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Abstract 

The objective of this study was to study the effect of Nb alloying with Ti on the 

photoelectrochemical performance of the resulted oxide upon anodization. In this regard, 

nanotubes were grown on Ti-Nb alloy via electrochemical anodization and their corresponding 

photocatalytic behavior was investigated and compared with those grown on an ordinary Ti 

substrate. After preparing and optimizing the nanotubes dimensions for the required geometrical 

structure, the as formed tubes were annealed at different temperatures and in air), then 

characterized with respect to their morphological, structural, and photoelectrochemical properties. 

From the morphological and structural point of view, optimized and well aligned ultra-thin wall 

nanotubes were successfully synthesized on the surface of Ti-Nb alloy. To the best of our 

knowledge, these dimensions have not been reported before. One of the challenges was that the 

oxide layer formed on the surface of the alloy was not precisely identified in literature, where some 

authors reported the formation of combination of individual oxides (TiO2 and Nb2O5), whereas, 

others claimed it was a mixed oxide TiNbOx. Raman and X-ray diffraction test results confirmed 

the formation of individual anatase and monoclinic Nb2O5 phases. Detailed XRD analysis was 

performed and the crystallite size as well as microstrain were calculated and found to be minimal 

indicating negligible effect of lattice induced tension or compression. It is worth mentioning that 

insignificant structural changes are favorable to maintain good electron mobility. Hence, point 

defect equations were deduced and it was found that that oxygen vacancies were the prevailing 

ionic defects rather than electronic Nb compensation. From the aforementioned results, ultrathin 

wall nanotubes formed on TiNb alloy were achieved, for the first time, with clear representation 

of the oxide layer composition. Such oxide layer showed better stability upon annealing at high 

temperatures. Although, UV-Vis test results showed small or negligible enhancement in the 

absorption, profile the photo-electrochemical measurements showed much higher photocurrent for 

Ti-Nb oxide alloy than bare TiO2 prepared at the same conditions for the sake of comparison. In 

conclusion, the Ti-Nb NTs showed enhanced stability over a wide range of temperatures, where 

the transition from anatase to rutile was shifted to higher temperature in addition to an increase in 

the photoconversion capability, resulting in a more efficient water splitting process. 
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1. Chapter I: Introduction and Scientific Background 

1.1. Problem Statement: 

Currently, the main problem could be break down into three main issues. The climate change as 

one of the environmental concerns, fierce competition for the energy resources which might cause 

geopolitical conflict, and the shortage in energy supply for nearly 2-3 billion people around the 

world. Strategies to solve the energy crisis can be put down into two main tracks, developing new 

energy sources and maximizing energy efficiency at the same time of reducing the energy usage 

to its minimum [1]. In other words, two contradicting challenges facing humanity right now, which 

is increasing the standard of living and consequently the global energy consumption while at the 

same time reducing our greenhouse gas emission, in particular the carbon dioxide [2]. Fossil fuels 

such as the natural gas, coal, and oil are the primary source of energy with an amount of about 

90% used mainly in transportation and industrial sectors to keep such high life style of mankind 

in the 21st century. Such depletion of these carbon-based resources will be on the expense of 

producing some valuable chemicals [2,3]. One approach is to mitigate the emission of greenhouse 

gases through converting carbon dioxide into fuel. However, this conversion suffers a lot of issues 

due to low energy content since carbon dioxide exists in very dilute conditions (~ 400 ppm in air) 

or could be present along with mixture of gases which requires large amount of energy to separate 

[4]. It was reported that the global energy consumption is expected to increase from 495 quadrillion 

British thermal units (Btu) that was recorded in the year of 2007 to estimated values of 739 

quadrillion per year in the year of 2035. This in turn means power consumption rise from 16.6 

terawatts (TW) to 24.7 TW and it is expected to further increase to 34 TW by 2050 [3,5]. Figure 

1.1 shows the difference between energy consumption and energy demand [6]. Therefore, it is the 

main goal now to look for and explore alternative renewable and clean sources of energy instead 

of depleting fossil fuels to reduce the greenhouse gas emission and alleviate climate change raising 

environmental issues as well as mitigating the dependency on foreign oil [4,7, 8-9]. 
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Figure 1.1. The energy supply and energy demand over years [6]. 

1.2. Clean Energy Resources: 

Various alternative energy resources are available such as geothermal, wind, hydropower and 

solar. Although they are sustainable and relatively clean compared to fossil fuels, they possess 

some drawbacks which limit their use and make it somehow challenging to replace the fossil fuels. 

For instance, geothermal is very expensive to extract since it is limited in lifetime. Noise and 

ecosystem disruption are caused by wind turbine blades in addition to difficulty in storing the 

generated electricity. Hydropower as well suffers from high cost and consequent environmental 

issues [10].  

1.3. Solar Energy Resources: 

Unlike the previously mentioned energy resources, solar energy is plentiful, unlimited, free and 

renewable which could be used to generate energy in the form of either electricity or heat. Solar 

energy arriving the earth in only one hour exceeds the world energy consumption in a whole year 

[11]. (~1.2 × 10 14 kJ are received at the Earth’s surface every second) 

Accordingly, it can provide enough power to the whole humanity for several hundreds of times. 

