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ABSTRACT 

Stress is defined as any external force that can trigger a defensive response from an 

organism. In plants, stress is something that has been shown to affect plant reproduction 

and productivity by activating a defensive response.  It can be caused by various things 

including but not limited to biotic or abiotic conditions such as temperature, drought or salt 

stress.  Exposure to stress leads to the production of various transcriptomes that are 

governed by signals released as a result of the exposed stress. Arabidopsis thaliana is 

characterized by its inability to tolerate any form of extreme stress and given its status as a 

model organism it is an ideal candidate to investigate the various effects of stress on plants. 

By studying the transcriptomes produced by Arabidopsis thaliana under different stress 

conditions, a more well-rounded profile of how plant systems react to different stress 

conditions is produced. 

Experiments were carried out in KAUST by exposing the stress intolerant plant to 

Pladienolide B; a drug that is known to affect the slicing mechanism, RNA sequencing was 

used in order to produce the transcriptome profile of the plant in response to the stress over 

a series of time points. The classic tuxedo protocol for RNA sequencing analysis was used 

to assemble the transcripts and following differential gene expression analysis by CuffDiff, 

the R package CummeRbund was used to visualize the results. Functional analysis of the 

significant differentially expressed genes was carried out using PANTHER. 

PANTHER was able to classify 12,646 genes; expressed at after exposure to the 

treatment for 6 hours, and 10,649 genes; expressed after exposure to the treatment for 24 

hours, into functional classes. With around 50% of the differentially expressed gene having 

catalytic activity and around 25% having binding activity. Further investigation revealed 

that the alternatively spliced differentially expressed genes were heavily involved in 

various development and regulatory process that are essential for plant maturation. While a 

few functionally uncharacterized genes were expressed, some of which may hold valuable 

information in understanding plant stress response. 

This research offers a deeper understanding of how plants are effected by stress 

through the characterization of the differentially expressed genes. Future investigation of 

the uncharacterized genes expressed is needed as it may provide deeper insights to the 

plant stress response. 
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Chapter 1: Introduction:  

  

1.1 Arabidopsis thaliana 

 

Arabidopsis thaliana a small flowering plant commonly known as the thale crest 

plant belonging to the Brassicaceae family is characterized by a small genome size of 125 

mega base pairs and a short life cycle of 6 weeks (Genome Assembly, n.d.).  It is an annual 

plant native to northwestern Africa, Asia and Europe; with its general appearance of leaves 

purple in color, maximum height of around 25 cm and a natural habitat of mostly rocky 

soils or roadsides, it is widely considered a weed (Arabidopsis thaliana %93 Overview, 

n.d., Arabidopsis thaliana (thale cress), n.d.). Scientists have been researching A. thaliana 

since the 1900s and it has commonly been used as a model system for the study of plant 

science with an emphasis on development and behavior, genetics and evolution; owing to 

its relatively small genomic size, its short life cycle and the extensive research and 

investigation that has been performed on it in recent decades (Arabidopsis Genome 

Initiative, 2000; Coelho et al., 2007; Garber et al., 2011; Genome Assembly, n.d., “TAIR - 

About Arabidopsis,” n.d.; López-Bucio et al., 2007; Meinke et al., 1998; Rensink & Buell, 

2004). Over the course of the past decade research has shown that A. thaliana is stress 

intolerant, with its inability to tolerate any form of extreme stress. Stress can be due to 

environmental factors, biotic, or abiotic stress such as temperature, drought or even salt 

stress; in plants the main cause of damage is oxidative stress when a combination of 

environmental factors lead to the creation of reactive oxygen species (ROS) (Sunkar, Ã, & 

Kirch, 2003). With each stress condition a different transcriptome is produced; this 

transcriptome is governed by signals that are sent out as a result of the exposed stress 

factors. By studying the transcriptome produced under different stress conditions we are 

able to better characterize and create a more well-rounded profile of how plant systems 

react under different conditions. Previous research has been able to show that different 

levels of tolerance are observed when exposed to different levels of stress; this lends itself 

to supporting the cause of a case specific transcriptome being produced in response to 

various stressors (Sunkar et al., 2003). 
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1.2 Effect of stress on plants 

 

Stress can be defined as any external force that can trigger a defensive response 

from an organism. In plants, stress is something that can affect plant reproduction and 

productivity by activating the plants defensive response; in the form of post-translational 

modification that eventually leads to changes in the transcriptome and triggering repair and 

defensive mechanisms that have been adapted over an extended period of time (Kranner et 

al., 2016). Stress can be abiotic otherwise referred to as environmental; including water 

avilability, temperature and salt stress. Biotic stress factors include pathogens or wild life 

that will ultimately lead to mechanical damage to the plant (Kranner et al., 2010). 

Environmental stress can cause great damage to plants and can lead to the 

disruption of many physiological functions, leading to the increase in the production of 

reactive oxygen species (Kranner et al., 2010). ROS are key components of signaling 

networks where they regulate various developmental processes and are key in controlling 

processes such as abiotic stress response and systemic signaling (Mittler, 2002). The 

effects of many different types of stress on plants have been studied, some more 

extensively than others owing to the variations in the overall climate and its effect on crop 

plants. A study conducted by Beck et al. 2004 on Scots pine (Pinus sylvestris) done to 

investigate the environmental signals triggered as a response to cold stress, shows that low 

temperatures causes dehydration of the cells and tissues when cellular water freezes 

leading to loss of function of the bio-membranes. This can be detrimental to many plants 

that are not able to assimilate to the cold temperatures (Beck et al., 2004). 

Abiotic stress is the primary cause of crop loss worldwide and can lead to a series 

of morphological, physiological, biochemical and molecular changes that negatively affect 

plant growth and productivity (Wang et al. , 2003). The diverse environmental stresses 

lead to the activation of cell signaling pathways and the production of stress proteins and 

the upregulation of anti-oxidants; the complex nature of plant response to abiotic stress is 

more accurately explained in (Wang et al., 2003). The final result of the plants response to 

stress is the development of stress tolerance or stress resistance (Boyko & Kovalchuk, 

2008). Stress tolerance refers to the plants inherent ability to temporarily withstand stress, 
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possibly through the modification in gene function; making gene transformation to 

improve stress tolerance and increase crop potential an area for investigation. Stress 

resistance refers to the plants ability to completely counteract against a particular stress 

(Osakabe et al., 2014; Pugnaire & Luque, 2001; Wang et al., 2003). Biotic and abiotic 

stress factors pose a major threat to the production of agriculture worldwide, through the 

impairment of physiological functions of the plant.  As such extensive research has been 

conducted to better understand the complex nature of the stress response system and 

potentially combat the effects of stress (Durian et al., 2016; HanumanthaRao et al., 2016). 

Previous research has focused on the response of plants to single stress treatment 

under controlled conditions, this does not accurately reflect the natural conditions that 

plants are exposed to. In the field, plants are exposed to a combination of stressors as such  

those discussed in (Rizhsky et al., 2004)  where a study was conducted on Arabidopsis 

plants with the purpose of investigating the changes expressed following exposure to a 

combination of heat and drought stress, transcriptome analysis of the Arabidopsis plant 

showed that there are 454 transcripts specifically expressed as well as a combination of 

two multi-gene defense pathways contributing enhanced respiration, suppressed 

photosynthesis and a complex expression pattern of defense and metabolic transcripts 

leading to the damaging effect on plant growth and productivity (Rizhsky et al., 2004). 

Chen et al., 2013 investigated the transcriptome changes in response to salt, 

osmotic and cold stress on Arabidopsis, where plants were subjected to stress treatments of 

4oC, 100 mM NaCl, or 200 mM mannitol respectively. RNA samples from the leaves and 

roots were collected following specific time points, results were able to show that around 

30% of the transcriptome is sensitive to regulation by stress conditions and majority of the 

changes are specific to each stimulus; indicating that each stress condition leads to a 

specific transcriptomic change and that there is a potential overlap between different 

conditions, potentially identifying shared stress responses (Chen et al., 2013; Kreps et al., 

2002). 
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1.3 Alternative splicing 

 

Alternative splicing is a gene regulatory process that results in a single gene having 

the capability to code for multiple proteins. Levels of alternative splicing can be affected 

by stress; stress can be in the form of biotic stress or even abiotic stress.  Standard 

constitutive splicing is a process by which introns are removed from a protein and only 

exons remain in order to produce a mature mRNA sequence; alternative splicing is a 

variation on constitutive splicing where introns can be incorporated into the mRNA 

producing an mRNA sequence that codes for a potentially different gene with potentially a 

function entirely different than the original gene. Alternative splicing has widely been 

identified as an important posttranscriptional regulatory mechanism that can increase the 

proteome diversity and enhance transcriptome plasticity (Filichkin et al., 2010). 

Several forms of alternative splicing have been identified including (Black, 2003; 

Matlin et al., 2005; Pan et al., 2008; Sammeth et al. , 2008) 1) alternative donor site; where 

an alternative 5’ splice junction is used leading to a change in the 3’ upstream boundary, 2) 

alternative acceptor site; similar to alternative donor site it is where an alternative 3’splice 

junction is used leading to a modification in the 5’ downstream boundary, 3) intron 

retention; where an intronic sequence may be retained and depending on the nature of the 

retained sequence this can lead to the incorporation of a stop codon or a shift in the reading 

frame (Sammeth et al., 2008), 4) mutually exclusive exons; where one of two possible 

exons is retained in the mature mRNA but not both, 5) exon skipping; where an exon is 

spliced out of the primary transcript (Sammeth et al., 2008) (B. Wang & Brendel, 2006). A 

recent revelation has contributed a new form of alternative splicing termed Exitron; where 

introns possess features from both protein coding introns and protein coding exons 

(Marquez et al., 2015; Staiger & Simpson, 2015).  

Alternative splicing is prevalent in both humans and plants with a difference in the 

most common form of alternative splicing expressed. Based on cDNA analysis of 

mammalian systems almost 60% of the human genes were suggested to be alternatively 

spliced with 58% of alternative splicing events belonging to the exon skipping category; 

intron retention is the least prevalent form of alternative splicing in humans with only 5% 
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(Wang & Brendel, 2006). In plants the opposite holds true with intron retention being the 

pre-dominate form; perhaps due to the naturally shorter intron length (Wang & Brendel, 

2006). Variation in the splicing pattern contributes to major consequences for the mRNA 

isoforms; where the encoded proteins consist of unique domains that have different 

functions (Staiger, 2015). Variations in the sequence of an alternatively spliced isoform 

can lead to change in the regulation by microRNAs, stability and can be directed into RNA 

decay pathways (Staiger, 2015). More than 30% of alternative splicing events result in a 

premature termination codon which are targets for nonsense-mediated mRNA decay 

(Lewis et al., 2002). Through the use of nonsense-mediated decay alternative splicing leads 

to an overall quantitative change in the transcript levels. 

 

1.4 Regulation of Alternative splicing 

 

In A. thaliana alternative splicing is controlled by a spliceosome, a complex 

mechanism found primarily in the nucleus of eukaryotic cells that is composed of five 

small nuclear RNAs and a variety of protein factors. The spliceosome is responsible for 

removing introns from a transcribed pre-mRNA and allowing for the production of mature 

mRNA (Will & Luhrmann, 2011). Riboswitches; small metabolites that are responsible for 

controlling alternative splicing via mRNA secondary structure, have been shown to have 

an impact on gene expression following binding of the metabolite. miRNA has also been 

suggested to have a role in alternative splicing regulation, where the splicing of pre-mRNA 

affects the miRNA target site within and can lead to the generation of miRNA resistant or 

susceptible transcripts (Staiger, 2015). Another link between miRNA and the regulation of 

alternative splicing is that primary transcripts of miRNA undergo alternative splicing 

themselves, thus affecting mature miRNA (Staiger, 2015).   

Owing to the difference in prevalent form of alternative splicing between plants and 

humans, it can be concluded that each organism recognizes exons and introns in different 

ways and evidence suggests that each may regulate alternative splicing in a way that is 

unique to the organism.  
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1.5 Alternative splicing in Arabidopsis thaliana 

  

Splicing is a more conserved mechanism in plants than it is in humans and despite 

alternative splicing being widely studied in mammals, studies examining splicing in plants 

have been limited but there has been an increase in the number of investigations in the 

field. As a process alternative splicing can occur at different developmental stages and can 

be linked to a certain tissue type or environmental condition such as temperature, salt stress 

or abiotic stress (Filichkin et al., 2010).  

