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Abstract 

Agriculture in Egypt is facing dramatic changes that affect its productivity, and 

accordingly the Egyptian economy. Egypt started in the 1930s, expanding agricultural 

land through land reclamation projects. Many of these projects did not perform as 

expected or planned due to lack of water and other challenges. While land reclamation 

and conventional agriculture techniques have a lot of technical, social, and economical 

problems in Egypt; soilless agriculture and aquaponics are being successfully used in 

other regions for urban food production as a sustainable solution.  

Aquaponics is a technique that integrates fish and crop productions by bringing 

aquaculture with hydroponics (soilless planting) together into one system. Although 

aquaponics has shown promising results in different regions worldwide, there are 

questions that need answering about the most suitable type of aquaponics for food 

production in Egypt.  

Aquaponics have been investigated in this work in order to identify its potentials, hence 

recommend the suitable aquaponics systems for Egypt. The thesis shows that aquaponics 

is an ally or alternative to conventional agriculture and land reclamation in Egypt. In this 

thesis, two different Aquaponics systems were tested in an experiment, in the American 

University in Cairo, to determine which system design will be more efficient and 

productive for use in Egypt on a larger scale. The production and crops variety were more 

promising in the Integrated Aqua Aegaculture System than the Deep Water Culture 

aquaponics system. The elemental analysis results of water and plants samples, from both 

aquaponics systems, show that the Integrated Aqua Vegaculture system has more 

potential than the Deep Water Culture system, especially in Egypt under certain boundary 

conditions.  
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1 Chapter 1: Introduction 

The population in Egypt, and across the world, is growing rapidly creating a real 

challenge for the food supply. Egypt was once referred to as ‘the gift of the Nile’. More 

than 7000 years, the Egyptians developed the earliest, and one of the greatest cultures and 

civilizations, in the whole world. With recognized achievements in most disciplines of 

science, agriculture was among them. During the Roman era, Egypt was known as the 

‘bread basket’ of the Roman Empire. Only very recently Egypt has become a living 

model of a developing country facing the challenges of land and water scarcity with a 

growing population (Kishk, 1993).  

Despite this, Egypt began shifting towards industrialization in the 1950s (Szirmai, 2012), 

while the main source of the family’s income remained agriculture. More than 50 percent 

of the population works in agriculture contributing up to 23 percent of the main national 

outcome product. Egyptian farmers are generally low-income families because they share 

unfairly in the national land resources (Kishk, 1993). Egyptian agriculture usage of 

fertilizers intensified as the fertility of the lands degraded significantly after the High 

Dam was established in Aswan in the 1960s (Shamrukh, Corapcioglu, and Hassona, 

2001). However, fertilizers are not efficiently used. Egyptian farmers have at least 10 

percent loss in the agricultural production annually due to the loss in soil fertility, and 

other inappropriate fertilization programs and policies (Kishk, 1993). 

Nowadays, Egyptian agriculture faces even more challenges. Egyptian agriculture mainly 

depends on irrigated crops from the River Nile as shown in Figure 1. A high population 

and increasing water demands in a climate that is too dry are making it difficult for the 

River Nile to sustainably support crops. 
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Figure 1: Schematic Irrigation System in Egypt (Radwan, 2013) 

In 1987, Egypt initiated a study showing that land reclamation would provide innovative 

economic opportunities for youth through horizontal expansion, yet it appeared it might 

affect availability of resources both ecologically and economically (Adriansen, 2009).  

Studies show the rise of sea level along the north coast will affect the Nile delta 

agricultural land because seawater leeches into the groundwater making it unsuitable for 

irrigating crops (Loutfy, 2010; Iglesias, Garrote, Flores, and Moneo, 2007). It is 

estimated that by 2100, the rise of sea level will damage Egypt’s GDP by 0.25 percent 

with damage costs of above US$ 5 billion per year (Hinkel et al., 2012). Climate change 

will have huge effects on Egyptian water and agricultural use with increasing harm over 

time (McCarl et al., 2015). Nowadays, not only climate change, but also population and 

economic growth are affecting the availability of Nile River water in Egypt.  

These factors, along with the increasing demand for water from the Nile basin from 

upstream countries (see Error! Reference source not found.) are imposing huge threat 

for the share per capita in Egypt. That was highlighted in the reopened negotiations with 

the upstream countries asking from their side decreasing the allocated share of Egypt that 

is currently 55.5 billion cubic meters (BCM) of Nile river water. Consequently, a conflict 

aroused between some of the upstream countries and Egypt, especially that Egypt is 

highly dependent on the river compared to upstream countries (Nigatu and Dinar, 2011).  
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The Ethiopians are now finishing the construction of the Grand Ethiopian Renaissance 

Dam (GERD) located on the Ethiopian and Sudanese border on the Blue Nile River. This 

is the main source of water for Egypt and Sudan. The GERD will become the largest dam 

in Africa and, with no specific, or declared plan for a reservoir-filling rate strategy; the 

phase of filling the reservoir will affect downstream flows to Sudan and Egypt. This 

becomes more complicated with climate change and water evaporation. There is a 

relationship between the GERD filling rates and how that impacts the water flow 

downstream to Sudan and Egypt. For example, holding 25 percent of the monthly river 

flow behind the GERD (see Figure 3) will cause an average 14 percent reduction of 

water flowing into Lake Nasser within the first five years of filling. Climate changes and 

evaporation may make the water loss worse (Zhang, Block, Hammond, & King, 2015). 

GERD is one of a series of dams Ethiopia is planning to construct, while Egypt is still 

struggling for its historical annual water quota from the Nile.  
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Figure 2: Map showing the Nile Basin countries, the course of the River Nile, the GERD, and other future 

Ethiopian dams (Zeinobia, 2013) 
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Figure 3: Illustration of the Grand Ethiopian Renaissance Dam (GERD) Dam (“No Progress on Egypt-

Ethiopia Dam Negotiations”, 2014) 

Nowadays, Egyptian agriculture is facing significant challenges mainly due to its high 

dependence on irrigated crops, which are negatively affected by Egypt’s dry climate, 

rising population and increasing water demands. In 2016, Egypt’s population reached 94 

million and the number is rapidly growing (The World Factbook — Central Intelligence 

Agency, 2016). Egypt’s population inhabits 5.5 percent of the total land area, with 95 

percent of the population living in Nile River valley and Delta (Heshmati and Squires, 

2013). Egypt is 95 percent reliant on the Nile for water, with the remaining 5 percent 

sourced from groundwater and rainfall.  

It is worthwhile noting that the Egyptian annual share of the Nile’s water is fixed to at 

55.5 BCM, based on a 1959 agreement with Sudan (Tortajada, 2008). At the time of the 

agreement, Egypt’s population was 28 million people and that doubled in 1980; and, in 

2011, it reached 82 million people (Khouzam, 2002; The World Factbook — Central 

Intelligence Agency, 2016). Additionally, Egypt’s population is estimated to reach 

between 104 –117 million by 2030, and 113 – 162 by 2060 (EEAA, 2010) with the same 
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55.5 BCM share agreement of 1959 still in place (EEAA, 2010). This incremental 

population increase requires increase in the supply of water and food in Egypt. This 

affects Egyptian strategies to raise productivity per acre and increases desert reclamation, 

which causes a greater demand for irrigation water (Khouzam, 2002). Similarly, Egypt is 

at high risk of the negative effects of climate change (EEAA, 2010). Meanwhile the 

majority of Egyptian crops are irrigated from limited Nile water and lands in the Nile 

Delta face sea levels rises (Pérez et al., 2010).  

Egypt now uses 77 BCM of water (55.5 BCM from the Nile and the rest from water 

recycling), 62 BCM of that is dedicated to the agricultural sector, 8 BCM for municipal 

use and 7.5 BCM for the industrial use. Conversely, Egypt is fully reliant on the Nile 

with its main supply of 55.5 BCM coming from there. Add to it an additional 1 BCM of 

deep aquifer and 1.2 BCM of rainwater, which are accounted for in the reuse of 

agricultural return flows and waste water (EEAA, 2010). In addition, only 4 percent of 

the total Egyptian land area is arable with nearly one quarter of that 4 percent is desert 

reclamation (El-Ramady, El-Marsafawy, and Lewis, 2013). This indicates the Nile River 

water is decreasing as a result of climate change (Beyene, Lettenmaier, and Kabat, 2010). 

Therefore, agriculture and food production in Egypt are in danger as the water supply 

decreases. Several studies examined the climate change negative impacts on Egyptian 

agriculture (Onyeji and Fischer, 1994; Conway, 1996; Yates and Strzepek, 1998).  

This is a challenging situation and it is urgent for Egypt to identify new ways to best 

utilize water due to the current potential threat of reduced water resources, for a 

continuous growing population like that of Egypt. Part of the solution is to produce more 

crops per unit water (increasing water productivity) using modern food production 

methods such as aquaponics. 

1.1 Research Motivation 
 
Egypt is facing a steady increase in water scarcity, which seriously threatens the Egyptian 

food security. Geopolitical factors, population growth and climate change are all factors 

that stimulate approaching unconventional solutions to meet the challenge of providing 

food for future generations in Egypt. Soil and water contamination from traditional 

agricultural residues, fertilizers and heavy metals also pose a threat to the quality of crops 

and food production in Egypt.  Therefore, as part of the search for unconventional 
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solutions to the problem of food in Egypt, soilless agriculture represented in Aquaponics 

was a worthy alternative solution that presents itself strongly. Egypt can benefit from 

Soilless agriculture and Aquaponics, as Aquaponics can make a big difference by saving 

large quantities of water that are wasted from traditional irrigation methods in 

conventional agriculture. Auqaponics also produce organic crops, which contribute to 

solving the problem of food quality, offering exporting opportunities and providing many 

lucrative and non-traditional jobs.  

The high cost of Aquaponics poses a major challenge to spread this type of 

unconventional agriculture. Therefore, a practical experiment was required to determine 

which types of Aquaponics can be most suitable to contribute to solving the problem of 

food as an alternative to traditional farming methods in Egypt. 

The experiment was carried out among one of the most widely known Aquaponics 

systems which is Deep Water Culture aquaponics system (DWC) and another customized 

Integrated Aqaua Vega-culture System (IAVS). This thesis is discussing a practical 

experiment that is conducted in the American University in Cairo (AUC) to find out 

which system is most suitable for the future of food production in Egypt in terms of 

quantity of production, multiplicity of crops’ types produced, crops quality and 

consumption of water. Also to see which of the two systems is more economical in cost. 

 

The significance of this thesis is that it attempts to provide the answers to the question: 

which kind of aquaponics design is more effective and efficient to use in Egypt? The 

outputs of both DWC and IAVS systems in terms of quantity and quality have to be 

considered. Also the characteristics of each system through chemical and bacteriological 

analysis of water, media and crops are to be considered. this work shows whether 

Aquaponics can be an effective alternative for land reclamation in Egypt to meet the 

challenges of water scarcity in agriculture.  

 

1.2 Problem Statement 
 

Because of the steady increase in its population, many geopolitical factors and recent 

global changes, Egypt is now facing a water scarcity problem that threatens its food 

security. Unconventional agriculture techniques such as Aquaponics may remedy this 

problem. 
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1.3 Aim of work and Research Context 
 
The objective of this study is to determine unconventional alternatives to producing high 

quality food intensively, without depending on conventional agriculture techniques, using 

minimal energy and water. This concept can contribute to an increase per capita in 

people’s incomes, without abusing existing natural resources or jeopardize the rights of 

future generations to Egypt’s resources. 

Growing crops and producing food without depending on soil (soilless agriculture) 

allows intensive production with less consumption of water and energy. This means 

urban areas can produce their own food, and will help to minimize the carbon and water 

footprints of these areas. Also, this concept can help people in other areas that face water 

scarcity, like the Egyptian eastern desert, western desert and Sinai produce more food, an 

export market for high quality food might be established then. 

It is vital to search for other sustainable solutions to help solving Egypt’s food problem. 

That is why aquaponics could be a good alternative to traditional farming methods. 

Aquaponics is a technology that combines fish and crop production using aquaculture and 

hydroponics (a method of soilless planting). It works using plants to filter waste products 

harmful to the fish from the water and using it as a nutrient source (Rakocy, Bailey, 

Shultz, &Thoman, 2004). 

Nowadays aquaponics’ systems exist as an application for unconventional agriculture and 

soilless agriculture either for research or commercial use. They are still not common in 

rural areas. This is somewhat because existing aquaponics systems require a large capital 

and operational expenditures. Finding new aquaponics technologies, designs, and 

techniques is necessary and this study contributes in a positive way to this challenge. 

The context of this research is the application of aquaponics from concept, design, 

implementation, production process, and results. This includes the variation of 

productivity and product quality through an experiment that compares two different 

aquaponics systems. One system is designed for testing and application specifically for 

Egyptian conditions. It is an efficient alternative to traditional agriculture, and uses 

minimal water and energy. 
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This study also considers the quality of the crops produced during testing two aquaponics 

systems. It then compares their results against each other, and then compares these 

aquaponics’ crops with similar crops in the market. This is done by analyzing the main 

elements of each product including vitamins, heavy metals and pesticides residues. 

1.4 Aquaponics and sustainability 
 

Several food production methods are considered unsustainable, as per the three pillars of 

sustainable development. Aquaponics is considered an alternative agricultural method 

that can address sustainability by combining vegetable and fish production in a closed 

cycle system (Aguilara-Titus et al., 2014). 