Yet, it is unpredictable and intermittent as it depends on many factors, for example, the coordinates 

of the place, time during the day, and which season of the year are we in [12,13]. Another drawback 

of the solar energy is the low density of solar irradiation per unit surface area of the Earth.  

Figure 1.2 shows the solar irradiation distribution in the word. It can be seen that the Middle East, 

Africa, Australia, the Indian subcontinent, Central America, and South America have the 
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abundance of solar energy resources. 6 kWh/m2 of solar radiation is delivered to these areas per 

day. In comparison, Europe, Asia, and Northern America receive relatively lower amount. 

Moreover, the availability of solar energy over time near equatorial regions is slightly fluctuating 

and therefore these consider promising locations to install fuel refineries. 

 

Figure 1.2. World map of horizontal solar radiation globally [14] 

Solar energy can be utilized in different applications. For example, incident light can produce 

direct current electricity using semiconductor materials as photons can be used to actuate chemical 

reactions in photo-electrochemical, photolysis, and photo-catalytic reactions. Accordingly, it is 

essential to develop continuous, storable, renewable and clean energy source in which efficient 

harvesting and storage is achieved in order to satisfy the energy demand. One solution is to use 

such renewable resource “sun” to split water into hydrogen and oxygen [14]. 

1.4. Water: 

Water is considered the solar refinery second key resource. It can be converted directly to hydrogen 

and oxygen by a various number of solar technologies. On the other hand, water can be consumed 

directly during CO2 reduction (without intermediate forming of hydrogen) to various fuels. 

Generally, locations with high availability of solar resource may not possess high availability of 

water. However, water withdrawal could be a source of water giving that transportation cost to the 

solar refinery is relatively low compared to the overall process cost [4]. 

1.5. Hydrogen: 

In 1788, Hydrogen is named by Lavoisier which comprises of two Greek words, ‘hydro’ means 

water and ‘genes’ means born of. It was once mentioned by an electrochemist called J.O’M 
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Bockris in a brainstorming session held at the Technical Laboratory of General Motors, Warren, 

MI, “We should be living in a hydrogen society”, and in reply to that, Neal Triner declared: “There 

will be a hydrogen economy”. Hydrogen economy means that hydrogen would be considered as 

the energy carrier which is to be transported wherever easily. Future transportation fuel selection 

criteria includes safety, economics, efficiency, versatility and environmental friendly. 

Additionally, this new energy carrier must link the renewable energy sources to the consumption 

sectors and easily replace the hydrocarbons market avoiding the big hustle of such switch. This 

means it has to be produced, transmitted, and stored in an easy, cheap, clean, renewable, and more 

efficient way than currently existing fuels [15]. Hydrogen is considered an excellent energy carrier 

as it has many advantages such as: elevated energy yield; availability and can be obtained from 

different sources in large quantities and at high efficiencies (water or biomass); clean and 

environmentally friendly as it does not produce any greenhouse gases or pollutants that may harm 

the environment; easy to store (gas, liquid, and metal hydride form); high transportation 

capabilities (pipelines or tanks for long distances); can be efficiently converted into other energy 

forms in more than one way [2]. Although hydrogen has unique properties that qualifies it to 

ideally alter the conventional energy sources, yet it has some drawbacks limiting its use as fuel 

such as additional costs associated with compressing hydrogen to be stored as compressed gas or 

liquid, shortage of available infrastructure for hydrogen, lack of dependence on renewable 

generation since its production is mainly relying on fossil fuels through natural gas reforming. 

Accordingly, enormous efforts have been carried out to study the possible methods of producing 

hydrogen using renewable resources [2,15]. The hydrogen production from hydrocarbons is done 

via three main techniques: autothermal reforming, hydrocarbons steam reforming, and partial 

oxidation. Such processes involve the emission of both carbon monoxide and dioxide as well as 

hydrogen. Hydrogen produced can be enhanced in terms of quantity and purity quality via 

preferential oxidation of exiting CO and water-gas shift. This promotes the use of solar energy to 

obtain clean renewable fuel like hydrogen through water electrolysis, thermochemical water 

splitting, photo-catalytic water splitting, and photo-electrochemical water splitting [4]. 

Solar energy can be directly converted into chemical energy through splitting water into oxygen 

and hydrogen by sunlight in photoelectrochemical cell. This is considered one of the most 

promising strategies to supply clean and sustainable energy in the future. For a device to store solar 

energy, it is important to make use of incident solar radiation so that a chemical reaction can be 
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carried out and therefore that energy can be stored as a chemical fuel [16]. In this respect, coupling 

solar irradiation to water splitting through electrochemical process is of increasing interest. There 

are two available routes for this process. The first one is called “indirect solar-to-hydrogen 

production” at which the conventional solar panels are used to run electrolyzers. The second one 

is called “direct solar-to-hydrogen production” at which a single device is developed to carry out 

both light absorption and consequently water splitting. An indirect approach receives an advantage 

of using conventional, tried-and-tested technologies, however, it suffers from the efficiency losses 

due to the extra step involved, as a photovoltaic cell is firstly used to generate electricity which is 

then consumed through a following electrolysis step in a different device. Therefore, recently, a 

lot of activities have been exploded targeting the evolution of devices for direct solar-to-fuels. This 

method will hopefully become more efficient compared to other indirect methods. Furthermore, 

the direct solar-to-fuels devices can implement ‘artificial photosynthesis’, where these devices can 

capture and store the energy of the sunlight through a chemical bond acting as “solar fuel” which 

is hydrogen in this case [14].  