Alternative splicing creates genetic variation and is able to restore coding potential 

to previously hidden genes (Gan et al., 2011). Alternative splicing events are highly 

common in A. thaliana with a rather high incidence of around 16% in all intron retaining 

genes (Wang & Brendel, 2006); the change in environmental condition is the leading cause 

of alternative splicing and is assisted by various splicing factors. Recent data based on 

whole genome transcriptome sequencing has shown that 61% of all Arabidopsis genes to 

be alternatively spliced (Filichkin et al., 2010; Marquez et al. , 2012; Reddy, 2007; Rühl et 

al., 2012; Staiger, 2015). 

In A. thaliana it has been shown that serine-arginine rich proteins; a family of pre-

mRNA splicing factors that show a high level of conservation, are largely responsible for 

regulating alternative splicing (Richardson et al., 2011).  

 

1.6 Computational transcriptomics 

  

Transcriptomics is the study of the complete set of transcripts present in a cell with 

respect to a specific developmental stage or under the influence of a certain physiological 

condition. By understanding the transcriptome we are able to interpret various functional 

elements of the genome, its molecular constituents and understand the development of 

diseases. Transcriptomics aims to determine the transcriptional structure of genes, their 

splicing patterns and quantifying the changing expression levels of each transcript during 

different developmental stages and conditions (Wang et al., 2009). Computational 

transcriptomics aims to achieve the goals of transcriptomics through computational means; 
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by using various programs that can be used to simulate an experiment and produce results 

that can provide insights without the expense of an experimental procedure. Computational 

transcriptomics can also be used to analyze results obtained from an experiment that was 

performed in the lab, allowing for more in-depth analysis and investigations.  

 

1.7 RNA-sequencing 

 

RNA-sequencing (RNA-seq) also referred to as whole transcriptome shotgun 

sequencing, is a fairly new technology that allows the capturing of both the quantity and 

quality of RNA in a genome at any specific point in time using high throughput next 

generation sequencing technology. The commercially available RNA-seq platforms are 

Illumina, Roche 454, Helico BioSciences and Life Technologies (Ozsolak & Milos, 2011; 

Z. Wang et al., 2009). Owing to the dynamic nature of the transcriptome meaning that it is 

constantly changing, being able to look at the bases present at any time allows for the 

possible identification of alternative gene spliced transcripts, post-transcriptional 

modifications, gene fusion and changes in the gene expression. Some of the advantages of 

RNA-seq is its ability to provide insight on not only mRNA transcripts but also visualize 

different populations of RNA including total RNA and small RNA (miRNA & tRNA) with 

higher accuracy and an increased coverage of the transcriptome population, its ability to 

determine exon/intron boundaries by verifying previously annotated 5’ or 3’ gene 

boundaries or by amending them (Ingolia et al., 2012; Morin et al., 2008).  

RNA-seq is an improvement on the previous method used to study transcriptome 

and gene expression, which was microarray.  Microarray relies on the prior knowledge of 

the organism’s genome while RNA-seq does not. This allows RNA-seq to identify novel 

exons.  RNA-seq is a form of quantitative transcriptomics analysis that is performed using 

several tools each with a specific function; it has become the standard in studying gene and 

transcription expression.  From an experimental point of view the basic protocol for RNA 

sequencing involves several steps starting with obtaining RNA from the organism under 

investigation after which a double stranded cDNA library is generated from the mRNA 

using oligo primers. The generated cDNA is then fragmented by DNase I, adapters can 

then be ligated onto one or both ends of the fragment. Each fragment can then be amplified 
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and placed in a high throughput sequencer in order to obtain short sequence reads from 

either one end; termed single-end sequencing, or both ends; termed pair-end sequencing 

(Nagalakshmi et al., 2010). These reads which range from 30-400 bp; depending on the 

sequencing platform that was used, go through a genome assemble step where the reads are 

analyzed using one of two methods, if the organism under investigation has a known 

reference genome or transcript; the reads are mapped against the aforementioned reference 

genome. If a reference genome is not available then the sequenced reads can be assembled 

de novo (Alamancos et al., 2012; Katz et al., 2010; Lu et al., 2013; O’Neil & Emrich, 

2013; Z. Wang et al., 2009).  [Figure 1] 

This step produces a transcription map consisting of both the transcriptional 

structure and/or the level of expression of each gene (Z. Wang et al., 2009). Following 

genome assembly the produced transcription map can be analyzed for differential gene 

expression through various bioinformatics tools. Therefore RNA-seq is used to better 

analyze the different transcriptomes produced under various stress conditions. By utilizing 

its ability to capture both the quantity and the quality of RNA in a produced transcriptome 

within a specific timeframe and the ability to capture several different types of RNA all at 

once, we are able to investigate different aspects pertaining to the dynamic nature of the 

transcriptome and potentially garner new information on how the plant responds to 

different conditions. Studies have shown that RNA-seq has been able to resolve the start 

and ends of known genes and transcripts while providing a better understanding of the 

splicing isoforms of known genes and discovering novel transcribed regions (Haas & 

Zody, 2010; Z. Wang et al., 2009).  

Studies have shown that the accuracy levels of RNA-seq rivals that of other 

established methods such as microarrays and quantitative polymerase chain reaction 

(Griffith et al., 2010; Griffith et al., 2015; S. Li et al., 2014). It has been reported that 85% 

of novel splicing events and 88% of the differentially expressed exons that are predicted by 

RNA-seq are validated by approaches such as reverse transcription polymerase chain 

reaction and quantitative polymerase chain reaction (Griffith et al., 2010, 2015). RNA-seq 

has contributed to discoveries in many fields ranging from fusion discoveries in cancer 

(Griffith et al., 2015; Honeyman et al., 2014; Maher et al., 2009; Singh et al., 2012), 

regulation of alternative splicing (de Klerk et al., 2015; Griffith et al., 2015; Sultan et al., 
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2008; Wilhelm et al., 2008) and it is currently being transitioned to clinical applications in 

many human diseases (Griffith et al., 2015; Kalari et al., 2014; Van Keuren-Jensen et al., 

2014). 

 

1.7.1 RNA-seq data Analysis 

 

In order to understand the raw data obtained from RNA-seq, the data must undergo 

several steps before a clear picture appears. A description of the standard pipeline is as 

follows, the raw sequenced reads obtained from the sequencing machine undergo a pre-

processing step entailing a quality control (QC) step. This QC step involves trimming of 

the reads, two common trimming strategies include “quality trimming”; which involves 

removing the ends of the reads where the base quality scores have dropped below a certain 

level. The second trimming strategy is “ adapter trimming” where the adapter sequence is 

removed by masking specific sequences during library construction (Griffith et al., 2015). 

Read trimming is followed by an indexing step and then a read alignment or assembly step, 

this step involves merging reads into larger contiguous sequences (Contigs) based on the 

sequence similarity; the most commonly used tools are TopHat and STAR (Dobin et al., 

2013; Engström et al., 2013; Griffith et al., 2015; Martin & Wang, 2011; Trapnell et al., 

2009b).  

Alignment of the RNA-seq data involves a comparison between each read to a 

previously assembled reference genome in order to produce transcripts, the choice of tool 

in this step is dependent on whether a reference genome is available. If a reference genome 

is available then Cufflinks and it’s 3 subprograms cuffmerge, cuffquant and cuffdiff can be 

used (Griffith et al., 2015; Trapnell et al., 2010). If De novo assembly is being performed; 

meaning a reference genome is not available, then Trinity can be used (Grabherr et al., 

2011; Griffith et al., 2015; Haas et al., 2013; Lu et al., 2013; O’Neil & Emrich, 2013).   

Following transcript assembly gene expression analysis can be performed this can 

be done via a variety of tools the most common of which are CuffDiff (a subprogram of 

Cufflinks) and EdgeR (Griffith et al., 2015; Robinson et al., 2010; Trapnell et al., 2012, 

2013). The final step in the analysis pipeline is visualization of the results, this can be 

performed by a variety of tools ranging from an intuitive interface such as a genome 
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browser in the form of integrated genome viewer (IGV) (Thorvaldsdóttir et al., 2013) or 

integrated genome browser (IGB) (Helt et al., 2009). Another visualization platform is 

through the use of  CummeRbund (CummeRbund - An R package for persistent storage, 

analysis, and visualization of RNA-Seq from cufflinks output, n.d.) An R package 

developed for the visualization and analysis of RNA-seq data. For a complete view of the 

RNA-seq analysis pipeline see Figure 2. 

Studies aimed at analyzing RNA-seq data have identified a standard pipeline that 

can be used for analysis, this pipeline consists of various tools each with their own 

function with the final aim of result visualization. This classic pipeline has been termed 

“Tuxedo protocol” it consists of a sequence aligner TopHat (Trapnell et al., 2009b) which 

uses Bowtie (Langmead et al., 2009) as a sub program for alignment, Cufflinks (Trapnell 

et al., 2012) for transcript assembly and expression analysis and finally CummeRbund 

(CummeRbund - An R package for persistent storage, analysis, and visualization of RNA-

Seq from cufflinks output, n.d.)  for visualization.  [Figure 3] 

 

1.8 Challenges with RNA-seq   

 

There are a few challenging steps that one must keep in mind when considering 

RNA-seq the first of which is during library construction; owing to the highly manipulative 

steps involved during the extraction of the RNA involved in the production of cDNA 

libraries which can complicate its use in profiling all types of transcript (Wang et al., 

2009); the issue of sample purity, quality and quantity are a major concern given that RNA 

is unstable and prone to degradation, thus requiring very specialized handling and 

techniques (Griffith et al., 2015). Another challenge faced is the ability to discriminate 

between whether a specific RNA species is abundant or is simply PCR artifacts; this can be 

overcome by determining whether the sequence is observed in different replicates.  

From a bioinformatics angle there is a challenge in developing methods to store, 

retrieve and process the large amount of data produced from the experiments; the 

development of more efficient tools can decrease errors in analysis and remove low-quality 

reads (Wang et al., 2009). For large transcriptomes a major challenge is the alignment of a 

certain portion of reads to multiple locations in the genome (Mortazavi et al., 2008); 
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making the read alignment stage the most challenging (Trapnell et al., 2009a). Large 

genomes have more complex transcriptomes and require more sequencing depth which is 

expensive. Generally the more complex the genome the more sequencing depth is required 

in order to obtain enough coverage and produce significant results.  

 

1.9 Microarray 

 

Microarray is an array that is able to assay large amounts of biological material 

using highly miniaturized detection methods, creating the lab-on-a-chip technique.  It is a 

collection of microscopic DNA sequences that represent all the genes in an organism 

arranged in a grid like fashion, probes are designed to bind to specific sequences. This 

probe is fluorescently labelled in order to simplify detection. Following the hybridization 

step the chip is placed through a laser which can analyze the different level of gene 

expression based on the intensity of color produced (Schena et al., 1995).  Standard 

microarray depends on hybridization of known regions and this does not allow for the 

discovery of spliced transcript variants or any novel variants.  

 

1. 10 Comparison between transcriptome analysis methods. 

 

The developed technologies currently used to quantify the transcriptome can be 

categorized into hybridization based techniques or a sequence based approach. 

Hybridization based approaches typically involve incubating fluorescently labelled cDNA 

alongside gene specific microarrays; this method is relatively inexpensive and can be 

designed to span specific portions of the genome in order to be able to detect and quantify 

spliced isoforms. Hybridization based methods are limited greatly by their reliance on 

existing genome knowledge, a limitation in the range of detection due to potential cross-

hybridization and finally comparing expression levels across different experiments is 

difficult and requires complicated normalization methods (Wang et al., 2009). In 

comparison sequence based approaches are able to directly determine the cDNA sequence, 

examples of this method include Sanger sequencing, Tag-based methods and RNA-seq. 

Unlike hybridization based methods RNA-seq is not limited to previous genome 
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knowledge, has very low background signal, is able to study complex transcriptomes 

owing to its ability to reveal the precise location of transcription boundaries and it does not 

have an upper limit for quantification making it much more sensitive than microarray 

(Wang et al., 2009) [See Table 1].  However microarray remains a “go-to” technique for 

researchers owing to its proven consistency and accuracy in measuring gene expression 

this is shown by the numerous studies conducted using the microarray technique such as 

the genome wide survey of cold stress regulated alternative splicing in Arabidopsis 

thaliana (Barah et al., 2013) and microarray based analysis of stress regulated microRNAs 

in A.thaliana (Liu et al., 2008). 