Minimizing the energy consumption and capital expenditure (CAPEX) of current 

aquaponic systems is a goal for researchers using locally available materials. Computer 

simulations using computational fluid dynamics (CFD), and utilizing alternative feeds, 

can be used to simulate more efficient aquaponics systems models.  

The main goal is to design a sustainable and affordable aquaponics system using the 

available local materials easily located in developing communities, and to use recycled 

and recyclable materials. This can save up to 27 percent of the aquaponics CAPEX when 

compared to other systems of the same size (Nigam &Balcom, 2016). Using fluid 

dynamics software helps to identify the most efficient system setup. Simulating the flow 

through and throughout the system can help to decrease energy consumption by 40 

percent (Nigam &Balcom, 2016). Using alternative nutrient sources with lower cost to 

supplement fish feed, will reduce the operational expenditure (OPEX) and the need for 

market access (Aguilara-Titus et al., 2014). 

1.5 Aquaponics and the WEF Nexus 
 

It became evident that Agriculture and food production is correlated with water and 

energy challenges. Water, Energy, and Food (WEF) systems are interconnected together 

in a Nexus, and when these three systems intersect, this is what is called as a nexus (WEF 

Nexus) as shown in Figure 4. Actions related to any of the three systems can influence 

one or both of the other sources. Increased water demands of agriculture are a real 

challenge, as freshwater resources cannot always meet this demand. Energy and food 

generation are the main aim of the Nexus (Bizikova, Roy, Swanson, Venema, and 
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McCandless, 2013).  

 

Figure 4: Illustration of WEF Nexus, adapted from (IRENA, 2015) 

Aquaponics can be considered as a real application for the WEF Nexus. Aquaponics uses 

a closed water cycle with minimal energy consumption, which can be provided through 

renewable energy sources like solar energy to produce both fish protein and crops 

(Hanlon et al., 2013). Several food production methods are considered unsustainable, as 

per the three pillars of sustainable development (social, economical, and environments 

pillars). Aquaponics is an alternative agriculture method that can address sustainability by 

combining fish and plant crop production using a closed-loop system (Aguilara-Titus et 

al., 2014). The environmental pillar of sustainability will be tackled by minimizing the 

energy consumption and capital expenditures (CAPEX) costs of current aquaponics 

systems. The current goal for researchers is using local available materials. Computer 

simulations using Computational Fluid Dynamics (CFD) and utilizing alternative feeds 

can be used to simulate more efficient aquaponics systems models. This will tackle the 

economical and social pillar of sustainability by reducing the aquaponics CAPEX, 

creating new job opportunities and producing healthy organic food. Therefore, the main 

goal is to design a sustainable and affordable aquaponics system, by using the available 

local materials that are located in developing communities and can be recycled or made 

of recyclable materials to decrease the aquaponics’ CAPEX. This can save 27% of 

aquaponics CAPEX compared to other systems with the same size (Nigam and Balcom, 

2016). Fluid dynamics software helps identify the most efficient system setup, simulating 
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the flow through and throughout the system to decrease the energy consumption by 40% 

(Nigam and Balcom, 2016). Using alternative nutrient sources with lower cost to 

supplement fish feed will reduce the OPEX costs and the need for market access 

(Aguilara-Titus et al., 2014). 

1.6 Aquaponics for urban food production 
 
Aquaponics help in urban agriculture, because they are closed cycle systems that fit into 

inside or outside of every home. Urban food and agriculture are becoming potential steps 

to enhance sustainability. Urban agriculture also promotes food systems that help the 

community’s overall economic, social, environmental and nutrition aspects. The concept 

of urban food and agriculture also address key citizen issues like satisfying the 

fundamental need for healthy food, supports green economic goals, and strengthens 

community relationships (Hendrickson and Porth, 2012).  

Urban spaces can have the capacity for commercial food production, which is a shift 

away from traditional farming in rural areas. Community gardening and weekend 

farmers’ markets are trending now; and, therefore, architects and planners are addressing 

zoning changes to contain commercial applications for urban agriculture (Pfeiffer, Silva, 

and Colquhoun, 2015). Planners need to design urban agriculture land use guidelines, 

with training and educational programs (Howland, Kim, and Marks, 2012). 

 

1.7 Research Questions 
 

The specific research questions investigated in this research are:   

- Is aquaponics an ally or alternative to conventional agriculture and land 

reclamation in Egypt? 

- Which aquaponics system design will be more efficient and productive to be used 

in Egypt? 

- What are the results of the water, chemical, elemental and crops analyses 

comparison between two different types of aquaponics systems’ production? 
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2 Chapter 2: Literature review 

2.1 Egyptian Land Reclamation for food production 
 

According to the inherent limitations for Egyptian arable land, the Egyptian government 

has converted several desert land reclamation projects into agriculture production. The 

first land reclamation initiative started in the 1930s, and successive Egyptian 

governments are still working on land reclamation projects to the present day (Voll, 

1980). Land reclamation efforts added 2.6 million feddans to the Egyptian agriculture 

land during the period from the 1930s to 2015, which is equivalent to a 44 percent 

increment.  

In 2009, the Egyptian Ministry of Agriculture planned to reclaim an additional 3 million 

feddans by 2030. With political and economic instability by 2011, the plan was not 

implemented. However, in 2014, the Egyptian president Abdel Fatah Al Sisi declared the 

initiative of a 1.5 million feddans reclamation project, as a beginning of the previously 

planned 3 million feddans project. The 1.5 million feddan shall include agricultural 

industrial zones with integrated communities (1.5 million Feddan Project-SIS, 2016).  

The Egyptian government has reclaimed an area of 10,000 feddans near Farafra, in the 

Western Desert, as a test. They drilled irrigation wells and planted crops on 7,500 

feddans of the developed area. The next step in this project is to drill more than 5000 

irrigation wells on the reclaimed land as 80 percent of the irrigation water will come from 

underground aquifers. Egyptian authorities plan to distribute 3 – 5 feddans as granted 

shares to young universities graduates using an agricultural cooperative organization to 

manage the project.  

The project faces a lot of challenges; predominantly, the estimated costs for completing 

the project reaches as high as L.E. 37 billion (USD 4.7 billion), which affects the 

Egyptian economy. The second challenge is drilling, operating, and maintaining 5000 

irrigation wells in harsh desert areas with tough conditions. This requires advanced 

technology and technical support. Consequently, this will have a negative impact on the 

sustainability of the underground water aquifers. The biggest challenge is that it is not 

clear how the land will be distributed, and who will be responsible for infrastructure and 

maintenance (Tate and Verdonk, 2016).  
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2.2 Land Reclamation Problems in Egypt 
 
Major problems include the wrong use of reclaimed lands, the handiness of credit, land 

management, security, energy, qualified workers, high salinity, and poor drainage 

impacting negatively on land reclamation projects and the Agricultural National Product 

(ANP) (Hanna and Osman, 1995).  

Land reclamation problems in Egypt can be listed in three main sections; technical, 

economic, and institutional challenges. Starting with the technical challenges, water 

resources are considered the most important aspect of land reclamation; accordingly, 

some studies propose applying water pricing in Egyptian agricultural economics.   

Economic challenges are presented in the lack of investment in infrastructure for these 

projects, lack of foreign currency, and the inability to lure people from the Nile Delta and 

Valley into the reclaimed areas. One reason for this economic challenge is the land is 

already overpopulated and degraded due to urban uses. Secondly, the lack of money by 

new graduates who have to fully use their lands, the thing that affects their productivity. 

Institutional challenges include a lack of coordination between water and land 

management authorities, vibrant implementations weakening and delaying projects’ 

accomplishments, inefficient loan repayment programmes for investors, and the absence 

of an accurate database from executive authorities (Hanna and Osman, 1995). Over 70 

years, Egypt’s population has increased 300 percent (Monica, 2000). While the reclaimed 

land areas did not increase enough to meet the country’s needs. This overpopulation 

requires better processes for reclaiming land, ; water quality and quantity, irrigation 

systems, and new cropping methods. 

The priority in the upcoming years should be focused on maximizing the returns from 

new reclaimed lands. Currently, the reclaimed land total area reached 1.9 million feddans, 

which represents 25 percent of Egypt’s cropland. However, agricultural production from 

reclaimed land does not exceed 7 percent even with big investment from the government 

and private sector (Hanna and Osman, 1995).  
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2.3 Future of Agriculture in Egypt 
 
While starting a new era, Egypt’s main challenges are related to green economy, human 

development, and innovation (Browne, Di Battista, Geiger, and Gutknecht, 2014). For 

this reason, Egypt proposed its Sustainable Development Strategy (SDS) 2030 vision for 

an economy based on diversification, innovation, and knowledge to improve the quality 

of life for all Egyptians. Economic development, market competitiveness, citizens’ 

happiness, and human development are the main goals of the SDS (SDS Egypt 2030, 

2016). The SDS 2030 has a deeper focus on the agricultural becoming involved in 

vertical development to increase production per unit on ‘old land’ and horizontal 

development of ‘new reclaimable land in the desert’ (SDS Egypt 2030, 2016).  

To support the government’s 2030 objectives, sustainable agriculture can play an 

important role for the Egyptian green economy in ensuring efficient outputs from vertical 

and horizontal developments (“UNEP Year Book 2012”, 2012). It opens the door for 

organic agriculture that can deliver sustainable and cost-efficient food production 

systems. Organic farmers enjoy better prices for their crops and a guaranteed market. 

Also, organic methods of production are better for a farmer’s health as it avoids 

chemicals and creates employment opportunities (FAO, 2015). One percent of the total 

farming land in Egypt is devoted to certified organic farming, and it is showing 

significant growth in recent years.  

A way to promote organic agriculture in Egypt is adding the negative costs to the cost 

calculations for agriculture such as penalties for polluters. On the other hand, there are 

currently no generic water prices for agricultural usage in Egypt. In turn, this will not 

show the real distribution for the true costs of agriculture production. Real costs must 

have a clear vision considering the rights of the upcoming generations in having 

sufficient resources and livable environment in Egypt.  

The debate is not to promote organic versus agriculture, rather to support the transition 

towards more sustainable agriculture. For instance, it is recommended to conduct more 

studies for other crops in Egypt. The studies should include more details related to cost 

drivers, especially water and carbon footprints. A better overview will be developed 

regarding the challenges that the Egyptian agriculture facing and the potential benefits for 

organic agriculture production in Egypt (Seada, Mohamed, Fletscher, Abouleish, and 

Abouleish-Boes, 2016).  

Food security, poverty reduction, and rural development are ways to achieve larger goals 
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that lead to economic growth throughout its social connections and multiplier 

consequences in the environment. The agriculture division, however, faces some critical 

challenges (Hanlon et al., 2013). Therefore, it is important to search for other sustainable 

solutions to help in improving food security; quality and quantity. In this paper, 

Aquaponics is the proposed sustainable solution. 

2.4 Soilless agriculture, Hydroponics and Aquaponics   
 
Aquaponics is a method that utilizes an unconventional approach of fish and crop 

production combining aquaculture with hydroponics. The plants filter waste products 

harmful to the fish from the system by utilizing them as a nutrient source (Rakocy, 

Bailey, Shultz, and Thoman, 2004). Current aquaponics systems exist as an application 

for urban food either for research use or for commercial use; still, they are not common in 

rural areas as a means of sustenance. The reason is that existing aquaponics systems 

require large capital operation and management expenditures, including electricity and 

processed fish feed. In accordance, researching aquaponics’ new technologies, new 

designs and new techniques is highly required. Aquaponics’ designs include commercial 

scales such as low budgets technologies versus high budgets technologies. It is important 

to choose the right scale and design of aquaponics to reach optimum results. 

 

2.4.1  Hydroponics 

Hydroponics refers to soilless medium plant production, and is where nutrients are 

dissolved in water directly so there is no need for soil. Normally, by adding soluble 

fertilizers to irrigation water on a periodical cycle, hydroponics provides a constant 

supply of nutrients to plant roots water as shown in Figure 5 (Hussain, Iqbal, Aziem, 

Mahato, and Negi, 2014). Hydroponic nutrients, such as calcium nitrate, are highly 

soluble in. Hydroponics is successful because of its particular concentration of mineral 

elements based on injected chemicals into the system’s irrigation water to control the 

delivery of nutrients, water, and environmental modifications (Jr, 2016). 
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Figure 5 Hydroponics cycle diagram 

2.4.2  Aquaponics 

Aquaponics are bio-integrated systems that integrate aquaculture and hydroponics. 

Researchers and growers aim to turn the aquaponics into a real sustainable food 

production model because the waste from one biological system (fish) serves as nutrients 

for the other biological system (plants). Many different food products can be grown using 

a combination of plant and fish farming in an aquaponics system. Reusing water after 

mechanical and biological filtration and recirculation provides local healthy food that can 

support the local economy (Diver, 2006). Plant roots and rhizobacteria take nutrients 

from fish manure in the water and absorb them as fertilizers to hydroponically grow 

plants. In return, hydroponics acts as a biofilter stripping off ammonia, nitrates, nitrites, 

and phosphorus. Then, the water can be recirculated back, fresh and clean, into the fish 

tanks in a closed cycle as shown in Figure 6. The nitrifying bacteria multiplies in the 

gravel with the plant roots performing nutrient cycling. Nitrifying bacteria can live in 

different environments like soil, sand, water and air. The Nitrifying bacteria are the 

essential element of the nitrification process that transfers fish waste into suitable 

nutrients for plants.  