Producing hydrogen by one of the most promising technologies which is solar 

photoelectrochemical (PEC) can potentially secure the supply of a cost-effective, domestically 

produced, and clean energy carrier taking the advantage of the huge amount of the solar radiation 

(120,000 TW) that strikes the surface of the earth continually [4,17]. One of the main criteria for 

the devices used to split water is to be cheap for production and operation, as they become widely 

adopted. Therefore, electrocatalysts that comprise only earth-abundant, inexpensive elements must 

be developed for water splitting. Accordingly, special concern towards the investigation of the 

progress of such electrocatalysts is given, with emphasis on the incorporation of them into 

photoelectrocatalytic water splitting systems. The challenges that may face the development of 

these devices should be taken into considerations as well [14].  

1.6. Photoelectrochemical (PEC) Water Splitting: 

1.6.1. Fundamentals of PEC Method 

Recently, the increase of the human population and consequently the energy consumption requires 

a greater demand for the source of clean energy. Sustainable and clean energies are essential in the 

future for ecotopian society. Jules Verne once mentioned in his book that: “...water will one day 

be employed as fuel, that hydrogen and oxygen which constitute it, used singly or together, will 
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furnish an inexhaustible source of heat and light...”. In 1972, this came true when splitting water 

into hydrogen and oxygen through photoelectrochemical (PEC) method was investigated by 

Fujishima and Honda [18]. H2 is the most optimum solution to the demand of energy in the future, 

especially when it sourced in an efficient and clean manner. However, for the PEC method, a bias 

on the electrocatalyst must be applied, powder of TiO2 in 1979 was found to split water without 

applying a bias voltage when exposed to sunlight using a sacrificial reagent. This uncovered the 

most economical and promising method to produce H2. Figure 1.3 shows the number of 

publications concerning photocatalytic process in the last decade indicating a tremendous progress 

in this process. Review articles summarizing the progress of the semiconductor photocatalysis are 

being frequently published [19-23]. 

 

Figure 1.3. Number of yearly publications about photocatalytic water splitting for the last decade [24]. 

Photocatalytic water splitting depends on the high redox capacity of photogenerated electron-hole 

(e-h) pairs. According to where the excitation initially takes place, photocatalytic water splitting 

was classified by Linsebigler et al. [19] into two classes. For the first process which called the 

sensitized photoreaction, the initial photoexcitation occurs in a catalyst substrate before the 

excited electron is being transferred to a ground-state molecule. The second one referred as the 

catalyzed photoreaction at which the initial photoexcitation takes place in the adsorbate molecule 

before interacting with the catalyst at the ground-state. Regarding the first case, the semiconductor 

electronic structure plays a vital role for water splitting. When semiconductor materials absorb a 

photon having energy higher than that of a bandgap energy, a valence band (VB) electron is excited 

and transferred into the conduction band (CB), and consequently a hole is created in the VB (Figure 

1.4). Due to the existence of the bandgap, the migration of the photogenerated (e-h) pairs to the 
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semiconductor surface occurs before the recombination, where these pairs can exchange energy 

and charge with adsorbed species (O2, O2
-, OH-, etc.). New high redox capacities species (O2

-, OH, 

etc.) will be created. These species are the reagents to produce H2 and O2. A direct interaction 

between the e-h pairs and these reagents can also be occurred. Eq 1.1 represents the overall process 

of photocatalytic water splitting through the following reaction; 

2H2O(l)
photon energy>1.23 eV
→                 O2(g) + 2H2(g)

                                    ∆E0 = 1.23 V
  (1.1) 

where ΔE0 is the equilibrium potential under standard conditions. The reduction and the oxidation 

half-cell reactions are involved through the path of PEC to water splitting (Equation 1.2 and 1.3). 

Reduction: 4H+(aq) + 4e− = 2H2(g)   (1.2) 

ΔE0 = 0.00 V vs. SHE 

and 

Oxidation: 2H2O(l) = O2(g) + 4H
+(aq) + 4e−  (1.3) 

ΔE0 = 1.23 V vs. SHE 

The redox potentials change under different conditions and this can be described by Nernst 

equation (Equation 1.4): 

Ee = E0 −
RT

zF
ln
oxidized

reduced
     (1.4) 

where Ee is the electrode potential, R is the universal gas constant, T is the temperature, z is the 

number of moles of electrons involved in the reaction, and F is the Faraday constant. In this respect, 

owing to qualified photocatalysis, the CB potential level must be more negative compared to the 

potential of the H+/H2 for the reduction to proceed (Equation 1.2), whereas the energy level of the 

VB must be more positive compared to the potential of OH-/O2 to let the oxidation proceed 

(Equation 1.3). Therefore, the bandgap criteria for photocatalysis is related to the lower potential 

difference which is 1.23 eV (Figure 1.4). A lot of semiconductor materials can meet the criteria of 

the bandgap but the alignment of the band misses the levels of the redox of water. However, some 

semiconductors could be eligible for photocatalytic water splitting as the H+ (pH value) 

concentration can alter the reaction potential (Equation 1.4) [24]. 
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(a)     (b)  

Figure 1.4. Schematic representation of the process of photocatalytic water splitting: (a) PEC water 

splitting by a photoanode, and (b) Overall water splitting basic principle on a semiconductor [25]. 

