage on the film surface. The average 

length of the nanotubes is estimated as 11.2 ± 3 µm, while the inner diameter and the wall 

thickness are 50 and 15 nm, respectively. The morphology and structure of the nanotubes are 

preserved even after annealing in air (Figure 4.1a) or ammonia ambient for 2h (Figure 4.1b). 

Note that the nanotubular structure has not been affected by annealing, where the diameter 

is slightly increased into 54 nm and the wall thickness is 14±2 nm. Figure 4.1c shows the Ag 

nanoparticles-decorated nanotubes. Also, Figure 4.1d shows HRTEM image of the silver 

nanoparticles. To prepare such electrodes, 50 µL of Ag colloidal solution was drop casted onto 

the TiON foil and left overnight to dry at room temperature. Then, the Ag/TiON surface was 

washed with ultrapure water. Note that the Ag nanoparticles are well-dispersed on the TEM 

grid with uniform size (13 ± 2 nm) and spherical shape.  

 

 
* This chapter was published as an article: Soliman KA, Zedan AF, Khalifa A, El-Sayed HA, Aljaber AS, AlQaradawi 
SY, Allam NK. Silver Nanoparticles-Decorated Titanium Oxynitride Nanotube Arrays for Enhanced Solar Fuel 
Generation. Scientific Reports. 2017 May 15;7(1):1913. 
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Figure 4.1 SEM images of (a) air-annealed, (b) ammonia-annealed, (c) Ag-decorated ammonia-annealed titanium oxide 
nanotube arrays, and (d) TEM image of the Ag nanoparticles deposited on carbon-coated copper grid. 

To investigate the structure and composition of the fabricated nanotube arrays, EDX (Figure 

4.2a), GAXRD (Figure 4.2b) and XPS (Figure 4.3) analyses were performed. Figure 4.2a, shows 

the EDX spectra for (i) air-annealed, (ii) ammonia-annealed, and (iii) Ag-decorated ammonia-

annealed titanium dioxide nanotube arrays. The peak at 0.277 eV is related to carbon species, 

whereas the peak at 0.525 eV is related to oxygen species. Note that the intensity of the peak 

at 0.525 eV decreased after annealing in ammonia and another peak emerged at 0.392 eV, 

which is assigned to nitrogen atoms. The sharp peak at 2.984 eV is a good indication for Ag 

decoration on TiON nanotube arrays. The common peak around 4.508 eV belongs to titanium 

species. Figure 4.2b shows the GAXRD patterns of the nanotubes annealed in air and those 

annealed in ammonia, revealing crystalline structures of titanium oxide. The appearance of 
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the characteristic diffraction peaks at 25°, 38.1°, 47.8°, 52.8°, and 53.9°, corresponding to the 

(101), (004), (200), (105), and (211) facets, respectively elucidate the crystalline structures of 

titanium oxide 46. Note that the peak at 2θ ~43° appeared in the GAXRD spectra of NH3-

annealed sample is assigned to TiN and corresponds to cubic titanium oxynitride as reported 

by Zukalova et al. 79. Furthermore, the signature of the underlying Ti metal is apparent as 

indicated from the sharp peak at 40° 46. Upon annealing in ammonia, the peaks are still 

located at the same angle, however the intensity of the peaks decreased (Figure 4.2b, ii). Note 

that both oxides and oxynitrides are usually having virtually overlapping GAXRD patterns 41-

44. 

 

Figure 4.2 (a) EDX and (b) GAXRD spectra of (i) air-annealed, (ii) ammonia-annealed, and (iii) Ag-decorated ammonia-
annealed samples. The inset in Fig. 2a is the EDS mapping for Ag nanoparticles. 

As GAXRD could not distinctively confirm the formation of TiON nor the presence of 

the Ag nanoparticles. XPS being a surface sensitive technique, is believed to resolve 

the differences between the oxides and oxynitrides 42. Figure 4.3 shows the XPS high-

resolution scans of the four elements; Ti, O, N and Ag for air-annealed, ammonia-annealed, 

and Ag-decorated ammonia-annealed nanotube samples and the data are listed in Table 4.1. 