 

1.11 Macrolides 

 

 Macrolides are a class of natural products that contain a large macrocyclic 

lactone ring, commonly found in Streptomyces. Macrolides have been shown to have 

antibiotic or antifungal activity. Macrolides exhibit their function by binding to the 50S 

subunit of the bacterial ribosome and preventing ribosomal translocation, were protein 

biosynthesis is subsequently inhibited (Tenson et al., 2003). Some macrolides have been 

shown to have tissue penetrative ability against Gram-positive bacteria as such they have 

been used in eukaryotes to modulate inflammation and immunity (Tenson et al., 2003).  

Studies investigating the effects of macrolides on humans have shown that 

macrolides are able to modulate the level of mitogen-activated protein kinase (MAPK) 

pathway eventually effecting mucin gene expression (Kanoh & Rubin, 2010), they also 

have an anti-inflammatory effect by decreasing the production of proinflammatory 

cytokines (Čulić et al., 2001; López-Boado & Rubin, 2008; Shinkai et al., 2008; Zalewska-

Kaszubska & Górska, 2001) for example. Studies investigating the action of macrolides on 

plants are very few, one study investigated the effect of antibiotic macrolides in wastewater 

treatment plants (Cs et al., 2003), another investigate the effect of six antibiotics on plant 

growth (Liu et al., 2009).    
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1.12 Pladienolide B 

 

A study conducted in 2004 by Saki et al. reported the identification of seven 12- 

membered macrolides from Streptomyces platensis Mer-11107; these were termed 

pladienolides A-G (Kanada et al., 2007; Substances & Antitumor, 2004). Pladienolides 

were discovered as a result of a hypoxia induced gene expression, the most potent of which 

are pladienolide B (Antibiotics, 2004; Kanada et al., 2007) and D (Arai et al., 2014; 

Kanada et al., 2007; Substances & Antitumor, 2004). These two compounds have been 

able to inhibit the growth of a variety of cancer cell lines in vitro and show tumor 

regression activity in vitro (Kanada et al., 2007) making it able to affect cell proliferation 

and splicing. The structure of pladienolide B has been confirmed by Kanada et al. (Arai et 

al., 2014; Okuda, & Kawamura, 2004) where a study was conducted to synthesize 

compounds pladienolide B & D; with the aim of preparation of novel synthetic analogues 

of the afore mentioned compounds. See Figure 4, for the chemical structure of pladienolide 

B.  

The prominent anti-tumor activities of pladienolide B & D in both in vitro and in 

vivo systems, is a result of their binding to splicing factor SF3b (Kotake et al., 2007). 

Kotake et al., have shown that when pladienolide B binds to splicing factor SF3b leading 

to the inhibition of the spliceosome. This may impair the cellular mechanism of gene 

expression through any one of the several steps involved in the process including 

transcription, pre-mRNA processing, mRNA surveillance and mRNA export as well as any 

of their sub mechanisms (Kotake et al., 2007; Maniatis & Reed, 2002; Proudfoot et al., 

2002). This effect lends evidence to the potential use of splicing machinery as an antitumor 

drug target (Kotake et al., 2007). 

Another study has been able to validate the biological target of pladienolide B to be 

SF3b through the use of pladienolide-resistant clones from two colorectal cancer cell lines. 

Through the use of differential gene analysis the cell lines have been shown to possess a 

mutation in a gene coding for SF3b1; a subunit of SF3b, rendering both cell lines 

pladienolide resistant and as such not affected by the anti-proliferative effect of 
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pladienolide or its inhibitory effect on the spliceosome (Yokoi et al., 2011). This lends 

further proof to the use of pladienolide B as an anti-tumor drug in mammalian cells.  

Pladienolide B was chosen as the drug for this study owing to its previously 

discussed proven effect on the splicing machinery in mammalian cells. In an investigatory 

fashion it was a point of interest to see what effect the compound may have on plants, if 

any. 

 

1.13 Study objective & design. 

 

As previously discussed, stress plays a major role in contributing to alternative 

splicing in plants. Understanding the intricate mechanisms of alternative splicing in A. 

thaliana and analyzing the subsequent transcriptomic changes will contribute greatly to the 

overall understanding of how plants react to stress. 

The aim of this project is to assess the transcriptomic changes occurring in A. 

thaliana in response to pladienolide B, a molecule that has been shown to block the 

spliceosome and mimic the effects of stress. Allowing for the identification of the 

underpinnings between alternative splicing regulations in plants in response to stress cues. 

This will be done through the following steps:  

1) Reporting the statistically and biologically differentially expressed genes. 

2) Reporting the functional classification of the differentially expressed genes. 

3) Inferring the differentially expresses alternatively spliced genes due to the 

treatment  

4) Inferring the most enriched functional categories to which the differentially 

expressed alternatively spliced genes belong to. 
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Chapter 2: Methods 

 

2.1 Experimental Setup 

 

The experiments were carried out at King Abdulla University of Science and 

Technology (KAUST) in Dr. Magdy Mahfouz’s lab. Seeds of wild-type Arabidopsis 

thaliana Col-0 were surface sterilized with 10% bleach for 10 minutes and used directly 

for seed germination assays or stored at 4oC for 2 days. The seeds were plated on 

Murashige and Skoog (MS) medium agar plates supplemented with 1% sucrose and 

pladienolide B, the plates were then placed in a growth chamber under white light for 16 

hours (~75 μmol m−2 s−1) and 8 hour dark conditions at 22oC for germination and seed 

growth. 

One week old Arabidopsis seedlings were treated with 5.0 μM Pladienolide B for 6 

and 24 hours, where total RNA was extracted using TRIzol Reagent, for a total of 2 

conditions were used; a control condition (with 3 replicates for each of the 6 and 24 hour 

time point; denoted as C06 & C24) and a treatment condition (with 3 replicates for each of 

the 6 and 24 hour time points; denoted as P06 & P24). RNA-seq libraries were constructed 

using an Illumina Whole Transcriptome Analysis Kit following the standard protocol 

(Illumina HiSeq system) and sequenced on the HiSeq platform to generate high-quality 

pair-end reads. 

 

2.2 Computational Analysis 

 

All the computational analyses requiring a server were performed on the AUC 

server using the default parameter of each program. The raw RNA-reads for the 2 

conditions (Control vs. Treatment) at 2 different time points (6 hr. & 24 hr.) each with 3 

replicates; for a total of 6 files per condition and an overall of 12 files, were aligned using 

TopHat (v2.0.13) which used bowtie (v2.2.3) as an assembler (Trapnell et al., 2012). The 



- 24 - 
 

reads were aligned against the TAIR10 version of the A. thaliana genome. Transcript 

assembly was performed using Cufflinks (v2.2.1), this was conducted on each of the 

replicates for each of the time points. Following the assembly of transcripts for all 

conditions and replicates, differential gene expression was analyzed using CuffDiff (a 

subprogram of Cufflinks).  

Differential expression analysis was performed using the R/Bioconductor package 

CummeRbund (v3.3); used for the visualization and exploration of cufflinks high-

throughput sequencing data (Trapnell et al., 2012). The R version used is the Bug in your 

hair (3.3.1).  The annotated IDs for the differentially expressed genes for each condition 

were extracted and uploaded on the Database for Annotation, Visualization and Integrated 

Discovery (DAVID 6.7). Functional analysis was implemented using the Gene Ontology 

Panther classification system (v11.1) (Mi et al., 2013; Mi et al., 2016; Mi & Thomas, 2009; 

Tang & Thomas, 2016) , the default parameters were used.  For an overview of the 

workflow used see figure 5. 
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Chapter 3: Results and Discussion 

 

Genome guided assembly via Cufflinks was used to assemble the transcripts from 

each of the 12 files (3 replicates per time point per condition). The number of transcripts 

assembled from the control condition at the 6 hour time point varied from 34092876 

transcripts for the C06_0 replicate, 27470481 transcripts for CO6_1 replicate and 

28909860 transcripts for CO6_2 replicate.  Meanwhile the number of transcripts produced 

from the treatment condition at the 6 hour time point were as follows. 24410550 transcripts 

from the P06_0 replicate, 30688444 for the P06_1 replicate and 29625260 from the P06_2 

replicate.   

The transcripts produced from the 24 hour time point for the control condition 

ranged from 27474891 at the C24_0 replicate, 30154454 at the C24_1 replicate to 

22128277 at the C24_2 replicate. While at the 24 treatment condition 28370379 transcripts 

were produced at the P24_0 replicate, 29331131 at the P24_1 replicate and 33418085 at 

the P24_2 replicate [Table 5]. A heat map was generated in order to visualize the 

correlation of gene expression between samples and replicates [Figure 21]. In it, it 

becomes clear that all control sample are grouped together and all treatment samples are 

grouped together. Thus verifying the relationship between the samples and each other. 

 Differential gene expression analysis of both conditions using CummeRbund 

revealed the differential expression of 32996 genes, 63972 isoforms and 237492 splicing 

events. Upon further investigation of the differentially expressed genes for each time point, 

the differentially expressed genes were identified and the annotation for the 

aforementioned genes were compiled and placed through an online tool for functional 

analysis. This allowed for the identification of the functional categories that were most 

affected by the plants exposure to the drug. Using different functions of CummeRbund a 

range of plots can be generated in order to visually analyze the differentially expressed 

genes from cuffdiff.  



- 26 - 
 

In the following section the different generated plots will be presented and 

analyzed.  

 

 

3.1 The 100 most differentially expressed genes 

 

Differential expression analysis identified a total of 12646 significant differentially 

expressed genes for the 6 hour time point; comparing the 6 hour control replicates with the 

6 hour treatment replicates. For the 24 hour time point a total of 10649 genes were 

significantly differentially expressed; when comparing the control and the treatment 

conditions. All the significant differentially expressed genes were utilized to generate the 

plots seen below [Figure 6- Figure 14]. The functional analysis for the 100 most 

differentially expressed genes will be discussed in details in the following section. 

 

3.2 Density Plot 

 

Density plots are generated to assess the distributions of FPKM scores across the various 

samples; the frequency of each FPKM score in the sample is plotted in a density plot 

(Fukunaga, 1990; Racine et al., 2004).  Figure 6 shows the distributions of the FPKM 

scores across the various samples in both conditions and figure 7 shows the FPKM 

distributions across all replicates of both conditions. From these figures we can deduce that 

genes are split into two main peaks one at a log10 (FPKM) of -2 and another at log10 

(FPKM) of 2. At log10 (FPKM) 2, genes from the C06 sample show the highest 

distribution while at -2; genes from the P24 sample show the highest distribution scores.   

 

3.3 Scatter Plot 

 

Scatter plots are produced in order to perform a pairwise comparison between 

conditions where the data is displayed as a collection of points representing the normalized 

values (log10FPKM) between two conditions (Friendly & Denis, 2005; Fukunaga, 1990; 
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Jarrell, 1994). A scatter plot for both time points across both conditions is generated 

[Figure 8], each scatter plot is a comparison between two conditions.  

The comparison between the different time points of the control condition show a similar 

expression trend, while the comparison between control and treatment conditions show a 

wide range of gene expression.   

 

3.4 Box Plot 

 

Boxplots are generated to study the distributional characteristics of a group of 

values and in turn show an overall response pattern of that group (Cleveland, 1993; 

Fukunaga, 1990; Jarrell, 1994). A total of two boxplots were generated in the analysis, 

[figure 9] (a comparison between the two conditions across the two time points); where the 

slightly larger size of the control shows a wide range of differential expression and all 

samples show a similar pattern of expression as per the positioning of the median line and 

the middle quartile (Frigge et al., 1989; McGill et al., 1978; Tukey, 1977). 

Figure 10 (a comparison of all the replicates for both conditions across the two time 

points), shows that the widest range of expression values belongs to the zero replicate in 

both the 6 hour and 24 hour time point of the treatment condition. This points to the zero 

replicate having the widest range of differential expression throughout all the samples. 

