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ABSTRACT

Concrete curing is of paramount importance in order for concrete to meet performance
requirements. Conventionally, curing has been conducted by means of water sparkling,
wet burlap or a curing compound. For performance and environmental reasons, internal
curing has been gaining increased attention. However, more data is needed for the
effectiveness of this curing technique when used in various concrete mixtures.

This investigation addresses potential utilization of internal curing in high performance
concrete (HPC). Internal curing was introduced by means of three aggregates: perlite,
pumice and recycled aggregates; all of which were incorporated into HPC mixtures.
Conventional mixtures were prepared and were thoroughly cured either by water or by a
curing compound or left non-cured. Fresh concrete and Hardened concrete properties
were assessed including slump, unit weight, compressive and flexural strength, and
durability tests as shrinkage assessment, rapid chloride permeability test (RCPT) and
abrasion resistance. Experimental work is backed up with a simplified feasibility analysis
with case study, incorporating initial and future costs to better judge potential of this
technique.

The outcome of this study uncovers that the addition of pre-wetted lightweight aggregates
can prompt an enhancement in concrete workability and durability accompanied by a
reduced shrinkage. Compressive and flexural strengths decreased with the increased
replacement dosages, however several dosages were tested to reach a figure of optimum
replacement. Results of this study reveal the potential of this technology in saving fresh
water as well as the costs saved in maintenance and rehabilitation works.

Keywords: (Internal, Curing, High Performance, Concrete, Perlite, Recycled, Pumice)
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CHAPTER 1

INTRODUCTION

1.1BACKGROUND

After placing and finishing of concrete, maintaining adequate moisture and
temperature is of paramount importance; this happens through a process referred to as
Curing. Appropriate curing of concrete structures is vital to assure they meet their
anticipated performance and durability requirements (Kovler and Mejhade, 2007)
(NPCA, 2013) (Babcock and Taylor, 2015) (Joseph, 2016) ... to name only some. Proper
curing entails creating the optimum environment to promote the hardening or hydration
of freshly cast concrete (NPCA, 2013). The American concrete Institute (ACI) defines
curing as the process by which hydraulic-cement concrete matures and develops
hardened properties as a result of continued hydration of the cement in the presence of
adequate water and heat (ACI 308R-01, 2015). Hence, an incomplete hydration process
will affect both the strength and durability of produced concrete. Historically known for
its importance, curing has a strong influence on hardened concrete; adequate curing will
aid achieving desired durability, strength, water tightness, abrasion resistance, volume
stability, and resistance to freezing and thawing and deicers (ACI 308R-01, 2015). Also,
defined as maintaining satisfactory moisture content in concrete during its early stages in

order to develop the desired properties (Joseph, 2016).

Water loss, during or after concrete finishing (i.e. evaporation), may delay or
prevent sufficient hydration. The achievement of maximum strength is dependent on the
extent of cement hydration and with proper curing, cement can more fully hydrate and

achieve maximum strength (Bediako et al., 2015). Figure 1-1 is a classical demonstration



of the effect of different curing periods on strength gain; it improves quickly at early

ages, and then continues slowly for an indefinite period (Gonnerman & Shuman, 1928).

There is an additional aspect of curing, which is sometimes overlooked. Curing is
carried out not only to promote hydration, but also to minimize shrinkage (Kovler and
Mejhade, 2007). Water loss will cause the concrete to shrink introducing tensile stresses
that may cause surface cracking. In High performance concrete (HPC); concrete with
high cement content and low w/c ratio, a major concern is self-desiccation, which is
internal drying of concrete due to the consumption of water by hydration (Neville 1996;
Parrot 1986; Patel et al. 1988, Spears 1983). Self desiccation results in hindered strength
development, reduced durability and potential for autogenous shrinkage and cracking
(Weiss et al., 2010). Historical records prove that if no sufficient water is provided, the
paste can self-desiccate preventing concrete from achieving targeted properties.
Appropriate mitigation methods to reduce shrinkage in combination with careful curing

practices should be used to minimize and control shrinkage (Huo and Wong 2000).

60

Moist-cured entire time

50

In air after 28 days moist curing

40 In air after 7 days moist curing

30 In laboratory air entire time

20

Compressive strength, MPa
Compressive strength, 1000 psi

g L1 1 0
07 28 90 365
Age at test, days

Figure 1-1: Effect of Curing time on concrete strength gain (Gonnerman & Shuman, 1928)



There are various techniques for curing; external & Internal Curing. Most of the
traditional methods are based on external curing. Generally, external curing can be

grouped as follows (Aitcin, 1998):

e Water Adding Curing — by supplying additional moisture to prevent/compensate
water loss. This is achieved by water ponding, water spraying/sparkling, or by
water coverings such as wet burlap. As shown in Figure 1-2 (Foster Supply, 2012)

e Sealed curing — by preventing the loss of moisture. This is achieved by

Waterproof paper, plastic sheeting, and membrane forming compounds (also

known as curing compounds). Shown in Figure 1-3 (Suryakanta, 2014).

Figure 1-2: Water adding curing methods: water spraying (left) - wet burlap (right) (Foster

Supply, 2012)



Figure 1-3: Sealed curing plastic sheeting (left) - curing compound (right) (Suryakanta,

2014)

Internal curing is another concept of curing concrete, which is basically
incorporation of a component that serves as curing agent to the concrete mixture. As
defined by ACI, process by which the hydration of cement continues because of the
availability of internal water that is not part of the mixing water (ACI 213-03R, 2012).

Internal curing can be classified as follows:

e Internal Water Curing — embedded component is a water reservoir that gradually
releases water into the system. The most popular methods are pre-wetted light
weight aggregates and super absorbent polymers (SAP).

e Internal Sealing — component is meant to delay or prevent water loss from the
system by adding special types of chemicals to mixing water (Kovler and

Mejhade, 2007)

Internal curing proved to be promising in producing concrete with increased resistance to
early-age cracking and enhanced durability (Bentz and Weiss, 2011). This is due to the

enhanced curing reach inside the concrete section as illustrated in Figure 1-4,



conventional external curing provides curing mainly to outer concrete surface whereas in
internal curing, water is simultaneously distributed inside of concrete and hence provide

more uniform and extended curing of concrete (Abou-Zeid, 2015)

@® Normal Aggregate
&: Prewetted LWA

External water .§ @® Cured Zone
e
NI :
[ =
@
a
3
=
Conventional (External) Internal Curing with Prewetted
Water Curing Lightweight Aggregate (LWA)

Figure 1-4:1llustration of the difference between external & internal curing (Weiss et al.,

2012)

1.2 HIGHLIGHTS ON EGYPT’S INFRASTRUTURE BOOM

After the long period of projects recession that Egypt has experienced over the
period of 2011-2014, the Egyptian economy is expected to recover after the resolution of
the political instability. This rise up is coupled with a huge backlog in many projects.
Needless to say, infrastructure projects, represented in bridges, roads, tunnels, power
plants and water structures (water/waste water treatment plants), are expected to boom in
a very short period. Earlier in 2015, the state announced investment budget of $40Bn
over the period of 2015-2018 dedicated for series of construction and repairs
infrastructure projects which was announced during the Egyptian Economic

Development Conference (EEDC) held in Sharm EI Sheikh, March 2015. Egypt



infrastructure projects are expected to consume average of 7.5Mm? annually of Ready
mix concrete over the next 3 years (Market Studies, 2015). Being the third worldwide in
road accidents with 12,000 deaths/year (WHO, 2013), Egypt has launched the National
roads project to construct 4,000 km in coming 3 years with total investment of $4.6Bn
(World Bank, 2016). Also, Egypt has introduced concrete roads for the first time,
Khashm Al Rakaba main road, 200 kmof paving over 1 year period (GARBLT, 2015).
In the bridges sector, Egypt state has announced $450M budget for 15 bridges, along with
5 years maintenance program for 1100 bridge across Egypt (youm7, 2015). With the
growing population and the hindered infrastructure the demand continues for transport,
power and water projects. This project boom and the ambition to phase lift the
infrastructure in a relatively short time should not compromise safety, durability or

feasibility. Adapting advanced construction methods along with innovative construction

materials and of course high-tech equipment may solve the knot.

Figure 1-5: Pictures shows the current case of Egypt's Infrastructure, collapsed bridge in

Qalyobiya (left) and deteriorated road (right) (Alwafd, 2016)



1.3 RESEARCH MOTIVATION

This study is of crucial importance particularly in these days of Egyptian
economical rise up. As discussed in section 1.2, the infrastructure boom will increase the
need for high productivity and high performing structures without compromising
durability or feasibility. In addition to Egypt’s water scarcity challenge, makes it very
important to use resources wisely. Two main aspects have the major contribution behind
this study: (1) Egypt’s need for durable structures for its strategic projects, and (2)

Feasibility and Environmental aspects that should be carefully studied and adapted.

1.4 RESEARCH OBJECTIVES AND SCOPE

This investigation aims at exploring the influence of internal curing on the
properties of high performance concrete. This is followed by a desire to transfer internal
curing from research and lab to field experience. This work is dedicated to promoting the
application of internal concrete curing in high performance concrete structures in Egypt
(mainly infrastructure projects) and study economic and environmental aspects related.

Detailed objectives of this work are:

1. Investigate the development, manufacture, and performance aspects of internal
concrete curing.

2. Evaluate the benefits of internal curing by examining short term and long term
properties and comparing it to conventional ways.

3. Develop preliminary feasibility model evaluating economical aspects of
implementing such technology incorporating short and long-term related costs.
A case study to be implemented to validate feasibility outcomes.

4. Analyze environmental aspects of the technology and impact on Egypt resources.



1.5 RESEARCH METHODOLOGY

The approach employed in this study to achieve the above mentioned objectives is:

1. Conduct an extensive literature review on internal concrete curing, its history and
development, theory, proportioning, properties, production and applications

2. Perform standard materials testing to examine fresh and hardened properties of
concrete produced through internal curing and compare it to conventionally cured
concrete. Results are listed, compared and interpreted to fully understand this new
technology

3. Execute a simple feasibility study to analyze economic and environmental
features of applying this technology in Egypt. All related aspect of construction
and life cycle cost should be taken in consideration for a comprehensive model.

4. Propose set of recommendations and guidelines for applicators in Egypt for a
smooth technology transfer to allow internal curing to be developed, specified,

produced and implemented in Egypt.

1.6 ORGANIZATION OF CHAPTERS

This study will consist of five other chapters outlined as follows:

Chapter 2: Presents a literature review regarding the internal concrete curing discussing
history and development, theory, proportioning, mechanical properties, production
aspects and application. A review on recent papers and studies are performed to achieve

comprehensive perspective on the technology.

Chapter 3: Introduces the methodology of evaluation of the internal concrete curing.

This chapter will discuss materials used and corresponding properties. Mixture



proportioning and mixing procedure will be illustrated in detail. Also, Experimental

methods, testing standards and purposes of each test shall be addressed.

Chapter 4: Displays the results of the fresh, hardened and durability testing of the
concrete specimens. Internal concrete curing results should be listed and compared to the
conventionally cured concrete, to better understand properties of this new technology.
Results will also be explained and interpreted to identify behavior and reasons of

occurrence.

Chapter 5: Executes a simplified feasibility analysis of applying internal concrete curing
in Egypt. Taking in consideration materials, production and application costs, as initial
costs of the system. Life cycle cost analysis based on serviceability of structures will also
be evaluated to be able to correctly judge the feasibility of this technology.
Environmental aspects of water will also be discussed. A case study is discussed to

validate and further emphasize on the benefits.

Chapter 6: Offers conclusions to the whole study. Conclusions are drawn from
experimental and feasibility results obtained from chapters 4 and 5. A set of
recommendations to industry applicators are highlighted for smooth implementation of
the technology. The importance for future research and work continuation is highly

emphasized.



CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

In the 21% century, internal curing has developed as a new innovation that holds
guarantee for delivering concrete with enhanced resistance to early-age cracking and
improved durability (Bentz and Weiss, 2011). Since concrete service life is a key part of
developing practical infrastructure, internal curing can positively impact the sustainability
of Egypt’s infrastructure. The American Concrete Institute (ACI) defined internal curing in
its ACI Terminology Guide as “supplying water throughout a freshly placed cementitious
mixture using reservoirs, via pre-wetted lightweight aggregates, that readily release water as
needed for hydration or to replace moisture lost through evaporation or self-desiccation”
(ACI 308R-01, 2015). This definition defines the two noteworthy goals of internal curing;
boosting hydration and minimizing self-desiccation, along with stresses that may create
early-age cracking (Bentz and Weiss, 2011). The main objective of this chapter is to give a
wide perspective on the internal curing technology taking in consideration previous
developments and researches. This review was expedited with information from assembled
papers that discussed development, theory, mixture proportioning, and applications of

internal curing.

2.2HISTORY AND DEVELOPMENT

History of natural lightweight aggregates dates back to the Roman times, in the
famous Pantheon in Rome; “The dome of the Pantheon was constructed using a
lightweight concrete with natural vesicular aggregates, where the density of the concrete

was reduced as its height within the dome increased (Bremner & Ries, 2009). In 1918

10



Stephen J. Hayde started the production and development of artificial lightweight
aggregates from clay, shale, and slate rocks (Bremner & Ries, 2009). Hayed’s innovation
was used to produce concrete ships for world wars | &II. Interestingly, many of these
concrete ships are still floating till now, which gives an indication of the high durability
of lightweight concrete (Holm, Bremner, & Newman, 1984), however, nothing about

internal curing was revealed.

Paul Klieger was the first to highlight the curing capabilities of
lightweight aggregates in 1957, he wrote “lightweight aggregates absorb considerable
water during mixing which apparently can transfer to the paste during hydration”
(Klieger, 1957). Few years later, specifically in 1991, concrete technologist Robert
Philleo whose research interests are in high strength concrete wrote “Either the basic
nature of Portland cement must be changed so that self-desiccation is reduced, or a
way must be found to get curing water into the interior of high-strength structural
members” (Philleo, 1991). Researches and investigations on internal concrete curing
using pre-wetted lightweight aggregates continued through “a variety of research
groups in Germany (Weber & Reinhardt, 1995), the Netherlands (van Breugel & de
Vries, 1998), and Israel (Bentur, Igarishi, & Kovler, 1999) (Bentz and Weiss, 2011).
Likewise with numerous new advancements, the way from research and examination
to practice has been a moderate one, however starting 2010, a huge number of cubic
meters of concrete containing pre-wetted LWA for internal curing have been

effectively set all through the U.S. (Villareal, 2008).
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2.3THEORY

“So if we add 1 + 1 we have 1.8!” Said professor Jason Weiss commenting on
cement hydration (Weiss, 2011). In this manner, the hydration reactions are joined by
a net chemical shrinkage as the items involve less space than the reactants (Bentz and
Weiss, 2011). Then again, after a cement paste sets and builds up a limited resistance
to deformation, the chemical shrinkage, without extra water, will develop self-
desiccation, as incompletely filled pores will be made inside of the microstructure
(Lura, Couch, Jensen, & Weiss, 2009). Young’s Equation (Alberty & Daniels, 1980)
best describes the relationship between the capillary pressure in the system (o), the
surface tension of the fluid in pores (y), contact angle (0) and the pore radius (1),

equation (1) below shows the formula:

(—2ycos0)
o=

[Equationl]

from equation (1), it is obvious that to decrease the capillary pressure, either reduce
the surface tension of the fluid in pores by using shrinkage-reducing admixture (Shah,
Weiss, & Yang, 1998) (Bentz, Geiker, & Hansen, 2001), or by increasing the pore size by
incorporating water reservoirs inside the larger pores (internal curing) (Bentz and Weiss,

2011).

As the water inside the pore start to empty for the hydration process to continue,

capillary pressure increases, as a result a measurable shrinkage of the system could be

12



produced. The strain cause by the capillary pressure is described by the Mackenzie’s

equation below:

=31 - )
[Equation 2]

where the linear strain (€) is directly proportional to the capillary pressure. S, K and
Ks are the saturation in pores (0-1), bulk modulus of porous material, bulk modulus of
solid backbone, respectively (Bentz and Weiss, 2011). At the point when these
autogenous stresses and strains get to be enough, they may add to, or independently
cause, early-age cracking that will sacrifice the expected design and service life of a

concrete structure by giving open pathways to the ingress of unwanted materials.