1.6.2. Requirements for PEC Semiconductor Electrodes (the four criteria): 

As mentioned above, photocatalyst material plays essential role in determining the efficiency of 

the conversion of water photo-electrolysis. Hence, applying material science and engineering to 

photoelectrode materials is of great importance to boost hydrogen production using water and solar 

energy. Generally, the two main functions required in a PEC photoelectrode material are: 

• Optical function to capture as much as possible of the solar spectrum; 

• Catalytic function for the electrolysis and decomposition of water into hydrogen and 

oxygen. 

For the photoelectrode material to satisfy the above functions, some requirements need to exist in 

the material such as band gap, flat band potential, Helmholtz potential, electrical resistance, 

Schottky barrier, microstructure, and photocorrosion and chemical corrosion resistance. These 

electrochemical and semiconducting properties can be achieved by semiconductor material and 

consequently they are considered as photoelectrode for PEC and made of oxide material to 

maintain their performance for prolonged duration [26,27].  

Regardless the basic criteria, Goldilocks principle must be fulfilled for efficient photocatalysts of 

water splitting. This principle is: (a) high efficiency of photon-harvesting in the region of the 

visible light; (b) charge carriers’ good mobility; (c) e-h pairs with low recombination rate; (d) 

plentiful active sites along with rapid exchange rate of energy and charge with other species [24]. 
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Accordingly, it is essential to fabricate materials to satisfy all of the above-mentioned properties 

for the photo-electrode to perform in the highest efficiency possible. Hence, photoelectrodes are 

to be fabricated in a way to ensure combination of high efficiency, low cost, ease of fabrication, 

and durability. Such objective requires exploring new processing techniques as well suitable 

characterization methods to examine the photoelectrochemical properties of the photoelectrodes. 

Additionally, the materials of such photoelectrodes needs to be readily available where needed 

such as earth-abundant elements [26,27].  

In this regard, Titanium dioxide semiconductor has been extensively studied the past 30 years for 

photocatalytic reactions [27]. Some of its issues were resolved while others are still under research. 

The following section of literature review, we will be covering in detail the various efforts to 

produce efficient photoelectrodes for hydrogen through solar water splitting. 
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2. Chapter II: Literature Review: 

Having discussed the basic background for photocatalytic water splitting, summarizing the 

photoelectrochmical conversion process into three essential reaction steps: (i) the generation of the 

electron-hole pair, (ii) the separation and transport of the electron-hole pair, and (iii) the surface 

engineering and the corresponding required characteristics of the photoelectrodes, a survey on 

what have been done so far to obtain an efficient photoelectrode is presented in the following 

section.  

Some efforts were exerted to modify crystal structure or introduce another material in order to 

enhance the absorption and broaden the spectrum of the light being absorbed. Other attempts were 

to passivate surface traps, create shorter lateral length, providing unidirectional pathway for the 

charge carriers, and develop heterojunctions to improve charge carrier separation and transport. 

Additionally, certain crystalline facets are being created in order to boost reaction occurring at the 

surface of the photocatalyst through enhancing the adsorption of the reactants, and desorption of 

the products. This factor relies on the number of the crystal surfaces and their quality in the 

semiconductor being studied [28]. 

2.1. PEC Electrode Structures: 

2.1.1. One-Dimensional Structures (Nanotubes, NTs): 

Semiconductors in the nano scale including zero-dimensional nanoparticles, one-dimensional 

nanotubes, nanowires, nanorods, two-dimensional nanosheets and the three-dimensional 

construction of these structure assembly such as mesocrystals have superior photocatalytic 

properties. It is obviously understood that materials in the nanoscale have higher surface areas 

available for any kind of reactions, particularly one-dimensional as well as two-dimensional 

materials having dangling bonds [24,28]. It was found that one-dimensional (1-D) structure has 

advantages compared to two-dimensional structure such as planar compact metal oxide in the sense 

of higher surface area since nanotubes allows for larger surface area to be exposed to electrolyte 

as the inner surface of the tube participate in the reaction between the electrolyte and the 

photoanode while at the same time it is not far away from the metal substrate. This also favors the 

nanotube structures (NTs) over nanorods (NRs). NTs would also possess higher light absorption 

due to increased optical path length within the layer because of strong light scattering [29]. The 

collection of the photogenerated electrons is crucial for efficient photo conversion. Studies showed 
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that quicker electron transfer from the oxide surface to the metal substrate and lower charge carrier 

recombination were attained for 1-D nanotubes structures in comparison with 0-D nanoparticles 

as this geometry has lower grain boundaries across which charge carriers will have to pass. In other 

words, the nanotubular architecture provides some order and interconnections for the path of the 

charge carriers, hence reduce the randomness of the grain boundaries and such structure lowers 

the losses of charge carriers crossing grain boundaries [27,30,31]. Electron efficiency of nearly 