 

Nitrification process is the natural process of nitrification by nitrifying bacteria that live 

on land or in water, converting ammonia from fish waste into the easily assimilated 
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nitrate for plants to use. Nitrification process in aquaponic systems is the process that 

provides nutrients for the plants and eliminates ammonia and nitrite which are toxic for 

both plants and fish. The ammonia oxidizing bacteria (AOB) and the nitrite oxidizing 

bacteria (NOB) work on metabolizeing the ammonia from fish waste into nitrite (NO2-) 

by AOB bacteria then the NOB bacteria convert nitrite (NO2-) into nitrate (NO3-). Plants 

use nitrate (NO3-) as the main nutrient for its growth. 

 

A closed water reuse cycling system is the most important role of the aquaponics system 

where it enables the production of fish protein and fresh vegetables in farms facing water 

limitations (Bernstein, 2011). Aquaponics also provides organic and sustainable food 

production by linking and integrating plant and animal agriculture by recycling of fish 

waste. In order to have a successful aquaponics enterprise, special training, skills, and 

management are required (Diver, 2006). 

 

 

Figure 6 Aquaponics’ cycle diagram 

2.5  Plant, Fish, and Water Quality in Aquaponics 
 

Plant selection in aquaponics is related to fish density in fish tanks and nutrient 

concentration. Lettuce, herbs, basil, and watercress are considered to have low nutritional 

requirements, while yielding fruit plants like tomatoes and peppers have higher 

nutritional requirements.  

Several fish species have adapted to aquaponics. The Nile Tilapia (Oreochromis 

niloticus) is one species, which lives in warm water and grows well in an aquaponics fish 
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tank culture. Nile Tilapia can also adapt quickly to different conditions of water such as 

temperature, pH, oxygen and other solids dissolved in water. Nile Tilapias are suitable to 

sell at local and wholesale markets.  

Water testing kits from aquacultural supply companies are fundamental and crucial to test 

water quality including carbon dioxide, dissolved oxygen, nitrate, nitrite, ammonia, pH, 

chlorine and other characteristics (Diver, 2006). 

2.6 Aquaponics system examples 
 

There are also different types of aquaponics systems depending on the design and size 

required by aquaponics operators and investors as shown in Table 1. 

 

Table 1 Types of Aquaponics systems (FAO, 2015). 

Aquaponics Type Method used Usage 

Deep water culture 

(DWC) systems 

DWC involves plants in 

Styrofoam sheets that float over 

grow beds with air supplied. 

DWC is the most common system 

for large commercial aquaponics 

growing one specific crop (like: 

lettuce, basil, and other leafy 

plants). 

Media-filled bed 

systems (Flood and 

Drain Systems) 

The media is used in grow beds 

to support the roots of the plants 

and for filtration.  

These are the most popular design 

for small-scale aquaponics as they 

are efficient with space, relatively 

low cost, and suitable for beginners 

as they are a very simple in design. 

Nutrient film technique 

(NFT) 

NFT uses of plastic pipes laid 

out horizontally to grow 

vegetables. Water is pumped 

from the biofilter into each 

hydroponic pipe with a small 

equal flow creating a shallow 

stream of nutrient-rich 

aquaponic water flowing along 

the bottom. The pipe contains a 

number of holes along the top 

where plants are placed into to 

grow.  

NFT aquaponics shows potential for 

custom aquaponics designs. While it 

is uses less water than the other two 

methods. But it is expensive and 

complicated. 

 

In the DWC system (also known as raft system), the plants are grown on floating 

Styrofoam rafts in the grow bed tank. Grow beds, in this system, are tanks separated from 

the fish tank. Water flows from the fish tank, using gravity through mechanical filters and 

biofilters, to the grow bed tank where the plants are grown. The water is then pumped 

back to the fish tank.  

In NFT systems, plants are grown in long narrow pipes. A thin film of water flows in 

each pipe after mechanical and biofiltration to provide nutrients and oxygen to the plants 
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through plants’ roots. The DWC system is more common for commercial size operations 

as NFT is more expensive, and there are problems with the clogging of small pipes and 

tubes.  

A media-filled bed system uses a grow bed filled with gravel, perlite, or sand. Water is 

flooded periodically from the fish tank then pumped back to the fish tank after the plants 

absorb the nutrients. While in this system, all wastes including the solid wastes are used 

without filtration. Solid wastes are broken down within the plant bed. Media-filled bed 

systems also known as integrated aqua vegaculture systems. 

. 

2.6.1  Low-tech Aquaponics 

Any existing aquarium can be transformed easily into a stand-alone herb production unit. 

The costs are very low and the process requires no special crafts, skills, or tools. 

Likewise, an aquarium can be manufactured from low cost materials with no additional 

special skills or tools required.   

Using low-tech aquaponics systems allows people living in urban areas to get closer to 

nature and grow their own fresh herbs, leafy vegetables, and fresh fish protein with 

minimal production costs (Nicolae et al., 2015). 

 

2.6.2 Small-scale Aquaponics 

One of the best practices for producing organic food and vegetables at home in urban 

areas is a small-scale aquaponics system. It is a sustainable technology that requires 

minimal water and space (Menon, Sahana, Shruthi, and Suganya, 2013). It is a small unit 

that can be used indoors, placed on a terrace or integrated into the interior design of 

homes, offices, kitchens, and workspaces. 

 

2.6.3 Micro Aquaponics 

An innovative and simple design concept for a micro-scaled aquaponics system may pave 

the way for a new concept of eco-farming systems. Micro-scaled aquaponics aims to use 

the value of the residue in the water and transfer it through a combination of 

multidisciplinary efforts, such as simple low environmental impact technologies to 

become valuable end products (Khakyzadeh et al., 2015). This is a very small unit that 
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can be used on the top of a desk or on a table indoors. It is portable and sets up the basis 

of sustainable farming. 

New technologies, like wireless sensors, are used to control and remotely monitor 

aquaponics systems. These wireless sensors detect oxygen levels and pH parameters 

dissolved in the water. It is important to continually check the pH levels to ensure healthy 

growth conditions in both fish and plant tanks. The ammonia levels and water 

temperature can also be monitored; although, till now there is no developed working 

system for this purpose. Monitoring these parameters remotely is still difficult to control 

and requires further development. In addition, these systems can automatically feed the 

fish once being programmed in specific times (Guerrero, Edwards, Wan, and Sheth, 

2013). 

 

Testing the water in aquaponics is essential and can be done using water test kits. These 

are easy to use and available at an average price of US$ 10. Kits contain strips to use to 

measure the amount of ammonia and pH in the aquaponics water.  

Other kits are used to measure nitrate. The individual and multi-parameter kits are still 

not the most accurate way for testing aquaponics water. It takes from 15 to 20 minutes to 

develop the color on the kit’s strip to show the measures. Yet, these kits are cost effective 

if the time factor is not critical. Electronic sensors and meters used for testing water are 

considered accurate, but are the most expensive. Potentially, the cost can be reduced 

effectively by having many samples and frequent measurements. Still, electronic sensors 

and meters require calibration and special care from time-to-time. Alternatively, regular 

water test kits are considered enough for bench scale and backyard aquaponics (Klinger-

Bowen, et al., 2011).  

2.7 Aquaponics in Egypt 
 
Aquaponics offers the opportunity for developing countries to produce animal protein 

and fresh vegetables. Aquaponics is a solution to meet multiplying food demands using 

simple production systems and limited supplies that utilizes animal waste to produce fish 

protein and fresh vegetables (Savidov, 2011). In Egypt, there is an opportunity in small-

scale fish farming to generate income and provide protein rich food for many people all 

year-round. Small farmers, fishermen, and startups can benefit of aquaponics (Essa et al., 

2008).  
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In 2011, aquaculture in the Egyptian desert covered more than 100 intensive tilapia farms 

in rural areas. Twenty farms are commercial aquaculture systems with an approximate 

annual production of 13,000 tonnes. There are various fish species that can be used in 

aquaponics in Egypt like Red Tilapia (Oreochromis sp) Nile Tilapia (Oreochromis 

niloticus), flathead grey mullet (Mugil cephalus), North African catfish (Clarias 

gariepinus), common carp (Cyprinus carpio), silver carp (Hypophthalmichthys molitrix), 

grass carp (Ctenopharyngodon idella), European sea bass (Dicentrarchus labrax), 

gilthead sea bream (Sparus aurata) and other species (Sadek, 2010).  

Groundwater and agricultural drainage water are the main water source for aquaponics in 

Egypt, with range of salinity 0.5 to 26 g/liter, and temperature from 22° to 26° C. Fish 

fingerlings is sold in the local market at a price ranges between 300 to 400 EGP per 1000 

fish fingerlings. Most farms buy fish fingerlings directly from local markets, while five 

farms established their own fingerling hatchery. Hatcheries are an example presenting 

development opportunities for commercial farms is highly related to the water quality and 

quantity, the availability and prices of fingerlings, fish feed quality and prices, capital 

expenditure, and operating expenditure (Sadek, 2010).  

The success of aquaponics in Egypt is based on the fact that fish do not consume water. 

Fish farming is a clean production system, which offers more water to agriculture. There 

are some factors that assist in achieving success in aquaponics. First is the continuous 

application and assessment of the three pillars of sustainable development on the 

potential usage of water for desert based aquaculture production, either for fresh or 

brackish groundwater. Second, is calculating the water salinity tolerance and 

requirements for aquaponics. Pilot projects should be established for small-scale 

intensive aquaponics, and demonstrate these activities as opportunities for areas like the 

Central Sinai (Sadek, 2010).  

Water scarcity is an important driver for hydroponic and aquaponic production in Egypt; 

yet, Egyptian consumers are still not fully aware that aquaponics is a sustainable 

alternative for water use. The main target groups for producers (until now) are high-end 

retailers and stores that are quality and service oriented rather than price oriented. Until 

recently, the main crops in Egyptian aquaponics were only leafy vegetables and herbs, 

while shifting to other vegetables like tomatoes as shown in Figure 7 and peppers 

appears more promising. There is a big opportunity for producing tomatoes that can be 

sold in small, medium and high-end retail shops (like Alpha market, and Saudi market) in 

areas like Maadi and Zamalek in Cairo (Soethoudt, 2016). 
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Figure 7: Pictures of tomatoes production in a small-scale aquaponics in New Cairo, Egypt. 

2.8 Feasibility of Aquaponics versus Land Reclamation in Egypt 

 

Land reclamation and conventional agriculture’s capital expenditures (CAPEX) and 

operational expenditures OPEX depend on the land location, status, soil salinity, and 

availability of water and irrigation methods. Agriculture lands differ in fertility, and this 

will affect the CAPEX and OPEX because the land price will differ. Location is an 

important aspect that affects land’s price either for ownership or for rent. Some lands are 

more saline than others and this need more efforts and CAPEX for agriculture 

production. Using chemical fertilizers and soil conditioners also increases the OPEX. 

Water availability for irrigation is another important aspect, as some lands are near to 

running water sources for irrigation and this affects the lands’ prices by making it more 

expensive. Using irrigation pumps, the fuel that will be used by pumps and maintenance 

fees will be also added to the CAPEX and OPEX. Other lands do not have a direct access 

for running water source so in that case the owners will have to dig water wells for 

irrigation. The CAPEX for digging water well is exceeding EGP100000 (Gomaa, 2017). 

The water salinity of water wells varies, and the need to maintain the wells also affects 

the OPEX. Drip irrigation network cost and its’ maintenance should be added to the 

CAPEX and OPEX of reclaimed lands. 

 

Land rent price for agriculture uses varies from EGP3000 to 6000 / year per feddan due 

to the above-mentioned reasons. These rent prices apply for land reclamation and 

Aquaponics lands. The only different is that Aquaponics do not require any specific land 

qualities, as Aquaponics can be installed in rocky lands, saline lands, and any land type 

that is not even fertile or able to be used for agriculture production, while Aquaponics’ 

crops will be also organic despite the lands status, as there is no use for chemical 

fertilizers, nor pesticides (Hassanen, 2017). Putting all that in consideration, it is 

estimated that land reclamation’s CAPEX is around EGP 185,000 per feddan (Abou 
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Amra, 2015). While land reclamation OPEX is estimated to be EGP 4,000 / year per 

feddan  (Hassanen, 2017). 

 

Aquaponics’ CAPEX and OPEX depend more on the Aquaponics scale and design; the 

bigger the Aquaponics scale the less CAPEX and OPEX. The Aquaponics’ CAPEX for 1 

feddan costs around EGP40 / m2 for Plant beds and EGP 12/m2 for Greenhouse roof. 

Pipes and hoses cannot be estimated as it varies from a design to another, but for example 

of a 1 feddan production unit, piping costs around EGP33,000, or EGP8 / m2. Pumps 

CAPEX depend on the design, with estimated starting cost of EGP10000 plus an average 

of EGP5,000 for every 500 m2 of plants, and other air pumps cost an average of 

EGP10000. Top quality fish feed of 32% protein cost ranges between EGP8500 to 9,500 

per ton, but about half this price can be reduced in case of manufacturing the fish feed 

locally, Fish costs EGP 300 per 1,000 fingerlings of 7-10 gm. weight. Electrical fittings 

are dependent on the design. Yet, it is an expensive component and it correlates with the 

number of machines and devices that are included in the Aquaponics. Normally, 

electricity installation costs could reach up to EGP 100,000 - 120,000 per Feddan, or 

approximately EGP310 per meter square. 