Taking into account the above investigation, the goal of internal curing is to give
a source of promptly accessible extra water so that the hydrating cement paste stays
saturated, and consequently minimizing the autogenous stresses and strains. This
extra water will likewise advance hydration of the cement in the blend. Traditionally,
some of this extra water has been given by external curing systems, for example,
ponding, hazing, moistening, and the utilization of wet burlap. On the other hand, in
the higher performance concretes that are currently being utilized, the fine porosity
gets to be separated in the first couple of days of hydration (Powers, Copeland, &
Mann, 1959), such that this outer water might just penetrate a couple of millimeters
into the concrete from the curing-applied surfaces (Bentz, 2002), while the inside of
the concrete experiences self-desiccation. The objective of internal curing is to give

extra water in the best possible sum and with a fitting spatial distribution so that the

13



whole three-dimensional microstructure of hydrating cement paste stays moist and

autogenous stress free. (Bentz and Weiss, 2011)

2.4PRACTICE: MIX PPROPORTIONING

Mix proportioning with internal curing gives the fundamental extra water to extend
time of saturated conditions in the hydrating cement paste. The upkeep of these saturated
conditions will both add to the accomplished level of reaction of the cement, furthermore
minimize the advancement of autogenous stresses and strains that cause early-age
cracking. Three key inquiries to consider in this outline procedure are accordingly: 1)
How much internal curing water is required for a given arrangement of mixture contents,
2) How far from the surfaces of the internal reservoirs into the cement paste can the water
travel, and 3) How are the internal stores dispersed inside of the mortar's structure or

concrete sample? (Bentz and Weiss, 2011).

To answer the first question of how much water is needed, a simple logic is used.
Equation (3) is developed to predict the mass/volume of required internal reservoirs, by
equating the water demand of the hydrating mixture to the supply that is available from

the internal reservoirs.

Cf X Cs X Omax = S X (Z)LWA X MLWA

[Equation 3]

In this form of the equation, the left side represents the water demand through the
cement content (Cs), the chemical shrinkage of the binder at 100% saturation (Cs) —
approximately equals 0.07 mL/g cement for Portland cement, and the expected degree of

reaction of the cement (amax). The right side represents the water supplied by internal
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curing through pre-wetted aggregates. Water supply is represented through the mass of
lightweight aggregates (MLwa), the saturation level (S) - equals 1 for w/c of 0.36, and the
absorption capacity of the aggregates (®Lwa) (Bentz, Lura, & Roberts, 2005). This same
approach could be employed when using crushed returned concrete aggregates as the
internal curing reservoirs (Kim & Bentz, 2008). When equation (3) is used to figure the
required amount of LWA, the last substitution of normal weight aggregates (NWAs) by
LWASs ought to be performed on a volume premise, because of their critical contrasts in

density (Bentz, Lura, & Roberts, 2005).

It is very important to replace NWA with LWA of similar or close sizes and keep
the final overall gradation to produce quality concrete (Villarreal & Crocker, 2007). One
last issue to address concerning mix proportioning for internal curing is the potential for
either "undercuring” or "overcuring”. Undercuring can happen when the water gave by
internal curing is not as much as that prescribed by equation (3) and just keeps up
saturated conditions for some limited timeframe, when a portion of the internal curing
water is uprooted by surface dissipation, or when the internal curing water is not
adequately all around appropriated all through the three-dimensional microstructure.
Overcuring may possibly happen when water ponding or wet burlap is utilized to give
outer curing to a concrete proportioned with internal curing (Cusson & Hoogeveen,
2008). At the point when a concrete is proportioned for internal curing as per equation
(3), all the needed water is incorporated in the internal reservoirs. If that extra water is
given at the concrete's surface, a water's segment in the internal reservoirs may remain in
place instead of moving to the hydrating cement paste. In the event that such specimens

were presented to freezing conditions before this water has had an opportunity to move
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out of the internal stores, its durability may be compromised. At the point when internal
curing is proportioned for a concrete mixture taking after the methodology of equation
(3), external curing is best used to seal up the outside surfaces so that the internal curing

water will stay inside of the concrete to fill its proposed needs (Bentz and Weiss, 2011).

Knowing how much water is required for internal curing, the last issue that should be
comprehended is the circulation of the LWA all through the microstructure. Regardless
of the fact that an adequate volume of water is supplied to a system, if the water is
inadequately distributed, the system will probably display poor shrinkage performance.
This has been concluded by looking at the adequacy of coarse LWA and fine LWA when
the same volume of water is considered (van Breugel and Lura, 2000; Zhutovsky et al.
2002). Despite the fact that the volume of water may be the same, the distribution of the
LWA particles will be entirely different, bringing about an alternate volume of secured
paste (i.e., the volume division of the paste inside of a given separation from a LWA

molecule).

The coarse LWA ended up being less effective than the fine LWA despite the fact
that they had the same volume of water, clear distinction can be made in the secured
paste volume in these two figures. Due to the better particle distribution, the fine total can
possibly ensure the encompassing cement paste than coarse total. Utilizing fine
aggregates rather than coarse aggregates could have implications on strength. Replacing
the coarse typical weight aggregate with coarse LWA could have inconvenient
consequences for the quality of the concrete. At the point when managing higher quality
concretes, the aggregate particles will probably be the point of failure, and bringing weak

particles into the system could decrease the quality. By replacing the fine typical weight
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aggregates with fine LWA, the impacts if including a weaker total could be eliminated
knowing that the fine aggregates do not influence the concrete's quality as much as the

coarse aggregates (Weiss et al., 2010)

LICHTWEICHT AGT.
NORMALWEIGHT AGG.
UNPROTECTED PASTE
PASTE WITHIN 0.05 MM
PASTE WITHIN 0.1 MM
PASTE WITHIN 0.2 1M
PASTE WITHIN 0.5 MM
PASTE WITHIN 1.0 MM

PASTE WITHIN 2.0 MM

(@) (b)

Figure 2-1: Illustrations showing the protected paste volume of two mixtures with similar

LWA replacements of (a) coarse aggregate, and (b) fine aggregate (Henkensiefken, 2008)

25LAB STUDIES

It is of crucial importance to study past lab studies to understand how mechanical
properties are affected by replacing normal weight aggregates by lightweight aggregates.
This section shall conclude past experiences of LWA replacement on plastic shrinkage,
autogenous shrinkage & relative humidity, strength, elastic modulus, curling & wrapping,

and transport coefficients, and service life.

2.5.1 PLASTIC SHRINKAGE
Concrete can crack at the placement time if the dissipation rate is high (Villarreal and

Crocker, 2007). While these cracks are not by large a reason for worry as far as the load
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the structure can carry, they are unwanted and can prompt the ingress of undesired
elements that could expedite the corrosion of the reinforcing steel. Studies have been
recently directed to look at the plastic shrinkage and cracking tendencies of concretes
with and without internal curing (Henkensiefken, Briatka, Bentz, Nantung, and Weiss,
2010). To assess their potential for plastic shrinkage cracking, examples were tried after
ASTM C1579 "Standard Test Method for Evaluating Plastic Shrinkage Cracking of
Restrained Fiber Reinforced Concrete (Using a Steel Form Insert)" (Lamond, and Pielert,
2006). Lab studies conclude that in plastic shrinkage cracks are heavily reduced with
higher replacements of lightweight aggregates. This is mainly because the water in the
LWA compensates for water lost by evaporation or bleeding. Figure 2-2 shows crack
width versus probability of cracking for different replacements of LWA. (Henkensiefken,

Briatka, Bentz, Nantung, & Weiss, 2010).
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Figure 2-2: Probability distribution of crack width occurrences in concrete with different
replacement volumes of Pre-wetted LWA (Henkensiefken, Briatka, Bentz, Nantung, &

Weiss, 2010)
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It is obvious that the use of pre-wetted lightweight aggregates greatly reduces
both plastic shrinkage potential and crack width through compensating moisture lost in
the system. However, it is worth notching that any water lost at this stage will not be

available to reduce autogenous shrinkage that may cause self-desiccation.

2.5.2 AUTOGENOUS SHRINKAGE & RELATIVE HUMIDITY

Since one of the real targets of adding internal curing into a concrete blend is to
lessen autogenous shrinkage and the cracking that may go with it, various studies have
given estimations of autogenous deformation in concretes with and without internal
curing (Kovler and Mejhade, 2007). All the more as of late, mortars with different
replacement levels of pre-wetted LWA have been assessed for an assortment of early-age
properties, including internal relative humidity and autogenous deformation
(Henkensiefken, Bentz, Nantung, and Weiss, 2009). In that study, mortars with a w/c=0.3
were readied with replacement levels of LWA underneath. Figure 2-3 gives the deliberate
internal relative humidity and autogenous deformations for the mortars with eight unique
levels of internal curing. The outcomes show the normal movement in execution, as the
internal relative humidity increments with expanding replacement level of LWA, while

the autogenous shrinkage simultaneously diminishes.
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Figure 2-3: Internal relative humidity (top) and autogenous deformation measurements

(bottom) with various levels of pre-wetted LWA replacement (Henkensiefken, Bentz,

Nantung, & Weiss, 2009).

Utilizing the ASTM C1581 restrained ring shrinkage test it was exhibited that the
decrease in autogenous shrinkage undoubtedly brought about a lessening in cracking as
appeared in Figure 2-4 (Henkensiefken, Bentz, Nantung, and Weiss, 2009). For these
mortars, cracking was adequately wiped out for replacement levels more noteworthy than

or equivalent to the 23.7 % of LWA by volume figured utilizing equation (3).
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Figure 2-4: Reduced cracking with increased LWA replacements (Henkensiefken, Bentz,

Nantung, & Weiss, 2009).

253 STRENGTH & ELASTIC MODULUS

The impacts of internal curing on compressive strength and elasticity rely on the
mix design, curing conditions, and testing age. While mixtures with internal curing could
enhance strengths and moduli because of enhanced level of hydration of the cementitious
binder, on the other hand, a reduction in strength could be seen as the internal curing
agents are mechanically weaker than the Normal Weight aggregates that they are
replacing (Weiss, 2011). In general, declines are seen at before testing ages (< 7 d) while

increments are acquired at later testing ages (Bentz and Weiss, 2011)

To better grasp the impact of curing conditions on compressive strength, Golias
analyzed four mortar mixtures with w/c of 0.3 or 0.5 (Golias, 2010). For every w/c, one
mixture had internal curing while the other did not. In the water-cured specimens, little

contrast exists between the internally cured mortar and the plain mortar without internal
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curing. This is normal since both mortars were given adequate outside water to help in
hydration. In spite of the fact that the execution of the fixed examples was like that of the
wet cured ones at early ages, the impact of extra curing water gets to be clear at the latest

age (e.g., 91 d).

The impact of internal curing on modulus of elasticity is appeared can be
concluded in figure 2-5. The modulus is lower for both frameworks containing LWA. A
lessened elastic modulus can likewise be identified with the decrease in cracking
potential (Weiss, Yang, and Shah, 1999) (Shah and Weiss, 2000) (Shin, Bucher, and

Weiss, 2011) (Raoufi, Schlitter, Bentz, and Weiss, 2012).
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Figure 2-5: Influence of internal curing on elastic modulus of specimens (Golias, 2010).

Reducing the elastic modulus impacts lessening the residual stress because of
restraint as a function of time. Raoufi et al. led a progression of reproductions to better

comprehend the impact of lessened stiffness on early age cracking potential (Raoufi,
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Schlitter, Bentz, and Weiss, 2012). Results from that study conclude that stresses are
diminished by roughly 10 % to 20 %, because of the lessening in elastic modulus brought
on by the LWA. The noteworthy impact of the water being discharged from the LWA to
diminish shrinkage, and along these lines residual stress improvement, is likewise

appeared in Figure 2-6.
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Figure 2-6: Influence of reduced elastic modulus on residual stress development (Raoufi,

Schlitter, Bentz, & Weiss, 2012).

2.5.4 CREEP

Few studies concerning creep of frameworks with internal curing have been
directed. Lopez et al. have analyzed the creep conduct of w/cm=0.23 high performance
concretes with and without internal curing (Lopez, Kahn, and Kurtis, 2008). After wet
curing, the typical weight high performance concrete showed generously higher
compressive strengths than the concretes with internal curing at ages less than one year,
and accomplished strengths in abundance of 100 MPa at 28 d. For this situation,

supplanting the high quality rock utilized as a part of the control mixture with LWA in
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the mixtures with internal curing delivered a sufficiently vast decrease in compressive
strength that it couldn't be balance by upgraded hydration. The mixture with pre-wetted
LWA displayed less creep (around 10 %) than the control mixture, while the mixture
with dry LWA showed the best creep. On the other hand, Cusson and Hoogeveen
measured a moderate increment in the tensile creep coefficient of w/c=0.34 concrete
mixtures with internal curing measured at 7 d versus a control mixture (Cusson and

Hoogeveen, 2008).

2.5.5 CURLING AND WARPING

By keeping up a higher and more uniform RH through the thickness of a concrete
part, internal curing may give the extra advantage of lowering curling/warping. Wei and
Hansen have watched that during a drying time of 16 d, warping was diminished by 70 %
by mixing internal curing into a w/c=0.45 concrete (Wei and Hansen, 2008). This change
in performance was expected both to the presence of water from the LWA throughout
drying and the improved hydration delivering a denser layer of concrete at the top
surface, along these lines diminishing the dissipation. Such results should be stretched out
to longer drying periods to confirm the adequacy of internal curing for lessening warping

in the more drawn out term.

2.5.6 TRANSPORT COEFFICIENTS AND SERVICE LIFE

Internal curing positively affects the transport coefficients and service life of
cement-based materials. Improved hydration densifies the pore structure of the material,
bringing about lessened transport. Regularly, the districts encompassing NWAs are a
larger number of porous than the bulk hydrated cement paste and can give particular

pathways to the ingress of harmful elements (Halamickova, Detwiler, Bentz, and
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Garboczi, 1995). The replacement of a part of the NWAs by LWA could altogether
decrease the availability of the districts encompassing the NWAs, and additionally lessen

the volume division of this more porous paste (Bentz, 2009).

These positive characteristics of the LWA must be adjusted against the way that
the LWA itself is a porous element that can contribute its own transport pathways. In
light of this, the net impact of internal curing on transport will probably rely on upon the
way of the cementitious framework. On the off chance that a high w/cm (> 0.45) is
utilized, the narrow porosity may remain permeated and its permeated pathways can
without much of a stretch connection up with those in the LWA to give expanded
transport. Notwithstanding, in a lower w/cm grid, the narrow porosity will depercolate
(Powers, Copeland, and Mann, 1959) and the porous LWA particles will soon be
encompassed by a thick layer of hydration items. For sure, Zhang and Gjorv have
watched that the penetrability of high-strength lightweight concrete is more reliant on the
properties of the cement paste than the porosity of the LWA (Zhang and Gjorv, 1991).
Moreover, Pyc et al. what's more, Castro et al. have as of late performed mass estimations
that propose that once the pores in LWA void while supplying water to the hydrating
cement paste amid internal curing, they are not accordingly resaturated, even upon
complete inundation of the example (Pyc, Caldarone, Broton, and Reeves, 2008) (Castro,

Keiser, Golias, and Weiss, 2011).

A few late studies have specifically inspected the impact of internal curing on
chloride dissemination coefficients of mortars. Figure 2-7 demonstrates the assessed
dispersion coefficients for w/c=0.4 mortars with and without internal curing (Bentz,

Snyder, and Peltz, 2010). Huge diminishments in dissemination coefficients for high-
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performance lightweight total concretes in respect to their typical weight partners have
likewise been acquired by (Thomas, 2003). In that study, while transient dispersion
coefficients were just diminished by 15 % to 25 % because of the consolidation of LWA,

long haul (3 years) qualities were diminished by as much as 70 %.
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Figure 2-7: The diffusivity ratio S/Sc (proportional to the diffusion coefficient) for

w/c=0.4 mortars with and without internal curing (Bentz, Snyder, & Peltz, 2010).