 

3.5 Volcano Plot 

 

Volcano plots are types of scatter plots used to identify changes in large datasets 

that are composed of replicates. It is generated by plotting the negative log of the p-value 

representing the significance on the y-axis against the log of the fold change on the x-axis 

(Cui & Churchill, 2003; W. Li, 2012; Tukey, 1977). Each point is the fold-change versus 

the significance for each gene between the conditions specified in the analysis. The results 

of a volcano plot are data points of high statistical significance (low p-value) and high 

biological significance (high fold-change) appearing towards the top of the plot. 
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Figure 11 shows the volcano plot of –log10 (p-value) vs. log fold- change, showing 

both the statistical and biologically significant genes. The comparison between the control 

and treatment conditions show a wider range of differentially expressed genes. 

 

3.6 Principal Component Analysis (PCA) 

 

Principal component analysis is a statistical procedure that converts a set of 

potentially correlated variables into a smaller group of linearly uncorrelated variables 

called principle components (Jolliffe, 2002). This allows for the identification of the most 

important variables that contribute to the variability in the data through dimension 

reduction by correlating between the different conditions (Fukunaga, 1990; Network 

component analysis: Reconstruction of regulatory signals in biological systems, n.d.). For 

analysis purposes several PCA plots were generated with various combinations in an 

attempt to identify the variations between the datasets.  

The PCA plots were able to group the samples belonging to the control condition 

together and the samples belonging to the treatment condition together. Verifying the 

variability in the data can be attributed to the introduction of a treatment condition and that 

all results are largely due to the aforementioned administrated treatment.  

 

3.7 Functional Analysis using Gene Ontology PANTHER Classification system  

 

In order to analyze the functions of the significant differentially expressed genes 

the generated annotations were run through PANTHER (Protein Analysis Through 

Evolutionary Relationships) (Mi et al., 2016) an online functional classification tool.  

 

3.7.1 Functional analysis of significant differentially expressed genes 

 

The significant differentially expressed genes were placed in PANTHER in order to 

deduce the function of each gene. A total of 12646 genes were placed in PANTHER for 

the 6 hour time point comparison, generating figure 15, where the genes were grouped into 

functional classes. The 6 hour time point (C06 vs P06) comparison showed that 48.9% of 
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the genes have known catalytic activity and 26.4% have known binding activity. Figure 16 

shows the functional classes of the 10649 significant differentially expressed genes at the 

24 hour time point (C24 vs P24) showed that 50.3% of the genes have known catalytic 

activity and 26.5% have known binding activity.  

The significant differentially expressed alternatively spliced genes were similarly 

analyzed using PANTHER. For the 6 hour time point comparison (C06 vs P06), a total of 

3763 genes were found to be significantly differentially expressed. 46.6% of these genes 

were found to have catalytic function and 33.9% of the genes have binding activity [Figure 

17]. For the 24 hour time point comparison (C24 vs P24) a total of 2797 alternatively 

spliced genes were found to be significantly differentially expressed with 46.4% having 

catalytic activity and 33.7% having binding activity [Figure 18].  

Throughout the following section gene expression will be discussed, given the 

nature of the treatment of choice; Pladienolide B, which is an inhibitor of alternative 

splicing. Genes that are upregulated as a result of exposure to the inhibitory nature of the 

treatment, would under normal conditions be inhibited by alternative splicing and as such 

the treatment is able to prevent the inhibitory action of alternative splicing and 

subsequently allow the expression of the genes which are potentially not involved in stress 

response. While the opposite holds true for genes that are down-regulated, under normal 

conditions these genes are either not affected by alternative splicing or are positively 

affected. The introduction of pladienolide B, an inhibitor of alternative splicing causes the 

genes to be negatively affected and for their expression levels to drop. This lends itself to 

the thinking that genes that are downregulated as a result of a lack of the action of 

alternative splicing are potentially essential in plant stress response and may play a role in 

the regulation of stress in plants. 

 

3.7.2 Functional Analysis of the top 100 alternatively spliced differentially 

expressed genes.   

 

Given that the administrated treatment (Pladienolide B) has been shown to affect 

alternative splicing by inhibiting the splicing machinery, the following section will focus 

on investigating the significant differentially expressed genes that were alternatively 
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spliced. Owing to the large number of alternatively spliced genes that were differentially 

expressed; 3763 genes for the 6 hour time point comparison & 2797 genes for the 24 hour 

time point comparison, only the top 100 genes expressed will be discussed. This is true for 

both time points of the comparison. 

 

3.7.2.1 6 hour time point comparison  

  

This section will address the genes that were differentially expressed in the 6 hour 

time point comparison (between control and treatment, C06vsP06) and not expressed in the 

24 hour time point comparison. A total of 48 genes were uniquely expressed in the 6 hour 

treatment time point when compared to the control. Of which 44 have been previously 

identified and functionally characterized [Table 2] and the remaining 4 genes have 

unreported functional classification as of this date. 

 MAC3A is a pre mRNA processing factor 19 gene involved in mRNA splicing,   

expression levels were suppressed from 15.149 FPKM to 8.32993 as a result of the 

treatment. It has been suggested that MAC3A is a member of the MOS4-Associated 

Complex (MAC) which functions redundantly in the regulation of the plant immune 

system and response to plant pathogens a fact that has been corroborated by Kourmpetis et 

al (Kourmpetis et al., 2011; Monaghan et al., 2009). It is also homologous with the yeast 

and human E3 ubiquitin ligase PRP19 (Monaghan et al., 2009) which is similar in nature to 

PRP 39 which shows a high level of expression across the time points and will be 

discussed in detail later on.  

 

ADF11 is a hypothesized actin-depolymerizing factor protein belonging to the 

ADF/cofilins family of actin-binding proteins that through multiple in-vitro experiments 

and in-vivo experiments has been shown to play a role during the development of 

organisms; these f-actin proteins have been shown to be key regulators in flowering and 

cell and organ expansion in Arabidopsis thaliana (Dong et al., 2001; Maciver et al., 2002). 

Genes belong to the ADF/cofilins family have been known to be expressed in multiple in 

various organisms (Maciver et al., 2002). BT3 is a non-motor actin binding protein 

belonging to the BTB AND TAZ DOMAIN proteins which has been hypothesized to 
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regulate telomerase activity in mature organs upon exposure to auxins. BT3 is also 

expressed when  the predominate gene responsible for the gametophyte development is 

lost (Berr et al., 2010; Mahé et al., 2007; Ren et al., 2007; Robert et al., 2009).  

 

CKL13 has been classified as a non-receptor serine/threonine protein kinase which 

potentially could cause the downstream lack of functional modification and as such could 

adversely affect the enzymatic activity and location of other proteins.  (Delhaize & 

Randall, 1995; Menges et al., 2005). RPL2, RPS19, RPS11, RPS7, RPL16, RPS11, 

RPS15, RPL2, RPL14, RPL20, RPL32, RPS19, ORF110A and RPL16 are all ribosomal 

proteins which have been shown to possess different isoforms as well as potentially being 

post translationally modified. These proteins could possibly be the result of the altered 

expression of the previously discussed genes, which are all involved in the developmental 

process of Arabidopsis thaliana. AT1G05730, AT1G04790, AT1G01810, AT1G01730 are 

all expressed transcripts that are functionally uncharacterized to date and pose a new 

avenue for investigation on the effects of alternative splicing.   

 

YCF10 a gene belonging to a family of algal YCF 27 proteins and was upregulated 

following the administration of Pladienolide B, along with several others of the YCF 

family including (YCF 1, 2,3,4,5 and 6). These genes exhibited an increase in the 

expression level at the 6 hour time point, this family has been shown to have a role in 

chloroplast evolution and encode for transcriptional regulators (Ashby et al., 2002). All 7 

of the expressed genes hold a role in chloroplast evolution ranging from chloroplast 

envelope membrane protein to photosystem assembly protein and center protein (Sato et 

al., 1999). YCF3 is a chaperone involved in PSI (Photosystem I) assembly and its splicing 

has been known to lead to defective PSI assembly and degradation (Landau et al., 2009), 

given the nature of the treatment and that it effects splicing it points to a potential negative 

impact on the growth and development of the plant.  PSBJ is another photosystem II 

reaction center protein that possess similar function as some of the YCF family genes that 

through investigation has been linked to developmental control of the PSII core and OEC 

(Oxygen Evolving Complex) proteins, having a vital role in correct assembly (Suorsa et 

al., 2003). PSBJ levels show an almost two fold increase in expression following the 
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treatment which points towards the over activity of the genes necessary for survival as a 

means to adapt to the effects of the treatment. 

 

 GATL5 is a galacturonosyltransferase like 5 protein that is involved in the 

production of Arabidopsis thaliana seed coat mucilage which due to the specialized 

epidermis, ruptures upon exposure to water and is able to encapsulate the seed in order to 

aid in the protection, hydration and distribution of said seed (Kong et al., 2013; Ralet et al., 

2016; Saez-Aguayo et al., 2013). Its slight increase in expression levels indicate that the 

seed potentially requires more protection or hydration in order to reach maturity. 

 

ATAF1 is an NAC transcription factor that has a major role in negatively 

regulating the plant response to stress and development by directly regulating the abscisic 

acid biosynthesis genes in Arabidopsis thaliana. Abscisic acid possess a regulatory role in 

abiotic stress responses by directing the plant towards desiccation tolerance and enabling 

the adaptation to water stress (de Torres-Zabala et al., 2007; Fan et al., 2009; Jensen et al., 

2013; Wang et al., 2009). This is the second differentially expressed gene to possess action 

towards plant-pathogen interactions. 

 

It is clear that the uniquely expressed alternatively spliced genes in the 6 hour time 

point after the administration for the treatment; Pladienolide B, have correlating functions 

all linked to the modulation of the development of Arabidopsis thaliana ranging from 

ribosomal proteins, protein kinases that will affect the functional modification of 

downstream binding proteins to actin binding proteins that alter the telomerase activity and 

regulate the maturation of developmental organs in plants.  The various ribosomal proteins 

possess the highest upregulation with a fold change ranging from 1.5 increase for RPL32 

and RPL32, a 0.9 fold change for RPL2, and a 0.6 fold change for RPL16, RPL14, RPS11. 

RPS15 has the highest upregulation with a fourfold increase in gene expression between 

control and treatment. ADF11 is a hypothesized actin-depolymerizing factor protein that 

shows the largest down regulation with a threefold decrease between the control and the 

treatment. Another down regulated gene is the CKL13 which is classified as a non-receptor 

serine/threonine protein kinase, it shows a slight decrease in expression with a -0.6 fold 
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change.  MAC3A a pre mRNA processing factor 19 gene involved in mRNA splicing is 

similarly down regulated with a -0.8 fold change in gene expression.  

As such the majority of the genes that are involved in the developmental process of 

plants are all significantly affected by the action of Pladienolide B, from this it can be 

deduced that inhibiting a specific splicing factor in the spliceosome will ultimately lead to 

the altered expression of genes directly involved in the maturation and development of 

plants. Despite the highly investigated nature of Arabidopsis thaliana a significant number 

of genes remain functionally uncharacterized to date and present a new area for further 

investigation. These uncharacterized genes (AT1G05730, AT1G04790, AT1G01810, and 

AT1G01730) are upregulated and show an increase of 1.5 times in gene expression and are 

a point of interest for future studies.   

 

3.7.2.2 24 hour time point Comparison 

 

This section will address the genes that were uniquely differentially expressed in 

the 24 hour treatment time point comparison (between control and treatment, C24vsP24) 

and not expressed in the 6 hour treatment time point. A total of 51 genes were uniquely 

expressed in the 24 hour time point comparison between the control and treatment. Of the 

51 genes, 40 have been previously identified and functionally characterized [Table 3], and 

the remaining 11 genes have unreported functional classification as of this date. 

 

 A few of the expressed transcripts such as AT1G05140, AT1G07170, AT1G05960, 

AT1G06640, AT1G06650, AT1G03200, AT1G03210, AT1G06645, AT1G06870, 

AT1G06135, and AT1G07170 have been hypothetically functionally characterized but 

remain unnamed as they are denoted by their annotation, these transcripts possess a variety 

of functions ranging from PHD finger-like domain containing proteins, chloroplast related 

membrane metalloprotease ARASP to Oxidase homolog related genes to name a few.  