Figure 4.3a shows the Ti 2p XPS lines. The Ti 2p spectrum of the air-annealed TiO2 sample 
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(Figure 4.3a i) exhibits two peaks at 458.5 and 464.3 eV characteristic of Ti 2p3/2 and Ti 2p1/2, 

with a spin orbit splitting of 5.8 eV, indicating Ti4+ oxidation state 47. Upon annealing in 

ammonia (Figure 4.3a ii) and Ag decoration (Figure 4.3a iii), both peaks are shifted from their 

original positions, (Figure 4.3a ii, iii). The shift to low energy side is a signature of increasing 

electron cloud density around Ti. This can be related to the introduction of a less 

electronegative atom into the crystal lattice of TiO2 and the incorporation of N (3.04 on 

Pauling scale compared to O 3.44 on Pauling scale) into titania.80. Figure 4.3b shows O1s XPS 

spectra acquired for air-annealed, ammonia-annealed, and Ag-decorated nanotube samples. 

The spectrum shown in Figure 4.3b-i exhibits small shoulder at 532.2 eV and a singlet peak at 

531.4 eV.  The peak at 531.4 eV is attributed to O-H groups, and the small shoulder at 532.2 

eV can be attributed to physisorbed water 81. The position of the shoulder shifted a little to 

lower binding energies after annealing in ammonia (ii, iii). Such shift caused by the increase 

of titanium in low valence states 81.  Note that the Ti 2p3/2 photoemission line at 458.5 eV is 

diagnostic for oxynitride (Ti-O-N) 81. Figure 4.3c shows the N1s XPS spectra acquired for air-

annealed, ammonia-annealed, and Ag-decorated nanotube samples. The N 1s peak observed 

at 402.3 eV can be attributed either to incorporation of nitrogen into the nanotubes 82, 83 or 

to chemisorbed nitrogen 82-84. Clearly one can see a small shoulder at 400 ± 0.2 eV (Figure 4.3c 

ii, iii), which can be ascribed to γ-N state, which is molecularly chemisorbed N2. Additionally, 

the peak at 396 ± 0.2 eV belongs to β-N state, which is essentially atomic N in the form of 

mixed titanium oxide-nitride (TiO2-xNx). This indicates that the heat treatment in ammonia 

atmosphere indeed leads to the substitution of some oxygen sites by nitrogen 84, see Table 

4.2. This finding is in good agreement with previous results on N-doped TiO2 49. Figure 4.3d is 

Ag 3d core level XPS scan over a small energy window at higher resolution. The Ag 3d5/2 peak 

appears at 368.3 eV and the Ag 3d3/2 peak is found at 374.3 eV, with a splitting of the 3d 
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doublet of 6.0 eV, indicating that Ag mainly exists in metallic state on the sample of Ag-

decorated nanotubes. 85, 86 

 

Figure 4.3 XPS spectra of the (i) air-annealed, (ii) ammonia-annealed, and (iii) Ag-decorated ammonia-annealed nanotube 
samples. 
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Table 4.1 Atomic percentage of Ti, O, N and Ag for the air-annealed, ammonia-annealed, and Ag-decorated ammonia-
annealed samples as extracted from XPS. 