As of late, Cusson et al. looked at the service lives of high-performance concrete
bridge decks with and without internal curing (Cusson, Lounis, and Daigle, 2010). They
contrasted a conventional concrete bridge deck with two high-performance decks, to be
specific with and without internal curing. The high-performance concrete deck without
internal curing gave a lessening in the normal dispersion coefficient for chloride
assaulting the steel reinforcement, additionally showed introductory cracking because of
intemperate early-age autogenous and warm stresses. The high-performance concrete
with internal curing did not display any early-age cracking and gave a further 25 %
decrease in the normal dissemination coefficient. The service life of a concrete highway

bridge deck is generally defined as the time to reach critical damage levels, in terms of
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delamination or spalling (Falling of concrete cover). In light of these and different
suspicions exhibited in the study (Cusson, Lounis, and Daigle, 2010), the accompanying
service life evaluations were acquired for the bridge decks: conventional concrete — 22
years, high-performance concrete without internal curing — 40 years, and high-
performance concrete with internal curing — 63 years. For this situation, internal curing
ought to create a bridge deck with an expanded service life and a fundamentally lessened

life cycle cost
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Figure 2-8: Service life predictions from deterministic service life models (Cusson, Lounis,

and Daigle, 2010)

2.6 FIELD EXPERIENCES
As of the end of 2010, internal curing has been utilized in an assortment of concrete
mixtures for differing applications including bridge decks, pavements, travel yards, and

water tanks.

One of the initially recorded field investigations of concrete with internal curing was

a vast railway travel yard in Texas requiring 190,000 m? of concrete, developed in 2005

27



(Villarreal and Crocker, 2007). In this application, a halfway measured LWA (178 kg/m?
concrete) was mixed with NWAs to fill in a hole in the general total degree. The internal
curing gave by the pre-wetted middle LWA brought about an observable (> 15 %)
expansion in 28 day strength, disposal of plastic and drying shrinkage cracking, and a
decrease in concrete unit weight that may interpret into diminishments in fuel
prerequisites and gear wear (Villarreal and Crocker, 2007). Since 2007, a few informal
break reviews have been directed at the railway travel yard, with just a few splits
discovered (one of these being the place a development joint was coincidentally
excluded). This concrete blend outline has relentlessly expanded in prevalence in the
north Texas district (Villareal, 2008), with more than 2,000,000 m? of internally-cured

concrete now set up.

In 2006, internal curing was utilized for persistently strengthened concrete asphalt set
utilizing a slip-form clearing machine (Friggle and Reeves, 2008). The concrete mixture
with internal curing was formulated to meet the Texas Department of Transportation
(TxDOT) necessities of a base flexural strength of 3.93 MPa and a base compressive
strength of 24.1 MPa, both at 7 days. Ten months after the effective placement of the
asphalt, a break overview designated "a mind-boggling decrease in the quantity of splits
(21 versus 52 in a similar segment of typical concrete) and a huge lessening in the
deliberate width of the breaks" for the test area set utilizing the blend with internal curing
in respect to a control segment put with the TxDOT standard blend (Friggle and Reeves,

2008).

Villarreal (2008) surveys past work by Villarreal and Crocker (2007) and talks about

real usage and difficulties of utilizing lightweight aggregates in field. The most basic
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challenge for utilizing lightweight aggregates as a part of the field for the reasons of
internal curing is to accurately decide the moisture content of the aggregate. The
aggregates must be soaked uniformly so that pumping of concrete with lightweight total

is not influenced

Figure 2-9: Left - Internally cured concrete being cast at Bartell Road in New York

(Wolfe, 2010), and Right - Internally cured concrete bridge deck being cast near

Bloomington, IN (Di Bella, Schlitter, & Weiss, 2010).

2.7POTENTIAL OF INTERNAL CURING

As internal curing keeps on progressing, examination on this point keeps on finding
new roads for investigation. A standout amongst the most critical of these is the usage of
crushed returned concrete aggregates as internal curing reservoirs. A late study has
considered the mixing of crushed returned concrete aggregates (CCA) as a supportable
way to deal with produce mortars with decreased autogenous deformation, yet
comparable strength in respect to a control mortar arranged without internal curing (Kim
and Bentz, 2008). While some decrease in measured autogenous deformation was

delivered with the CCA alone as a replacement material, generously lower mortar shape
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compressive strengths were likewise measured. Conversely, mixtures with a pre-wetted
LWA as the replacement material showed a significant diminishment in autogenous

shrinkage and a 10 % to 20 % strength increment at ages of 28 d and 56 d.

Using recycled aggregates as replacement to the coarse aggregates proved its
soundness in previous research. Not only that, CCA proved to have high economic
feasibility as well as major contribution to the environment (Abou-Zeid et al., 1998).
Recycled aggregates have shown some potentiality to serve as internal curing agents.
However, this opportunity was not given much attention in research, lab or field

experiments.

2.8 SUPPOSITIONS
The literature review conducted reveals several primary lessons for efficient use of

lightweight aggregates to provide internal curing:

e There is an optimal amount of aggregate replacement that will ensure that
internal curing can occur. Increasing the aggregate replacement beyond this
value has only a small effect on improving shrinkage properties and may have
a detrimental effect on other important concrete properties (such as strength
and abrasion resistance) (Ye et al., 2006).

e Lightweight aggregate replacement beyond 20% by volume of the total
aggregate may significantly reduce strength (Ye et al., 2006).

e The effectiveness of the total is needy upon the total pore structure. By and
large, bigger aggregates have a bigger pore structure, which brings about more

productive internal curing (Hammer et al., 2004).
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Like the thought that adequately scattered air bubbles enhances durability,
appropriately scattered lightweight aggregates enhances internal curing.
Smaller total sizes are better scattered over bigger aggregates (Bentz, Snyder,
and Peltz, 2010).

Proper handling in the field is a critical thought that impacts the estimation of
the LWA moisture content, even immersion of the LWA, and contamination
of the aggregate. Consideration regarding appropriate handling strategies must
be furnished to evade issues with yield, slump loss, pumping, and finishing
(Villareal , 2008).

There are few unexplored materials that have potential in internal curing that
have not been yet examined or given enough attention. Using Recycled
concrete aggregates for internal curing purposes shall be given more
consideration

It appears that internal curing has the potential to make a substantial impact on
the durability and life-cycle costs of concrete structures. the reduced risk of
cracking and the reduced chloride ingress should contribute to a more durable
structure that has a longer life and lower life-cycle costs (Bentz and Weiss,

2011)
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CHAPTER 3

METHODOLOGY

3.1GENERAL

The mechanical properties of concrete can play an important role in early age
durability performance. Since concrete is a heterogeneous material, mechanical
properties are affected by the independent properties of the concrete paste and aggregate.
Therefore, substituting lightweight aggregate that is weaker and softer for normal weight
aggregate may affect the overall mechanical properties of concrete. This chapter
describes the procedures used in the laboratory, the materials, and equipment used to
perform the evaluation of the mix designs as well as the test programs.

The experimental work herein includes fourteen core concrete mixtures prepared
with four types of aggregates. The first is conventional dolomite aggregates. The second
is recycled concrete aggregates. The third is perlite lightweight aggregate. The fourth and
last is pumice lightweight aggregate. Water-cement ratio used was 0.35 to simulate the

commonly used range in infrastructure concrete mixtures in Egypt.

3.2MATERIALS AND PROPORTIONING

All the materials used in the experimental work were obtained from local
Egyptian sources, with the exception of pumice lightweight aggregate that was imported
from Greece. Their types and brands were selected from commonly used constituents of
concrete mixtures in the Egyptian construction market. Each time a new aggregate
sample was obtained, a new sieve analysis and specific gravity test were performed. The

following sections describe the materials used in the study.
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3.2.1 PORTLAND CEMENT

Ordinary Portland cement (ASTM C 150 Type 1) was used. The cement was
produced by Lafarge cement Egypt in Ain Sokhna plant. The cement had a specific
gravity of 3.15 and a Blaine fineness of 313 m?/kg. The Bogue compounds of the cement
were as follows: C3S = 61.07%, C.S = 14.99%, C3A = 2.06% and Cs;AF = 15.03%.

Chemical composition of cement used is shown in table 3-1 below

Table 3-1: Type | Portland cement characteristics

Element SiO2 Al>O3 Fe,O3

Weight % | 21.29% | 3.93% | 4.94% | 64.37% | 1.80% | 1.99% | 0.32% | 0.35% | 0.30%

Table 3-2: Typical results of standard testing of the cement used

Standard(s) Property
Fineness of Portland )
ASTM C204 Fineness 313 m?/kg
Cement
Density of Portland i
ASTM C188 Density 3.15
Cement
Setting Time of Initial setting 145 minutes
ASTM C191
Portland Cement Final setting 235 minutes
Compressive Strength 3-day Comp. Strength 17.9 MPa
ASTM C109
of Cement Mortar 28-day Comp. Strength 47.3 MPa

3.2.2 FINE AGGREGATES
Siliceous sand was used in all concrete mixtures. Fine aggregates were obtained

from natural Wadi Sand, Bani Youssef. The sand had a fineness modulus of 2.547, a
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saturated surface dry specific gravity of 2.64 and a percent absorption of 0.52%. Typical

sieve analysis results of the sand are presented in Table 3-3 (along with the ASTM C33

limits for fine aggregate grading). Sieve analysis test was conducted according to ASTM

C136. Several other tests were also conducted on the sand in order to determine its

properties and the results were recorded as shown in table 3-4 below

Table 3-3: Fine aggregates Sieve analysis, % passing

Sieve Size (mm) % Passing ASTM C33 Limits
10.0 100.0 100
5.00 100.0 95-100
2.36 95.0 80-100
1.18 84.0 50-85
0.60 49.0 25-60
0.30 14.2 10-30
0.15 3.1 2-10
0.0075 0.6 0-2

Table 3-4: Typical results of standard testing of the fine aggregates used

Test ‘ Standard(s) ‘ Property Results
Materials Finer Than 75um Percent of Materials Finer
ASTM C117 0.60 %
(No. 200) Than 75um (No. 200)
] ) BS 812 — Part Chloride (CL) 0.0453%
Chemical Analysis
117/118 Sulphate (SO3) 0.40%
Clay Lumps & Friable Percent of Clay Lumps &
) ASTM C - 142 ) ) 0.65%
Materials Friable Materials
Specific Gravity & Bulk S.G (SSD) 2.638
) ASTM C128 i
Absorption % Absorption 0.52 %
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3.2.3 COARSE AGGREGATES

The conventional coarse aggregates used were crushed dolomite aggregate.
Coarse aggregates were obtained from OCI Crusher, Attakah. The dolomite had a
maximum nominal size of 20 mm, a saturated surface dry specific gravity of 2.57 and a
percent absorption of 1.98%. Typical sieve analysis results of the dolomite are presented
in Table 3-4 (along with the ASTM C33 limits for coarse aggregate grading). Sieve
analysis test was conducted according to ASTM C136. Several other tests were also
conducted on the dolomite in order to assess the properties and the results were recorded

in table 3-6 shown below

Table 3-5: Coarse aggregates sieve analysis, % passing

% Passing
Sieve Size¢(yp) ... ASTMC33limits
Dolomite Size 1 Dolomite Size 2
37.50 100.0 100.0
20.00 100.0 80.6 90-100
14.00 97.0 27.8 -
10.00 57.3 12.7 30-60
5.00 6.1 3.6 0-10
2.36 2.8 1.8 -
0.075 0.7 0.7 0-1
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Table 3-6: Typical results of standard testing of the coarse aggregates used

Property

Dolomite Size 1 Dolomite Size 2

Materials Finer

% of Materials

Standards

Than 75um (Sieve | ASTM C117 ) 0.7 % 0.7%
Finer Than 75um
No. 200)
Specific Gravity Bulk S.G 2.570 2.572
and Absorption of | ASTM C127 _
Absorption 1.98% 1.88%
Coarse Aggregate
Clay lumps & Clay Lumps &
) _ ASTM C - 142 ) _ 0.07% 0.05%
Friable Materials Friable Materials
) ) BS 812 — Part Chlorides (CL) 0.021% 0.020%
Chemical Analysis
117/118 Sulphates (SO3) 0.28% 0.25%
Resistance to
ASTM C131 Percent loss 19.5% 19.5%

Abrasion (LAA)

3.24 RECYCLED AGGREGATES

Concrete chunks resulting from the demolition of concrete which had an original

strength 25-30 MPa was used. Recycled concrete aggregates were obtained from crushed

concrete from demolishing works of science building in AUC’s old campus, Tahrir

square. The crushed material had a maximum size of 38 mm, a saturated surface dry

specific gravity of 2.36 and absorption of 5.3%.
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Figure 3-1: Demolishing of Science building of the American University in Cairo Tahrir

Campus, October 2015, and crushing the concrete to the desired size.

3.25 LIGHTWEIGHT AGGREGATES
Two types of lightweight aggregates were used in different dosages. This was
done to compare the effect of different lightweight aggregates in internal curing process.

The two types were as follows:

3.25.1 STRUCTURAL PERLITE

Perlite was obtained from The Egyptian Company for Manufacturing Perlite
plant, located in industrial district of Burj Al Arab city, Alexandria. Perlite had a specific
gravity of only 0.32, and absorption of 32%. Perlite was supplied in 100 Litters plastic

bags which weight almost only 9kg.
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Figure 3-2: Structural Perlite bag and its grain size compared to crushed sand

3.2.5.2 PUMICE
Pumice was obtained from Laval mining and quarrying company, Greece. Its pumice
quarry is located in Yali, Nissiros, a natural pumice deposit located in northern Greece.

Pumice had a specific gravity of 1.1, and absorption of 18%

Figure 3-3: Pumice lightweight aggregates used
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3.2.6 ADMIXTURES
The admixture used was a common ASTM C494 Type G; its commercial name is
BASF MasterRheobuild-2270. The product is a modified lignosulfonate based with an

approximate solid content of 39% and a specific gravity of 1.21

3.2.7 MIXING AND CURING WATER
Municipal water was used for washing aggregates as well as for mixing and
curing concrete. The water used is drinkable water that is free from excessive amounts of

acids, salts, alkalis and other materials that are harmful to concrete.

3.2.8 CURING COMPOUND

Curing compound used was BASF MasterKure 181, with specific gravity of 0.82.
Curing compound assists in the retention of water during hydration. The resultant film
retains sufficient moisture in the concrete to ensure full hydration of the cement; essential

for optimum strength development.

Figure 3-4: BASF MasterCure 181 was used as a curing compound. It was added to a

sprayer to be sprayed over the finished surface of concrete
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3.29 MIXTURE PROPORTIONING

The 14 concrete mixtures had w/c of 0.35, Type “G” admixture, and cement content of 450 kg/m?. It is very important to

highlight that aggregates replacements were done on volume basis and not weight. Figure 3-2 illustrates the Mixutres used.

Concrete Mixtures

Mixtures with Recycled
Aggregates from Old

Mixtures with Natural
Crushed Dolomite

Mixtures with Pumice
Lightweight aggregates

Mixtures with Perlite
Lightweight aggregates

Aggregates Demolished Concrete

Curing
Compound

10% Replacement
from Coarse
Aggregates

15% Replacement
from Coarse
Aggregates

25% Replacement
from Coarse
Aggregates
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3% Replacement
from Crushed Sand

7% Replacement
from Crushed Sand

10% Replacement
from Crushed Sand

15% Replacement
from Crushed Sand

25% Replacement
from Crushed Sand

Figure 3-5: Diagram Illustrating all mixtures used in this study

10% Replacement
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Aggregates

15% Replacement
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First set is conventional concrete mixtures; which was cured in three different
ways: Full curing by submerging specimens in curing tanks, the use of a curing
compound and with no curing.

Table 3-7: Conventional Concrete mixture

C-50 Conventional

Material (kg/m?)

Concrete
Cement 450
Aggregate Size 1 525
Aggregate Size 2 525
Fine Aggregates 662
Free Water 147
Absorption Water 23
Crushed Sand 112
Admixture — RH 2270 7.5

Second set constitutes 3 mixtures of prewetted recycled concrete aggregates with
dosages of 10%, 15% and 25%. Recycled aggregates replaced size 1 and size 2

aggregates because of similar size to obtain similar gradation.