 

ABCI19: ATP-binding cassette (ABC) transporter. It belongs to a superfamily of 

oligopeptide permease proteins responsible for transporting a wide range of substrates 

across membranes, ABC is considered one of the largest protein transporter families that 
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are driven by ATP hydrolysis. ABCI19 is one of the 22 functionally characterized 

Arabidopsis transporters that has been shown to translate to cytosolic proteins and is 

required for a multitude of processes including plant development, response to stress and 

pathogenic resistance (Marin et al., 2006). ABC transporters have an overall involvement 

in plant development and survival (Kang et al., 2011). HSP17 is a heat shock protein 

induced by heat and osmotic stress (Sun et al., 2001), it shows the highest level of 

upregulation with an almost fivefold increase in expression. The versatile response to 

stress has not been fully explored in Arabidopsis and the involvement of proteins that are 

joined with particular types of stress such as salt, drought, and osmotic stress is something 

that is still under investigation.  

 

Similar to the 6 hour time point comparison of the expressed genes, a few are characterized 

as ribosomal proteins such as AT1G06380, and RPL4. This differs from the considerable 

number of ribosomal proteins that were differentially expressed at the 6 hour time point 

comparison, suggesting that with the extended exposure of the plant to the treatment some 

of the genes are no longer effected and the plant is able to adapt to the effects of the 

treatment. Several of the genes that are differentially expressed are characterized as 

transcription factors such as BHLH128; that could be a potential component of a 

regulatory network that controls root nitrate response which is essential for proper plant 

development (Vidal et al., 2013). 

 

A considerable number of genes in enzymatic actions are differentially expressed 

following the 24 hour exposure to the treatment including but not limited to ATNDI1 a 

dehydrogenase that belongs to a family of enzymes with yet unexplored function, location 

and specificity (Moore et al., 2003). CER1 is a decarbonylase gene that possess similarity 

to integral membrane enzymes and has been shown to be involved in wax biosynthesis and 

pollen fertility (Aarts et al. 1995). ATPI, GTE4, ATNDI1, ORF315, AT1G01300, COX1, 

NAD3, ATPI, RCI3, UGT71CA, FRO2, UGT71C5, and PETD are all genes with 

enzymatic actions ranging from glycosyltransferase to ferric reduction oxidase. CHR9 

(Chromatin remodeling 9) is a DNA helicase and NIH is identified as an ATP-Dependant 

RNA helicase that is downregulated following the 24 hour time point of the treatment.  
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AXR3 and IAAI2 are auxin responsive proteins that are a part of the AUX/IAA 

gene family that are primarily transcriptional repressors that upon exposure to auxins even 

at low concentrations are able to prevent auxin induced gene expression (Leyser et al., 

1996; Nanao et al., 2014; Rouse et al., 1998). The interaction between the genes is vital for 

auxin signaling and could potentially lead to new information about auxin induced gene 

regulation. 

 

There is noticeable similarity in the functions of the genes differentially expressed 

but with an expected decrease in the number of the genes affected, this suggests that over 

time the treatment exerts a greater effect and considerably alters the expression levels of a 

wider variety of genes or that the plant is able to adapt to the effects of the treatment.  

Genes with the highest level of upregulation in gene expression have varying functions 

ranging from HSP17; a heat shock protein that shows the highest increase in expression 

with an almost fivefold increase, to ABCI19 a member of the ABC transporter family that 

shows a 1.5 increase in gene expression between the control and treatment at the 24 hour 

time point. Unlike the 6 hour time point, there is a considerably larger number of 

downregulated genes at the 24 hour time point; almost double the amount, genes with the 

largest decrease in gene expression are those with various enzymatic functions such as  

ATNDI1, UGT71CA, and FRO2.  

At the 24 hour time point genes show an increased reaction to the prolonged 

exposure to Pladienolide B, with a greater number of genes becoming down-regulated as a 

result. While the number of genes affected may have decreased overall, the change in gene 

expression levels is much higher when compared to the gene expression levels at the 6 

hour time point. The decrease in the number of affected genes indicates that the plant 

adapts to the treatment, as the length of exposure increases.    

 

 

 

 

 



- 36 - 
 

 

 

3.7.2.3 Continuously Expressed Genes 

 

This section will address the change in the expression levels of some genes; genes 

that were found to be differentially expressed; when comparing control and treatment gene, 

across both time point but with varying expression levels. A total of 54 genes were jointly 

expressed in both the 6 hour and 24 hour time point comparison with 50 showing 

previously reported functional classification [Table 4] and 4 genes having unreported 

functional classification as of this date. 

 

PRP39 is a pre mRNA processing factor 39 gene involved in mRNA splicing, 

previously shown to affect flowering time in Arabidopsis thaliana. Following 

administration of the treatment (Pladienolide B) expression of the gene increased by 1.5 

folds, this level of expression was maintained and increased from the 6 hour exposure to 

the 24 hour exposure; expression levels went from 46.3784 FPKM at the 6 hour time point 

to 55.0048 FPKM at the 24 hour time point.  PRP39 has been shown to be conserved in 

yeast, humans and plants owing to the tetratricopeptide repeat proteins present within the 

structure (Bayne et al., 2008; Beggs, 1993; Karpov & Blume, 2008; C. Wang et al., 2007). 

Similarly IAA10 and ATG04090 are two genes that were simultaneously expressed with 

PRP39, potentially due to close proximity within the transcript. IAA10 is classified as an 

auxin responsive protein, auxins have been known to regulate transcription for early 

response genes and are highly involved in cell type specification (Chandler & Werr, 2015; 

Hagen & Guilfoyle, 2002). AT1G04090 has no clear functional classification to date but 

has been marked in TAIR database as an unknown product, a study conducted to 

investigate the potential conservation of microtubule-associated proteins (MAPs); which 

play a role in increasing the rate of polymerization, assembly and stabilization of 

microtubules and microtubule functions, between animal & plant tubulins has been able to 

positively map a universal MAP1 motif to the area identified as AT1G04090 (Karpov & 

Blume, 2008). It can be deduced that functions that are involved in the early stages of 
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development and have a high level of importance are similarly over expressed as a result of 

the Pladienolide B treatment potentially to counteract its effect.  

  

A variety of functions were continuously expressed following the exposure to the 

treatment where there are several genes involved in ATP synthase such as ATP1,6,9 where 

ATP 9 expression causes mitochondrial dysfunction in the form of the sterility of the male 

Arabidopsis thaliana (Gómez-Casati et al., 2002). Again there are several genes 

continuously expressed with enzymatic activity, these expressed genes have a wider 

variety of enzymatic activity than those uniquely expressed at the 6 hour time point and the 

24 hour. These genes are AT1G01350, AT1G01630, AT1G01210, AT1G03220, 

AT1G03230, AT1G04430, AT1G05000,  AT1G05700, FKGP, FZL, GAE2, MCCA, 

NAD4, NAD7, ORFX, PME7, COX2 COX 3 BXL2, and BGLU11. The functions vary 

from ligase, dehydrogenase, dehydratase, reductase, methyltransferase, and to aspartic 

protease.  

 

A series of proteins expressed after the treatment exposure are all linked to the 

previously discussed photosystem I reaction and in particular the center subunit, these 

genes are PSAI, PSAJ, PSBI, PSBK, PSBL, and PSBT; as previously mentioned these 

genes are all involved in chloroplast evolution and are needed for mature plant 

development (Sato et al., 1999). These photosystem 1 reaction genes are upregulated with 

an almost 1.5 fold change in expression between the 6 hour and 24 hour time point 

condition. Similarly to ABCI19, PGP11 belongs to the ABC transporter B family. This 

family is responsible for a transporting substrates across membranes (Kang et al., 2011; 

Marin et al., 2006).  It is also the gene with the highest fold change in expression between 

the 6 hour and 24 hour time point, PGP11 is one of the highest down-regulated genes with 

a fivefold decrease in expression. 

 

 Similarly out of the 50 continuously expressed genes 24 are downregulated 

(between 6 hour and 24 hour time point) and the remaining genes are up-regulated 

(between the 6 hour and 24 hour). The genes with the largest positive fold change i.e. up 

regulated are the genes with enzymatic function such as COX 3 & 2 with an almost 3 fold 
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increase in gene expression, while the genes with the largest negative fold change (down-

regulated) are the Photosystem I reaction genes such as PSAI, PSAJ, PSBI, PSBK, PSBT, 

and PPSBT. They exhibit almost twofold decrease in gene expression across the 24 hour 

time point. AT1G05320 and AT1G04090; both uncharacterized genes, show a constant 

rate of expression with only a slight increase in gene expression (0.06 and 0.08 fold change 

respectively), ORF294 another uncharacterized gene shows a 15 fold decrease in 

expression when comparing the 6 hour and 26 hour time points.  

Genes that are continuously expressed at both the 6 and 24 hour time points have 

similar functions to those uniquely expressed at the 6 or 24 hour time point. A larger 

number of genes that are continuously affected have enzymatic function of various actions 

and to a smaller extent genes involved in the photosystem reaction being the most effected 

with a fivefold decrease in expression between the 6 hour and 24 hour time point. 
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Chapter 4: Conclusion and Future Recommendations 

 

 Understanding the response of the model organism Arabidopsis thaliana to various 

stressors is an important step in deepening the understanding of the highly adaptive nature 

of plants and the way various treatments can affect the transcriptome. The RNA seq profile 

of the pladienolide B exposed Arabidopsis prepared by KAUST was analyzed in an 

investigatory fashion of identifying which genes were effected and the various biological 

processes affected by the response to the stress. The differentially expressed genes were 

functionally analyzed to view the affected functional processes. 

 

 Throughout the exposure of the plant to pladienolide B, the number of significant 

differentially expressed genes decreased from 12646 genes at the 6 hour time point to 

10649 genes at the 24 hour time point. This is true for the alternatively spliced genes where 

at the 6 hour time point a total of 3763 genes were significantly differentially expressed 

and at the 24 hour time point only 2797 genes were found to be significantly expressed. 

Genes uniquely expressed at both the 6 & 24 hour time point show similar functions 

involved in developmental regulation, stress response proteins and response to pathogens, 

all of which are essential for the maturation and development of the plant. 

  

 Further investigation of the role of the expressed genes with uncharacterized 

functions or hypothetical functions is needed as it may lead to further understanding the 

way plants react to stress. As well as investigating the different forms of alternative 

splicing that are affected by the treatment. This research offers a deeper understanding of 

how plants are effected by stress and the interplay between stress and alternative splicing 

through the characterization of the differentially expressed genes. 

 

 

 

 



- 40 - 
 

 

 

TABLES AND FIGURES 

 

 

Table 1: Comparison of the differences between microarray and RNA-seq. (Wang et al., 

2009) 

 

 

 

 

 

 

Technology Microarray RNA-seq 

Technology specifications 

Principle Hybridization High throughput sequencing 

Resolution Several-100bp Single base 

Throughout High High 

Reliance on genomic sequence Yes In certain cases. 

Background noise High Low 

Application 

Simultaneous mapping of transcribed genes and gene expression Yes Yes 

Ability to distinguish different isoforms Limited Yes 

Practical issues   

Required amount of RNA High Low 

Cost of mapping transcriptomes of large genomes High Low 
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Figure 1: Approaches for transcript assembly from RNA-seq reads. The approach on the 

left, describes genome assembly using a reference genome (Trapnell et al., 2009a); this 

approach first aligns the RNA-seq reads to the reference genome followed by transcript 

reconstruction from the alignment (Haas & Zody, 2010). The approach on the right 

describes de novo transcript assembly, where the transcript sequence is assembled directly 

from the RNA-seq reads; they are then aligned to the genome. RNA-seq reads are colored 

according to the transcript isoform from which they are derived. Protein-coding regions of 

the constructed isoforms are depicted in darker colors (Haas & Zody, 2010). 
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Figure 2: RNA-seq analysis flow chart.  
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Figure 3: Flowchart of the classic RNA-seq analysis protocol “Tuxedo Protocol” adapted 

from (Trapnell et al., 2012) 
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Figure 4: Chemical structure of pladienolide B. this compound is produced by 

Streptomyces platensis Mer-11107 and has been shown to have a molecular formula of 

C30H48O8 and a molecular weight of 536 (Substances et al., 2004). 
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Figure 5: Workflow overview. 