Overall CAPEX for a well-equipped Aquaponics module can cost up to EGP1.3Million 

per feddan with a capacity of 90,000 net cups and around 11 tons of fish in the system 

(Hassanen, 2017). 

Aquaponics’ OPEX mainly depends on the system design. For example, water capacity 

of the first fill in the Aquaponics system is estimated to be 0.23 m3 for each m2 of plants, 

substituting from 5 to 7% of the water capacity per week, and this depends on the 

agriculture practice, system design and weather conditions. Water cost is 600 EGP per 

month and the effective maximum capacity of water to be withdrawing 1500 - 1800 m3 

per month which results in a cost between EGP 0.4 per m3. Electricity consumption 

depends on the Aquaponics design; estimated total electrical load is around 50 kW or 

8000 kWh per month. Seeds depend on the crop type, origin, supplier, and specifications 

such as coating, bread, genetic properties/resistance...etc. One premium seed can cost 

anywhere between EGP 0.01 - EGP 0.15. Overall OPEX for a well-equipped Aquaponics 

module can cost up to EGP17,500 per feddan per month (Hassanen, 2017).  

The following Table 2 summarizes the CAPEX and OPEX for aquaponics farm in Cairo 

Alex desert road in Egypt on 400 m2 area. It shows that the CAPEX in 400 m2 
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Aquaponics is higher than that for 1 feddan because the larger aquaponics scale the less 

CAPEX and OPEX. 

 

Table 2: CAPEX and OPEX for Aquaponics farm in Cairo Alex desert road in Egypt on 400 m2 area 

(Gomaa, 2017) 

 
 

Table 2 shows the total Aquaponics CAPEX / square meter = EGP418 / m2, total 

Aquaponics OPEX / year / square meter = EGP51 / m2 and the total Aquaponics CAPEX 

and OPEX for the first year / square meter = EGP469 / m2. Upon initial review CAPEX 

and OPEX of this aquaponics considered very expensive compared with land reclamation 

for the same area. Therefore, Table 3 shows CAPEX and OPEX comparison between 

Aquaponics and reclaimed lands per feddan. This table eliminates land rent or ownership 

costs from both Aquaponics farms and land reclaimed farms. The comparison also 

Serial Item Qty Price	(EGP) Total	(EGP)

1 Tank	(Fiber	Glass)	-	capacity	8.5	m³ 2 12000 24000

2 Mechanical	filter	-	Capacity	2	m³ 2 3000 6000

3 Construction	for	Graw	beds	/	installation	fees 5 2000 10000

4 500	micron	vinyl 350	square	metre 30 10500

5 styrofoam	-	thickness	=	3	cm 	6	m³ 1200 7200

6 Air	pump	-	1	horsepower 2 3000 6000

7 Submersible	pump	-	1	horsepower 1 2000 2000

8
Green house + winter shade(200 micron 40m x 9m +

summer	shade
1 40000 40000

9 Net	cups	9cm 9000 1.25 11250

10 plumbing	and	piping	/	water	supply 30000 30000

11 Electricity	control	panel	and	connections 10000 10000

12 installation	fees 10000 10000

166950

1 pittmoss	+	perlite	+	sponge 10+10+100 5000 5000

2 plants	seeds 5000 5000

3 fish	feed	(protein	30%)	+	transportation	 1	ton 8400 8400

4 bio	supplemtents	 6	kgms 1000 1000

5 Insects	and	inficttions	bio	fighters 1000 1000

20400

187350

Aquaponics'	CAPEX	and	OPEX		(area	400	square	metre)

CAPEX

OPEX	/	year

Total	CAPEX	and	OPEX	for	the	first	year

Total	CAPEX

Total	OPEX	/	year
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illustrates the estimated profits from lettuce farming in Aquaponics farms vs. land-

reclaimed farms per feddan. The Aquaponics production of lettuce lies between 90.000 -

120.00 lettuces per feddan, average of 30 lettuces per square meter. While the 

conventional agriculture or land reclamation production of lettuce is 30,000 – 40,000 

lettuce per feddan with average of 9 lettuces per square meter. The Aquaponics’ lettuce 

production sales in winter for mass market is approximately EGP5 per one lettuce, and in 

summer the selling price reaches EGP 10 per one lettuce. The Aquaponics’ lettuce is 

considered organic and is sold mainly to niche market, while lettuce production sales 

from conventional agriculture and land reclamation in winter is EGP 1 per one lettuce 

and in summer for EGP 4 per one lettuce. Lettuce production in reclaimed lands is better 

to be one time per year in winter season, as 1 feddan produces 30,000 – 40,000 lettuce, 

and needs from 3 to 4 months to be harvested, while in Aquaponics it takes from 30 to 45 

days for harvesting the lettuce, without maximum times per year (Zaki, 2011). Fish is a 

byproduct of the Aquaponics’ lettuce production comprising almost 11 ton / year. Nile 

tilapia price per kilo in mass market is in the range of EGP18-25 depending on quality. 

Fish from Aquaponics is organic and the price is around EGP20 /kg. Fish profit reaches 

EGP220,000 per year per feddan. The table shows the total profit of the aquaponics after 

deducting CAPEX and OPEX in the first year per feddan is EGP4.8 million, and total 

profit in the following years is EGP6 million per year per feddan. While the total profit of 

land reclamation after deducting CAPEX and OPEX in the first year per feddan is 

EGP31,000, and total profit in the following years is almost EGP200,000 per year per 

feddan. Despite that aquaponics’ CAPEX and OPEX are very expensive, yet the table 

shows that aquaponics are much more profitable than land reclamation in Egypt. 
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Table 3: CAPEX and OPEX comparison between Aquaponics and reclaimed lands per feddan. 

 
 

2.9 Integrated Aquaponics systems 
 

The term aquaponics involves converting fish waste into nutrients to be used by plants. 

Aquaponics is a soilless agricultural solution and concept that helps to provide high food 

quality. While a wide range of vegetable crops might not be easily produced, or might not 

be produced at all using aquaponics as a soilless agriculture method. Aquaponics is 

perfect for producing leafy vegetables, but other vegetable crops cannot be productive in 

soilless plant beds.  

Aquaculture and its integration with agriculture is not a new technology. It has been 

traced back into the ancient history of several cultures and nations such as Egypt and 

China 5000 years ago (Jones, 2002). In the last twentieth century, a lot of developments 

have been applied to increase the number of species and production levels through the 

integration of aquaculture and controlled environments for vegetable production. The 

technique of integrated aquaponics systems is not new. It offers more benefits than a 

normal aquaponics system has by itself. There are two main methods that today’s 

aquaponics systems follow: 

1. First is using water plant beds and a floating raft system or the DWC. 

2. Second, is the integrated aqua-vegaculture system (IAVS), which started as a 

concept in the 1980s using sand in plant beds to grow plants or with plants 

growing in gravel or other non-soil medium as shown in Figure 8. Some 

1	feddan Aquaponics land	reclamation

CAPEX	per	feddan EGP1,300,000 EGP165,000

OPEX	per	feddan	/	year EGP214,200 EGP4,000

Lettuce	Production	/	per	one	harvesting	time	per	feddan 90000 40000

lettuce	price	in	winter	per	unit	(mass	market	price)/EGP EGP4 EGP1

lettuce	price	in	summer	per	unit	(mass	market	price) EGP10 EGP4

times	of	harvesting	/	year	(per	feddan) 10	times/	year 2	times	per	year

total	lettuce	production	/	year	(per	feddan) 900K	unit 80K	unit

total	lettuce	production	in	winter	(per	season	"6	months")	per	feddan 450000 40000

total	lettuce	production	in	Summerr	(per	season	"6	months")	per	feddan 450000 40000

total	lettuce	sales	in	winter	(per	season	"6	months")	per	feddan EGP1,800,000 EGP40,000

total	lettuce	sales	in	summer	(per	season	"6	months")	per	feddan EGP4,500,000 EGP160,000

total	lettuce	sales	/	year	(per	feddan) EGP6,300,000 EGP200,000

Total	profit	after	deducting	CAPEX	and	OPEX	in	first	year EGP4,785,800 EGP31,000

Total	profit	in	the	next	years	/	year EGP6,085,800 EGP196,000
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commercial systems today are starting to integrate both systems.  

 

Figure 8: Adapted from (“IAVs Layout Options | IAVs,” 2017) 

DWC aquaponics and IAVS aim for the same goal to produce more food faster, while the 

differences between the two methods are that DWC mixes hydroponics and aquaculture 

using water plant beds covered with floating foam panels. These hold net pots that allow 

plant roots to extend through into the water to absorb the nutrients in the water (either 

purchased nutrients or natural nutrients from fish waste, or even both). The water must be 

aerated to grow plants. A pumping system, mechanical filters and biofilters are used to 

refine fish waste to contain the correct nutrients for the plants need. The water passes 

onto the plant beds and is then pumped again to the fish tanks once the plants absorb the 

nutrients. 

While IAVS is considered simpler as the fish tanks are beside the plant grow beds that do 

not contain water. The grow beds contain other growing media like sand, gravel or any 

other small mineral particles with a wider and bigger surface area. Grow beds also work 

as biofilters so there will be no need for a stand-alone biofilters like DWC. 

 

Sand in the IAVS will work as a mechanical filter and it is one of the best mechanical 

filtration systems in terms of cost effectiveness and efficiency. Sand is widely used today 

for the same reason in different industries such as pool filters. In IAVS aerobic bacteria is 

more likely to grow than in DWC. The beds are lines with plants directly planted into the 

media (eg. sand) without net pots. Fish tank water flushes directly onto the plant bed 

surface for the plants to absorb the nutrients and then pumped again to the fish tanks. 

There are no filters, foam panels, net pots or plant grow bed aeration, which means less 

CAPEX and also less OPEX. 



40 

 

DWC and IAVS have similarities, as each system is a form of recirculating aquaculture 

system (RAS). Each system relies on the nitrification process of the aerobic bacteria that 

transfers Ammonium (NH4) or Ammonia (NH3) from fish waste by Ammonia oxidizing 

bacteria into Nitrites (NO2) then Nitrates (NO3) using nitrite oxidizing bacteria to 

become useable nutrients for plants. Also both systems rely on fish waste, which means 

that fish food is the main nutrient input. They also rely on an aeration system to enable 

the growth of aerobic bacteria that transforms fish waste into useful nutrients for plants. 

DWC and IAVS can produce yields of vegetables and fish and both system rely on the 

existing technologies of plumbing, plastic tanks, water pumps, and other readily 

accessible equipment. 

The main differences between both DWC and IAVS systems are: 

The DWC system needs more labor to clean its filters and deal with the excess solid fish 

waste. There is also the potential for equipment failure and the need for further skills. 

Adding all these factors together means that the system is less scalable and of a higher 

risk for investors. In spite all these disadvantages, the DWC system is considered very 

successful in producing fish and vegetables compared to traditional hydroponics. 

However, the world’s technology in sustainability is moving towards simpler systems 

with higher outputs in production. 

IAVS is simpler with a lower technology concept, as it is closer in design to the natural 

ecosystem in wetlands. Using one pump, it is possible to create a lower budget system. 

Even larger, commercial IAVS systems are built with the same simplicity, as there is less 

cost in implementing the system and it allows for more creative solutions in the fish tanks 

such as water heaters for the fish in winter and making suitable constructions for plant 

grow beds and both the DWC and IAVS can use high-end solutions for remote 

monitoring. 

IAVS is expected to result in greater yields with less risk. Also IAVS has been used 

mainly for small-scale growers, while it has a potential for success on a commercial 

scale. 
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There are great opportunities for innovation in the IAVS and other integrating aquaponics 

systems. With a properly designed system, investors and operators can have amazing 

yields’ results compared to basic aquaponics systems that currently used. Aquaponics 

generally continues to develop into a real commercial industry, which is why it is so 

important to evaluate and discuss its standards (McMurtry, Nelson, Sanders, and Hodges, 

1990). 
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3 Chapter 3: Research Methodology 

3.1 Research Design 
 

The research methodology is using quantitative methods. The following represents the 

process followed in the research in order to meet its objectives and to answer the research 

questions:  

- Summarize and synergize existing literature on Aquaponics and IAVS. 

- Determine the required resources for starting an experiment of installing two systems; 

first one is a Deep Water Culture Aquaponics system (DWC) and an Integrated Aqua-

Vega culture System (IAVS) in The American University in Cairo (AUC). 

- To test variables being measured, both systems were designed similarly as regards to 

the number of plants and fish, amount of food, and external environment. Fish were of 

the same weight and plants were of the same kind. These are the controlled variables 

of the experiment.  

- Dependent variables being measured are crop variation, quality, quantity, and growth 

of plants and fish in both systems. Variables will be measured by performing a 

comparative study between both DWC and IAVS systems. Also variables will be 

measured by chemical, elemental and Bacteriological water analysis for both DWC 

and IAVS systems before and after the experiment. Elemental sand analysis will be 

also measured in IAVS before and after the experiment. Elemental, chemical, 

pesticides residues and heavy metal analysis of crop will be done to Molokheya crops 

in both systems and results will be also compared with another source of organic 

Molokheya from the market. Vitamin A – beta carotene analysis will be measured in 

Molokheya from both DWC and IAVS systems and will be compared with another 

source of organic Molokheya from the market. 