100% at the bottom of 1-D layer was recorded by Mukul and Hongshan [29].  Wang et al. [28] 

investigated the difference between well aligned nanotube structures and random nanoparticles 

and found that nanoparticles had higher defects, surface states and grain boundaries acting as 

sources of trapping and detrapping sites along the pathway of the charge carrier transport and lead 

to charge carrier losses by recombination and eventually reduce collection efficiency. Moreover, 

1-D structure can be easily prepared via very simple process called “Anodization”. This makes the 

fabrication easy and cost effective to be produced on a large scale [27]. Among the advantages of 

nanotubes and the production technique “anodization” is that their morphological parameters can 

be easily adjusted and controlled. It is important to attain nanotubes with certain dimensions for 

several reasons. Small wall thickness which is in the range of the summation of width of the 

depletion layer and the diffusion length is favored to avoid recombination. As charge carriers 

generated at the material surface within such retrieval length will escape recombination. TiO2 

nanotubes with wall thickness of around 20 nm are mostly prepared by Grimes group so that the 

transport distance (10 nm) would be shorter than the retrieval length. As a result of reducing 

recombination, quantum efficiency will increase. However, minority carriers might get trapped in 

the states at the surface [30,31]. A proposed schematic for the charge carriers walk mechanism 

was given for nanotube (NT) and nanoparticle (NP) structures (Figure 2.1). The NTs are well 

arranged in an array perpendicular to the metal substrate. Accordingly, electrons would move 

rapidly in one direction from top to bottom of NTs without having to go through any of the other 

3D network of nanoparticles [27,29,32]. 
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Figure 2.1. Schematic representation of the electron transport in TiO2 NP based photoelectrode; (b) 

electron transport in TiO2 NT based photoelectrode [29]. 

2.1.2. Nanotubes Preparation: 

2.1.2.1. Anodization Process and its Advantages: 

One of the distinguished technologies to obtain 1-D nanostructures is anodization. It is an 

electrochemical process to produce self-ordered structures in various sizes ranging from 

nanometers to as large as micrometers. It is widely studied due to its simplicity, easiness, and 

capability to scale-up. Several self-organized structures have been prepared via anodization such 

as nanopores and nanotubes whether on top surface of pure metal or alloy [33]. Controlling the 

composition, concentration, and pH of the anodization electrolyte, as well as applied voltage and 

time will lead to the formation of wide range of 1-D structures with controlled diameter, wall 

thickness, and length. In order to have control over the obtained 1-D structures, clear understanding 

of the process have been developed. The following section will explain in detail the mechanism of 

nanotube formation via anodization. Eventually, this will enable us to design and develop a 

protocol for the fabrication conditions of desired dimensions [33,34]. Numerous studies reported 

the formation of TiO2 nanotubes on surface of titanium with various diameters and lengths in 

different electrolyte types (aqueous or organic) [35-42]. Also, self-organized and ordered 

nanotubes formed on the surface of metal alloys such as Ti-Nb, Ti-Nb-Ta-Zr, and Ti-Zr were 

reported [43-45]. For this reason, a comprehensive survey for the influence of these factors on the 

resulting nanotubes dimensions and morphology will be discussed later in section (2.1.2.3).   
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2.1.2.2. Nanotube Formation Mechanism: 

Mechanism of nanotubes formation is divided into several stages as shown in Figure 2.2. First, 

oxidation occurs due to metal interaction with O2- or OH- ions (from H2O) of the electrolyte at the 

metal surface. These anions continue to interact with metal at the metal/metal oxide interface. At 

the same time, metal cations will start to migrate from metal/ metal oxide interface towards 

metal/electrolyte interface due to the effect of electric field. The applied electric field will lead to 

oxide dissolution located at the interface of metal oxide/electrolyte as a result of metal-oxide bond 

weakening and polarization, called “field-assisted dissolution”. Simultaneously, chemical 

dissolution occurs owing to electrolyte containing pitting elements such as Fluoride ions (F-) which 

is essential to the formation of nanotubes over the expense of nonporous structures. At the 

beginning, field-assisted dissolution prevails chemical dissolution since the oxide layer is thin over 

which electric field exists. Naturally, there is a competition between rate of metal oxidation and 

the rate of chemical dissolution of metal oxide. When the rates of oxide formation at the bottom 

(metal/metal oxide interface) and oxide dissolution at the top (metal oxide/electrolyte interface) 

become equal, nanotubes grow at steady state. Hence, the nanotubes growth is governed by the 

rate of diffusion of solution and the electric field. And in case of alloys with different phases, these 

processes preferentially occur at certain locations of the alloy. Generally, the nanotube layers are 

formed through eating away the metal substrate. Nanotube formation is dependent on the rate of 

chemical dissolution, it cannot be neither too high nor too low, since it decreases the metal oxide 

layer (known as the barrier layer) thickness and hence maintain the oxidation and field-assisted 

dissolution going (both referred to as electrochemical etching). The rate of chemical dissolution 

depends on the concentration of F- ions as well as pH of the electrolyte. Knowing that rising the 

concentration of F- or having more acidic electrolyte (more H+) will in turn increase the rate of 

chemical dissolution. As for the electrochemical etching, it is controlled by the potential of the 

anodization in addition to the electrolyte concentration. Applying higher potential entails higher 