Table 3-8: Mixtures with replacements of Recycled Concrete Aggregates

Material (kg/m®) 10% Recycled 15% Recycled 25% Recycled
Cement 450 450 450
Aggregate Size 1 472.5 446.25 393.75
Aggregate Size 2 472.5 446.25 393.75
Fine Aggregates 662 662 662
Free Water 147 147 147
Absorption Water 20.7 19.6 17.25
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Crushed Sand 112 112 112
Admixture — RH 7.5 7.5 7.5
Recycled Aggregates 105 157.5 262.5

Perlite specimens come with 5 different dosages of prewetted pelite aggregates,
3%,7%,10%,15% and 25%. Perlite aggregates replaced crushed sand because of similar

size to obtain similar gradation

Table 3-9: Mixtures with replacements of Perlite lightweight aggregates

Cement 450 450 450 450 450
Aggregate Size 1 525 525 525 525 525
Aggregate Size 2 525 525 525 525 525
Fine Aggregates 642 615 596 562 496

Free Water 147 147 147 147 147
Absorption Water 23 23 23 23 23
Crushed Sand 110 108 106 103 98
Admixture — RH 7.5 7.5 7.5 7.5 7.5

Perlite 2.6 6 8.7 13 21.7

The remaining 3 mixtures contain prewetted pumice aggregates with
concentrations of 10%, 15% and 25%. Pumice lightweight aggregates replaced size 1 and

size 2 aggregates because of similar size to obtain similar gradation.
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Table 3-10: Mixtures with replacements of Pumice lightweight aggregates

Material (kg/m?) 10% Pumice 15% Pumice 25% Pumice
Cement 450 450 450
Aggregate Size 1 472.5 446.25 393.75
Aggregate Size 2 472.5 446.25 393.75
Fine Aggregates 662 662 662
Free Water 147 147 147
Absorption Water 20.7 19.6 17.25
Crushed Sand 112 112 112
Admixture — RH 7.5 7.5 7.5
Pumice 49.5 74 123.7

3.3EXPERIMENTAL WORK
This section describes the testing carried on constituent raw materials, and
preparation, mixing, casting and curing of concrete specimens. This section also

discusses fresh and hardened testing of concrete as well as the durability testing.

3.3.1 AGGREGATES TESTING
The following tests were carried out in compliance with the following ASTM standard
specifications:
e Sieve analysis of fine and coarse aggregates in accordance with ASTM C136.
e Materials finer than 75um (No. 200) sieve in mineral aggregates by washing in

accordance with ASTM C117.
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e Specific gravity & absorption of fine aggregate in accordance with ASTM C128.

e Specific gravity & absorption of coarse aggregate in accordance with ASTM

C127

e Resistance to abrasion of small size coarse aggregate by use of the Los Angeles

machine in accordance with ASTM C131.

3.3.2 CEMENT TESTING
The following tests were carried out in compliance with the following ASTM standard
specifications:
e Fineness of Portland cement by air permeability apparatus in accordance with
ASTM C204.
e Density of hydraulic cement in accordance with ASTM C188.

e Time of setting of hydraulic cement by Vicat needle in accordance with

ASTM C191.

e Compressive Strength of Hydraulic Cement Mortar in accordance with ASTM

C109.

3.3.3 SPECIMEN PREPARATION
Concrete specimens for each one of the 14 mixtures. Each mixture had the following

specimens:

e Standard cubes complying with BS 1881 (150 x 150 x 150 mm) for testing

7,28 and 56 days

e Standard ASTM C 78 flexural strength beams (150 x 150 x 75 mm) for

testing 28 and 56 days.
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Standard ASTM C 39 for preparing concrete cylinders (150 x 300 mm), for

Rapid Chloride Permeability Test (RCPT) in 28 and 56 days.

Standard tile (200 x 200 x 25mm) for testing Abrasion resistance throughout

age of specimen.

Standard ASTM C157/C157M prism of 100-mm square cross-section and

approximately 285 mm long for testing shrinkage.

3.3.4 MIXING

Mixing was performed in accordance with ASTM C192-07. The LWA was oven
dried, air cooled, and then submerged in water for 24 h £ 1 h before mixing. All
aggregates were mixed in SSD condition. All batches were mixed using a counter-current
pan mixer. The batch size for all of the batches was 0.06 m®. Mixing procedure went as
follows: first, aggregate was loaded into the mixer. The mixer was started and 50% of the
total water was added. The cement and remaining mixing water containing the admixture
were then added. The mortar was mixed for 3 min, and then rested for 1 min while the

sides of the mixer were scraped, then mixed for a final 2 min.

Figure 3-6: Mixing of concrete constituents using 0.06m3 mixer
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3.3.5 CASTING

Specimens were cast immediately following the testing of the concrete slump, air
content and unit weight. After the molds were coated with a layer of oil (to help in the
removal of the specimens), concrete was placed within the molds in three equal layers.
After adding each layer of concrete, the concrete was consolidated using a tamping rod as

per specification. Specimens were de-molded 24 hours after casting.

Figure 3-7: Placing and finishing of concrete specimens

3.3.6 CURING

Specimens were cured in 3 different modes. The first one was full curing, were
the specimens were submerged in curing tank till testing day, this was once made for the
conventional concrete mixture with full curing mode. The second one was curing using
curing compound. After casting, curing compound (diluted with 1:6 water) was sprayed
on the exposed surface of the specimen. This was done once for the conventional
concrete mixture with curing compound mode. All the remaining mixtures were not
cured, left in the open air to simulate reality. These mixtures were done to simulate no
curing mode of the conventional concrete mixture and allow for simulation of internal

curing of the 3 different aggregate types.
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3.3.7 FRESH TESTING

e Slump of Portland Cement Concrete in accordance with ASTM C 143.
e Unit weight of Fresh Concrete in accordance with ASTM C 231

e Air Content of Freshly Mixed Concrete by the Pressure Method in accordance

with ASTM C 231.

3.3.8 HARDENED CONCRETE TESTING

e Compressive Strength: Compressive strength of Concrete Cubes This test was carried

out according to standard after 7, 28 and 56 days using an “ELE” brand machine of

2000 kN capacity.

e Flexural Strength: Flexural strength of Concrete Using Simple Beam with Third-Point

Loading (ASTM C78). This test was carried out after 28 and 56 days using the same

“ELE” brand machine used for the compressive strength test.

3.3.9 DURABILITY TESTING

Rapid Chloride Permeability Test: The rapid chloride-ion penetration test was conducted
through passing electric charges into concrete discs according to ASTM C 1202.
Abrasion: Resistance to abrasion resistance was evaluated through applying rotary
abrasion of gritty sand on 200x200x25 mm specimens. Assessment is carried out based
on weight loss criteria.

Shrinkage Assessment: Shrinkage was evaluated through dimension inspection of the
200x200x25mm specimen in 7, 28 and 56 days. This was used to assess the volumetric

change in each mixture.
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Figure 3-8: Prisms and apparatus used to perform shrinkage assessment test (Abou-Zeid,

et al. 2015)

Figure 3-9: Setup of the Rapid Chloride Permeability Test
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CHAPTER 4

RESULTS AND ANALYSIS

This section describes the properties and test results of fresh concrete, handed
concrete and durability. Results are presented and analyzed to better understand the
technology of internal curing using different replacements of different aggregate types. It
is worth mentioning that workmanship does not often do good curing, so perfect curing is

theoretical.

4.1FRESH TESTING

The following are the results of the air content, unit weight, and slump of lightweight,

recycled as well as conventional concrete specimens:

Table 4-1: Fresh Testing Results of all concrete mixtures

Mixture Slump (mm) | Air Content (%)  Unit Weight (kg/m®)  Temperature (°C)
Conventional 130 2 2444 22
Recycled 10% 130 24 2401 24
Recycled 15% 140 2.6 2358 25
Recycled 25% 160 3.0 2339 24

Perlite 3% 140 2.0 2424 26

Perlite 7% 160 2.1 2407 25
Perlite 10% 190 2.2 2393 24
Perlite 15% 220 24 2336 24
Perlite 25% 250 2.7 2325 25
Pumice 10% 150 2.6 2384 23
Pumice 15% 180 3.0 2327 23
Pumice 25% 210 3.3 2248 23
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4.1.1 SLUMP

The results of slump test are listed in table 4-1 and are illustrated in figure 4-1. As can
be seen in figure 4-1, the slump ranges from 130 to 250 mm. The highest values were
obtained from the samples with lightweight aggregates replacements, especially perlite.
Slump values are highest for perlite mixtures, followed by pumice then recycled
aggregates. The lowest slump values were those of the concrete made with conventional
aggregates. Slump values increased with higher replacements of saturated aggregates.
The higher slump values of the pre wetted aggregate mixtures can be attributed to the
desorption property of those types of aggregates, or their ability to lose their internal
water. This water was released from the aggregates during mixing causing an increase in

the flow ability of the concrete mixture.
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Figure 4-1: Slump test results for different concrete mixtures
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Desorption shows to be lower for recycled aggregates and pumice compared to the
perlite mixtures, thus yielding slightly lower slump values. Results also reveal that
conventional concrete had the lowest slump of 130 mm. This is due to the absence of
additional water in the aggregate, since the conventional aggregates were SSD state.

Slump test results reveal an important advantage of using pre-wetted aggregates, which is

enhanced workability that shall ease concrete handling and finishing.

Figure 4-2: Picture showing difference in slump between Conventional mixture (left) and

Perlite mixture (right)

4.1.2 AIR CONTENT

Results of Air content test are listed in table 4-1 and are illustrated in figure 4-3. As
can be seen in figure 4-3, the air content percentage ranges between 2 to 3.3%. The
highest values were obtained for mixtures with pre-wetted lightweight and recycled
aggregates, pumice, recycled and perlite mixtures, respectively. Generally, Air content
increased with the elevated replacements. The lowest air content results were those of the

conventional mixtures.

51



Figure 4-3: Air Content test readings for 2 different mixtures
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Figure 4-4: Air content results for different concrete mixtures

The increase in air content for mixtures with aggregates replacements can be

attributed to the porosity of those types of aggregates. Lightweight and recycled

aggregates are by nature mire porous than dolomite aggregates used in conventional
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concrete mixtures. This increased the entrapped air in the concrete mixture. Among the
saturated aggregates mixtures, perlite mixtures appeared to be the least. This can be
explained mainly because perlite replaced crushed sand, which occupies the least volume
compared to the coarse aggregates. Also, from visual inspection, Pumice appears to be
the most porous, which is reflected on the results. Generally, Air content results reveal
that mixtures with replacements of lightweight and recycled aggregates yield slightly

higher air content.

4.1.3 UNIT WEIGHT

The results of unit weight test are listed in table 4-1 and are illustrated in figure 4-
5. As can be seen in figure 4-5, unit weight results range from 2248 to 23444 kg/m3. The
highest value was obtained for concrete mixtures made with conventional dolomite
aggregates. Unit weight values were slightly decreased for mixtures with aggregate
replacements of recycled, perlite, and pumice, respectively. Also, unit weight dropped
with increased replacement percentage of pre wetted lightweight and recycled aggregates.
This behavior can be attributed to the increased porosity and decreased unit weight of the
replacement aggregates compared to the dolomite aggregates used in conventional
mixtures. Within the replacement aggregates mixtures, unit weight decreased for
aggregates with lower unit weight. However, it is worth noting that the decrease in unit
weight for replacing aggregates mixtures was slight compared to conventional dolomite
aggregate mixtures. This happened mainly because the replacing aggregates were
saturated with water, which makes such aggregates closer in density to those
conventional aggregates. Generally, replacing conventional aggregates with recycled or

lightweight aggregates led to slight drop in unit weight in the concrete mixture.

53



2800

2600
)
£
4
£ 2400
D
=
i=
)
2200 | |
2000
> o\ olo olo 00 ole 0 ee olo olo
00 S \6 '\(7 .@ @ \Q \ '\z N \ '\(7
Q ‘b’ b’ b ‘\“\\‘ \‘ .\ .\@ .\g) < < <
& ¥ ¥ S QQ& H F F & &
st q&@ Q&cﬁ q&@ ] Q ¥ & &S
Concrete Mixtures
Figure 4-5: Unit weight results for different concrete mixtures
4.1.4 TEMPEREATURE

Results of temperature test are listed in table 4-1 and are illustrated in figure 4-6.
As can be seen in figure 4-6, temperature results range from 22 to 25 degree Celsius.
There was no clear correlation between temperature and the mixture, temperature was
rather affected by both ambient temperature and temperature of the mixing water.
Generally, replacing conventional aggregates with pre wetted lightweight or recycled

aggregates have no effect on the temperature of the mixture.
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Figure 4-6: Results of fresh concrete temperature

Incorporating lightweight and recycled concrete aggregates affected the fresh
properties of concrete. Mixtures with lightweight or recycled concrete aggregate
replacements enjoyed better workability. As these aggregates were pre-wetted for 24 h +
1 h, they may have lost some of this water to the surrounding paste, causing lower slumps
and hence better workability. Aggregate replacement also affected the air content. As
these aggregates are by generally more porous than the dolomite aggregates, they may
experience higher voids. Air content was higher towards use of coarser replacing
aggregates like recycled concrete and pumice aggregates, this may happened because of
better interlocking of smaller sized aggregates like perlite. Unit weight was slightly
affected. Mixtures with replacements of lightweight or recycled concrete aggregates
showed lower unit weight. Unit weight decreased with the increased dosages of

lightweight and recycled concrete aggregates. This happened because of porous
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aggregates used. Temperature results showed no significant effect in cases of
replacement, temperature was rather affected by ambient and mixing water temperatures.
It can be concluded that mixtures with replacements of lightweight and recycled concrete

aggregates have higher workability and air contents and lower unit weights.

4.2HARDENED TESTING
The following are the results of the compressive strength, and flexural strength of

lightweight, recycled as well as conventional concrete specimens:

Table 4-2: Hardened concrete test results for different mixtures

Compressive Strength  Flexural Strength Flexure to

Mixture (MPa) (MPa) Compression Ratio
7d ‘ 28d | 56d  28d 56d 56d
No Curing 545 | 59.7 | 61.8 5.5 5.8 9%
Curing Compound 57.2 | 63.3 | 65.6 6.1 6.4 10%
Water Curing 54.1 | 634 | 66.5 6.3 6.6 10%
Recycled 10% 50.3 | 56.0 | 58.7 7.2 75 13%
Recycled 15% 495 | 523 | 549 1.7 8 14%
Recycled 25% 46.3 | 519 | 545 6.9 7.1 13%
Perlite 3% 53.1 | 574 | 60.6 5.7 5.9 10%
Perlite 7% 52.7 | 58.8 | 61.7 5.8 6.1 10%
Perlite 10% 52.3 | 59.7 | 62.7 6.1 6.4 10%
Perlite 15% 518 | 574 | 60.8 5.2 5.5 9%
Perlite 25% 48.3 | 55.3 | 57.9 4.4 4.6 8%
Pumice 10% 50.6 | 57.1 | 59.9 4.6 4.8 8%
Pumice 15% 478 | 51.1 | 53.8 4.7 4.9 9%
Pumice 25% 40.6 | 45.7 | 48.2 5.1 5.3 11%
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4.2.1 COMPRESSIVE STRENGTH

Results of the compressive strength test are listed in table 4-2 and are illustrated in
figure 4-7. As can be seen in figure 4-7, the 56-day compressive strength results range
from 48.2 to 66.5 MPa. The highest value was obtained for the standard concrete mixture
made with conventional dolomite aggregates namely full curing followed by curing
compound and no curing modes. The high values of compressive strength can be
attributed to the strength of the conventional dolomite aggregates compared to the
replacement aggregates. Curing mode and its effect on the strength can be clearly
outlined, a drop in strength is found between fully and non-cured samples. This can be
explained through the incomplete hydration process in non-cured samples compared to

curing compound or full curing samples.