- Discuss the experiment assessment results and present a list of recommendations.  

3.2 Research subject 

This research is comprised of several phases. The first phase is a review of Egyptian 

conventional agriculture and land reclamation procedures, focusing on new challenges 
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such as the rapidly increasing population and climate changes. Water-Energy-Food nexus 

is presented as a real solution for these challenges, through new food production 

techniques via soilless agriculture and integrated systems. The second phase was 

associated with understanding the methodology and structure of the study for performing 

a comparative analysis between DWC and IAVS selected systems. The basis of the 

comparative analysis is to explain the comparative experiment results. The results of this 

analysis include issues that other researchers should take into consideration based on 

local context and conditions. The final stage, which is the outcome of this research, is a 

list of recommendations and suggestions to the upcoming researchers in the field of 

soilless agriculture, Aquaponics and other unconventional agricultural methods.  

3.3 Comparative experiment between DWC and IAVS Aquaponics 

systems 

The main objective of this experiment is to compare the productivity variations, and 

quality of DWC and IAVS systems in a lab scale experiment in the AUC. Both DWC and 

IAVS systems were designed and implemented with the same proportions, dimensions, 

surroundings, and conditions. They had the same inputs and amounts of plants and fish. 

The results from both systems were analyzed and compared to determine which system is 

more efficient, economic, and productive producing higher quality products. The 

following Figure 9 shows the experiment location in AUC. 
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Figure 9: Satellite map from Google earth shows the location with altitudes and latitudes for the lab scale 

DWC and IAVS experimental systems in The American university in Cairo. 
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3.4 Materials and methods of the experiment 
 
The DWC system method uses plastic net cups set into holes in Styrofoam floating rafts. 

These hold the plant seeds using gravel. Styrofoam floating rafts cover and float on top of 

the water over the grow bed in the tank. The tank is 4.2 m long, 1.2 m wide and 0.35 m 

high. Panels of yellow pine wood are used to construct the grow bed. A double layer of 

vinyl was applied to the wooden grow bed from inside to pad it to a thickness of 500 

microns for the one layer. This makes the wooden grow bed waterproof.  

The water grow bed is attached to a fish tank made of simple plastic materials such as 

IBC tanks. Tanks are put into a stainless-steel cage to prevent the deformation of the 

plastic due to the weight of the water as IBC tank holds 1 Ton of water and fish per 1 

cubic meter. The DWC system is using a mechanical filter made from blue plastic barrel 

with capacity of 200 the solid liters to remove waste from water. The nitrification process 

works in DWC by transforming the ammonia in the water from the fish waste into 

nitrates that are the main source of plant nutrients. Water flows from the fish tank to the 

water grow bed using gravity.  

The DWC system also has a submersible water pump for recycling the water through the 

whole system, and an air pump to provide the fish and plants with oxygen through rubber 

tubes and air stones. Another water collection container is used under the water grow bed. 

It collects the water that comes out of it and pumps it to the fish tank using the 

submersible water pump in a closed water cycle. The water-collection container is also 

made of wooden yellow pine panels and measures 3.8 m long, 1 m wide and 0.4 m high. 

It is also padded with a double layer of vinyl with a thickness of 500 microns as shown in 

Figure 10, Figure 11 and Figure 12. The submersible water pump can pump 2000 liters 

of water per hour, which can circulate the water in the system twice per hour.  
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Figure 10: Perspective of the DWC Aquaponics system used in the AUC experiment. 

 

 

Figure 11: The DWC Aquaponics system used in the AUC (side view) experiment. 
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Figure 12: DWC design concept – Plan & side view - Adapted from (FAO, 2015) 

The IAVS is similar to the DWC system, only it uses sand instead of waterbeds to grow 

plants. Sand beds are supposed to be able to grow a greater variety of plants than the 

DWC system. The IAVS is designed and constructed using the same materials and 

dimensions of DWC system; 4.2 m long, 1.2 m wide and 0.35 m high. The construction is 

made of yellow pine wood panels covered with double layered vinyl with 500 microns. 

The sand grow bed is attached to an IBC fish tank. It holds 1 Ton of water and fish per 1 

cubic meter. The IAVS system does not include any mechanical filters, as the sand will 

work as a natural filter (Figure 13, Figure 14 and Figure 15). 
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The nitrification process works by transforming the ammonia in the water from the fish 

waste in the fish tank into nitrates in the sand grow bed. Water flows from the fish tank 

into the sand grow bed by force of gravity. A timer is used to control the water flow from 

the fish tank to the sand grow bed. Water flows using the timer for 30 minutes every two 

hours, five times per day, starting from 7.00 am to 5.00 pm. This method is supposed to 

be more efficient in water consumption as the sand grow bed is inclined for more water 

consumption through the evaporation and trans evaporation from plants, while the water 

grow bed in DWC system is fully covered with Styrofoam floating rafts to limit the 

evaporation and trans evaporation. A submersible water pump is used for recycling water 

from the sand grow bed to the fish tank. The same air pump is used to provide fish with 

oxygen, as plants get the oxygen from the spaces between sand particles in the grow bed. 

A water collection container is used under the grow bed to collect the water that comes 

out and pumps it to the fish tank in a closed the water cycle. This water-collection 

container is the same as the one in the DWC system. The submersible water pump power 

is also 2000 liter/hour like DWC. 

 

Figure 13: IAVS system preliminary design – side view with dimensions and descriptions. 
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Figure 14: IAVS system design – side view with dimensions and descriptions. 

 

Figure 15: Perspective of the IAVS used in the AUC experiment. 

 

Designing and implementation started in June 2016 by creating an action plan. It also 

determines the tools and materials required after setting the initial design for both 

systems, as shown in Table 4 and Figure 16. Both systems needed modifications, 

monitoring and testing before starting the experiment on April 21, 2017. 



50 

Table 4: DWC and IAVS work plan before starting the experiment in April, 21st, 2017. 
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The weather becomes colder in autumn and winter, and cold weather affects both plants 

and fish. Nile Tilapia fish were chosen in this experiment on purpose. Tilapias can live in 

a wide variation of temperatures (FAO, 2015). In summer, the temperature can reach 

more than 40 degrees and the water in the fish tanks can reach 35 degrees. In winter, the 

water temperature in the fish tanks can drop to as low as 11 degrees. Temperature 

variations can directly affect the plants. However, temperatures have an indirect effect on 

the fish. Cold weather affects the appetite of the fish. This makes the fish eat less than 

their usual fish food portions. Less fish food means there is less fish waste dissolving in 

the fish water tank. This affects the nutrients levels after the nitrification process.  

Plants will have fewer nutrients to grow accordingly, and this affects the plants 

negatively. Special waterproof heaters were applied to both fish tanks in DWC and IAVS 

systems to make the water in the fish tanks warmer, helping fish in both systems to eat 

more in cold weather. A simple arched greenhouse construction is also implemented in 

the Aquaponics site in AUC, surrounding both DWC and IAVS systems. The Greenhouse 

helps to mitigate weather temperature variation. It is made of metal arches covered with 

vinyl to increase the temperature inside the greenhouse during winter. In hot weather, the 

vinyl layer is removed and another layer from agriculture shading net is applied. The 

agriculture shading net prevents sun and direct heat to affect the systems and it provides 

shades. It also allows the air to flow inside the systems as shown in Figure 17 and Figure 

18.  

Applying the greenhouse option will help in controlling the weather and temperature 

inside the site for both DWC and IAVS. It will also help in improving the fish appetite. 

On the other hand, these improved weather conditions can also provide a suitable 

environment for insects to grow and affect the plants inside the greenhouse. Neem oil and 

Pheromone traps are used as Bio-pesticides to fight insects and infections in a 

sustainable, green and organic way. 

Both systems are connected to sensors to test the water current temperature, pH, and 

dissolved oxygen. These sensors are attached to a motherboard and a battery designed to 

send data through a GSM mobile network to a cloud server to monitor the Aquaponics 

systems remotely in the runtime. Also the system will be sending alarms in case of any 

emergency through SMS using the GSM mobile network. The needed electricity power 

in both systems for the water pumps, air pumps and other needs like heaters for fish in the 

cold weather or sensors is less than 0.5 kilowatt/hour. 
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Figure 16: The implementation process. 

 

Figure 17: Lab scale of the DWC and IAVS systems used in the AUC experiment (Front view). 
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Figure 18: Lab scale of the DWC and IAVS used in the UAC experiment. 

 

3.5 Fish 
 

The experiment started on Friday, April 21, 2017 by distributing fish in both DWC and 

IAVS fish tanks equally, with a total of 150 fish in both systems. Seventy-five Nile 

Tilapia fish were added to each tank with total weight 2600 gm and average weight of 

34.5 gm per fish. The total fish weight in both DWC and IAVS fish tanks was 5200 gm 

for the 150 Nile Tilapias fish. Figure 19 shows the Nile Tilapias before and after adding 

them to the DWC and IAVS fish tanks. 

 

    



54 

     

 

Figure 19: 150 Nile Tilapias are distributed equally to DWC and IAVS. 
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4 Chapter 4: Results and Analysis 

It was noticeable in the beginning of the experiment that the fish consumed more fish 

feed in IAVS than those in the DWC, despite the rise of ammonia rates in IAVS. 

However, in the last month of the experiment, the fish in the IAVS started to lose their 

appetite. With higher rates of ammonia, all the fish in the IAVS fish tank were found 

dead on August 21, the last day of the experiment. The fish weighed 13 kg in the IAVS 

and 15 kg in the DWC. Fish in both systems consumed 35 kg of food from April 21 to 

August 21, 2017. Fish in the DWC gained 12.4 kg during the experiment with an average 

gain per fish of 200 gm. Fish in IAVS gained 10.4 kg with the average weight per fish 

reaching 173 gm.  

The fish turned 35 kg of fish feed into 22.8 kg of fish biomass in both DWC and IAVS 

systems. In the DWC, 17.5 kg of fish feed turned into 12.4 kg of fish biomass with each 

fish fed with an average of 165 gm of fish biomass per fish. In the IAVS system, 17.5kg 

of fish feed turned into 10.4 kg of fish biomass. Each fish consumed an average of 233 

gm of fish food during the whole experiment. In the IAVS, the fish feed turned into an 

average of 138.5 gm of biomass per fish. 

4.1 Plants 
 

One of the main objectives of the experiment is to compare plant growth and 

productivity in both the DWC and IAVS systems. Another objective is to plant 

different crops in aquaponics, as most aquaponic systems grow only leafy plants. 

That is why the experiment started by planting the same amount of various kinds of 

plants in both systems. Plants were distributed in both systems as shown in Table 5. 

The DWC and IAVS systems were prepared as shown in Figure 20. 
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Table 5: Names and quantities of plants have been seeded in the beginning of the experiment. 

 

 

 

 

 

 

 

 

 

 

 

Plant's Name 
Number of seeded 

plants in DWC 

Number of seeded 

plants in IAVS 

Arugula 15 15 

Basil 5 5 

Bell Pepper 2 2 

Cantaloupe 3 3 

Cherry tomato 3 3 

Chili pepper 1 1 

Corn 5 5 

Cucumber 3 3 

Dill 15 3 

Eggplant 1 1 

Molokheya (latin: Corchorusolitorius) 60 60 

Parsley 2 2 

Peppermint 2 2 

Pumpkin 3 3 

Radish 5 5 

Thyme (oregano)  1 1 

Sunflower 3 3 
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Figure 20: On the left (DWC) and on the right (IAVS) are prepared to start planting the equal amount of the 

above-mentioned crops. 

The Nitrification process worked normally from the first day in both systems. In the first 

week, and after three days, the plants started to grow in both systems as shown in Figure 

21, Figure 22, Figure 23, and Figure 24. 

 

 

Figure 21: Plants started to grow in DWC in the first week 
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Figure 22: Plants started to grow in DWC in the first week. 

 

Figure 23: Plants started to grow in IAVS (in the sand) in the first week. 
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Figure 24: Plants started to grow in IAVS (in the sand) in the first week. 

Before the experiment started, elemental analysis of water and sand were completed for 

comparative analysis on completion of the experiment. Water analysis before the 

experiment showed that water pH at 7.6, which is almost neutral. After starting the 

experiment, and within the first week, the pH in both systems reached 8.2 making water 

alkaline. Phosphoric acid was added to lower the pH to 7.4 as high alkalinity or high 

acidity affects plants and fish negatively. The graphs in Figure 25 and Figure 27 show 

both systems with high pH before using the phosphoric acid to lower the pH to 7.4 as 

shown in Figure 26 and Figure 28. 

 

 

Figure 25: DWC fish tank PH = 8.2 before phosphoric acid 
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Figure 26: DWC fish tank PH = 7.4 after adding phosphoric acid 

 

 

Figure 27: IAVS fish tank PH = 8.4 before phosphoric acid 

 

Figure 28: IAVS fish tank PH = 7.3 after adding phosphoric acid 
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From April 27 to May 1, 2017, corn grew faster in the DWC system while leafy plants, 

such as dill, radishes and arugula, grew better in the IAVS system, as shown in Figure 29 

and Figure 30. 