Sample Ti  O  N  Ag 

Air-annealed 21.93 76.86 1.21 ------ 

Ammonia-annealed  23.31 44.62 32.07 ------- 

Ag-decorated ammonia annealed 38.23 54.34 6.87 1.09 

 

Table 4.2 Traditional and Kröger-Vink notations of defects in TiO2 and N-doped TiO2 systems 

Traditional Notation Description Kröger-Vink Notation 

TiTi
+4 Ti+4 ion in titanium lattice site TiTi

x 

TiTi
+3 Ti+3 ion in titanium lattice site e’ 

VTi Titanium vacancy VTi’’’’ 

Tii
+3   Ti+3 in an interstitial site Tii

••• 

Tii
+4 Ti+4 in an interstitial site Tii

•••• 

OO
-2 O-2 ion in an oxygen lattice site OO

x 

VO Oxygen vacancy VO
•• 

OO
- O- ion in an oxygen lattice site h• 

NO
-3 N-3 ion in an oxygen lattice site NO’’’ 

Ni
-3 N-3 ion in an interstitial site Ni

••• 
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Figure 4.4a, shows the UV-Vis absorption spectra of as-anodized, air-annealed and 

Ag/ammonia-annealed nanotube (Ag/TiON) samples. Annealing in air resulted in a small red-

shift in the absorption wavelength from 385 nm (3.2eV) to 410 nm (3.03 eV). However, 

annealing in ammonia resulted in a significant red-shift in the visible region up to 512 nm (2.4 

eV). Note also the hump at 430 nm, which could be related to the presence of Ag 

nanoparticles. This agrees with Ferrero et al. 47 who showed that titanium oxynitride 

mesoporous thin films are efficient visible-light-active photocatalysts due to the discrete 

introduction of N, which caused a shift of the titania absorption edge. The photocatalytic 

activity of the fabricated Ag/TiON nanotubes was investigated by using them as photoanodes 

to split water under AM 1.5 G one-sun illumination. Figure 4.4b shows the photocurrent 

density of the air-annealed, oxynitride, and Ag/oxynitride nanotube electrodes. The 

photocurrent produced by the air-annealed nanotube (0.15 mA/ cm2 at 1.0 VSCE) is found to 

be in agreement with those reported in the literature, 87 indicting the high quality of the 

nanotubes. Interestingly, the oxynitride nanotubes showed exceptional enhancement in the 

photocurrent density (6 mA/cm2 at 1.0 VSCE) compared to the air-annealed nanotubes and 

also compared to that reported for TiN nanostructured thin film (0.2 mA/ cm2 at 1.0 VAg/AgCl) 

88. Such an enhancement is in accordance with the absorption spectra shown in Figure 4.4a. 

Upon addition of the Ag nanoparticles to the oxynitride nanotubes, the photocurrent 

significantly increased to 14 mA/cm2 at 1.0 VSCE. Such enhancement can be relatd to 

increasing the conductivity and the possible plasmonic effect of Ag nanoparticles. This agrees 

with the onset potential, the light contribution toward the minimum potential needed for 

water splitting process to take place, as it is shifted to more negative values in the order: TiO2 

(-0.749 VSCE) < TiON (-0.84 VSCE) < Ag/TiON (-0.961 VSCE). Therefore, the Ag/TiON nanotubes 
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photoanode requires less voltage for water oxidation than the TiO2 and TiON nanotube 

photoanodes counterparts, indicating more favorable photoelectrochemical activity. 

 

Figure 4.4 (a) UV-Vis absorption spectra of as-anodized nanotubes, TiO2 nanotubes annealed in air and Ag-decorated TiON 
nanotubes(Ag/TiON), (b) linear sweep voltammetry under illumination of TiO2, TiON and Ag/TiON, (c) the IPCE under no bias 
of as-anodized and TiON samples, and (d) the IPCE of Ag/TiON under applied bias. 

The incident photon conversion efficiency (IPCE) experiments were performed in a two-

electrode arrangement with the TiO2, TiON, or Ag/TiON nanotube array films as the working 

photoelectrodes and platinum foil as a counter electrode in 0.1 M KOH solution. Figure 4.4c 

shows the obtained IPCE for the nanotube array films as a function of the irradiation 

wavelength under no bias. The IPCE was calculated using Eq 5, where λ is the wavelength of 
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incident light, iph is the photocurrent density under illumination at λ and Io is the incident light 

intensity at λ. 