As for the pre wetted lightweight and recycled aggregates results, as can be seen in
figure 4-7, perlite showed the highest results followed by recycled then pumice
aggregates mixtures. This is mainly due to the fact that both recycled and pumice
replaces coarse aggregates size one and two contrasting to perlite, which replaces crushed
sand. Coarse aggregates are the main load carrier and hence the replacement directly
affected the strength. It is worth noting that 10% replacement with perlite aggregates
surpassed the no curing sample of conventional concrete. This is primarily explained by
the enhanced hydration process through the internal moisture supplied by water stored
inside the perlite aggregates. Perlite is also considered to be better dispersed through the
concrete section compared to the pumice and recycled aggregates due to its finer grain
size. Generally, results show that compressive strength is mainly affected by the strength

of the replacing aggregates and the replacing aggregate type (coarse or crushed sand).
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Dispersion is also an important factor that affect internal curing performance of the
aggregates, the finer the aggregate the better dispersion and scatter through the concrete
section. The 10% aggregate replacement with perlite lightweight aggregate showed to be

promising after surpassing the non-cured sample after 56 days.
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Figure 4-7: Compressive strength results for different concrete mixtures
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It can be concluded that Compressive strength showed to be clearly affected by
both aggregate type and curing mode. Within the same testing date, strength differed
from one aggregate type to the other based also on replacement dosages. So, the weaker
the aggregate used with higher dosages the more the strength in affected. Perlite is the
weakest aggregate type followed by pumice, recycled concrete and conventional
aggregates, respectively. Strength gaps appeared clearly in recycled aggregates and
Pumice mixtures as they were used in high dosages, in contrast to perlite, which was used
with lower dosages (by volume). Curing mode affected strength, as observed no curing
mixture showed highest values at 7 days however was surpassed by curing compound
and full curing later in 28 and 56 days. This can be explained because of the potential
inside cracks (desiccation) caused by the incomplete hydration due to the lost water.
Despite the fact the perlite is the weakest aggregate type, it yielded the most strength
within the internally cured specimens, principally the 10% dosage. This can be explained
due to the better dispersion of the aggregate throughout the concrete section, compared to
the coarse aggregates. Also, perlite dosage replaced the crushed sand aggregates, which is
not the primary load carrier in concrete. At 56 days, 10% perlite surpassed the standard
no curing mixtures, asserting on the importance of curing and its role in strength
development. Aggregate type, dosage and dispersion are the 3 principal factors that affect

the strength of internally cured concrete.

4.2.2 FLEXURAL STRENGTH
The results of the flexural strength test are listed in table 4-2 and are illustrated in
figure 4-8. As can be seen in figure 4-8, flexural strength results range from 4.6 to 8.0

MPa. The highest value was that of the 15% recycled aggregates. This can be attributed

60



to the Interfacial Transition Zone (ITZ) between aggregate surface and concrete paste.
The ITZ has enhanced the properties internally, which means less tendency of aggregate
pop out, thereby higher flexural strength. Also, Recycled aggregates have a angular
texture, causing better interlocking of aggregates with the paste. It is worth noting that
flexural strength dropped for the increased replacement percentage, mainly because of the
excessive replacement of dolomite aggregate which has higher strength compared to

other replacing aggregates.

These outcomes have fairly comparable patterns to the patterns of the compressive
strength as in increasing the percentage of perlite or recycled aggregates leads to some
decrease in flexural strength. Contrastingly, a large portion of the mixtures made with
perlite or recycled aggregates recorded a flexural strength that is higher than the
conventional concrete mixtures. This highlights the internal curing impact of the perlite
and recycled aggregates in minimizing cracking.. With respect to conventional mixtures,
the impact of curing was more proclaimed than the compressive strength mixtures.
Generally, the consolidation of perlite prompted a reduction in flexural strength while the
replacements of recycled aggregates prompted flexural strength that is comparative or
surpassing ordinary mixtures. The outcomes in this propose the flexural strength test has

a superiority to distinguish the impact of internal curing than compressive strength.
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Figure 4-8: Flexural strength results for different concrete mixtures
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4.2.3 FLEXURAL STRENGTH TO COMPRESSIVE STRENGTH RATIO

Results of the flexural/compressive ratio are listed in table 4-2 and are illustrated in
figure 4-9. As can be seen in figure 4-9, the ratio of flexural/compressive values range
from 8% to 14%. The highest value is that of the 15% recycled concrete mixture. This
can be attributed to the high flexural strength results obtained for the same mixture. The
high values of flexural strength was reached mainly due to the enhanced Interfacial
Transition Zone that gave better bonding of recycled aggregates and the rest of the
concrete mixture. The relatively high percentage of flexural to compressive strength gives
indication of better resistance to tensile forces that eventually should lead to lowered

cracking.
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Figure 4-9: Flexural Strength to compressive strength ratio for different concrete

mixtures
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4 3DURABILITY TESTING
The following are the results of the Shrinkage assessment, RCPT and abrasion resistance

of lightweight, recycled as well as conventional concrete specimens:

Table 4-3: Durability testing results for different concrete mixtures

. RCPT .

N Shrinkage (x0.01 mm) (Coulombs) At-)rasmn - Lost

7d ‘ 28d ‘ 56d  28d  56d e e i)
Std. No Curing 2.22 3.12 3.69 1564 | 1588 1.9
Std. Curing Compound 2.13 2.82 3.34 1252 | 1224 1.6
Std. Full Curing 1.98 2.68 3.19 1232 | 1202 1.3
Recycled 10% 1.48 1.72 1.95 1984 | 1976 2.6
Recycled 15% 1.22 1.62 1.77 | 2030 | 2011 2.8
Recycled 25% 1.14 1.48 1.62 2168 2154 3.1
Perlite 3% 2.13 2.89 3.12 1412 | 1348 1.9
Perlite 7% 1.77 2.64 2.92 1422 | 1348 2.1
Perlite 10% 1.43 2.32 2.57 1437 | 1420 2.3
Perlite 15% 1.21 2.21 2.39 1582 | 1477 2.8
Perlite 25% 0.98 1.88 2.21 1642 | 1589 2.7
Pumice 10% 1.45 1.67 198 | 2320 | 2288 2.8
Pumice 15% 1.12 1.53 1.73 | 2210 | 2198 2.9
Pumice 25% 1.07 1.44 157 | 2651 | 2598 3.4

4.3.1 SHRINKAGE ASSESSMENT
The Results of shrinkage assessment test are listed in table 4-3 and are illustrated in
Figure 4-10. As can be seen in figure 4-10, the shrinkage values range from 1.57 to 3.69

(x0.01) mm. The highest values were obtained for cases of conventional concrete,
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particularly the non-cured specimens. This can be attributed to the poor hydration
performance of the non-cured specimens. To the contrary, the internally cured mixtures
showed decreased shrinkage; the mixtures with 25% recycled aggregates, with shrinkage
of 0.0162 mm, had almost half of value of the conventional concrete shrinkage of 0.0369
mm. At the start, one can see that the vast majority of the shrinkage occurred until 28
days and less increment in shrinkage was seen in the interim somewhere around 28 and
56 days. All internal curing mixtures of perlite, pumice and the recycled aggregates had
critical impact in decreasing shrinkage. Such reduction in shrinkage qualities was higher
after increasing the perlite, pumice and reused aggregates dosages. The recycled
aggregates and pumice, in any case, demonstrated the most reduced shrinkage of all

mixtures notwithstanding when contrasted with perlite blend.

Shrinkage assessment test highlights the significance of internal curing. The
internally cured concrete mixtures had the lowest shrinkage values and lowest shrinkage
development through the 56 days. This is clearly due to the enhanced hydration process.
The internal moist stored inside the concrete section helped in better commencement of
strength and durability development of the mixture and lowered or eliminated self
desiccation. Decreased shrinkage of internally cured concrete reveals the potential of this
technology, especially in concretes with special functions that require minimizes

shrinkage and accordingly, cracking.
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Figure 4-10: Results of Shrinkage test for different concrete mixtures
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4.3.2 RAPID CHLORIDE PERMEABILITY TEST (RCPT)

The results of RCPT are listed in table 4-3 and are illustrated in figure 4-11. As can
be seen in figure 4-11, the passing charges ranged from 1202 to 2598 coulombs. The case
of lowest passing charges was that of concrete made with conventional dolomite
aggregates, full curing followed by curing compound. This can be mainly because of the
high unit weight/density of conventional aggregate mixtures in comparison to the
internally cured ones because of their decreased densities due to aggregate replacement.
Another factor is the amount of cracking inside the concrete section itself. Results of
RCPT strongly assures on the issue of curing. All cured specimens, whether internally or
externally cured have shown decreasing penetrability through the 28 and 56 days testing.
Only the no curing specimen showed an increased penetrability as it passed 1588 charges
in 56 days increasing by 24 units than the 28 days results. Conventional mixtures’
passing charges, on average, decreased by 29 charges from 28 to 56 days. Perlite
mixtures had the most decreased passing charges with 63 less passing charges from 56 to
28 days. Pumice showed the worst performance, this can be explained because of the
high porosity of this kind of aggregate. It is concluded that unit weight, curing,
interlocking (voids percentage), and aggregate porosity are the main factors that affect

the penetrability of the concrete section.
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Figure 4-11: Results of Rapid Chloride Permeability Test (RCPT)
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4.3.3 ABRASION TEST

The Results of Abrasion Test are listed in table 4-3 and are illustrated in Figure 4-12.
As can be seen in figure 4-12, the Abrasion values range from 1.3 to 3.44 mm of lost
thickness. Conventional concrete specimens have demonstrated the best abrasion
performance as it lost only 1.6 mm on average that is the least amount, followed by
perlite specimens with 2.36 mm, then recycled concrete specimens with 2.83mm. Pumice
was at the worst at abrasion resistance, averaging almost 3mm of lost thickness. This
behavior is explained through the abrasion resistance of the aggregates themselves.
Dispersion plays an important role here. Perlite demonstrated similar behavior to the
conventional specimens because of the well dispersion of perlite throughout the section,
in contrast with both the Recycled concrete aggregates and the pumice specimens. Aging
may also be a reason for the poor abrasion performance of specimens with recycled
concrete aggregates. This recycled concrete dates back to the 60’s, which is the time of
construction of the famous AUC science building. Generally, abrasion was slightly

affected with aggregates replacements, specifically the coarser replacements.
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Figure 4-12: Results of Abrasion Test
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CHAPTER 5

PRELIMINARY FEASIBILITY ANALYSIS
The feasibility of internal curing technology is directly related to its technical
properties and long term performance. Its economic feasibility is determined in the light

of a complexity of parameters, which are summarized in this section.

5.1AVAILABILITY

Perlite aggregates are manufactured locally. Perlite is widely available in areas of
Burj Al Arab, Alexandria and Atakkah, Suez. Perlite is widely used in other industries
and in producing lightweight concrete. Egypt produces almost 250 Km? of perlite
annually, only 10% is used for concrete purposes. Needless to say, internal curing is not

one of these concrete applications.

The annual amount of recycled aggregates from destroyed structures is assessed as
2% of aggregate volume of existing concrete. Obviously, areas of normal disasters or
clashes can have higher percent than this one. Moreover, the assessed measure of rejected
fresh concrete created can be as high as 3%. The last is advantageous since it incorporates

insignificant measure of contaminants (Abou-Zeid et. al, 1998).

5.2SPECIAL EQUIPMENT

The only special equipment used may be crusher for recycled concrete aggregates
production and special storage area with sprinklers for pre-wetting of aggregates. One
challenge that faces the concrete crushing is the impurities problem. The overall
efficiency of the crushing process cannot be separated from the handling of impurities

present in demolished concrete (e.g. paints or reinforcing steel). This matter can become
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a cumbersome one particularly in residential building demolition (Abou-Zeid, et al.,
1998). However, advanced systems are now established for purposes of separation and
sorting. As for the pre-wetting of the aggregates, at the ready-mix plant, a separate bin
may be used for the aggregates or they may be kept in (sprinkled) piles. The time
required for sprinkling a new pile prior its use in concrete is dependent on the application
rate of the water and the aggregates’ absorption characteristics (Villareal, 2008). Villareal
also suggests a system to save more water by recycling the excess runoff water back into

the sprinkler system.

Figure 5-1: Simple recycled concrete aggregate crusher (Eagle Crushers, 2016)

5.3TRANSPORTATION

The feasibility of the internally cured concrete is exceedingly affected by
transportation costs. In roads construction, transportation expense can be decisive. This is
likewise the case for projects in centers of urban zones where transportation and access to

destinations is difficult and the utilization of site accessible concrete is thus considered.
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Likewise, transporting extra water for curing to versatile locales could be very costly in a
few nations like Egypt. In coming years, and after relative political stability, Egypt is
undergoing numerous numbers of gigantic projects; New Capital, New Suez canal, Port
Saied, and national roads project; to name only some. Most of these projects are in
mobile areas to encourage stretching the outskirts of the country to decrease dense
populations in the Cairo and Delta areas. This comes with its drawbacks of transportation
of raw materials like concrete and water. Internally cured concrete would save a

considerable amounts of water transported to these mobile sites.

54WATER

Water scarcity threat has been a global center of focus for many decades in areas with
no fresh water access, unlike Egypt. However, this issue has been raised in Egypt from
over 30 years ago coinciding with many Nile river countries building dams to secure its
share from fresh water. Grand Ethiopian renaissance dam, commonly known as Al Nahda
dam, which is expected to operate by July 2017 is one of the most critical challenges
facing Egyptians. This dam is forecasted to decrease Egypt’s share by almost 8-10 Billion
cubic meters of water, and almost 40% less effect on electricity production throughout
the period to fill the tanks (Elbaradei, 2016). Based upon these facts, Egypt should adapt
to these changes by enforcing some strict rules and encouraging other water saving ideas
and activities. Internal curing decreases water consumption drastically, and shall wisely

save water from being randomly and uncontrollably splashed over concrete.
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Figure 5-2: Picture showing construction of Ethiopian Grand Dam (Daily news Egypt, 2014)

55SIMPLIFIED LIFE CYCLE COST ANALYSIS

A Life Cycle Cost Analysis (LCCA) is done when there is a need to assess and
compare the monetary performance of competing design and maintenance
alternatives. A LCCA was led to survey the life-cycle costs of conventional concrete
versus internally cured concrete, for which various sorts of exercises may be booked
at diverse focuses in time, for instance: periodical assessments, required maintenance
and repairs, and also replacement; figure 5-2. This is typically accomplished by
ascertaining the Present Value Life-Cycle Costs (PVLCC) of the options over a given

time period (Hawk H., 2003):

T
PVLCC = C +Z G R
T LAt a7

[Equation 4]
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Figure 5-3: Expenditures over life cycle costs of concrete structures (Cusson et al., 2010)

where Co is the initial construction cost; Ci is the ith expense at given time t (years) after
construction; r is the discount rate; T is the analysis period (years); and Ry is the residual
estimation of the option toward the end of the analysis period. In this study, the analysis
period was set to 60 years for all cases, with no discount rate for most conservative
scenario. The direct costs incurred usually include initial construction costs and other
costs associated with the maintenance activities. In this case, the cost of the in-place cost
of concrete was only included excluding all other related works like reinforcement and
formwork. Also, excluded the markups of the concrete supplier. The cost of concrete will
depend on many factors, such as the type and quantity of cement, aggregates, water and
admixtures used in the concrete mixture, and availability. In this study, difference
between normal concrete (NC), High performance concrete (HPC) and internally cured
concrete (IC) will be carried out. Table 5-1 shows the different quantities and costs for

each mixture.
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Table 5-1: Estimated Cost of different concrete mixtures

N— NC - C40 HPC - C55 ICC - 10% Perlite - C55
ateria
Quantity Unitprice Cost Quantity Unitprice Cost Quantity Unitprice Cost
Cement (kg) 400 0.6 240 450 0.6 270 450 0.6 270
Coarse Aggregates
1,060 0.0 47.7 | 1,050 0.0 47.3 | 1,050 0.0 47.3
(kg)
Fine Aggregates (kg) 790 0.0 14.2 662 0.0 11.9 590 0.0 10.6
Crushed Sand (kg) 112 0.1 5.6 112 0.1 5.6 105 0.1 5.3
Water (L) 172 0.00015 | 0.026 170 0.00015 | 0.026 180 0.00015 | 0.027
Admixture (L) 5 8 40 7.5 8 60 7.5 8 60
Perlite (kg) - 1.5 - - 1.5 - 100 1.5 150
Curing Water (L)
200 0.025 5.0 200 0.025 5 - -
Including Transportation
Total (LE/m3) 352 399 543

The unit cost of HPC (LE 400/m®) was evaluated to be 13% higher than that of
ordinary C-40 concrete (LE 350/m®), basically because of the increased amount of
cement in the mixture. The unit cost of ICC was set to that of HPC in addition to a 35%
expansion to represent the cost contrast connected with the procurement and
transportation of the lightweight aggregate (with a purchase cost of LE 1,500/m?) used to

substitute a small amount of the ordinary aggregates.