 

 

Figure 30: Leafy plants (Dill, Radish and Arugula) in IAVS sand grow bed. 

 

Figure 29: Leafy plants (Dill, Radish and Arugula) in DWC water grow bed. 
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Figure 31: Plants are growing in DWC & IAVS systems on April 27th, 2017 in the second week of the 

experiment. 

In the second week of the experiment as shown in Figure 31, the corn is growing faster 

and healthier in the IAVS system than the DWC system as shown in Figure 32 and Figure 

33. Also mites started to appear and infect the plants in both systems. Neem oil was used 

as a bio pesticide to kill them, along with pheromone traps, as shown in Figure 34. 
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Figure 32: Corn growth in DWC in the second week. 
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Figure 34: Pheromone traps 

Leafy plants like arugula, dill, peppermint and radishes are growing more in the DWC 

than in the IAVS, as shown in Figure 35 and Figure 36. 

Figure 33: Corn growth in the IAVS in the second week. 

Figure 33 

 Corn growth in IAVS in the second week 
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Figure 35: On the left shoes peppermint growth in DWC, on the right shows peppermint growth in IAVS in 

the second week. 

    

Figure 36: On the left shoes Basil growth in DWC, on the right shows Basil growth in IAVS in the second 

week. 
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Figure 37: Both systems in the third of the experiment (May 11, 2017) 

In the third week of the experiment, plants were facing a rapid attack from insects as 

weather got warmer, as shown in Figure 37. White fly started to appear on plant leaves in 

both the IAVS and DWC, as shown in Figure 38.  

The insects attacked the plants more in the IAVS than in the DWC. Neem oil was 

sprayed and more pheromone traps are added to eliminate the white fly. Basil, parsley, 

radishes, dill, sunflower and molokheya were growing better in the IAVS than in the 

DWC, as shown in Figure 39.  

Thyme and Egyptian mint grow better and faster in the DWC as shown in Figure 40. 

Corn is almost growing at the same rate in both systems. Generally, plant growth was 

faster in IAVS than DWC (see Figure 41 and Figure 42). Pumpkin, for example, stopped 

growing in the DWC, but flourished in the IAVS.  
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Figure 38: Small white flies on the back of pumpkin leaf in IAVS – Third and fourth week 

 

 

 



68 

    

Figure 39: On the left shoes Basil growth in DWC, on the right shows Basil growth in IAVS in the third 

week 

    

Figure 40: On the left shoes Thyme growth in DWC, on the right shows Thyme growth in IAVS in the third 

week. 

 

Figure 41: Plants growth in DWC – Third week. 
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Figure 42: Plants growth in IAVS – Third week. 

On May 17, 2017, in the fourth week of the experiment, sun affected the plants grow bed 

vinyl layer causing a leakage in the DWC system. A new vinyl layer of 200 microns 

thickness was added to the water bed after removing the plants and rafts. More water was 

added, as shown in Figure 43.  

Wooden supports were also added to the sides of the DWC systems. They were attached 

with ropes to help support the growth of some plants (like the peppers and sunflower). 

After fixing the vinyl layer and returning the plants to the grow bed, the system worked 

normally again.  

Plants grow faster and healthier in the IAVS system than in the DWC, as shown in Figure 

44 and Figure 45. 

    
 

Figure 43: DWC before (on the left) and after (on the right) installing the new vinyl layer. 
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Figure 44: Growth in DWC – Fourth week 

 

   
 

Figure 45: Growth in IAVS – Fourth week 
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The following will show each plant progression in both DWC and IAVS systems during 

the experiment until the final day of the experiment. 

4.1.1 Arugula 

Arugula vegetative growth and germination was better in the IAVS than in the DWC. Its 

growth was deteriorated due to the excessive heat. In July Arugula could not survive in 

the DWC and died. 

 

4.1.2 Bell peppers 

Bell peppers grew very slowly in both the DWC and IAVS. High temperatures in July 

negatively affected the Bell pepper’s growth in both systems. In the DWC, vegetative 

growth stopped at a height of 9 centimeters without producing any fruit.  

In the IAVS, vegetative growth was excellent, as shown in Figure 46, and it produced 

three fruits that weighed 220 gm. It was harvested by the end of the experiment.  

             

Figure 46: Bell pepper growth in IAVS 

4.1.3 Cantaloupe 

The vegetative growth of cantaloupe was very good in both the DWC and IAVS. Both 

grew with the same rates until July. The high temperatures and the absence of bees 

caused the plants to fail to fruit. Just only one cantaloupe fruit was produced from the 

IAVS system. It weighed 750 gm at the end of the experiment, as shown in Figure 47. 
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Figure 47: Cantaloupe growth in IAVS 

4.1.4  Cherry tomatoes 

Cherry tomatoes grew equally in both DWC and IAVS. Due to the extreme rise in 

temperatures in July, the heat affected the cherry tomatoes in the DWC negatively. The 

first tomatoes appeared in the IAVS on August 6, as shown in Figure 48 and Figure 49. It 

was harvested on August 21, by the end of the experiment. It weighed a total of 620 gm 

from IAVS. The DWC produced 80 grams of cherry tomatoes during the whole 

experiment. 

 

 

Figure 48: Cherry tomato in DWC 
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Figure 49: Cherry tomato in IAVS 

4.1.5 Chili peppers 

In the beginning the chili peppers grew faster in the DWC than the IAVS, but after the 

first month it grew better and faster in the IAVS. In July and August, the high 

temperatures, that reached 40 degrees inside the shaded greenhouse, negatively affected 

chili peppers and dried them out in the DWC, as shown in Figure 50.  

In the IAVS, the chili peppers survived the high temperatures until the end of the 

experiment, as shown in Figure 51. 

 

    

Figure 50: Chili peppers in the DWC 
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Figure 51: Chili pepper in IAVS 

4.1.6  Corn 

Corn growth was almost the same in both systems at the end of the experiment. Corn in 

the IAVS was healthy with no deficiencies detected. While in the DWC, the corn showed 

iron deficiency and this was treated by adding 2 cm3 of iron to the water every two 

weeks. This caused the water in the DWC to turn red color. Both systems suffered from 

mite insect attacks. Mites in the IAVS did not affect corn, while in DWC the impact of 

the infection was high, even after using bio pesticides and pheromone traps. 

The height of the greenhouse and the grow beds from the ground in both systems was 

insufficient for the corn to grow, which reflected negatively on the grain production. On 

July 13, the first corn kernel appeared in the IAVS as shown in Figure 52, Figure 53, and 

Figure 54. 

  

Figure 52: Corn growth in DWC (left) and in IAVS (on the right) in the second month of experiment. 
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Figure 53: Corn production in July 2017 

 

 

Figure 54 Three Corn ears produced in July 2017 
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4.1.7 Cucumbers 

The first harvest of cucumber was collected after 45 days of seeding from the DWC and 

weighed 450 gm. While the first harvest from the IAVS was after 48 days from seeding 

and weighed 1500 gm.  

Average length of the fruit was 8 cm. The second harvest collected from both systems 

was on June 27. The DWC produced 125 grams while IAVS produced 500 grams.  

On July 1, a third harvest was collected from the DWC with a weight of 400 grams and 

1500 grams from the IAVS. On July 7, a fourth harvest was collected from the DWC 

weighing 400 gm, and from the IAVS a crop of 500 gm. In that week, cucumber 

production was affected by the high temperatures that reached 40 degrees Celsius inside 

the shaded greenhouse. 

On July 12, a fifth harvest was collected from the DWC weighing 250 grams and from 

IAVS a crop weighing 1250 grams. On July 21, a sixth harvest was collected from the 

DWC weighing 220 grams and from the IAVS a crop weighing 680 grams. On July 28th, 

a seventh and last harvest was collected from the DWC weighing 225 grams and from the 

IAVS a crop that weighed 600 grams. 

The total DWC weight of production throughout the experiment was 2070 grams; while 

the total cucumbers produced using IAVS was 6530 grams. The IAVS produced 

cucumbers three times bigger than those frown in the DWC in the same conditions, as 

shown in Figure 55 and Figure 56. 
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Figure 55: Cucumber in DWC 

 

 

Figure 56: Cucumber in IAVS 
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4.1.8 Dill 

Dill vegetative growth and germination was better in the IAVS than in the DWC. Dill 

deteriorated from the excessive heat. In July, it could not survive in the DWC and died. 

4.1.9  Eggplant 

Eggplant was planted in equal seedlings and it grew better and faster in the IAVS than in 

the DWC. First eggplant fruit was produced 37 days from the first day of the experiment. 

Eggplants were deteriorating in the DWC due to the extreme high temperature and did 

not grow very well. In the IAVS, it continued to grow and produce in an excellent 

manner as shown in Figure 57. 

    

Figure 57: on the left Eggplant in DWC, on the right Eggplant in IAVS 

4.1.10  Molokheya 

The growth of Molokheya was similar in both systems, but it was better in the IAVS. The 

plant showed a tendency to flower and fruit with the high temperatures in the DWC. In 

the DWC, the Molokheya started to produce seeds as the plant matured, while it did not 

produce seeds in IAVS. The color of Molokheya branches turned red in the DWC, while 

in the IAVS it was looking fresher and greener with no red color. Molokheya produced 

more leaves in the IAVS than in the DWC. Mites did not affect the Molokheya in the 

IAVS, but was affected by mites in the DWC, as shown in Figure 58, Figure 59, and 

Figure 60. 
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Figure 58: Molokheya red branches from the DWC on the left. Molokheya seeds on the right DWC. 

 

 

Figure 59: Molokheya branches on the left from the IAVS, and reddish branches on the right from the 

DWC 
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Figure 60: Molokheya leaves from DWC on the left with Mites and white flies on the leaves, and 

Molokheya leaves from IAVS with minimal infection of Mites or white flies 

4.1.11 Parsley 

Crispy parsley was growing taller and better in the IAVS despite the high temperatures as 

shown in Figure 61, while it did not survive in the DWC. In July, the parsley deteriorated 

and died in the DWC. 

 

Figure 61: Crispy parsley growth in IAVS 
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4.1.12 Peppermint 

In the beginning peppermint grew faster in the DWC than in the IAVS. After the first 

month, it grew equally in both systems. The high temperatures of July and August 

affected all leafy plants including the peppermint, especially in the DWC system. 

Peppermint growing in the IAVS could withstand the temperatures more, as shown in 

Figure 62.  

    

Figure 62: Peppermint growth in DWC on the left, and Peppermint in IAVS on the right 

4.1.13  Pumpkins 

Pumpkins were the star of the experiment. Pumpkin leaves and branches reached every 

place in the greenhouse. Pumpkin grew only in the IAVS, as shown in Figure 63. The 

first appearance of this pumpkin was after 60 days from seeding. On the July 7, a manual 

fertilization was done to form the first fruit. The second fruit appeared after one week of 

the manual fertilization. Several flowers were produced, but the number of pumpkins was 

three. After 37 days from fertilization, on July 24th, 6800 gm of pumpkin was harvested. 

On the last day of the experiment, on August 21, the second pumpkin weighed 3300 gm 

and the third weighed 4900 gm. 
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Figure 63: Pumpkin growth in IAVS 
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4.1.14 Radishes and Thyme 

Thyme production and growth in the DWC and IAVS was the same until the last day of 

the experiment.  

The radishes grew faster and healthier in the IAVS; both roots and leaves grew faster and 

bigger. Figure 64 shows the first radish root head that appeared in both systems after 35 

days from the beginning of the experiment, meanwhile, the maximum production was 

from the IAVS 56 days after planting the seed. The radish root radius reached 2.5 cm in 

the IAVS. 

 

 

Figure 64 Radish root in the IAVS 

4.1.15 Sunflowers 

Sunflower vegetative growth and germination was equal in both systems. From the first 

week in July, sunflowers in the DWC were affected negatively by the high temperatures 

and deteriorated over time. The sunflowers stopped growing in the DWC after an 

advanced stage of growth and flowering, while it continued to flourish in the IAVS. It 

produced four flowers, yet it needed bees for fertilization. Fertilization was done 

manually. Sunflower seeds appeared on the plant in the IAVS on July 18. Only one 
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flower produced sunflower seeds and the majority of seeds were empty, as shown in 

Figure 65.  

         

Figure 65: Sunflower growth in IAVS 

4.2 DWC and IAVS water quality 
 

The water test kit tool was available from mid-June 2017. The ammonia ratio was higher 

in the IAVS than the DWC, with average ammonia reading of 2 (and higher) and from 

0.5 to 1 in DWC (see Figure 66).  

   

Figure 66: Showing IAVS water test results on the left with Ammonia = 3 vs. Ammonia in DWC = 0.5 on 

the right (on July 18th, 2017) 

On July 24, the fish in the IAVS were not eating well, although all water test results were 

normal as shown in Figure 67. On July 30, the ammonia levels were 4 in the IAVS vs 0.5 

in the DWC, as shown in Figure 68. Accordingly, fish in the IAVS were not fed for one 

day to decrease ammonia levels.  
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Figure 67: IAVS water test results on the left with Ammonia = 1 vs. Ammonia in DWC = 0.5 on the right 

while PH is the same in both systems = 7.5 (on July 24th, 2017) 

 

   

Figure 68: Showing IAVS water test results on the left with Ammonia = 4 vs. Ammonia in DWC = 0.5 on 

the right (on July 30th, 2017) 

On August 6, the ammonia levels decreased to 2 in the IAVS vs 0 in the DWC after 

decreasing fish feed, as shown in Figure 69. On August 13th, the ammonia levels 

increased again to 4 in the IAVS while it was 2 vs 0.5 in DWC, as seen in Figure 70. 