 

 

 

 



- 46 - 
 

 

 

 

 

Figure 6: Density plot of Control (C) vs. Treatment (P). Density plot showing the 

Frequency of FPKM of each sample after 6 and 24 hours. A higher portion of genes at the 

24 time point of the treatment condition (P24) are differentially expressed at a 

log10(FPKM) of around -2, when compared to the remaining conditions.  A second peak 

of differentially expressed genes can be seen at a log10(FPKM) of around 2, these genes 

belong to the 6 hour time point of the control condition. 
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Figure 7: Density plot of Control vs. Treatment (all replicates). Density plot showing the 

FPKM of each sample in all replicates of each condition. Two prominent peaks can be 

seen, one at around log10(FPKM) of -1 where the differentially expressed genes belong to 

the 24 hour treatment time point. The second peak appears at around log10(FPKM) of 1 

and the differentially expressed genes belong to the 6 hour time point condition.  
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Figure 8: Scatter plot illustrating global trends in the gene expression between pairs of 

conditions using normalized expression values (Log10FPKM). Scatter plots generated 

from a comparison between the different time points of the control condition show a 

similar expression; while the plots generated from a comparison of treatment vs. control 

show a largely dissimilar expression pattern with a wide range of expression regardless of 

the time point. 
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Figure 9: Boxplot of different time points for the 2 conditions, showing the distributional 

characteristics of a group of values and illustrating an overall pattern of the response of the 

genes in each condition. All samples show a similar pattern of expression as indicated by 

the position of the middle quartile and the median line. The slightly larger size of the 

control conditions suggests a wide range of differential expression. 
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Figure 10: Boxplot with all replicates for both conditions. The 6 hour time point show a 

wider range of differential expression values with P06_0 ( the zero replicate for the 6 hour 

time point of the treatment condition) having the tallest box indicating the widest range of 

differential expression throughout all the samples. The 24 hour time point samples show a 

similar distribution pattern of expression with the P24_0 (zero replicate of the 24 hour time 

point of the treatment condition) having the smallest variation in expression. Across all 

samples the median line is located at a similar location and intersecting the middle quartile 

into two parts. 
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Figure 11: Volcano plots of –log10 p value vs. log fold change. The plots represent the 

statistical and biologically significant genes, represented by red dots. The biologically and 

statistically significant differentially expressed transcripts are located in the upper middle 

section of each comparison.  
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Figure 12: PCA (Principle Component Analysis) of PC1 vs. PC2. PC1 (Principle 

Component 1) the largest component that accounts for the most variation in the data is 

unable to differentiate between the different conditions. PC2 (Principle Component 2) is 

the second component having the highest variance possible under the condition that it is 

uncorrelated to the preceding components; is able to differentiate between the conditions 

and separating the control condition (located in the lower left quartile of the graph) from 

the  treatment condition ( located in the upper left quartile in the graph) 
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Figure 13: PCA (Principle Component Analysis) of PC1 vs. PC3. In this comparison PC3, 

the third principle component is able to further differentiate between the conditions by 

separating them according to the time point. The 24 hour time point samples are located in 

the lower left quartile, both the control and the treatment condition. The 6 hour sample 

from both the control and the treatment is located in the upper left quartile. 
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Figure 14: PCA (Principle Component Analysis) of PC2 vs. PC3. A comparison between 

the two principle components that were able to differentiate between the conditions is able 

to place each of the 4 samples (2 conditions with 2 time points each for a total of 4 

samples) into an individual quartile with the 24 hour time point samples being placed in 

the lower half and the 6 hour time points located in the upper half. 
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Figure 15: CO6 vs P06 Molecular function of differentially expressed genes. Molecular 

Function of the 12646 significant differentially expressed genes from the 6 hour time point 

(Control vs. Treatment) 
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Figure 16: C24 vs P24 Molecular function of differentially expressed genes. Molecular 

Function of the 10649 significant differentially expressed genes from the 24 hour time 

point (Control vs. Treatment) 
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Figure 17: CO6 vs P06 Molecular function of alternatively spliced differentially expressed 

genes. Molecular Function of the 3763 significant differentially expressed alternatively 

spliced genes in the 6 hour time point.  
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Figure 18:  C24 vs P24 Molecular function of alternatively spliced differentially expressed 

genes. Molecular Function of the 2797 significant differentially expressed alternatively 

spliced genes in the 24 hour time point. 
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Figure 19: CO6 vs P06 molecular function of the top 100 alternatively spliced genes. 
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Figure 20: C24 vs P24 molecular function of the top 100 alternatively spliced genes. 
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Figure 21: Heat map showing the correlation of gene expression between samples and 

replicates. 

 

 



 

 

Mapped ID Gene Name/Gene Symbol PANTHER Family/Subfamily PANTHER Protein Class 

AT1G05730 
Uncharacterized 
protein;At1g05730;ortholog 

PROTEIN FAM136A 
(PTHR21096:SF1)   

RPL2 
60S ribosomal protein L8-
1;RPL8A;ortholog 

60S RIBOSOMAL PROTEIN L8 
(PTHR13691:SF28) ribosomal protein(PC00171) 

ASG4 Protein REVEILLE 3;RVE3;ortholog 
MYB-LIKE PROTEIN G 
(PTHR12802:SF71) 

chromatin/chromatin-binding 
protein(PC00171);transcription 
cofactor(PC00009) 

AT1G01500 
Uncharacterized protein 
At1g01500;At1g01500;ortholog 

SUBFAMILY NOT NAMED 
(PTHR42938:SF4) dehydrogenase(PC00176) 

ADF11 
Putative actin-depolymerizing factor 
11;ADF11;ortholog 

ACTIN-DEPOLYMERIZING FACTOR 
1-RELATED (PTHR11913:SF34) non-motor actin binding protein(PC00085) 

RPS19 
40S ribosomal protein S19, 
mitochondrial;RPS19;ortholog 

40S RIBOSOMAL PROTEIN S19, 
MITOCHONDRIAL 
(PTHR11880:SF13) ribosomal protein(PC00171) 

RPS11 
30S ribosomal protein S11, 
chloroplastic;rps11;ortholog 

28S RIBOSOMAL PROTEIN S11, 
MITOCHONDRIAL 
(PTHR11759:SF18) ribosomal protein(PC00171) 

AN 
C-terminal binding protein 
AN;AN;ortholog 

C-TERMINAL BINDING PROTEIN 
AN (PTHR43254:SF2) dehydrogenase(PC00176) 
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BT3 
BTB/POZ and TAZ domain-containing 
protein 3;BT3;ortholog 

BTB/POZ AND TAZ DOMAIN-
CONTAINING PROTEIN 3 
(PTHR24413:SF156) 

non-motor actin binding 
protein(PC00085);serine 
protease(PC00041);transcription 
cofactor(PC00165) 

SYTE Synaptotagmin-5;SYT5;ortholog 
C2 DOMAIN-CONTAINING 
PROTEIN (PTHR10774:SF119)   

AT1G01240 At1g01240/F6F3_11;F633.5;ortholog 
EXPRESSED PROTEIN 
(PTHR33868:SF5)   

YCF10 
Chloroplast envelope membrane 
protein;cemA;ortholog 

CHLOROPLAST ENVELOPE 
MEMBRANE PROTEIN 
(PTHR33650:SF5)   

RPS7 
Ribosomal protein S7, 
mitochondrial;RPS7;ortholog 

RIBOSOMAL PROTEIN S7, 
MITOCHONDRIAL 
(PTHR11205:SF28) ribosomal protein(PC00171) 

AT1G04790 At1g04790;F13M7.22;ortholog 
SUBFAMILY NOT NAMED 
(PTHR22763:SF134)   

PSBJ 
Photosystem II reaction center 
protein J;psbJ;ortholog 

PHOTOSYSTEM II REACTION 
CENTER PROTEIN J 
(PTHR34812:SF3)   

AT1G01810 T1N6.23;T1N6.23;ortholog     

NDHI 

NAD(P)H-quinone oxidoreductase 
subunit I, 
chloroplastic;ndhI;ortholog 

NAD(P)H-QUINONE 
OXIDOREDUCTASE SUBUNIT I, 
CHLOROPLASTIC 
(PTHR10849:SF24) dehydrogenase(PC00176);reductase(PC00092) 

RPL16 
60S ribosomal protein L16, 
mitochondrial;RPL16;ortholog 

39S RIBOSOMAL PROTEIN L16, 
MITOCHONDRIAL 
(PTHR12220:SF16) ribosomal protein(PC00171) 
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RPS11 
40S ribosomal protein S11-
1;RPS11A;ortholog 

40S RIBOSOMAL PROTEIN S11 
(PTHR10744:SF15) ribosomal protein(PC00171) 

RPS15 
30S ribosomal protein S15, 
chloroplastic;rps15;ortholog 

30S RIBOSOMAL PROTEIN S15, 
CHLOROPLASTIC 
(PTHR23321:SF38) ribosomal protein(PC00171) 

RPL32 
50S ribosomal protein L32, 
chloroplastic;rpl32;ortholog 

50S RIBOSOMAL PROTEIN L32, 
CHLOROPLASTIC 
(PTHR36083:SF3)   

RPS15 
40S ribosomal protein S15-
1;RPS15A;ortholog 

40S RIBOSOMAL PROTEIN S15 
(PTHR11880:SF15) ribosomal protein(PC00171) 

YCF3 
Photosystem I assembly protein 
Ycf3;ycf3;ortholog 

PHOTOSYSTEM I ASSEMBLY 
PROTEIN YCF3 
(PTHR26312:SF111)   

RPL2 
60S ribosomal protein L2, 
mitochondrial;RPL2;ortholog 

60S RIBOSOMAL PROTEIN L2-
RELATED (PTHR13691:SF30) ribosomal protein(PC00171) 

GATL5 
Probable galacturonosyltransferase-
like 5;GATL5;ortholog 

GALACTURONOSYLTRANSFERASE-
LIKE 5-RELATED 
(PTHR13778:SF20)   

RPL14 
50S ribosomal protein L14, 
chloroplastic;rpl14;ortholog 

50S RIBOSOMAL PROTEIN L14, 
CHLOROPLASTIC 
(PTHR11761:SF22) ribosomal protein(PC00171) 

RPL20 
50S ribosomal protein L20, 
chloroplastic;rpl20;ortholog 

50S RIBOSOMAL PROTEIN L20, 
CHLOROPLASTIC 
(PTHR10986:SF17) ribosomal protein(PC00171) 
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NDHE 

NAD(P)H-quinone oxidoreductase 
subunit 4L, 
chloroplastic;ndhE;ortholog 

NAD(P)H-QUINONE 
OXIDOREDUCTASE SUBUNIT 4L, 
CHLOROPLASTIC 
(PTHR11434:SF7) dehydrogenase(PC00176);reductase(PC00092) 

YCF9 
Photosystem II reaction center 
protein Z;psbZ;ortholog 

PHOTOSYSTEM II REACTION 
CENTER PROTEIN Z 
(PTHR34971:SF3)   

ATAF1 
NAC domain-containing protein 
2;NAC002;ortholog 

NAC DOMAIN-CONTAINING 
PROTEIN 2 (PTHR31719:SF49)   

RPS19 
30S ribosomal protein S19, 
chloroplastic;rps19;ortholog 

30S RIBOSOMAL PROTEIN S19, 
CHLOROPLASTIC 
(PTHR11880:SF16) ribosomal protein(PC00171) 

ORF110A 

Putative uncharacterized 
mitochondrial protein 
AtMg00280;AtMg00280;ortholog 

RIBULOSE BISPHOSPHATE 
CARBOXYLASE LARGE CHAIN, 
CATALYTIC DOMAIN 
(PTHR23321:SF36) ribosomal protein(PC00171) 

PSAC 
Photosystem I iron-sulfur 
center;psaC;ortholog 

PHOTOSYSTEM I IRON-SULFUR 
CENTER (PTHR24960:SF59)   

AT1G04210 At1g04210;F20D22.2;ortholog 

INHIBITOR OF NUCLEAR FACTOR 
KAPPA-B KINASE EPSILON 
SUBUNIT HOMOLOG 1-RELATED 
(PTHR24359:SF27) protein kinase(PC00220) 

MAC3A 
Pre-mRNA-processing factor 19 
homolog 1;PRP19A;ortholog 

PRE-MRNA-PROCESSING FACTOR 
19 (PTHR22840:SF14) mRNA splicing factor(PC00171) 