For this situation consider, an arrangement of different maintenance exercises
were expected to occur over the life cycles. For normal concrete (NC) for example,
destructive (NDT) assessment and protection exercises were planned to happen at regular
intervals, while patch repairs were scheduled when 10% and 25% of the concrete surface

would be spalled. In this study, replacement was esteemed vital when half of the concrete
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surface would be spalled. After replacement, it was expected that the concrete would be
reconstructed with a similar initial construction cost considering inflation rate. Concrete

thickness was assumed at 200mm to represent figures in m?. Results are shown in table 5-

2 below:
Table 5-2: Life Cycle Cost Analysis of different concrete mixtures
Cost ‘ NC — C40 HPC — C55 ‘ ICC - C55
Initial Cost (LE/m?) 71 80 109
PVLCC @60Y (LE/m?) 1,218 1,035 927

The above table shows the difference between the 3 concrete types and the
corresponding initial and Present Value Life-Cycle Costs. It’s obvious that the ICC has
less frequent check, protection, maintenance and replacement times than the HPC and NC
respectively. Costs of maintenance activities were estimated from average market prices.
Over a 60-year examination period, the PVLCC for the normal concrete deck is the most
noteworthy at LE 1,218/m?, which is basically because of the shorter service life and the
more incessant maintenance and replacement exercises. The HPC deck (no internal
curing) diminished this cost by 18%, predominantly because of the more extended
service life. The ICC deck further lessened the PVLCC down to LE 927/m?, which is
31% less costly than the NC deck, or 12% less costly than the HPC deck because of the

utilization of internal curing.
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Figure 5-4: Cumulative costs of different concrete mixtures over time in years

It can be concluded that contrasted with normal concrete, internally cured
concrete provided an extra 40 years of service life. This is because of the utilization of
lower water—cement ratio (expanding strength and diminishing permeability) joined with
the utilization of internal curing (both lessening porousness and danger of cracking). The
life-cycle cost of a bridge deck can be significantly lessened when utilizing high
performance concrete over ordinary concrete, particularly with internal curing. This can
be ascribed to less maintenance exercises and a more extended serviceability. Figure 5-4
demonstrates the present value cumulative costs incurred over the first 15 years of the 60-
year period for the three concrete deck options. It is clearly demonstrated that the higher
initial investment in the ICC deck, contrasted with the NC deck, can be counterbalanced

in just 5 years and can counterbalance the HPC cost in just 10 years, mainly because of
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the lower maintenance costs connected with ICC. Full analysis table incorporating all

maintenance and repair costs is attached at Appendix A.

5.6 CASE STUDY — EGYPT’S NEW CAPITAL

In this section, a simple cost assessment of internally cured concrete is presented
for a major construction project in Egypt; the new Capital. The proposed new capital of
Egypt is a project announced by Egyptian housing minister Mostafa Madbouly at the
Egypt Economic Development Conference on 13 March 2015 (Al Jazeera English, 2015).
The new city is to be located 45 kilometers east of Cairo. According to the plans, the city
would become the new administrative and financial capital of Egypt, housing the main
government departments and ministries, as well as foreign embassies. On 700 square
kilometers total area, it would have a population of five million people, though it is

estimated that the figure could rise to seven million (BBC News, 2015).
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Figure 5-5: Location of New Capital (The Capital Website, 2015)
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The study is based on the construction of the infrastructure of this gigantic
development, mainly water and power plants, roads and bridges, utilities and others. Data
were obtained from many sources, mainly market studies and New Capital website. This
assessment is based on certain assumptions. Needless to say, the validity of these
assumptions is to be questioned and perhaps modified in the light of the project nature

and other prevailing parameters.

Table 5-3: Assumptions of New Capital Infrastructure, (The Capital Website, 2015)

Item ‘ Quantity
Gross Land Area 700 km?
Land Available for Development 490 km?
Expected Population 5,000,000
Residential Districts 21
Airport Area 16 km?
Roads & Bridges 140 km?

This study primarily focuses on the infrastructure construction of the new capital,
in specific the ones using High Performance Concrete (HPC) in construction. The above
table shows data revealed from the authorities or companies concerned with the project.
Assumptions were also made to estimate future market demand of concrete and other
construction materials. Market studies at the time of the announcement of the project,
estimated that the project in its first phase would cost $45bn and takes up to seven years
to complete (Al-Jazeera, 2015). Also, earlier 2016, the government agreed to assign

administrative infrastructure of the new Capotal work at LE 4 billion (youm 7, 2016).
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Figure 5-6: New Capital prototype unveiled in EEDC 2015 (Al-Jazeera, 2015).

The case study will focus on the advantages incorporated upon using Internally
Cured Concrete (ICC) versus using conventional high performance concrete (HPC). The
aspects examined are mainly economical and environmental. The economical aspect,
carried out in the previous section, is represented through the costs saved in the entire
service life of a certain structure and the costs saved in maintenance and repairs.
Environmental aspect is mainly the water saved during the conventional water curing
through surface splashing. Assuming a service life of 60 years, and incorporating all
maintenance and repair costs, previous section concluded a cost saving of LE 1,965 per
cubic meter of concrete between HPC and ICC. Also water saving of 192 Liters per cubic
meter of concrete including mixing and curing water. Market studies and analysis
estimated additional 35 Million cubic meters of concrete dedicated for the construction of

first stage of the new Capital (EIU, 2015). It can be assumed that 20% of this quantity is
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dedicated for infrastructure and utilities, summing 7 Million cubic meters. Following are

the carried out calculations:

Table 5-4: Economical Savings from incorporating ICC in New Capital

Concrete Quantity for Infrastructure 7,000,000 m?

Cost Saving per m* LE 1,455

Total Cost Saving LE 10.2 Billion

Results listed in table 5-4 conclude that the use of internally cured concrete for the
infrastructure projects as an alternative to the conventional concrete can save up to LE
10.2 billion, or alternatively, 1.15 billion US dollars which is almost 3% from the entire

project budget.

Table 5-5: Water Savings from using ICC in New Capital Infrastructure

Concrete Quantity for Infrastructure 7,000,000 m®

Water Saving per m® 0.195m?

Total Water Saving 1.365 Million m®

Results listed in table 5-5 reveal environmental aspect of adapting ICC
technology in the new capital. Almost 1.5 Million cubic meters of water are saved from

being randomly and uncontrollably splashed over concrete structures for curing.

Both cost and water saving assert on the potential of adapting the technology of
internally cured concrete for infrastructure uses. The ICC, if used in the new capital, can
save up to 3% of total project budget and almost 1.5 Million cubic meters of fresh water

over the 7 years of the first stage of the project.
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CHAPTER 6

CONCLUSIONS AND RECOMMENDATIONS

In this chapter, an overall summary as concluding remarks of this study as well as

recommendations for applicators and future research work are provided.

6.1 CONCLUSIONS
In the light of scope, types and dosages of materials investigated as well as other
experimental parameters and variability associated with this work, the following key

conclusions can be warranted:

1. The concrete mixtures incorporating saturated lightweight and recycled concrete
aggregates demonstrate increase in slump values that increases with the increase
of pre-wetted aggregate content. The slump increase reflects an overall enhanced
workability of Internally cured concrete

2. Incorporating pre-wetted lightweight and recycled concrete aggregates led to a
slight increase in air content. Air content increased with higher replacement
dosages possibly due to the porosity nature of lightweight and recycled
aggregates. However, such increase is considered insignificant.

3. Lightweight and recycled concrete aggregates mixtures possess slightly less unit
weight compared to conventional concrete mixtures.

4. Compressive strength of concrete showed to be clearly affected by curing mode,
tests reveal highest values for full curing followed by ones cured by curing

compound and least values for non-cured specimens.
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10.

Compressive strength of internally cured concrete was lower than conventional
concrete made with conventional aggregates. The drop in strength was higher as
the lightweight and recycled concrete aggregates dosages increased.

Aggregate type, dosage and dispersion are three principal factors that affect
compressive strength of internally cured concrete.

Internally cured concrete yielded similar strength development from 7-28 days
compared to conventional concrete. However, the 28-56 days strength
development is significantly higher for internally cured concrete, due to the
enhanced hydration process that maintained the relative humidity levels in the
internally cured concrete mixtures.

Flexural strength results have fairly comparable patterns to those of compressive
strength as increased dosages yield lower strength. Recycled aggregates concrete
promoted flexural strength that is comparative or surpassing conventional
mixtures. Possibly due to the Interfacial Transition Zone (ITZ) between aggregate
surface and concrete paste, which enhanced internal properties and caused better
aggregate-paste interlocking.

Flexural-compressive strength ratio for mixtures of internally cured concrete is
higher than mixtures of conventional concrete. Also possibly due to to the
Interfacial Transition Zone (ITZ) between aggregate surface and concrete paste.
Internally cured concrete mixtures had critical impact in decreasing shrinkage and
shrinkage cracking. Such reduction was higher after increasing the replacement

dosages of lightweight and recycled concrete aggregates.
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11.

12.

13.

14.

15.

16.

17.

18.

Rapid chloride permeability test (RCPT) reveal that concrete’s unit weight, curing
mode and aggregate porosity are the main factors that affect the penetrability of
the concrete section.

RCPT also revealed that internally cured concrete yielded slightly lower
performance compared to conventional concrete. However, Internally cured
mixtures yielded significantly better improvement from 56-28 days.

Abrasion resistance of internally cured concrete is similar to that of conventional
concrete. This was the case for mixtures made with both lightweight and recycled
concrete aggregates.

Internally cured concrete can save considerable amounts of water transported
specially to mobile areas. This is of high importance since Egypt is undergoing
numerous number of gigantic projects in areas of not steadily fresh water supply.
As Egypt faces a water scarcity challenge, internally cured concrete decreases
water consumption drastically and saves water from being randomly and
uncontrollably splashed on concrete

A simple Life-Cycle Cost Analysis reveals that internally cured concrete saves up
to 31% of cost throughout its service life compared to conventional concrete

The higher initial investment of internally cured concrete can be counterbalanced
because of the lower maintenance costs associated.

Egypt, if utilizes internally cured concrete in the New Capital Project for example,
can save up to LE 10.2 Billion and 1.5 Million cubic meters of water throughout
the duration of the first stage of the project on Infrastructure construction &

maintenance.
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6.2RECOMMENDATIONS FOR FUTURE WORK
This investigation pinpoints specific areas where recommendations can be made and

further studies to be conducted including the following:

1. Other types of lightweight aggregates need to be examined and in different
dosages to compare to current tested ones

2. The influence of age of crushing the aggregates and storage time need to be
further examined.

3. Nature of interference between lightweight aggregates and other cementitious
binding materials (i.e. slag, silica fumes, etc.) shall be further examined

4. Fire resistance should be tested to assess performance of internally cured concrete

in cases of increased temperatures.

5. Further durability tests are needed such as freezing and thawing, scaling, chemical
durability and water permeability.

6. It is recommended that field trials be performed with instrumentation,
documentation and monitoring and on extended periods of time to be able to

quantify benefits of technology to enable it to be more commonly used.
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6.3RECOMMENDATIONS FOR APPLICATORS

Methodologies for executing internal curing underway are basically the same as those

utilized for delivering lightweight concretes for over 50 years.

1.

At the ready-mix plant, a separate bin may be used for the lightweight aggregates
or could be kept in sprinkled piles at the site, The time required for sprinkling a
new pile before use in concrete is dependent on the application rate of the water
and the aggregate’s absorption characteristics

As with any aggregate being incorporated into a concrete, the moisture content
and absorption capacity of the LWA must be known prior to the final
proportioning of the concrete

Crushing of concrete to be used as recycled concrete aggregates must follow a
standard procedure of crushing, removing impurities and finally grading.

Mixing saturated aggregates with other ingredients of concrete follows the same
standard procedure of mixing and batching of ready-mix concrete.

Applicators must be aware that they are dealing with a material that has a
different nature and characteristics than conventional concrete. Handling time
must be controlled, so that the lightweight aggregates don't lose its water before
setting. Also, pumping should be something well handled to prevent segregation
or separation of lightweight aggregates from concrete (common defect in ultra
lightweight aggregates)

Concrete finishing is basically the same as that of the conventional concrete.

87



REFERENCES

Abou-Zeid, M. N., Khandil, A. A. and El-Saaran, I. M. “Recycled Concrete: Myth or
Reality”. 8" International Colloquium on Structural and Geotechnical Engineering,

Ain Shams University, Proceedings, December 1998.

Abou-Zeid, M. N., Ismael, M. and Hammam, A. “ Incorporation of lightweight and

recycled aggregates for concrete curing”. CSCE Annual Conference, 2015

ACI 213R-03: Guide for Structural Lightweight-Aggregate Concrete. ACI Committee

213. American Concrete Institute, Farmington Hills, Michigan, 2012.

ACI 308R-01: Guide to Curing Concrete. AClI Committee 308. American Concrete

Institute, Farmington Hills, Michigan, 2015.

Aitcin, Pierre-Claude, and Barbara B. Stern. High-performance Concrete. London: E&FN

Spon, 1998.
Alberty, R., & Daniels, F. Physical Chemistry. New York: John Wiley & Sons, 1980

Al Jazeera English. "Egypt Plans New Capital Adjacent to Cairo.” 14 Mar. 2015.
<http://www.aljazeera.com/news/2015/03/egypt-plans-capitaladjacent-cairo

150314014400946.html>.

Al Wafd. Report: 40% of Bridges Egypt at Risk and in Danger of Collapse. 8 Feb. 2016.

<http://alwafd.org/>.

88



Babcock, Anthony, and Peter Taylor., IMPACTS OF INTERNAL CURING ON
CONCRETE PROPERTIES: Literature Review. lowa Highway Research Board,

2015.

BBC News. "Egypt Unveils Plans to Build New Capital East of Cairo " BBC News. 13

Mar. 2015. <http://www.bbc.com/news/business-31874886>.

Bediako, Mark, J. T. Kevern, and Eric Opoku Amankwah, Effect of Curing Environment
on the Strength Properties of Cement and Cement Extenders. Scientific Research

Publishing Inc., 2015.

Bentur, A., lgarishi, S., & Kovler, K., Control of Autogenous Stresses and Cracking  in
High Strength Concretes. Proceedings of the 5th International Symposium on

High Strength/High Performance Concrete, Sandefjord, 1999.

Bentz, D.P., "Influence of Internal Curing Using Lightweight Aggregates on Interfacial
Transition Zone Percolation and Chloride Ingress in Mortars,” Cement and

Concrete Composites, 2009.

Bentz, Dale P., Transport Properties and Durability of Concrete Literature Review and
Research Plan. McLean, VA: U.S. Dept. of Transportation, Federal Highway

Administration, 2002.

Bentz, Dale P., Pietro Lura, and John W. Roberts. Mixture Proportioning for Internal

Curing. Concrete International, 2005.

89



Bentz, Dale P., and W. Weiss. Internal Curing: A 2010 State-of-the-art Review.
Gaithersburg, MD: U.S. Dept. of Commerce, National Institute of Standards and

Technology, 2011.

Bentz, D., Hansen, K., Madsen, H., Vallee, F., & Griesel, E. Drying/Hydration in

Cement Pastes during Curing. Materials and Structures, 2001.

Bentz, D., Lura, P., & Roberts, J. Mixture Proportioning for Internal Curing.

Concrete International, 2005.

Bentz, D., Snyder, K., & Peltz, M., Doubling the Service Life of Concrete Structures. |II:
Performance of Nanoscale Viscosity Modifiers in Mortars. Cementand Concrete

Composites, 2010.

Bremner, T., & Ries, J., Stephen J. Hayde: Father of the Lightweight Concrete

Industry. Concrete International , 2009

Castro, J., Keiser, L., Golias, M., & Weiss, W., Absorption and Desorption of Fine
Lightweight Aggregate for Applications to Internally Cured Concrete

Mixtures. Cement and Concrete Composites, 2011.

Cusson, D., & Hoogeveen, T., Internal Curing of High-Performance Concrete with
Pre-soaked Lightweight Aggregate Sand for Prevention of Autogenous

Shrinkage Cracking. Cement and Concrete Research, 2008

Cusson, D., Lounis, Z., & Daigle, L., Benefits of Internal Curing on Service Life and
Life-Cycle Cost of High-Performance Concrete Bridge Decks - A Case Study.