𝐼𝑃𝐶𝐸% = 
(1240 𝑒𝑉. 𝑛𝑚) × (𝑖𝑝ℎ 𝑚𝐴. 𝑐𝑚

−2)

( 𝑛𝑚) × (𝐼𝜊 𝑚𝑊. 𝑐𝑚−2)
 × 100 Equation 4-1 

The obtained IPCE values, Figure 4.4c, in the wavelength range from 400 to 550 nm indicate 

the activity of TiON films in the visible light, in accordance with the absorption spectra shown 

in Figure 4.4a. Note that the Ag/TiON films showed similar IPCE behavior except for a small 

hump at 480 nm. The applied bias assists the separation of the photogenerated electron-hole 

pairs, thereby enhancing the IPCE. Upon the use of 0.2V and 0.4V (Figure 4.4Fd), Ag/TiON 

films showed an enhancement in the IPCE: between 350-400 nm, the IPCE increases up to 

25%, then it further increases to 41% in the wavelength range 450-510 nm, after which it 

declines indicating that the photocurrent occurs as a result of the band gap transition. Note 

that the maximum IPCE peak was observed around 480 nm, which is the commonly reported 

plasmonic peak or Ag nanoparticles 89, suggesting that the enhancement in the 

photoelectrochemical activity is partially supported by the plasmonic effect of Ag NPs. The 

obtained IPCE for TiON and Ag/TiON nanotube films are much higher than that obtained for 

the pristine TiO2 nanotube film, in good agreement with the UV-vis DRS results shown in 

Figure 4.4a. We note that our obtained IPCE is higher than that reported for N-doped titanium 

dioxide nanotube arrays 90. 

Considering the correlation between the structure of the fabricated photoanodes and the 

observed enhanced photo response, the thin wall thickness of the synthesized TiON nanotube 

arrays is expected to play a vital role. The nanotubular architecture, with a wall thickness of 

14±2 nm, ensures that the photogenerated holes are never generated far from the 
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semiconductor-electrolyte interface 1. Furthermore, since half the wall thickness is 

significantly less than the minority carrier diffusion length (~20 nm in TiO2) 91, charge-carrier 

separation takes place efficiently. The potential drop (∆∅0) within the tube wall was shown 

to follow the relation 87: 

∆∅0 = 
𝑘𝑇𝑟0

2

6𝑒𝐿𝐷
2  Equation 4-2 

where r0 is half the width of the wall, T is the temperature, and LD is the Debye length, given 

by: 92 

LD = [
εε0kT

2e2ND
]2 Equation 4-3 

where ND is the number of ionized donors per cubic centimeter 92. It is important to note that 

this potential drop across the wall thickness may not be enough to separate the 

photogenerated electrons and holes. However, because of the nanoscale dimensions of the 

walls, the holes can easily diffuse into the surface, which was shown to takes place on a scale 

of picoseconds 93. It was also reported that minority carriers generated within a distance from 

the surface equal to the sum of the depletion layer width and the diffusion length (retrieval 

length) escape recombination and reach the electrolyte 94.  Note that the relevant 

dimensional features of our TiON nanotube arrays (half the wall thickness) are all smaller than 

10 nm, which is the range reported for crystalline TiO2 retrieval length 95. Therefore, bulk 

recombination is expected to be reduced and the photoconversion efficiency to be enhanced 

96-98. 

 



54 

5 Chapter 5: CO2 activation on bimetallic Cu-Ni 

GAXRD analysis was performed to investigate the structure of the alloys. Figure 5.1 shows the 

GAXRD patterns of Cu-Ni alloys. The diffraction pattern for pure Cu shows peaks characteristic 

for (111), (200), and (220) planes at 43.254°, 50.375°, and 73.997° respectively. Alternatively, 

pure Ni shows the same peaks at 44.169°, 51.462°, and 75.756° for (111), (200), and (220) 

planes, respectively. This data corresponds well to the ICDD cards for pure Cu (black) pure Ni 

(red) as labeled on Figure 5.1.  