YCF6 
Cytochrome b6-f complex subunit 
8;petN;ortholog 

CYTOCHROME B6-F COMPLEX 
SUBUNIT 8 (PTHR35773:SF3)   
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RPL16 
50S ribosomal protein L16, 
chloroplastic;rpl16;ortholog 

50S RIBOSOMAL PROTEIN L16, 
CHLOROPLASTIC-RELATED 
(PTHR12220:SF17) ribosomal protein(PC00171) 

KAB1 
Probable voltage-gated potassium 
channel subunit beta;KAB1;ortholog 

HYPERKINETIC, ISOFORM M 
(PTHR43150:SF5) 

reductase(PC00176);voltage-gated potassium 
channel(PC00198) 

ATGLR3 
Glutamate receptor 
2.1;GLR2.1;ortholog 

GLUTAMATE RECEPTOR 2.1-
RELATED (PTHR18966:SF317)   

CKL13 At1g04440;CKL13;ortholog 
CASEIN KINASE 1-LIKE PROTEIN 8 
(PTHR11909:SF260) 

non-receptor serine/threonine protein 
kinase(PC00220) 

PSBF 
Cytochrome b559 subunit 
beta;psbF;ortholog 

CYTOCHROME B559 SUBUNIT 
BETA (PTHR33391:SF13)   

AT1G01730 
Putative uncharacterized protein 
At1g01730;T1N6.14;ortholog 

SUBFAMILY NOT NAMED 
(PTHR35459:SF3)   

AT1G01800 
AT1G01800 
protein;At1g01800;ortholog 

(+)-NEOMENTHOL 
DEHYDROGENASE-RELATED 
(PTHR43490:SF23) dehydrogenase(PC00176);reductase(PC00092) 

NDHJ 

NAD(P)H-quinone oxidoreductase 
subunit J, 
chloroplastic;ndhJ;ortholog 

NAD(P)H-QUINONE 
OXIDOREDUCTASE SUBUNIT J, 
CHLOROPLASTIC 
(PTHR10884:SF12)   

 

Table 2: Functional classification of the genes uniquely expressed at the 6 hour time point. 
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Mapped ID Gene Name/Gene Symbol PANTHER Family/Subfamily PANTHER Protein Class 

GTE4 Transcription factor GTE4;GTE4;ortholog TRANSCRIPTION FACTOR GTE4 
(PTHR22880:SF203) 

acetyltransferase(PC00220);chro
matin/chromatin-binding 
protein(PC00038) 

NAD3 NADH-ubiquinone oxidoreductase chain 
3;ND3;ortholog 

NADH-UBIQUINONE OXIDOREDUCTASE 
CHAIN 3 (PTHR11058:SF16) 

  

MATR Maturase (Fragment);matR;ortholog SUBFAMILY NOT NAMED 
(PTHR33642:SF5) 

  

AT1G05140 Probable membrane metalloprotease 
ARASP2, chloroplastic;ARASP2;ortholog 

MEMBRANE METALLOPROTEASE ARASP, 
CHLOROPLASTIC-RELATED 
(PTHR42837:SF2) 

  

COX1 Cytochrome c oxidase subunit 
1;COX1;ortholog 

CYTOCHROME C OXIDASE SUBUNIT 1 
(PTHR10422:SF30) 

oxidase(PC00176) 

PETG Cytochrome b6-f complex subunit 
5;petG;ortholog 

CYTOCHROME B6-F COMPLEX SUBUNIT 5 
(PTHR35516:SF3) 

  

AT1G07170 PHD finger-like domain-containing protein 
5B;At1g07170;ortholog 

PHD FINGER-LIKE DOMAIN-CONTAINING 
PROTEIN 5A-RELATED (PTHR13120:SF4) 

  

AT1G06240 Putative uncharacterized protein 
At1g06240;At1g06240;ortholog 

SUBFAMILY NOT NAMED 
(PTHR42782:SF1) 

oxidoreductase(PC00176) 

PCNA1 Proliferating cellular nuclear antigen 
1;PCNA;ortholog 

PROLIFERATING CELL NUCLEAR ANTIGEN 
(PTHR11352:SF7) 

DNA polymerase processivity 
factor(PC00171) 

ATPI ATP synthase subunit a, 
chloroplastic;atpI;ortholog 

ATP SYNTHASE SUBUNIT A, 
CHLOROPLASTIC (PTHR42823:SF2) 
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RCI3 Peroxidase 3;PER3;ortholog PEROXIDASE 3-RELATED 
(PTHR31235:SF88) 

  

CHR9 Switch 2;SWI2;ortholog SWITCH 2 (PTHR10799:SF900) DNA helicase(PC00171) 

AT1G05960 ARM repeat superfamily 
protein;At1g05960;ortholog 

ARM REPEAT SUPERFAMILY PROTEIN 
(PTHR12444:SF13) 

  

RPL4 50S ribosomal protein L4, 
chloroplastic;RPL4;ortholog 

39S RIBOSOMAL PROTEIN L4, 
MITOCHONDRIAL (PTHR10746:SF13) 

  

CER1 Protein ECERIFERUM 1;CER1;ortholog PROTEIN CER1-LIKE 1-RELATED 
(PTHR11863:SF82) 

hydroxylase(PC00176);oxidase(PC
00122) 

AT1G01300 Aspartyl protease family 
protein;F6F3.10;ortholog 

ASPARTYL PROTEASE-RELATED 
(PTHR13683:SF459) 

aspartic protease(PC00121) 

RPL4 60S ribosomal protein L4-2;RPL4D;ortholog 60S RIBOSOMAL PROTEIN L4 
(PTHR19431:SF2) 

  

UGT71C4 UDP-glycosyltransferase 
71C4;UGT71C4;ortholog 

UDP-GLYCOSYLTRANSFERASE 71C3-
RELATED (PTHR11926:SF500) 

  

ATNDI1 Internal alternative NAD(P)H-ubiquinone 
oxidoreductase A1, 
mitochondrial;NDA1;ortholog 

NADH DEHYDROGENASE-RELATED 
(PTHR43706:SF3) 

dehydrogenase(PC00176);oxidase
(PC00092);reductase(PC00175) 

AT1G06640 1-aminocyclopropane-1-carboxylate 
oxidase homolog 2;At1g06640;ortholog 

1-AMINOCYCLOPROPANE-1-
CARBOXYLATE OXIDASE HOMOLOG 1-
RELATED (PTHR10209:SF322) 

  

AT1G06470 Probable sugar phosphate/phosphate 
translocator 
At1g06470;At1g06470;ortholog 

NUCLEOTIDE-SUGAR TRANSPORTER 
YMD8-RELATED (PTHR11132:SF174) 

transporter(PC00227) 

AXR3 Auxin-responsive protein 
IAA17;IAA17;ortholog 

AUXIN-RESPONSIVE PROTEIN IAA14-
RELATED (PTHR31734:SF81) 
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NIH Nuclear DEIH-boxhelicase;NIH;ortholog ATP-DEPENDENT RNA HELICASE YTHDC2-
RELATED (PTHR18934:SF184) 

RNA helicase(PC00171) 

AT1G06650 1-aminocyclopropane-1-carboxylate 
oxidase homolog 3;At1g06650;ortholog 

1-AMINOCYCLOPROPANE-1-
CARBOXYLATE OXIDASE HOMOLOG 1-
RELATED (PTHR10209:SF322) 

  

BHLH128 Transcription factor 
bHLH128;BHLH128;ortholog 

TRANSCRIPTION FACTOR BHLH128-
RELATED (PTHR16223:SF90) 

  

PDE247 Pentatricopeptide repeat-containing 
protein At1g05750, 
chloroplastic;PDE247;ortholog 

SUBFAMILY NOT NAMED 
(PTHR24015:SF1333) 

RNA binding 
protein(PC00171);serine/threonin
e protein kinase 
receptor(PC00031);transporter(PC
00197) 

CAF1-1 Probable CCR4-associated factor 1 
homolog 1;CAF1-1;ortholog 

CCR4-ASSOCIATED FACTOR 1 HOMOLOG 
1-RELATED (PTHR10797:SF16) 

transcription factor(PC00218) 

AT1G03200 At1g03200;At1g03200;ortholog     

AT1G06380 Ribosomal protein L1p/L10e 
family;T2D23.8;ortholog 

RIBOSOMAL L1 DOMAIN-CONTAINING 
PROTEIN 1 (PTHR23105:SF95) 

ribosomal protein(PC00171) 

AT1G03210 F15K9.19 protein;F15K9.19;ortholog PHENAZINE BIOSYNTHESIS-LIKE DOMAIN-
CONTAINING PROTEIN (PTHR13774:SF23) 

  

AT1G06645 2-oxoglutarate (2OG) and Fe(II)-dependent 
oxygenase superfamily 
protein;At1g06645;ortholog 

1-AMINOCYCLOPROPANE-1-
CARBOXYLATE OXIDASE HOMOLOG 1-
RELATED (PTHR10209:SF322) 
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FRO2 Ferric reduction oxidase 2;FRO2;ortholog FERRIC REDUCTION OXIDASE 2-RELATED 
(PTHR11972:SF98) 

  

ABCI19 ABC transporter I family member 
19;ABCI19;ortholog 

ABC TRANSPORTER I FAMILY MEMBER 
19-RELATED (PTHR12847:SF12) 

ATP-binding cassette (ABC) 
transporter(PC00227) 

UGT71C5 UDP-glycosyltransferase 
71C5;UGT71C5;ortholog 

UDP-GLYCOSYLTRANSFERASE 71C1-
RELATED (PTHR11926:SF442) 

  

PETD Cytochrome b6-f complex subunit 
4;petD;ortholog 

CYTOCHROME B6-F COMPLEX SUBUNIT 4 
(PTHR19271:SF11) 

  

IAA12 Auxin-responsive protein 
IAA12;IAA12;ortholog 

AUXIN-RESPONSIVE PROTEIN IAA12-
RELATED (PTHR31734:SF75) 

  

ORF315 Uncharacterized ATP synthase C chain-like 
protein;AtMg00040;ortholog 

ATP SYNTHASE F(0) COMPLEX SUBUNIT 
C3, MITOCHONDRIAL (PTHR10031:SF16) 

ATP synthase(PC00227) 

ORF118 Uncharacterized mitochondrial protein 
AtMg01010;AtMg01010;ortholog 

SUBFAMILY NOT NAMED 
(PTHR35289:SF3) 

  

AT1G06870 Probable thylakoidal processing peptidase 
2, chloroplastic;TPP2;ortholog 

THYLAKOIDAL PROCESSING PEPTIDASE 1, 
CHLOROPLASTIC-RELATED 
(PTHR43390:SF6) 

  

AT1G06135 Uncharacterized 
protein;At1g06135;ortholog 

SUBFAMILY NOT NAMED 
(PTHR33592:SF3) 

  

HSP17 17.4 kDa class I heat shock 
protein;HSP17.4A;ortholog 

17.4 KDA CLASS I HEAT SHOCK PROTEIN-
RELATED (PTHR11527:SF225) 

chaperone(PC00072) 

 

Table 3: Functional classification of the genes uniquely expressed at 24 hour time point.