Cement and Concrete Composites, 2010

90



Daily News Egypt. "Shoukry in Addis Ababa for Talks over Grand Ethiopian
Renaissance Dam, 2014 <http://www.dailynewsegypt.com/2014/11/02/shoukry

addisababa-talks-grandethiopian-renaissance-dam/>.

Di Bella, C., Schlitter, J., & Weiss, W., Construction Documentation of Bloomington

Bridges, 2010.

Eagle Crushers. 2016. <http://www.eaglecrusher.com/>.

EIU: The Economist Intelligence Unit. "Egypt: Annual Report”. Mar. 2015.

<http://country.eiu.com/egypt>.

ElBaradei, Sherine. "Ethiopia's Renaissance Dam: What Options Are Left for Egypt?"

Ahram Online. 11 Mar. 2016.

Foster Supply. 2012. <http://www.fostersupply.com>.

Friggle, T., & Reeves, D. Internal Curing of Concrete Paving: Laboratory and Field
Experience. In D. Bentz, & B. Mohr (Ed.), Internal Curing of High Performance
Concretes: Laboratory and Field Experiences Farmington Hills: American

Concrete Institute, 2008.

GARBLT. "National Roads Project 2015." - General Authority For Roads, Bridges &

Land Transport. Web. 04 Nov. 2015.

Golias, M., The Use of Soy Methyl Ester-Polystyrene Sealants and Internal Curing
to Enhance Concrete Durability, M.S. Thesis. West Lafayette: Purdue

University, 2010.

91



Gonnerman HF, Shuman EC., Flexure and tension tests of plain concrete. Major series

171, 209 and 210. Report of the Director of Research. Port. Cem. Assoc., 1928.

Hammer, T.A., Bjontegaard, O., and Sellevold, E.J., Internal Curing - Role of
Absorbed Water in Aggregates, ACI SP-218, High Performance Structural

Lightweight Concrete, Eds. J.P. Ries and T.A. Holm, 2004.

Halamickova, P., Detwiler, R., Bentz, D., & Garboczi, E., Water Permeability and
Chloride lon Diffusion in Portland Cement Mortars: Relationship to Sand Content

and Critical Pore Diameter. Cement and Concrete Research, 1995.

Hawk, H. Life-Cycle Cost Analysis. Washington: Transportation Research Board.

NCHRP Report 483, 2003.

Henkensiefken, R., Briatka, P., Bentz, D., Nantung, T., & Weiss, J. Plastic Shrinkage
Cracking in Internally Cured Mixtures Made with Pre-wetted Lightweight

Aggregate. Concrete International, 2010.

Henkensiefken, R., Castro, J., Bentz, D., Nantung, T., & Weiss, J. Water Absorption in
Internally Cured Mortar Made with Water-Filled Lightweight Aggregate.
Cement and Concrete Research, 20009.

Henkensiefken, R., Nantung, T., & Weiss, W., Internal Curing - From the Laboratory to

Implementation. International Bridge Conference, 2009

Henkensiefken, R., Nantung, T, and Weiss, J. Reducing Restrained Shrinkage
Cracking in Concrete: Examining the Behavior of Self-Curing Concrete Made

using Different Volumes of Saturated Lightweight Aggregate, 2008.

92



Holm, T., Bremner, T., & Newman, J. Lightweight Aggregate Concrete Subject toSevere

Weathering. Concrete International , 1984.

Huo, Sharon Xiaoming and Wong, Ling Ung, Early-Age Shrinkage of HPC Decks Under

Different Curing Methods.  Http://ascelibrary.org/doi/ Cookeville, TN: ASCE,

2000.

Joseph, Basil. Studies On Properties Of Self-Curing Concrete Using Polyethylene Glycol.

IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 2016.

Kim, H., & Bentz, D., Internal Curing with Crushed Returned Concrete Aggregates.

NRMCA Technology Forum: Focus on Sustainable Development, 2008.

Klieger, Paul., Curing Requirements for Scale Resistance of Concrete. Chicago: Portland

Cement Association, 1957.

Kovler, K., and Ole Mejlhede. Jensen. Internal Curing of Concrete: State of the Art
Report of RILEM Technical Committee TC 196-ICC--"Internal Curing of

Concrete" Bagneux, France: RILEM Publications, 2007.

Lamond, Joseph F., and J. H. Pielert. Significance of Tests and Properties of Concrete

and Concrete-making Materials. Philadelphia, PA: ASTM, 2006.

Lopez, M., Kahn, L., & Kurtis, K., Effect of Internally Stored Water on Creep of High

Performance Concrete. ACI Materials Journal , 2008.

Lura, P., Couch, J., Jensen, O., & Weiss, W., Early-Age Acoustic Emission

Measurements in Hydrating Cement Paste: Evidence for Cavitation during

93



Solidification Due to Self-Desiccation. Cement and Concrete Research , accepted

for publication, 2009.

Neville, A. M., Properties of Concrete, 4th Edition, Wiley, 1996

NPCA: NATIONAL PRECAST CONCRETE ASSOCIATION. Curing Wet-Cast Precast

Concrete, 2013.

Parrott, L. J.; Killoh, D. C.; and Patel, R. G., “Cement Hydration under Partially
Saturated Conditions,” Proceedings, 8th Congress on Chemistry of Cement, Rio

de Janeiro, V. 3, 1986.

Philleo, R. Concrete Science and Reality. In J. Skalny, & S. Mindess (Eds.),
Materials Science of Concrete Il. Westerville, OH: American Ceramic

Society, 1991.

Powers, T., Copeland, L., & Mann, H., Capillary Continuity or Discontinuity in

Cement Pastes. The Research Bulletin of the Portland Cement Association , 1959.

Pyc, W., Caldarone, M., Broton, D., & Reeves, D., Internal Curing Study with
Intermediate Lightweight Aggregates. In D. Bentz, & B. Mohr (Ed.), Internal
Curing of High-Performance Concretes: Laboratory and Field Experiences.

Farmington Hills: American Concrete Institute, 2008.

Raoufi, K., Schlitter, J., Bentz, D., & Weiss, J., Parametric Assessment of Stress
Development and Cracking in Internally-cured Restrained Mortars Experiencing
Autogenous Deformations and Thermal Loading. Cement and Concrete

Composites, 2012.

94



Shah, S., Weiss, W., & Yang, W., Shrinkage Cracking - Can It Be Prevented?

Concrete International, 1998.

Shah, S., & Weiss, W., High Strength Concrete: Strength, Permeability, anCracking.
Proceedings of the PCI/FHWA International Symposium on High Performance

Concrete, Orlando, 2000.

Shin, K., Bucher, B., & Weiss, W. The Role of Low Stiffness Aggregate Particles on the
Restrained Shrinkage Cracking Behavior of Mortar. ASCE Journal of

Materials in Civil Engineering, 2011.

Spears, R.E., “The 80% Solution to Inadequate Curing Problems,” Concrete

International, V. 5, No. 4, Apr., 1983.

Standard Method of Test for Specific Gravity of Hydraulic Cement. Philadelphia, PA:

American Society for Testing and Materials, 1964.

Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory.

West Conshohocken, PA: ASTM International, 2007.

Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.

West Conshohocken, PA: ASTM International, 2010.

Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (using 2

in. or Cube Specimens). West Conshohocken, PA: ASTM International, 2011.

Standard Test Method for Density, Relative Density (specific Gravity), and Absorption of

Coarse Aggregate. Philadelphia, PA: ASTM International, 2007.

95



Standard Test Method for Density, Relative Density (specific Gravity), and Absorption of

Fine Aggregate. Philadelphia, PA: ASTM International, 2007.

Standard Test Method for Determining Age at Cracking and Induced Tensile Stress

Characteristics of Mortar and Concrete under Restrained Shrinkage.

Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride
lon Penetration: Designation C1202-12. West Conshohocken: ASTM

International, 2013.

Standard Test Method for Evaluating Plastic Shrinkage Cracking of Restrained Fiber

Reinforced Concrete (using a Steel Form Insert). West Conshohocken, PA, 2006.

Standard Test Method for Fineness of Hydraulic Cement by Air Permability

Apparatus. West Conshihocken, PA: ASTM International, 2007

Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates. West

Conshohocken, PA: American Society for Testing and Materials, 2001

Standard Test Method for Slump of Hydraulic-cement Concrete. West Conshohocken,

PA: ASTM International, 2015.

Suryakanta. "WHAT ARE THE EFFECTS OF IMPROPER CURING?" CivilBlogOrg.
24 July 2014. <http://civilblog.org/2014/07/25/what-are-the effects-of-improper

curing/>.

Taylor, Peter C. Moving Advancements into Practice: Curing. lowa State U, 2015.

The Capital Cairo. 25 April. 2015. <http://thecapitalcairo.com/>.

96



Thomas, M., Chloride Diffusion in High-Performance Lightweight Aggregate
Concrete. In J. Ries, & T. Holm (Ed.), Theodore Bremner Symposium on High

Performance Lightweight Concrete, 2003.

Van Breugel, K., and Lura, P., Effect of Initial Moisture Content and Particle Size
Distribution of Lightweight Aggregates on Autogenous Deformation, Proceedings
of the 2nd International Symposium on Structural Lightweight Aggregate
Concrete, Eds. S. Helland, I. Holand, and S. Smeplass, Kristiansand, Norway,

2000.

Van Breugel, K., & de Vries, H., Mixture Optimization of Low Water/Cement  Ratio,

High-Strength Concrete in View of Reduction of Autogenous Shrinkage, 1998.

Villareal, V., Internal Curing - Real World Ready Mix Production and Applications:
A Practical Approach to Lightweight Modified Concrete. In D.Bentz, & B.Mohr
(Ed.), ACI SP-256, Internal Curing of High-Performance Concrete:Laboratory
and Field Experiences.Farmington Hills: American Concrete Institute,

2008.

Villarreal, V., & Crocker, D., Better Pavements through Internal Hydration.

Concrete International, 2007.

Weber, S., & Reinhardt, H., A Blend of Aggregates to Support Curing of Concrete. In 1.
Holand, T. Hammer, & F. Fluge (Ed.), Proceedings of the International

Symposium on Structural Lightweight Aggregate Concrete, 1995.

97



Wei, Y., & Hansen, W., Pre-soaked Lightweight Fine Aggregates as Additives for
Internal Curing in Concrete. In D. Bentz, & B. Mohr (Ed.), Internal Curing of

High-performance concrete, 2008.

Weiss, Jason. “Internal Concrete Curing Presentation”. Purdue University. November

19th 2011.<http:/ www.youtube.com/watch?v=EeOHGIWKVMY>.

Weiss, Jason, Dale Bentz, Anton Schindler, and Pietro Lura. Internal Curing:

Constructing More Robust Concrete. Construction Issuees, 2012.

Weiss, Jason. Raoufi, K., Castro, J. “DEVELOPMENT OF INTERNALLY CURED
CONCRETE FOR INCREASED SERVICE LIFE”. JOINT TRANSPORTATION

RESEARCH PROGRAM. FHWA/IN/JTRP-2010/10. Final Report

Weiss, W., Yang, W., & Shah, S., Factors Influencing Durability and Early-Age
Cracking in High Strength Concrete Structures. SP-189-22 High Performance
Concrete: Research to Practice  Farmington Hills: American Concrete

Institute, 1999.

WHO: World Health Organization Global Status Report on Road Safety 2013:

Supporting a Decade of Action. Geneva, 2013.

World Bank. "Egypt Signs $1 Bn Loan with World Bank for Infrastructure

Development" Egypt Home. 04 Feb. 2016.

Ye, J.,, Hu, S, Wang, F., Zhou, Y., Liu, Z., Effect of Pre-wetted Lightweight
Aggregate on Internal Relative Humidity and Autogenous Shrinkage of

Concrete. Journal of Wuhan University of Technology — Mater, 2006

98



Youm 7. "The government agrees to assign administrative infrastructure of the capital

work at 4 billion pounds”. 25 Jan. 2016. <http://www.youm?7.com>.

Zhang, M.-H., & Gjorv, O., Permeability of High-strength Lightweight Concrete. ACI

Materials Journal , 1991.

Zhutovsky, S., Kovler, K., and Bentur, A., Efficiency of Lightweight Aggregates for
Internal Curing of High Strength Concrete to Eliminate Autogenous Shrinkage.

Materials and Structures, 2002.

99



APPENDIX

APPENDIX A: Tables

Table A-1: Detailed Calculations of Present value Life Cycle Cost (PVLCC) of different

concrete mixtures, over a comparison period of 60 years

100

0 Initial Cost 71 80 109
5 NDT 20 20
Protection 40 40

NDT 20 20

10 Protection 40 40
NDT 20 20
15 Protection 40 40

NDT 20

20 Protection 40
o5 NDT 20 20
Protection 40 40

NDT 20 20

30 Protection 40 40
35 NDT 20 20
Protection 40 40

NDT 20

40 Protection 40
NDT 20 20
45 Protection 40 40

NDT 20 20 20

50 Protection 40 40 40

55 NDT 20 20 20

Protection 40 40 40




APPENDIX B: Data Sheets of Materials

B.1 Cement Data Sheet

’ ’ r
eames . Cement Quality Certificate
Cement Type: Type V
S Complies With. ASTM C150-09 e P
Dispateh Data: 30-Sep-12
Prop‘it Name: 3 Ready Mix

Standard Composition Requirements

Chemical Composition

Test Method C 114-06

Results 1 Standard Requirements
Silicon Dioride 510, 2129 % =
Aluminium Trcode ALO, 393 %
Farnc Oxde _ Fe,0, 494 % o
Caicham Oxde Cab__ -~ - _Seyr - - - T WAL
Magnesium Oxde Mgo 180 % = _ 6.00% Max.
Suphate S0y 199 % o e 2.30% Max.
Puotassium Oxide MO e 1. - (I — .
Sodkm Oxkde B NeyO 033 W == B .
Chiaride cl = 0.030 %
Loas On ignition =2 Lol 074 % 3.00% Max.
Insciubie Residue L. . 032 % 0.768% Max.
3. c3s = 61.07
- - 14.99 — S
CA . 206 % = L= 5.00% Max
C.AF B 1503 % = .
- C4AF +2C34 19.15 % = 25.00% Max.
C15 +4.75C3A 70.87
Physical and Mechanical Properties
Compressive Strength Test method C 109.05
Results I Standard Reguiremants
3 days 19.3 8.0 Nimm® Min.
7 days 26.2 - 15.0 Nimm® Min.
28 days - 21.0 Nimm’ Min.
Setting Time Test Method C191-04
Results I Standard Reguirements
Initial Time N 160 o 45 minutes Min
Final Time 260 375 minutes Max
Standard Consistency 2480 %
Soundness - Autocalve Expansion C 15105
Fineness - Test Method C 204-05 Standard Requirements
Results
Expansion 0.10 0.8% maxiumum
Results
Fineness by Biaine cm’lg 1130 2600 Cm'lg minimum

Approved by
Far * Ahmed Kamel
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B.2 Perlite Data Sheet

A h The Egyptian Co. For Manufacturing Perlite
ECP et amd) Al —ual Ay iall AS L1
Product Name: construction perlite Product code: G5C

e Physical Properties

Color White
Refractive Index 1.5
Free Moisture, Max. 0.5%
pH TS
Specific Gravity 0.32
Bulk Density 85-100kg//m’
Fusion Point 1260-1343 °C
Specific Heat 837 J/ kgk
Thermal Conductivity At (24° C) 0.04 -0.06 W/m.k
Softening point 871-1093 °C
e Grain Size analysis

Retention (% By weight )

U.S. Sieve 8 16 50 100 <100
No.
50-60 25-30 5-10 5-10 1-5

e Applications
Perlite G5C is ideal for the following applications.
- Lightweight concrete with sand &Portland cement
- Lightweight insulating concrete with Portland cement.
- Lightweight fire proof, insulating plaster with gypsum or Portland
cement.
- Light weight insulating Block.
e Packing:
- 0.1 m3 ( 100 Litter ) Plastic Bag

Head Office: Egypt, 6 October City - Hunaida Center Off. No. 310/5 0/M\+ 3 )u3Se ¢ Sl 35 3 « (S35 younll ¢ g8 TAIM ¢ B P 7+ omtitd lladS

Tel.:(+202)38351995 - Fax: (+202)38352422 (YY) YAYOYEYY : uSIa (#Y-Y) YAYOVAA0 : o
Factory: Borge El Arab - 4th Industrial Destrict - No. 9-10 Block30-Alexandria-Egypt  T+gbi\+~4 @3 dalad da ) ducliaall Adlaill Bugiandl s pall 7y Ak 1 LSl plsall
www.perlite.com.eg info@perlite.com.eg
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AL The Egyptian Co. For Manufacturing Perlite
E C.Pl el p—d) Aclual &y jal) 4S 5l

Product Data Sheet

Product Name construction Perlite Product code: G5C

Perlite is not a trade name but a generic term for naturally occurring siliceous
volcanic rock. The distinguishing feature which sets perlite apart from other
volcanic glasses is that when heated to a suitable point in its softening range, it
expands four to twenty times its original volume.