Consequently, the fish in the IAVS tank were not fed for one day again. 
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Figure 69: Showing IAVS water test results on the left with Ammonia = 2 vs. Ammonia in DWC = 0 on the 

right (on August 6th, 2017) after stopping IAVS fish feed. 

  

   

Figure 70: Showing IAVS water test results on the left with Ammonia = 4 vs. Ammonia in DWC = 0.5 on 

the right (on August 13th, 2017). 

On the night of August 17, the ammonia levels were still high and the fish were not 

eating. Therefore, a decision was made to stop feeding the fish for an extra two days. On 

August 21, 2017 at 11 am, all fish in the IAVS tank were found dead. The first 

assumption was that the solid waste in the IAVS system accumulates on the soil surface, 

enabling the growth of toxic bacteria. The bacteria prevent the nitrification process so the 

ammonia rates remain high and harmed the fish. An instant water test was completed to 

prove the assumption. The water analysis showed that the ammonia rates were above 4 

(from 4 – 8) as per the water test kit, as shown in Figure 71. Nitrates =1, which means 

that the nitrification process was not working in the IAVS system. 
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Figure 71: Showing IAVS water test results on the left with Ammonia = higher than 4 (4 – 8) vs. Ammonia 

in DWC = 0.25 on the right (on July 30th, 2017). 

Samples from the water in the DWC and IAVS were taken for an elemental and bacterial 

analysis, and sent them to Soil, Water & Environment Research Institute. A sample from 

the source water from both systems was tested before starting the experiment to compare 

water elemental analysis before and after the experiment. The pH in both systems was 

always the same level from 7 – 7.7. Air stones in both systems were covered with algae. 

This lowered the dissolved oxygen levels in both systems to a range of 5. In the DWC 

system, the fish were not affected even though it had the same inputs as the IAVS system. 

4.3 Analysis of Crop Quality  
 

4.3.1 Elemental crop analyses by The Regional Center for Food & Feed – RCFF in 

the Egyptian Agriculture research center - ISO certified lab. 

Selecting the main vitamins and minerals in each planted crop in both DWC and IAVS 

systems as shown in Table 6. 

Table 6: Main crops from the experiment in both systems and their principle vitamins and minerals found 

in each of the plants arranged starting from the highest content to the least. 
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The selection process of the crops was mainly dependent on the crops abundance in both 

systems that can be examined, as the production of other type of crops were either 

limited, such as tomato, or unsuccessful in one of the systems as pumpkin. For example, 

one of the laboratory requirements is to provide at least half a kilogram of each crop for 

predetermination for drying and turning onto power, in order to be analyzed.  

Accordingly, in the light of what mentioned earlier, ‘Molokhyea’ was selected because it 

produced sufficient quantity; an average 2 kg, in both systems (DWC and IAVS). 

Moreover, the Molokhyea crop from the aquaponic systems provided the needed criteria 

for comparison with another source of organic Molokhyea in terms of elemental, 

chemical, pesticides residues, and heavy metal analysis. Additionally, it was suitable to 

compare both the quantity and the quality between the two systems. Molokheya is rich in 

beta-carotene/vitamin A, which is an essential nutrient for human bodies. As a result, the 

elemental analysis was completed to compare beta-carotene/Vitamin A levels in the 

DWC, IAVS, and the organic product in the market. On the contrary, other crops grew 

differently in the two systems, which hindered conducting further analysis as that for 

Molokheya. For example, pumpkin successfully grew in the IAVS system, while it has 

failed to grow in the DWC. 

So, the elemental analyses for Molokheya, from both systems, were compared with the 

results of the organic Molokheya from the Metro market. This comparison showed the 

beta-carotene/Vitamin A amounts in the DWC and IAVS were the same as that of the 

organic product from the market. 

 

4.3.2 Residue analysis for pesticides and heavy metals analyses by Central Lab of 

Residue Analysis of Pesticides and Heavy Metals in Food (QCAP Lab) . 

Quick and Easy method (QuEChERS) has been used for the determination of pesticide 

residues in all Molokheya tests. Using LC-MSMS, GC-MSMS as per the European 

Standard Method EN 15662:2008. The ICP-OES method has been used for the 

Determination of Heavy Metals analyses in Molokheya using inductively coupled plasma 

optical emission spectrometry after high-pressure microwave digestion. The Danish 

official HPLC method no. AF 255.1, 3rd ed. 1996 from the national food agency of 

Denmark was used for the determination of Vitamin A/Beta-carotene in Molokheya. 
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4.3.3 Sand Analysis by Soil, Water & Environment Research Institute - (SWERI) 

in the Egyptian Agriculture research center. 

IAVS sand was tested before and after the experiment to determine the main elements, 

either soluble or insoluble that may help or harm plant growth.  

 

4.3.4  Water Analyses Soil, Water & Environment Research Institute - (SWERI) 

in the Egyptian Agriculture research center. 

To know the percentages and amounts of elements in the water before and after the 

experiment, samples have been taken from the fresh water used to fill both systems. It 

was tested for chemicals, macro and micro nutrients, and heavy metal content.  

Bacteriological water analyses for water samples from both the DWC and IAVS systems 

after the experiment was issued as a method to estimate the numbers of bacteria present 

and, if needed, to find out what sort of bacteria they are. It is a microbiological analytical 

procedure, which uses samples of water to determine the concentration of bacteria in both 

systems to compare them. In the previously mentioned analysis, all results included in the 

labs reports are after calculating the error factor. 

 

 

4.4 Volume and costs of DWC vs. IAVS 
 

The IAVS uses less area than the DWC, as the IAVS system does not have the 

mechanical nor biological filters needed in DWC. This means the IAVS needs less space 

than the DWC which could be used either to make the plant grow bed bigger or make the 

whole systems smaller, as shown in Figure 72. 

DWC system materials and implementation costs were EGP 8720, compared to the cost 

of IAVS of EGP 7650 as shown in Figure 73 . Greenhouse costs extra EGP10000 for 

covering both systems. 
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Figure 72 Showing the DWC is longer than the IAVS. 

 
 

Figure 73: DWC and IAVS implementation costs 
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4.5 DWC and IAVS water analyses tests before and after the 

experiment 
 

Full analyses for the water used in both systems before starting the experiment was 

completed by the Unit of Soils, Water and Environment at the Egyptian Agriculture 

Research Center (ARC). This includes a chemical analysis of the macro and micro 

nutrients content in the waters. The analysis shows the electrical conductivity (EC) is 

0.41 deciSiemen per meter, which shows a low conductivity. Total dissolved salts (TDS) 

are 262 ppm and pH is 7.6, which shows the water is neutral with a very little alkalinity. 

Soluble ions found in water are anions and cations. The soluble anions found in the water 

analysis were Bicarbonates (HCO3) at 1.51 milliequivalents of solute per liter of solvent 

(meq/L), Cl is 1.27 meq/L and Sulfate (SO4) was 1.45 meq/L.  

The soluble cations found in the water analysis were Calcium (Ca) at 1.90 meq/L, 

Magnesium (Mg) was 1.30 meq/L, Na is 0.96, and Potassium (K) was 0.07 meq/L.  

The element concentrations in the water were as follows: NO3 was 10.01 mg/L, 

Phosphorus (P) was 0.317 mg/L, Iron (Fe) was 0.169 mg/L, Mn was 0.145 mg/L, Zinc 

(Zn) is 0.155 mg/L, Copper (Cu) was 0.0147 mg/L and B was 0.079 mg/L. Sodium 

Adsorption Ratio (SAR) is 0.76 which is not hazardous, while Residual Sodium 

Carbonate (RSC) was not detected in the water analysis.  

At the end of the experiment the analysis shows that the highest EC was in DWC with 

0.85 dS/m. The highest TDS in the last day of the experiment was also in DWC with 544 

ppm. pH remained 7.6 in IAVS as in the beginning of the experiment, while in DWC it 

was 6.9 at the end of the experiment as shown in Figure 74, Figure 75 and Figure 76. 
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Figure 74: DWC has the highest EC, 0.85 dS/m 

 
  

 
Figure 75: DWC has the highest TDS of 544 ppm 
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Figure 76: DWC has the lowest pH after the experiment, 6.9 ppm. 

 

Figure 77, Figure 78 and Table 7 show Phosphorus in the DWC is 31.624 mg/L and 

4.574 mg/L in the IAVS. 
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Figure 77: DWC has the highest SO4, 5.6meq/L 

 

 

 

Figure 78: DWC has the highest Mg with 4.07, Na with 3.35, k with 0.51 and SAR with 2.06. While Ca is 

highest in DWC with 1.9 meq/L 
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4.6 IAVS Sand test before and after the experiment 
 

A soil analysis was completed on sand samples from the IAVS before and after the 

experiment. This was done in order to understand the changes to the sand elements 

during the experiment, which affects plants in the IAVS system.   

The sand used in the IAVS was moderately alkaline with a pH of 7.8 before the 

experiment, while was slightly alkaline after the experiment with a pH of 7.2.  

The saturation percentage (SP) of the soil equals the weight of water required to saturate 

the pore space divided by the weight of the dry sand. The SP is useful for characterizing 

the sand’s texture, as shown in Figure 79. Very sandy soils have SP of less than 20 

percent; whereas, sandy loam-to-loam soil SP ranges are between 20 – 35 percent. The 

IAVS SP rose to 22 percent after the experiment.  
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experiment in 

both systems 

0 10.01 0.317 0.169 0.145 0.155 0.0147 0.079 0 0 0 0 0 0 0 

DWC water at 

the end of the 

experiment 

0 6.30 31.624 3.824 0.165 0.210 0.151 0.185 0 0 0 0.001 0 36.14 0.423 

IAVS water at 

the end of the 

experiment 

2.1 17.01 4.574 0.225 0.149 0.151 0.145 0.083 0 0 0 0 0 39.18 0.405 

Table 7: Water elements Concentrations (mg/L) 
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Figure 80, Figure 81, Figure 82 and Figure 83 show the chemical analysis of saturated 

soil paste, also show total and available macro/micronutrients and heavy metal content of 

the sand samples from the IAVS before and after the experiment.  

 

 

Figure 79: EC, pH and SP in IAVS before and after the experiment 
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Figure 80: Anions and Cations in IAVS before and after the experiment 

 

 

Figure 81: Total Nitrogen and Iron percentages dropped after the experiment. Note no iron was added to 

the IAVS during the experiment contrary to the DWC system. 
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Figure 82: Available Nitrogen and Iron percentages dropped after the experiment. Note that no Iron was 

added to the IAVS during the experiment in contrary to DWC system. 

 

Figure 83: Total macro/micronutrients and heavy metal content of the sand samples, showing high 

phosphorus showing the noticeable eutrophication phenomena. 
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Figure 84 shows the Phosphorus content in the sand from the IAVS after the experiment 

has a very high concentration of 334.8 mg/kg and available 162.4 mg/kg.  

 

Figure 84: Available macro/micronutrients and heavy metal content of the sand samples, showing high 

phosphorus showing the noticeable eutrophication phenomena. 
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Figure 85: Left, the IAVS sand on the first day and on the right, the sand on the last day of the experiment. 

4.7 DWC and IAVS microbiological water analysis after the 

experiment 
 

Salmonella and fecal coliform are bacteria whose presence can indicate water 

contaminated by human or animal wastes, which can cause short-term health effects. 

They may also pose a greater risk to people with severely weakened immune systems 

such as the elderly and young children. After the experiment, indicators, in both DWC 

and IAVS water, are showing normal rates (See Figure 86, Figure 87 and Figure 88). 

Also, it is noted that three cells of the Salmonella and Shigella bacteria were detected per 

milliliter caused by the stools of a rodent. These rates are not significant and do not affect 

the water quality. 
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Figure 86: The graph shows the harmful bacteria in DWC and IAVS water – cell per milliliter. 

 

 

 

Figure 87: The graph shows the total number of bacteria in the DWC and IAVS (T.C) 
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Figure 88: The graph shows COD and BOD in the DWC and IAVS. 

4.8 DWC and IAVS Molokheya samples productivity analysis: 
 

A comparison was made between Molokheya samples from the DWC, IAVS and organic 

Molokheya from Metro market. After analyzing the results from the Molokheya samples 

from the DWC and IAVS, no pesticides were detected as shown in Figure 89, while 

Organic Molokheya from the market showed insignificant traces of pesticides at 0.01 

mg/kg. 

 

Figure 89: Pesticide traces found in Molokheya from the DWC and IAVS. 
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The elemental analysis of Molokheya samples from the DWC, IAVS, and organic 

Molokheya from the market shows close results. The organic Molokehya has higher 

manganese, copper and zinc. DWC is slightly richer than IAVS in these elements, as 

shown in Table 8. 

The water content was higher in the organic Molokheya sample, compared to the samples 

from the IAVS and DWC, as shown in Figure 90. 