 

Figure 5.1 GAXRD diffraction pattern for as received alloy samples showing peaks for (a) (111) (b) (200) (c) (220) planes of  
fcc structure of Cu-Ni alloys. 

  



55 

As Ni content increases, a shift to higher diffraction angles and a shortening of the 

lattice parameters were observed as shown in Table 5.1. This is interesting because as Ni 

content increases, the bond energy of the atoms also increases, and a shortening of the bond 

length causes this shift 99. The rise in bond strength is further justified by the difference in 

melting points, Ni at 1728 K and Cu at 1358 K. 

Table 5.1 Lattice parameters and strain calculated from GAXRD data 

 Lattice parameters Strain (%) 

 a b c 

Cu 3.6077 3.6077 3.6077 0.055701 

5% Ni 3.6025 3.6025 3.6025 0.107982 

10% Ni 3.5934 3.5934 3.5934 0.059717 

30% Ni 3.5720 3.5720 3.5720 0.260189 

70% Ni 3.5450 3.5450 3.5450 0.243464 

Ni 3.5140 3.5140 3.5140 0.070471 

Figure 5.2 shows the LSV sweeps for electropolished metals in CO2-saturated 0.1M 

KOH, where the addition of Ni reduces the overpotential needed to drive the CO2 reduction 

reaction. However, the improvement that the addition of Ni offers diminishes at Ni content 

>30%. This 30% threshold of Ni was shown in the work of Kitayama et al. where the CO 

formation rate was promoted by adding a small amount of Ni to Cu over SiO2 support 100. 

Chronoamperometry measurements also confirm that the addition of 30% Ni to Cu is best for 

improved performance. As seen in Figure 5.3, reaction kinetics are improved, and no surface 

inactivation is observed with a rise in current over time. The same is not observed for pure 

Copper due to poor kinetics and surface poisoning, a common problem of Cu electrodes 101.  
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In 

increasing 

order 

Nickel 

content (%) 

Overpotential (vs sat’ 

AgCl) 

Current density (mA/cm2) 

 

30 -0.7 V -1.8 

5 -0.8 V -1.4 

10 -0.8 V -0.7 

100 -0.9 V -1.0 

70 -0.9 V -0.6 

0 -1.0 V -0.3 

Figure 5.2 LSV in CO2 saturated 0.1M KOH at a scan rate of 0.2V-s-1 
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Figure 5.3 Chronoamperometery mearsurements at 0.5V( NHE vs AgCl) 

These findings can be explained by changes in the surface interaction and charge transfer 

behavior of CO2 at the 30% Ni electrode. Preliminary computational calculations for the 

predominant (111) planes of the alloy reveal that adding Ni leads to a higher CO2 adsorption 

energy on the surface. The nature of this adsorption is chemisorption as opposed to only 

physisorption on pure copper electrodes. In Figure 5.4a, the adsorption on Cu only marginal 

perturbated the CO2 molecule and the linear O-C-O angle remained nearly 180°. Thus, the CO 

molecule is not activated, and the adsorption is a physisorption process. The weak Cu-C bond 

is evidenced by the relatively large Cu-C bond length of 2.5 A.  On the other hand, Figure 5.4b 

shows that the adsorption on Ni resulted in an evidenced perturbation of the CO2 molecule, 

where the linear O-C-O angle changed from 180° to 133.8°, thereby activating it. The 

adsorption process over Ni surface is a chemisorption. Ni atoms interacted with the CO2 



58 

molecule from the C end (because it’s more electronegative) with a shorter Ni-C bond length 

of 1.95 A. In this case, the CO2 molecule is more strongly attached to the Ni surface atoms 

compared to the adsorption on Cu. 