F- content in the electrolyte [45-47]. 
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Figure 2.2. Schematic representation of a nanotube array evolution at constant anodization voltage: (a) 

formation of oxide layer; (b) formation of pit on oxide layer; (c) pit growth into pores with scallop 

shaped; (d) metallic part between field assisted dissolution and pores undergoes oxidation; and (e) top 

view of fully developed nanotubes array [45]. 

2.1.2.3. Anodization Factors affecting NTs Dimensions: 

The type of electrolyte is considered one from the most important factors that affect the final 

structure of the NTs arrays formed by the anodization process. Acevedo-Pena et al. [48] showed 

that varying the electrolyte composition resulted in a different TiO2 NTs morphology. Wherein, 

increasing the concentrations of NH4F and the content of H2O in Ethylene glycol based electrolytes 

at anodization voltage (30 V) and time (2 h) resulted in a transition in the morphology of TiO2 

from a nanoporous structures to a nanotubes and end with a sponge film [48], as shown in Figure 

2.3.  
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Figure 2.3. Effect of electrolyte composition in terms of amount of NH4F and H2O percentage (shown on 

each figure) on the obtained morphology of TiO2 when anodizing at 30 V for 2 h, before heat treatment 

[48]. 

In another study, Deyab et al. [49] proved that the dimensions of Ti-Mo-Ni mixed oxide NTs arrays 

fabricated by anodization in a formamide-ethylene glycol based electrolyte are dependent on the 

composition of the electrolyte. Wherein, using a volumetric ratio of formamide to ethylene glycol 

(75:25) at anodization time (18 h) and voltage (20 V) resulted in 8.5 μm nanotubes length in 

comparison with 4.0 μm nanotubes length when using equivolumes of ethylene glycol and 

formamide at the same anodization conditions [49].  It worth mentioning that Ning et al. [50] had 

to change the composition of ethylene glycol based electrolyte in order to obtain Mn-doped TiO2 

NTs arrays similar in morphology to that of the pure TiO2. Wherein, doping TiO2 with manganese 

increase the solubility of the oxide, thus, decreasing the dissolution ability of the electrolyte (by 

decreasing the water content) was essential to obtain Mn-doped TiO2 NTs with the same 

morphology as that of pure Titania NTs [50]. 

The length and the diameter of the NTs formed by electrochemical anodization are function of the 

dopant content in the bare Ti [51]. Jang et al. [51] reported that Ti-Nb alloy with different 

concentrations of Nb (10 wt%, 20 wt%, 30 wt% and 40 wt %) anodized in a 1 M H3PO4 electrolyte 

with 0.8 wt % NaF at anodization time (2 h) and voltage (20 V) showed an increase in the average 

tube length when increasing the Nb content. Tubes lengths of 730 nm, 940 nm, 1.5 μm and 2 μm 
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in case of using Ti-Nb alloy with Nb content 10 wt%, 20 wt%, 30 wt% and 40 wt %, respectively 

were obtained [51]. Along the same line, the pore diameter of the NTs varied with the Nb content, 

whereas in case of 10 wt% Nb content a NTs with diameter size 225 nm were obtained, while in 

case of higher Nb content a bimodal size distribution of tubes with 220 nm diameters surrounded 

by smaller tubes (55 nm diameter) were obtained, as shown in Figure 2.4. It was noticed that the 

formation of the smaller tubes increased with increasing the Nb content, and were located in areas 

where nucleation had not occurred which indicated its formation in a secondary nucleation process 

[51]. Oppositely, Jin et al. [52] reported that changing the Nb content in TiO2 did not affect the 

dimension of the formed NTs by anodization in ethylene glycol and NH4F electrolyte at 

anodization time (0.5 h) and voltage (60 V).  

 

Figure 2.4. SEM bottom-view images for the formed nanotubes via anodization of Ti alloy with different 

Nb content (a) 10, (b) 20, (c) 30, and (d) 40; in 1 M H3PO4 + 0.8 wt.% NaF (F and S refer to First and 

Second nucleated nanotubes, respectively) [51]. 

In this regard, it is worth mentioning that Xu et al. [53] found that single phase microstructure of 

Ti20Nb is more favorable for forming NTs than dual phase microstructure of the same alloy under 

different heat treatment conditions (furnace cooling and water quenching, respectively). Upon 

anodization at 20 V and 0.5 h in (0.5% HF aqueous solution) electrolyte, no NTs were formed in 

case of dual phase microstructure Ti20Nb alloy as shown in Figure 2.5a, while in case of single 

phase a uniform NTs with 120 nm diameter and 1 μm length were formed as shown in Figure 2.5b 

and Table 2.1. When using an electrolyte with weaker dissolution strength (0.5% HF aqueous 
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solution adjusted to pH 3.5 by ammonia) a NTs were formed in case of dual phase microstructure 

Ti20Nb, as shown in Figure 2.5c, however, the NTs formed in case of single phase microstructure 

were more uniform, longer and larger in diameter as shown in Figure 2.5d and Table 2.1. [53]. 