This expansion is due to the presence of two to six percent combined water in the
crude perlite rock. When quickly heated to above 1600° F ( 870°C ) the crude rock
pops in a manner similar to popcorn as the combined water vaporizes and creates
countless tiny bubbles in the heat sealed bubbles which account for the amazing
light weight and other exceptional physical properties of expanded perlite.

The expansion process also creates one of perlite's most distinguishing
characteristics: its white color. While the crude perlite rock may range from
transparent to light gray to glossy black, the color of expanded perlite ranges from
snowy white to grayish white.

e Chemical Composition wt %

SiO, 72-75%
Fe,0; 0.5-0.9 %
AlLO; 11-14%
Na,O 2.8-4.3 %
K,O 4.8-5.7 %
Ca0 0.1-0.8 %
MgO 0.10-0.25 %
H,0 35-45%
Head Office: Egypt, 6 October City - Hunaida Center Off. No. 310/5 °/ﬂ~p-l)~_-d;a ‘ M-uA)S)-» ¢SSl gl ¢ ptgBSNAaa (B ¢ (Ml ISY
Tel.: (+202)38351995 - Fax: (+202)38352422 (#Y:Y) YAYOYEYY : ouS(a (+Y:Y) YAYONA0 : &
Factory: Borge EI Arab - 4th Industrial Destrict - No. 9-10 Block30-Alexandria-Egypt  T+Jgla 1+~ 3 dakad clauf ) ducliuall Aaail dutsianl o pall 7 s A iy il gl
www.perlite.com.eg info@perlite.com.eg
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B.3 Pumice Data Sheet

BUREAU VERITAS

Certification

EC CERTIFICATE

of factory production control

0615 — CPD - 9981

In compliance with the directive 89/106/EEC of the Council of European Communities of 21
December 1988 on the approximation of laws, regulations and administrative provisions of the
Member States relating to the Construction Products Directive — CPD, amended by the Directive
93/68/EEC of the Council of European Communities of 22 July 1993, it is hereby stated, that the
construction product:

Lightweight aggregates for concrete, mortar and grout

produced by

LAVA Mining and Quarrying Co
Factory located at: Yali Pumice Quarry
Nissiros 85303, Dodekanisos
Greece

who has performed an initial type testing of the product
and carries out factory production control

Bureau Veritas Certification Denmark A/S has performed the initial inspection of the factory and of
the factory production control and performs the continuous surveillance, assessment and approval
of the factory production control.

This certificate attests that all provisions concerning the attestation of factory production
control described in annex ZA of the standard

EN 13055-1:2002
and in accordance with the procedures given, were applied.

This certificate remains valid as long as the conditions laid down in the harmonised
technical specification in reference or the manufacturing conditions in the factory or the
factory production control itself are not modified significantly.

Original approval date:; 09 June 2005

To check: the validity of this certificate please call (045) 77 311 000
Further clarification regarding the scope of this certificate and the applicability of the system reg may be obtained
by consulting the organisation.

Certifikate no. 0615-CPD-9981  Dare 15-10-2010

/

(Tetng 2 DANAK
Idenborggade (18, DR 706470k o
Idenborgade 18, DK 7000 Fredenan PROD Reg. 7009

104



EINGE FEOEHLING & EOBEETS0ON, INC.
Engineering Stability Since 1881

3015 Dumbarton Road
Richmond, Virginia 23228-5831
T B0.264.2701 | F B0d_264 3549
1861
september 26, 2013

PUMICE LIGHTWENSHT AGGREGATE CRETIFICATION TEST REFORT

PROJECT NO.: GOR-0206
CONTROL NOQ.: 60-14-117603
CLIENT: Allied Concrete Products

3000 Shannon Street
chesapeake, Wirginia 23324
Attnc M. Peter W. Schrmidt
PROJECT: Aggregate Certification- Pumice
STANDARDS: ASTM C330-08, AASHTO M 195-06, and UL 518

PHYSICAL PROPERTIES

ASTM C330
TEST RESULTS SPECIFICATIONS
spedific Gravity: C127 112 —
Absorption, : C127 1E.0 -—
Organic Impurities Color: C40 Mz Change (0] <3
Clay Lurmps, %: C142 0.3 =2
Loss on kgnition, %: CE18 0.1 <5
Popouts: C151 None None
Dry Loose Unit Wt., [bs./ft” (kgfm®): C20 53.1 (EB7) <70 (1,120)
Dry Rodded Unit Wi, Ibs /ft” (kg/m'): C29 56.9 [950] —
shrinkage & 28 Days, % C157 004 =0.07
Stain Test, Index: 0641 20 [No Stain) =6

The above test results meet the requirements of ASTR C330-0%, AASHTO M185-04 and UL 618 for fine
aggrezate with the exception of the amount passing the #16 sieve.

Corporste HO; 3013 Dumbarton Road  Richemond, Virginia 23228 TEMM 2643701 FEM. 2641307  www.fandr.com

VIRGINLA » NORTH CARDLINA » S0UTH CARDLINA » MARYLAND * DISTRICT OF COLUMEBLA

A Minority-Owned Susingss
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B.4 Admixture Data Sheet

The Chemical Compary

MasterRheobuild® 850 omsnyxoun s xnsovmasso

High range, water-reducing superplasticiser for rheoplastic concretes

quallties to concrete.

Casting In hot climates

TO OBTAIN
Reduced tharmal
High warkablity for longer periods
Lower pumplng pressuns
Delayed sefting with longer workabilty
Higher wimate strengths
Reduced permaability
Improved duraliiy

COMPATIBILITY

E‘

oE R R om om &

7 gﬁ
Eﬁé
k
B
Eog
.l

AIr 111 [arenfraining agent) fo concrate ks
recommendad whare It Is fequired i withstand

freering and thawing cycies

Masterfheobulld 50 |5 avalabie In 1000 .

TYPICAL PROPERTIES
GOl Dark orown liguid
Specilc gravity: 1.1
Arentmiment  Madmom 1%
Chiorige condent Ml to BS 5075
Mitrate contant: il
0°C; can be reconstiuted I
Freezing point stimed after thawing

STANDARDS
ASTM C-484 Typa B, D and G

mmmwm&uamm

be determined In irial mkes. As 3 guigs, e
folowing dosages are recommended as 3 starting
point for any triak In nomal concrete, a dosage of
betwesn 0.8-2Mr100kg of cement In high
peformance microsllica concrete, 3 dosage of
betwean 1.5-3bnD0kg of cement. Dependant upon
mib requirement, ® |5 possibie to use 3 higher
dosage of MastsrRheobulld 850 without causing
any adverse effecis upon the concrete Please
consull BASF's Technical Serices Departmant for
further Information.

Eﬂﬂlﬂﬂhﬂlﬂ B50 |5 a3 readyio-use lquid,

concrete after 50-70% of e mixing water has been
added. The addition of MasferRhecbulld 850 to
dry aggregate or cement IS nof recommenged.
Autcenatic dspensers ane avallable.

MASTER®
>»BUILDERS
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O -BASF

The Chemical Company

MasterRheobuild® 850 umey o s meoaassn

Waorkabilty loss is dependent on temperature, on
the type of cement, the nabwe of aggregates, the
method of tramsport and initial workability, 1t =
strongly recommended that concrete should be
properdy cured particulady in hot and dry climates.

STORAGE

MasterRheobuild B30 must be stored where
temperatures. do not drop below +5°C. [ product
has frozen, thaw and agitate untl completely
reconstiuted.  Store wunder cower, out of direct

sunight and protect from extremes of temperahre.

Failure to comply with the recommended storage
condions may result in premature detenomabon of
the product or packagng. For specific storage
adwce, consult BASFs Techmical Semaces
Depariment.

o ——

marufachrer's instructions in uncpensed containers.

SAFETY PRECAUTIONS
MasterRheobuild 850 s not a fire or health hazard.

Spillages should be washed down immediately with
cold water,

For further information, refer to the material safely
data sheet.

NOTE

Fiehd senace, where prowided, does not constute
superviscry  responsibility. For  addiional
information, contact your bocal BASF representative.

BASF reserves the right to hawe the true cause of
any difficulty determined by accepted test methods.

QUALITY STATEMENT

All products marufachured by BASF Egypt, or
imported from BASF affiliate companies world-wide,
are manufaciured fo procedures cerffied o
conform to the guality, environment, health & safety

management systems described in the S0
B0071:2008, 150 140012004 & OHSAS 130012007

standands.

* Properties Isbed ans based on shomtony ontoled tesis.
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B.5 Curing Compound Data Sheet

The Chirriical Cormpany

MasterKure® 181

{formeriy WA STERFURE 181)

Acrylic resin based, mult-oie curing, sealing and protective membrans

Macisrfure 121 = a non-degrading, membrane—
fiorming liquid based on speclaly Sormulaied acrylic

sufficlent roisture In the comcrefie o ensare ful
Fipdraion of the cement essentisl for op@mum
shrengih development.  The cued concreie s
bypically harder and esfibiis a dusé fre= suface

with & meduced Incidence of drying shrnkage

enfancing durabiity.
Mascisriurs 121 s avalacie 35 3 cleaar ransosnt
liquid and witite solbar neflectve sersion.

Az a3 more efechve and ecomnomical alernabhe o
separaie cuing and priming'sealing regimes

‘Bultable fior vse= on all conorete sufaces.
#  Burisces subjert o fnishing treatments.
Economical enfancement of conorete Sabwori.

|
-%
E

Bealer & dusiproofer

Go0d sbrasion redstance - ong probection
Feduces drying shrin kg

Feduces the Incidence of hairine cracks
High curing efficency

Appeaance : Clearhwiite liguid
Spechic grarity | ©0.BZ £ 0.0 at 250
Clear

WhE= - 0.BSS =0.04 at 25°
Flash poing ;30

Dty 1im apE=arance (Chear or white
Loss of ‘Waler (ASTM | : < 0LS5 kg/m”
155

Drying Hme (ASTM | : 45 mins & =°C
30

TEET CERTIFICATIONIAPPROVALE

®  Clear version - AETM G305 Type | Class B
& Whie version - AETM G309 Type I Class B
COVERAGE

The mecommendsd rab= of appication I= 4-6
square metres per e, This comesponds o that
at which Mscisrfurs 181 has been beshed, amd &t
which E atiains the claimed degres of cuing
=fdency. In favourabie omdibons such &= shaded
Imi=rior surfaces, adequals curing can be achieved
with exiended covsmage raies.

Wihen using Basisrfure 181 for foor anszs wiers
magimuT  chemical and  wear resisance s
required, & Is recommended that & furifer mat be
applied afer 24 hours.

in piace of B abowe recommendaiions, the mies
of cover stipulaied In & specfcation should at al
Bmes be obsrriedl

APPLECATION
Ewrface Preparation

MEWLY PLACZED COMCRETE:

Surisce must be sound and progerly finkshed.
Surace |5 ready for appication of Mastberfure
181, when damp, baf not wet, arsd B oan mo longer
ke marmed by fool tailc

MEWLY CURED BARE COMCRETE:

Lewel amy poupes. Remove al diil, dusf o,
grease xsphalt, and forsign mafer. Clean with
causfics amd defergents az reguired. Clbus
degreaser s excedent for removing ol stains. and
many Ccuring compounds. Rinse thomughly and
aliow o dry. Apply Easisrfure 181 &0 damp but
miot wet surfsces.

MASTER®
»BUILDERS
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The Chemical Company

MasterKure® 181

{feamnieriy MASTERFKURE 131)

AGED COMCRETE:
Festons  =urfscs o sowndress by | paiching,
groutirg, and flling cracks or holes. Swrface s

also be fre= of any dust, dif, and other foreign

maiier. Use power iools or siippers o remove ang

inoompaible sealkers or ooafings. Clean as

required, folowing procedure wmder “Mesty oured

e ComcTeie".

Appdication

Stir Macisrure 181 thomughly befors using.

Apply @ conBnuous, unfom fim by ow-pressere

spray, short nap roller or brusi

Application not recommended when  sufsoe

famperatune mrosads 2000

Bubcaguent curfacs finlchac

The resin n Machsrfors 181 ensures that bond s

raimained with adreshes used for insialing Hies,

@ offer fioor coverngs. Essierifure 181 will act

a5 & primer fior paint systems and wil enable most

surface reatments io progress with minimal delay.

Typical surface Festments that will bomd o

surisces Wi Macisrfure 181 ane:

& ‘Waber based srmuision paints conBaining PJA,
PG and acrylic co-polymmiers

s The adhesives based on the above polymers

=  Biuminows emulskons and sokufons.

& Thin secion poiymer modflesd cemenbtous
systems.

#  Polyurethane resin sysiem

s Folysulphide sysi=ms

=  Epoxy resin composbons which do not refy on
peeresiration for substrabe bond.

For furfer information regarding compabbilEy of

Macisrfure 181, contacd your local BASS

Fepreseniaive.

Cleamimg
Use CLEAMING BOLVENT NO. 2 o dean rolers
amd spray egquipment before Macherf o 1B

become dry. Ay encess oured raberisl il Fowe
o b= meechanically remosed.

SUBGESTED EPECIFCATIIN

The non-degradng membrane formming cudng &
sealng compound shal be MasberFure 181,
aoryic resin besed forrmulabon. The prosuct shal
comply wiih ASTM C 305 Class B. The product
ﬂ!lﬂhﬂ“rfhsln:tmﬂlﬂ'lﬂ.EEhnlmﬁh
72 hours when iesied as per ASTM C156. The

product shal fom  non-degrading  abraslon

resistance Tim which shal also exhibE capabilty

= primer for subsequent prolecive coabings or
bHtumimoLEs. DyEnays.

acisrfure 181 & avalable In S & 20 Hne packs.
ETORAGE ISHELF LIFE
must b= shored  wiers

Mascisrfurs  1E1

Bheif e 12 months when siored as abowe.
Falure o omply wily e recommendsd siorage
condBons may resull in preratiure deferioration of
e produdt or packaging. For specfc siorage
advice consult your iscal BASF representatie.

Az with al dhemical prodecs, care showd be
fakcen during use and storage o avold ontact with

:u':ir-m sheet. MEDE avalable on dermarad or
on BAEF consirudion chemicals web sibe.
TOZ Rel. no.: Mactsrknoo] S 1408313

The sl niomston snd sppicie avics g Inhin BALF Conenucton Chemical aubication srs bassd o0 e st

ATATEMENT OF EE o Ar beel sckendc il praricsl neeeedps . A8 ek nfoTeEon hevsdr B of § pEneEl AT, R ERELITREC i Esb ralc: 8

REEFOHAEE T iz 0 oasdy pdmsln by 1 aaTiEr B8 o appicaion Wed o SRTETY B8 = B sooracy, skl of complsiersm s

| e | rlﬂ'ﬂﬂ.n'_"-“m-f- That e by mporasbs o creacang T muibe by o' Eecous o
= regeisced ederws® of SAEF proas i ey oounEriEs

MOTE Fad prvics wrHs provebsd Sosl not oorainns mapeRbiry. Sugoecrs racd = BASF Cormrsgon CrHca
e oy o0 i oeriEng Ty b lolowsd redfles or ejaoed oy e cEe SRQNHEN I ETERGT Encd TEp el e (BASE

CriEmcal e reponsbs e R rYng ol S arsl ESpTsoris E i e appdcaricr.
EA3F indla Lireied

Pial Ho.3T, Chandivall Fanm Fosd, Shandival, And b A0t

Humbsl - 872 irdia
Tek =3 I2 30T, Fax: +F IT IEATEIE

s-mak conwructiondrdia@baal.oom wew.baslccooln
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