 

Table 8: Elemental analysis of the Molokheya from the DWC and IAVS 
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DWC 0 0.53 0.05 0.09 0 10.3 2 7 0 0 0 

IAVS 0 0.63 0.05 0 0 9.2 2.8 6 0 0 0 
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Figure 90: Moisture content percentage in Molokheya samples 

 

 
Calcium content in the Molokheya is highest in samples from the IAVS and lowest in the 

organic sample from market, as shown in Figure 91. 

 

 

Figure 91: Ca percentage in Molokheya samples. 
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Figure 92: Fe percentages in Molokheya samples. 

Figure 93 show the Vitamin A (Beta-carotene) content in the Molokheya samples. 

Organic sample from market is richest in Vitamin A compared to the IAVS DWC 

samples. The sample from the IAVS is significantly richer in Vitamin A than the DWC 

sample.  

 

Figure 93: Vitamin A (Beta-carotene) content in Molokheya samples. 
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5 Chapter 5: Summary Discussion, Conclusions, and 

Recommendations 

5.1 Summary Discussion and Conclusions 
 

The source of water that is used at the beginning of the experiment in both systems is 

dechlorinated tap water as tap water is often treated with chlorine and chloramines to 

remove bacteria and pathogens to be potable water. Chlorine and chloramines are toxic to 

fish, plants and nitrifying bacteria. Thereby, Tap water that was used in the experiment 

was stored before use to allow all and chloramines to dispel into the atmosphere. This 

way takes up to 48 hours to have stored dechlorinated tap water to be used in the 

aquaponics experiment. This process also can be occurred faster if the water is aerated 

with air stones that are connected to the air pump in the aquaponics (FAO, 2015). 

 

The dechlorinated tap water that is used in the experiment was naturally rich in nitrate as 

shown in Table 7. The high nitrate levels in the water source impacted ammonia levels in 

both systems. Ammonia has harmful effects on fish growth and plant stress. Ammonia at 

concentrations of 0.07 mg/L causes tissue damage and slow fish growth. The acceptable 

ranges for toxic ammonia for fish is 0-2 mg (Rakocy, Bailey, Shultz, & Thoman, 2004). 

Ammonia level was already high in IAVS system from the most beginning when the 

experiment was launched.  

Nutrient-rich water can lead to eutrophication (FAO, 2015). The increase of nutrients in 

water affects the ecosystem, increasing algae blooms and decreasing the dissolved 

oxygen causing Eutrophication process (Aguilara-Titus et al., 2014). 

 

Additionally, Eutrophication problem contributed also in increasing ammonia level in 

IAVS. Therefore, installing a mechanical filter will be inevitable in mitigating the high 

concentration of Ammonia through preventing the accumulation of solid waste in IAVS, 

due to the decomposition of solid waste. While on the other side, the ammonia 

concentration remained at its normal rate in DWC. As a result, high Ammonia level has 

negative impact on fish health and appetite, which was apparently noticeable in the IVAS 

experiment. 
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TDS was originally low at the beginning of the experiments as stated before in Figure 

75. It was notable that TDS in DWC was doubled in comparison to IVAS, due to the 

accumulation of the soluble elements from fish feed, which was mainly because of better 

fish nutrition, as ammonia levels were lower which caused fish appetite to grow. Fish 

appetite in IAVS was declining till fish stop feeding. Fish feeding behavior is very 

important as good fish appetite is a major indicator of healthy fish in aquaponics. If fish 

appetite decline or if the stop feeding, this is a sign of poor quality water in the 

Aquaponic.  (FAO, 2015) 

 

Plants need to absorb thirteen nutrients from the water. These nutrients are: boron, 

calcium, chlorine, copper, iron, magnesium, molybdenum, nitrogen, potassium, 

phosphorus, sulfur and zinc (Aguilara-Titus et al., 2014). While phosphorus rates were 

high in both systems which it can be inferred that fish intensification production of waste 

is higher than the capacity of the current grow beds in the experiment. Larger grow beds 

in both systems could be used in future experiments to grow more crops and produce 

more food with the same fish tanks and fish amounts. 

 

The cause of many algae blooms is also phosphorus. Algae, often inhibited by lack of 

phosphorus, blooms, consumes oxygen, and turns once vibrant, ecologically diverse 

waters into green, dead sludge.  

High Phosphorus rates cause a Hypertrophication or Eutrophication phenomena, which is 

an enrichment of the water from minerals like phosphorus. This causes an increased 

production of algae that will cause the depletion of fish as the water quality deteriorates 

(Aure & Stigebrandt, 1990). 

 

Phosphorus was much higher in DWC due to the accumulation of the soluble elements 

from fish feed as well as and larger fish feed portions to meet the increased fish appetite. 

The exposure of fish tanks of both systems and the mechanical filter of the DWC to 

sunlight resulted in algae flourish. Thus, it is recommended to cover the tanks and limit 

sunlight exposure control algae effect in eutrophication process. 

 

Ultraviolet (UV) light from the sun is also a problem for nitrifying bacteria as these 

bacteria are photosensitive organisms. UV affects the Nitrifying bacteria negatively and this 

also affects the nitrification process in the aquaponics systems (FAO, 2015). Covering fish 
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tanks can be a simple solution for this, also the rafts in the DWC system is preventing direct UV effect 

on the nitrifying bacteria in the water grow beds. IAVS fish tanks can be also covered, 

while IAVS sand grow beds is exposed to UV without cover, and this can be a threat for 

the nitrification process in IAVS grow beds. 

 

Iron is a necessary supplement that should be added to DWC system (Rakocy, Bailey, 

Shultz, & Thoman, 2004). Iron is added to DWC system at a concentration of 2 mg/L 

once every two to three weeks. While in IAVS system, iron levels increased significantly in 

the system and the crops without any involvement. This is one of the main strength points 

in IAVS systems, as IAVS doesn’t need any supplements to grow high quality crops. 

 

DWC and IAVS are completely safe. There are no concerns regarding the integration 

between fish and plant that could cause food safety problems. 

Regarding IAVS soil analysis, there was elements accumulation which blocks water 

leakage, resulting in losing sand porosity which is one of the IAVS system advantages. 

Sand porosity is essential in allowing oxygen to reach the plants for respiration. Thus, a 

well-aerated soil is crucial for the whole process success.  

It is also vital to eliminate any heavy metals in fish feed like antimony, caladium, or lid in 

order not hinder self-water recycling process in aquaponics system because these metals 

would remain in the closed water cycle of Aquaponics even if in very low traces.    

 
The results answers the research questions as Aquaponics can be considered a strategic 

ally to conventional agriculture in Egypt today and to be a strong alternative to land 

reclamation and traditional farming methods in the future. On the short term, aquaponics 

has one major drawback which is the high CAPEX and OPEX compared with those of 

conventional agriculture. However, on the long term it could save the huge amounts of 

water wasted by conventional agriculture and land reclamation up to 85 percent 

(AlShrouf, 2017).  

 

IAVS system is more efficient with less CAPEX and OPEX than DWC. IAVS is also 

more productive especially in producing more crop variety. Till now DWC systems are 

capable to produce only leafy vegetables and herbs, despite the fact that Egyptians are not 

familiar with eating leafy vegetables as main foods like other European countries 
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(Soethoudt, 2016). IAVS system shows that it can provide diversity and variety of crop 

production. 

 

IAVS can be the suitable aquaponics design solution for Egyptian market, since IAVS 

systems cost about 20% less than DWC aquaponics system, while DWC is used to be 

known as the most successful commercial aquaponics system.  

IAVS also solves the plants and products variety issue in Aquaponics. The experiment 

and the thesis proven that most of the crops grew better and produced better in IAVS than 

DWC. The availability of sand in Egypt will make the CAPEX and OPEX less, and will 

enable a bigger scale models for mass production. 

 

The comparison between DWC and IAVS systems showed that the major differences 

were not in quality but quantity. Food production quality is slightly higher in DWC but 

not significantly; both systems produce high quality organic food. However, IAVS is 

producing more amounts and wider varieties of crops with less CAPEX and OPEX. Both 

DWC and IAVS are consuming much less water than conventional agriculture. Fish 

production was more by 8% in DWC. 

 

It is highly recommended to give the IAVS a try and more research as this system can 

help Egyptians in areas that are suffering from water scarce to produce high quality 

various food. Fish production results were so close in both systems and slightly more in 

DWC. More research and work are needed for new designs of IAVS with more efficient 

materials to lower the CAPEX and OPEX.  It will be very useful to research more on the 

reasons for the rapid amounts of phosphorus that were found in both DWC water and 

IAVS sand. Also more research about The Eutrophication phenomena in Aquaponics will 

help a lot in producing more food either plant of fish.  

  

5.2 Limitations, Recommendations and Future work: 
 

One of the main remarks was the death of fish in IAVS fish tank. Fish tanks were 

exposed to sunlight that helps in rapid algae blooming. Algae and high concentration of 

phosphorus in water caused what is known as Eutrophication phenomena that affected 

fish in IAVS. The flooding/ flushing irrigation system in IAVS allows water to remain in 
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the sand grow bed exposed to sunlight. Dead algae were noticed on the surface of the 

IAVS sand grow bed, turning the sand’s surface first into green then into black. 

It is recommended to make microfilteration (MF) process for water that comes out of 

grow beds before going back again to the fish tanks. This will help to separate 

microorganisms and suspended particles from process water through a type of physical 

filtration process where contaminated water is passed through a special pore-sized 

membrane. MF can be installed in the last phase of water circulation before it is pumped 

again into fish tanks. Some aggregates like pebbles could also be used in the IAVS sand 

grow bed. Pebbles can be put as a first phase after water comes out of the fish tank. When 

water is flooded from IAVS fish tank by gravity force, it will be full of algae from the 

fish tank because of the sunlight. Water will fall on the pebbles and algae will remain on 

the pebbles giving the green look and then it will drain to the sand grow bed in IAVS 

with the least amount of algae. A mechanical filter could be needed to be added to IAVS. 

 

Aquaponics complexity lies in applying and having the best results especially on a huge 

scale. Aquaponics systems are nearly closed cycle systems including two organisms with 

different conditions and needs. Accordingly it is always important to invest in the 

research and development of Aquaponics’ design using the latest efficient technologies, 

while being also sustainable. This can be achieved using local and recycled materials in 

order to reduce the Aquaponics’ CAPEX and OPEX for the small farmers and startups. 

Aquaponics’ productions are still targeting the niche market asking for high quality 

organic products. Aquaponics have a high potential to help the Egyptian economy 

through promoting export. This requires all stakeholders to work together including the 

Egyptian government to raise awareness and support the new ideas including small 

Aquaponics’ projects. Egypt highly depends on conventional agriculture and land 

reclamation, which inefficiently exploit Egypt’s resources. For this reason, Aquaponics 

can be a strong ally to conventional agriculture and land reclamation in Egypt. Although 

Aquaponics’ cost can be seen expensive, especially for small farmers and startups, yet the 

profit per acre can reach 30 times more than the profit from land reclamation or 

conventional agriculture. Fish is also a byproduct that increases the profit.  

 

In accordance, researching Aquaponics’ new technologies and new techniques is highly 

recommended. Aquaponics’ designs include commercial scales such as low budgets 
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technologies versus high budgets technologies. It is important to choose the right scale 

and design of Aquaponics to reach optimum results. 

 

On another side, more research and experiments are required to design more efficient 

aquaponics. In the near future, it will be important to use product design techniques with 

aquaponics and integrate aquaponics more with home appliances. Many people will be 

able to purchase the new customized aquaponics at home to produce clean and organic 

vegetables and protein. While researchers will need to work more on reducing the high 

CAPEX and OPEX  of aquaponics and to apply more practical and economical designs, 

to enable aquaponics to be a part of everyone's life style in the near future. 
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7 Appendix 

            

Chemical analysis, Macro and micro nutrients as well as Heavy metals content of water 

sample of DWC Aquaponics system during the experiment 
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Chemical analysis, Macro and micro nutrients as well as Heavy metals content of water 

sample of IAVS Aquaponics system during the experiment 
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Chemical analysis, Macro and micro nutrients as well as Heavy metals content of water 

sample of the water source that is used in both DWC and IAVS Aquaponics system 

before the experiment 
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Chemical analysis of saturated soil paste, as well as total and available macro, 

micronutrient and heavy metal contents in sand media in IAVS. 
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Iron and Calcium elemental analysis for Molokheya samples from DWC, IAVS and 

organic sample from market. 
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Water content analysis for Molokheya samples from DWC, IAVS and organic sample 

from market. 
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Vitamin (A) B-carotene analysis for Molokheya sample from market 
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Vitamin (A) B-carotene analysis for Molokheya sample from IAVS 
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Vitamin (A) B-carotene analysis for Molokheya sample from DWC 
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Pesticide residues analysis results for Molokheya sample from DWC 
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Heavy metals elemental analysis results for Molokheya sample from DWC 
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Pesticide residues analysis results for Molokheya sample from IAVS 
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Heavy metals elemental analysis results for Molokheya sample from IAVS 
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Pesticide residues analysis results for organic Molokheya Sample from the market 
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Heavy metals elemental analysis results for organic Molokheya sample from market 
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Elements detected in food using ICP-OES method and their practical Limits of 

quantification (LOQ) in food (mg/kg) by QCAP 
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Commission regulation (EC) - Setting maximum levels for certain contaminants in 

foodstuffs 
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