  

Figure 5.4 DFT results for the adsorption of CO2 on Cu (red) and Ni (blue)  

However, in Figure 5.3 significantly better charge transfer to the CO2 molecules is only 

observed for 30% Ni, suggesting that other factors are at play and a threshold value of 30% is 

warranted. GAXRD data revealed a dependence of Ni content and lattice strain. Lattice strain 

initially drops then reaches a maximum at 30% Ni, higher than Cu, as shown in Table 5.1. It is 

well-established in the work of Hongwen et al. that the upward shift of d-band center pushes 

more of the antibonding states above the Fermi level, resulting in the decreasing occupation 

and stronger adsorbate bonding 102. Accordingly, we can conclude that the tensile strain on 

the surface of 30% Ni shifts up the d-band center of surface atoms, thereby strengthening the 

adsorption of CO2. Additionally, the improved binding is also due to surface atoms now having 

a higher coordination number and more dangling bonds, allowing better surface interactions. 

With better surface interactions, bending of the C-O bonds leads to better molecule 

activation. 
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6 Chapter 6: Conclusion and Future Work 

In this research we investigated the generation of solar fuels: H2 and CH4, through solar water 

splitting and electrochemical reduction of CO2. 

From the work presented in Chapter 44, we investigated the fabrication of TiO2 nanotubes 

and its decoration with Ag nanoparticles for water splitting applications. The following 

conclusions are drawn: 

1. The as-anodized TiO2 array films retain their morphology upon annealing in ammonia 

atmosphere, realizing the opportunity to convert TiO2 into TiON at temperatures as 

low as 600 C. 

2. Titanium oxynitride nanotubes showed significant increase in the photocurrent (6 

mA/cm2) compared to the as-anodized TiO2 nanotubes counterpart (0.15 mA/cm2). 

3. Decorating the TiON nanotubes with Ag nanoparticles resulted in exceptionally high 

photocurrent reaching 14 mA/cm2 at 1.0 VSCE. 

4. This enhancement in the photocurrent is related to the synergistic effects of Ag 

decoration, nitrogen doping, and the unique structural properties of the fabricated 

nanotube arrays. 

5. This proposed platform of titanium oxynitride nanotubes array films holds promise for 

a variety of applications of the future design of optoelectronic devices. 

From the work presented in Chapter 5, we investigated the enhancement in electrochemical 

CO2 reduction of adding Ni to Cu. The following conclusions are drawn: 

1. The effect of loading 5%, 10%, 30% and 70% Ni in Cu was investigated. 
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2. Characterization of the as-receive alloys was performed using GAXRD. Micro strain 

values revealed a unique strain value for adding 30% Ni to Cu. The observed strain 

value of 0.260% was significantly higher than pure Cu (0.056%) and pure Ni (0.070%), 

respectively. 

3. Overpotential values for the electrochemical reduction of CO2 was lowest for 30% Ni 

-0.7V vs AgCl, with a peak current density of -1.8mA/cm2. Long duration, low voltage 

(-0.5V NHE) chronoamperometry measurements revealed that 30% Ni is superior. No 

limiting current was observed for 3 hours, which indicated no surface poisoning. 

4. DFT calculations were used to validate the CO2 adsorption type on the surface. It was 

concluded that Cu atoms only offer physisorption to CO2 molecules while for Ni atoms 

the interaction in chemisorption. This explains the general improvement Ni offers to 

Cu. 

5. Lattice strain values for all samples revealed a volcano plot with a peak strain at 30% 

Ni. An increase in tensile strain boosts the catalytic activity by shifting up the d-band 

center and thus strengthening the adsorption of key intermediates. This explains why 

the addition of 30% Ni results in the least overpotential for the electrochemical 

reduction of CO2.  

Finally, here are some points that are suggested for future work: 

1. Decorating TNTS with bimetallic nanoparticles for the photoelectrochemical reduction 

of CO2. 

2. It has been documented that metal oxides (namely copper oxide) has superior 

properties to metallic copper. To the best of my knowledge the properties of 

bimetallic alloys such as Cu-Ni oxides are still unresearched.  
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