Table 2.1. Different anodization conditions and the corresponding resulted morphology [53]. 

Samples 
Crystal 

Structure 
Electrolyte 

Voltage 

(V) 

Time 

(h) 

Tube length 

(μm) 

Tube diameter 

(nm) 

TiNbO-

NT-1 

Dual 

phase 

0.5% HF aqueous 

solution 
20  0.5 --- --- 

TiNbO-

NT-2 

Single 

phase 

0.5% HF aqueous 

solution 
20  0.5 1 120 

TiNbO-

NT-3 

Dual 

phase 

0.5% HF aqueous 

solution (adjust to 

pH 3.5 by ammonia) 

20 0.5 1 92 

TiNbO-

NT-4 

Single 

phase 

0.5% HF aqueous 

solution (adjust to 

pH 3.5 by ammonia) 

20 0.5 2 100 

 

Figure 2.5. SEM top views of TiNbO-NT and TiO2 -NT: (a) TiNbO-NT-1, (b) TiNbO-NT-2, (c) TiNbO-

NT-3, (d) TiNbO-NT-4 [53]. 
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On the other hand, Liu et al. [47] indicated that varying the content of Zr in Ti-Nb-Zr alloy affected 

the length and the diameter of the NTs formed by anodization in 1 M NaH2PO4 electrolyte 

containing 0.5 wt% HF. Table 2.2. shows that increasing the Zr content significantly increases the 

average length of the tubes at the different voltages used. However, increasing the Zr content from 

5 wt % to 10 wt % caused a significant decrease in the average tubes diameter. While increasing 

the the Zr content from 10 wt % to 15 wt % slightly increase the tubes diameter at the different 

voltages used [47]. 

Table 2.2. Summary of average length and diameter of the nanotubes grown at different anodization 

voltages [47]. 

Another factor that affect the dimensions of NTs formed by electrochemical anodization is the 

voltage at which the process is carried. Whereas, increasing the anodization voltage causes the 

increase of average length and diameter of the NTs formed in the different compositions of Ti-Nb-

Zr alloys, see Table 2.2. [47]. In another study, Ding et al. [54] showed that increasing the 

anodization voltage transform the porous structures formed in Ti35Nb alloy into nanotubular 

structures. Wherein, Figure 2.6 shows that porous structures were formed at anodization voltage 

(10 V), while at 15 V and 20 V a well aligned NTs were formed [54].  

Samples Anodization voltage [V] Average length [μm] Average diameter [nm] 

Ti35Nb5Zr 
30 4.75 170 

40 4.8 220 

Ti35Nb10Zr 

20 2.26 98 

30 5.23 150 

40 6.12 206 

Ti35Nb15Zr 

20 3.25 103 

30 5.84 153 

40 8.13 210 



 

21 

 

 

Figure 2.6. Anodization of Ti-35NB at different voltages produced Ti–Nb–O nanostructures: (a) 10 V, 

Porous without nanotubes, (b) 15 V, nanotubes and (c) 20 V, nanotubes [54]. 

Fornell et al. [55] showed that anodization of Ti-21Nb-11Sn alloy in ethylene glycol/water 

electrolyte containing 0.31 M NaF at anodization time (1 h) and anodization voltage (10 V) 

resulted in the formation of uniform NTs with unimodal size distribution, as shown in Figure 2.7a. 

However, on increasing the anodization voltage a bimodal size distribution of the tubes was 

noticed as shown in Figure 2.7b and Figure 2.7c, whereas tubes with large diameter are surrounded 

with small ones at 20 V and 25 V [55]. Figure 2.7d illustrates that increasing the anodization 

voltage increase the tube diameter as well as the tube length and result also in a bimodal size 

distribution of the NTs above 10 V. Whereas at 10 V a NTs with pore diameter (20 nm) and length 

(500 nm) were formed, while at 30 V a NTs with pore diameter (110, 40 nm) and length (1.7 μm) 

were formed [55]. On the other hand, Figure 2.8 shows the effect of variation of applied potential 

on the diameter and length of NTs formed at anodization time (12000 s) by Tsuchiya et al. [46]. 

Whereas the length and the diameter of the tubes increased linearly with increasing the applied 

potential from 5 V to 40 V, however, the length and the diameter increased steeply between 40 V 

and 50 V. Figure 2.8 also illustrates a rough surface when anodizing at 50 V in comparison with 

lower potentials [46].  



 

22 

 

 

Figure 2.7. SEM top surface image of NTs formed on Ti-21Nb-11Sn via anodization at (a) 10 V, (b) 20 

V, and (c) 25 V with insets of cross-section for (a) and (c) and bottom view for (b). Graph (d) effect of 

applied potential on the NT diameter and length [55]. 
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Figure 2.8. SEM images for different NTs anodized for 12,000 s at various potential: (a) 5 V; (b) 10 V; 

(c) 30 V; (d) 40 V; (e) 50 V, and (f) graph for effect of potential on the obtained diameter and thickness 

[46]. 