 

 

Mapped ID Gene Name/Gene Symbol PANTHER Family/Subfamily PANTHER Protein Class 

IAA10 Auxin-responsive protein IAA10;IAA10;ortholog 
AUXIN-RESPONSIVE PROTEIN IAA10 
(PTHR31734:SF61)   

AT1G03230 Aspartyl protease-like protein;F15K9.16;ortholog 
ASPARTYL PROTEASE-LIKE PROTEIN 
(PTHR13683:SF474) aspartic protease(PC00121) 

COX2 Cytochrome c oxidase subunit 2;COX2;ortholog 
CYTOCHROME C OXIDASE SUBUNIT 2 
(PTHR22888:SF14) oxidoreductase(PC00176) 

AT1G05320 Uncharacterized protein;At1g05320;ortholog     

ORF294 
Uncharacterized mitochondrial protein 
AtMg01200;AtMg01200;ortholog SUBFAMILY NOT NAMED (PTHR35289:SF3)   

PME7 
Probable pectinesterase/pectinesterase inhibitor 
7;PME7;ortholog 

PECTINESTERASE/PECTINESTERASE 
INHIBITOR 20-RELATED (PTHR31707:SF84)   

DI19-2 
Protein DEHYDRATION-INDUCED 19 homolog 
2;DI19-2;ortholog 

PROTEIN DEHYDRATION-INDUCED 19 
HOMOLOG 2-RELATED (PTHR31875:SF12)   

AT1G01630 
Polyphosphoinositide binding protein, 
putative;T1N6.1;ortholog 

BINDING PROTEIN, PUTATIVE-RELATED 
(PTHR10174:SF190) dehydrogenase(PC00176) 

AT1G02420 
Putative pentatricopeptide repeat-containing 
protein At1g02420;At1g02420;ortholog 

SUBFAMILY NOT NAMED 
(PTHR24015:SF1413) 

RNA binding 
protein(PC00171);serine/threonine 
protein kinase 
receptor(PC00031);transporter(PC0
0197) 
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BXL2 Probable beta-D-xylosidase 2;BXL2;ortholog 
BETA-D-XYLOSIDASE 2-RELATED 
(PTHR42721:SF7) glucosidase(PC00121) 

AT1G01210 
DNA-directed RNA polymerase 
subunit;F6F3.2;ortholog 

DNA-DIRECTED RNA POLYMERASE III 
SUBUNIT RPC10 (PTHR11239:SF21)   

PRP39 Pre-mRNA-processing factor 39;PRP39;ortholog 
PRE-MRNA-PROCESSING FACTOR 39 
(PTHR17204:SF32) mRNA splicing factor(PC00171) 

AT1G01350 
Zinc finger CCCH domain-containing protein 
1;At1g01350;ortholog 

PROTEIN RNF113A1-RELATED 
(PTHR12930:SF4) 

nucleic acid 
binding(PC00171);ubiquitin-protein 
ligase(PC00142) 

NAD7 
NADH dehydrogenase [ubiquinone] iron-sulfur 
protein 2;NAD7;ortholog 

NADH DEHYDROGENASE [UBIQUINONE] 
IRON-SULFUR PROTEIN 2, MITOCHONDRIAL 
(PTHR11993:SF32) 

dehydrogenase(PC00176);reductase
(PC00092) 

FKGP 
Bifunctional fucokinase/fucose 
pyrophosphorylase;FKGP;ortholog L-FUCOSE KINASE (PTHR32463:SF1)   

BGLU11 Beta-glucosidase 11;BGLU11;ortholog 
BETA-GLUCOSIDASE 1-RELATED 
(PTHR10353:SF98)   

GBF4 G-box-binding factor 4;GBF4;ortholog 
BASIC LEUCINE ZIPPER TRANSCRIPTION 
FACTOR-RELATED (PTHR22952:SF222)   

PSBN Protein PsbN;psbN;ortholog PROTEIN PSBN (PTHR35326:SF4)   

FZL 
Probable transmembrane GTPase FZO-like, 
chloroplastic;FZL;ortholog 

TRANSMEMBRANE GTPASE FZO-LIKE, 
CHLOROPLASTIC-RELATED (PTHR43681:SF1) small GTPase(PC00095) 

AT1G03910 Cactin;CTN;ortholog CACTIN (PTHR21737:SF11)   

AT1G02350 
Protoporphyrinogen oxidase-like 
protein;At1g02350;ortholog     
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URH2 Probable uridine nucleosidase 2;URH2;ortholog 
URIDINE NUCLEOSIDASE 2-RELATED 
(PTHR12304:SF27)   

BPS1 Protein BPS1, chloroplastic;BPS1;ortholog 
BYPASS1-RELATED PROTEIN-RELATED 
(PTHR31509:SF30)   

ATP1 
ATP synthase subunit alpha, 
mitochondrial;ATPA;ortholog 

ATP SYNTHASE SUBUNIT ALPHA, 
MITOCHONDRIAL (PTHR43089:SF1) 

ATP synthase(PC00227);DNA 
binding protein(PC00068);anion 
channel(PC00002);ligand-gated ion 
channel(PC00171) 

ATP6-1 ATP synthase subunit a-1;ATP6-1;ortholog ATP SYNTHASE SUBUNIT A (PTHR11410:SF8)   

AT1G04090 At1g04090;At1g04090;ortholog SUBFAMILY NOT NAMED (PTHR42656:SF4)   

PDLP2 
Cysteine-rich repeat secretory protein 
3;CRRSP3;ortholog 

CYSTEINE-RICH REPEAT SECRETORY 
PROTEIN 11-RELATED (PTHR32080:SF13)   

BHLH13 Transcription factor bHLH13;BHLH13;ortholog 
TRANSCRIPTION FACTOR BHLH13 
(PTHR11514:SF75)   

ORF204 
Uncharacterized mitochondrial protein 
AtMg01410;AtMg01410;ortholog SUBFAMILY NOT NAMED (PTHR34456:SF4)   

PSAJ 
Photosystem I reaction center subunit 
IX;psaJ;ortholog 

PHOTOSYSTEM I REACTION CENTER 
SUBUNIT IX (PTHR36082:SF4)   

NAD4 
NADH-ubiquinone oxidoreductase chain 
4;ND4;ortholog 

NADH-UBIQUINONE OXIDOREDUCTASE 
CHAIN 4 (PTHR43507:SF3) 

dehydrogenase(PC00176);reductase
(PC00092) 

PSBK 
Photosystem II reaction center protein 
K;psbK;ortholog 

PHOTOSYSTEM II REACTION CENTER 
PROTEIN K (PTHR35325:SF2)   
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GAE2 UDP-glucuronate 4-epimerase 2;GAE2;ortholog 
UDP-GLUCURONATE 4-EPIMERASE 2-
RELATED (PTHR43574:SF13) 

dehydratase(PC00144);epimerase/r
acemase(PC00091);oxidoreductase(
PC00135) 

COX3 Cytochrome c oxidase subunit 3;COX3;ortholog 
CYTOCHROME C OXIDASE SUBUNIT 3 
(PTHR11403:SF13) oxidase(PC00176) 

PGP11 
ABC transporter B family member 
11;ABCB11;ortholog 

ABC TRANSPORTER B FAMILY MEMBER 11-
RELATED (PTHR24221:SF299)   

ATMPK11 
Mitogen-activated protein kinase 
11;MPK11;ortholog 

MITOGEN-ACTIVATED PROTEIN KINASE 11-
RELATED (PTHR24055:SF279) 

non-receptor serine/threonine 
protein kinase(PC00220) 

AT1G05700 
Probable LRR receptor-like serine/threonine-
protein kinase At1g05700;At1g05700;ortholog 

LRR RECEPTOR-LIKE SERINE/THREONINE-
PROTEIN KINASE MEE39-RELATED 
(PTHR27003:SF122)   

ORFX 
Uncharacterized tatC-like protein 
ymf16;YMF16;ortholog 

SEC-INDEPENDENT PROTEIN TRANSLOCASE 
PROTEIN TATC (PTHR30371:SF5)   

XIB Myosin-8;XI-B;ortholog MYOSIN-13-RELATED (PTHR13140:SF533) 

G-protein 
modulator(PC00095);actin binding 
motor protein(PC00022);cell 
junction protein(PC00085) 

PSBL 
Photosystem II reaction center protein 
L;psbL;ortholog 

PHOTOSYSTEM II REACTION CENTER 
PROTEIN L (PTHR33391:SF9)   

AT1G04430 
Probable methyltransferase 
PMT8;At1g04430;ortholog 

METHYLTRANSFERASE PMT8-RELATED 
(PTHR10108:SF1009) methyltransferase(PC00220) 

PSBT 
Photosystem II reaction center protein 
T;psbT;ortholog 

PHOTOSYSTEM II REACTION CENTER 
PROTEIN T (PTHR36411:SF4)   
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AT1G03740 F21B7.34;At1g03740;ortholog F21B7.34-RELATED (PTHR24056:SF258) 

non-receptor serine/threonine 
protein kinase(PC00220);non-
receptor tyrosine protein 
kinase(PC00137) 

MCCA 
Methylcrotonoyl-CoA carboxylase subunit alpha, 
mitochondrial;MCCA;ortholog 

METHYLCROTONOYL-COA CARBOXYLASE 
SUBUNIT ALPHA, MITOCHONDRIAL 
(PTHR18866:SF114) ligase(PC00142) 

AT1G05000 
Probable tyrosine-protein phosphatase 
At1g05000;At1g05000;ortholog 

TYROSINE-PROTEIN PHOSPHATASE-LIKE 
PROTEIN OCA2 (PTHR31126:SF24)   

PSBI 
Photosystem II reaction center protein 
I;psbI;ortholog 

PHOTOSYSTEM II REACTION CENTER 
PROTEIN I (PTHR35772:SF3)   

AT1G03220 Aspartyl protease-like protein;F15K9.17;ortholog 
ASPARTYL PROTEASE-LIKE PROTEIN 
(PTHR13683:SF474) aspartic protease(PC00121) 

ATXPD DNA repair helicase UVH6;UVH6;ortholog 

TFIIH BASAL TRANSCRIPTION FACTOR 
COMPLEX HELICASE XPD SUBUNIT 
(PTHR11472:SF50) DNA helicase(PC00171) 

PSAI 
Photosystem I reaction center subunit 
VIII;psaI;ortholog 

PHOTOSYSTEM I REACTION CENTER 
SUBUNIT VIII (PTHR35775:SF4)   

PSBT 
Photosystem II 5 kDa protein, 
chloroplastic;PSBT;ortholog 

PHOTOSYSTEM II 5 KDA PROTEIN, 
CHLOROPLASTIC (PTHR34940:SF2)   

ATP9 
ATP synthase subunit 9, 
mitochondrial;ATP9;ortholog 

ATP SYNTHASE F(0) COMPLEX SUBUNIT C3, 
MITOCHONDRIAL (PTHR10031:SF16) ATP synthase(PC00227) 

 

Table 4: Functional classification of the genes expressed at both 6 hour & 24 hour time point. 
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 Control (C) Treatment (P) 

6 hour time point 

0 replicate 34092876 24410550 

1 replicate 27470481 30688444 

2 replicate 28909860 29625260 

24 hour time point 

0 replicate 27474891 28370379 

1 replicate 30154454 29331131 

2 replicate 22128277 33418085 

 

 

Table 5:     Number of transcripts assembled from each file.



GLOSSARY 

 

Sequencing depth 

The total number of all sequences, reads or base pairs represented in a single 

sequencing experiment or series of experiments. 

 

miRNA 

microRNA (miRNA) are small noncoding RNA molecules that function in RNA silencing 

and post transcriptional regulation of gene expression (Ambros, 2004; Bartel, 2004) 

 

tRNA 

transfer RNA (tRNA) is an adaptor molecule composed of RNA that fictions as the link 

between mRNA & the amino acid sequence of proteins (Berg, Tymoczko, Stryer, & Stryer, 

2002; Sharp, Schaack, Cooley, Burke, & Söll, 1985). 

 

Contigs 

A set of overlapping DNA segments resulting from the assembly of small DNA fragments 

that represent a consensus region of DNA (Gibson & Muse, 2009) 

 

Trimming 

A quality control process involving removal of low quality sequences or bases, adapters or 

contaminations to decrease errors. 

 

Alignment 

First step of RNA-seq analysis where the sequenced reads are aligned to a reference 

genome. 

 

Assembly 

Process where the reads aligned against a reference genome are assembled into transcripts. 
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FPKM 

Fragments per kilobase of transcript per million mapped reads. A unit of measurement 

referring to read length generated from the expression of a transcript through RNA-seq. 

(Trapnell et al., 2010) 

 

P-value 

Is the statistical probability that the results generated from a given statistical model are not 

by chance when the null hypothesis is true. The lower the p-value the more statistically 

significant the result. (Hung, O’Neill, Bauer, & Kohne, 1997; Nuzzo, 2014).  

 

Principle Component Analysis (PCA) 

A statistical procedure that converts a set of potentially correlated variables into a smaller 

set of linearly uncorrelated variables called principle components, allowing for the 

identification of the most important variables contributing to the variability in the data 

through dimension reduction.  

 

PANTHER (Protein Analysis THrough Evolutionary Relationships) 

An online resource for comprehensive functional classification and data analysis. It is a 

comprehensive database of evolutionary and functional information about protein coding 

genes for 104 complete genomes (Mi et al., 2016). 

 

Homology  

Defined as the similarity between sequences based on shared ancestry 

 

Orthologs 

The similarity between sequences that is attributed to shared ancestry because of a 

speciation event. 
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