Deyab et al. [49] reported in their study that increasing the anodization time results in increasing 

the conductivity of the electrolyte because a higher concentration of ions is leached from the 

anodized substrate to the electrolyte. This increase in the electrolyte conductivity allow the 

anodization process to benefit from a larger proportion of the applied voltage, which in turn cause 

the length and the diameter of the formed NTs to increase and the wall thickness to decrease [49]. 

Whereas, increasing the anodization time of Ti-0.3Mo-0.8Ni alloy in formamide-ethylene glycol 

based electrolyte to 18 h resulted in a tube length of 4 μm, tubes diameter about 116 nm and tube 
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wall thickness of 17.5 nm at anodization voltage (20 V), see Figure 2.9 [49]. In the same manner, 

Lopez et al. [56] showed that increasing the anodization time transform the produced structure 

from nanoporous to a well-defined NTs [56]. Their study showed that anodizing Ti35Nb5Zr alloy 

at 20 V in (1 M H2SO4 + 34.5 mM HF) electrolyte for only 5 minutes resulted in the formation of 

nanoporous structures with pore diameter of 25 nm and average tube length about 71 nm, as shown 

in Figure 2.10a and Figure 2.10b [56]. On the other hand, increasing the anodization time to 60 

minutes resulted in the formation of NTs with diameter between 75-100 nm and average length of 

900 ± 100 nm, as shown in Figure 2.10c,d [56]. 

 

Figure 2.9. Dependence of NT length, diameter, and thickness on the anodization time of Ti-0.3Mo-0.8Ni 

formed at 20 V in electrolyte of 50% FA and 50% EG with 0.2 M NH4F and 3% H2O [49]. 
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Figure 2.10. SEM image of the anodic layers formed at (a,b) 5 min, and (c,d) 60 min; giving nanoporous 

(NP), and nanotubes (NT) with their corresponding cross-section [56]. 

In agreement with Deyab et al. [49] and Lopez et al. [56], Feng et al. [34] reported that increasing 

the time of anodization of Ti–Zr–Nb alloy in (1 M (NH4)2 SO4 + 0.25 M NH4F) solution increases 

the NTs diameter and length [34]. At anodization time (5 min) a NTs with two diameters were 

formed (98 nm and 159 nm) as shown in Figure 2.11a, however, increasing the anodization time 

to (240 min) increased the larger tubes diameter from 159 nm to 175, while the small tubes 

diameter was not changed, as shown in Figure 2.11b and Figure 2.11c [34]. However, the ratio of 

the large tubes to that small tubes increased with the anodization time as shown in Figure 2.11d 

which shows that the Ratio of Density (small tubes number / large tubes number) had significantly 

decreased with increasing the anodization time. On the other hand, the length on NTs increased 

from 2.5 μm to 22 μm upon increasing the anodization time from 5 min to 480 min [34].  
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Figure 2.11. SEM top and bottom images (a,b) of two-size-scale NT anodized for 5 and 240 min, 

respectively. (c) Effect of anodization time on the large and small nanotubes diameter and ratio of density 

(smaller diameter/larger diameter), respectively [34]. 

Along the same line, Tsuchiya et al. [46] studied the effect of varying the time of anodization Ti–

29Nb–13Ta–4.6Zr alloy in (NH4)2SO4 electrolyte at constant voltage (20 V). Figures 2.12-2.14 

show the scanning electron microscope (SEM) images of the prepared layers by anodization at 0 

s, 1200 s, 4000 s and 12000 s [46]. Whereas at 0 s a top layer of nanoporous structure was formed 

and an underneath nanotubular layer, as shown in Figure 2.12a. Similarly, at 1200 s (Figure 2.12b) 

a bottom layer of NTs with a nanoporous layer above it were formed, however, the thickness of 

the NTs layer (approximately 750 nm) was significantly greater than that at 0 s. At 4000 s, the top 

nanoporous layer disappeared and only the NTs layer appeared, wherein the NTs showed a 

bimodal size distribution with two distinct diameters (30 nm and 50 nm) as shown in the top SEM 

image in Figure 2.12c [46]. However, the bottom SEM images showed a diameters sizes of tubes 

(50 nm and 100 nm), as shown in Figure 2.14c. This increase in the bottom NTs diameter in 

comparison with the top NTs diameter clearly indicates that the diameter of the NTs increases with 

increasing the anodization time [46]. Figure 2.12d, shows that the NTs diameter was significantly 

increased at anodization time (12000 s) in comparison with that at anodization time (4000 s), 
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moreover the length of the NTs was increased from 1.6 μm to 2.8 μm when increasing the 

anodization time from (4000 s) to (12000 s) [46].  

 

Figure 2.12. SEM top images for nanotubes anodized at 20 V and (a) 0 s; (b) 1200 s; (c) 4000 s; (d) 

12,000 s after potential sweep [46]. 

 

Figure 2.13. Effect of time on the thickness of the nanotube layers [46]. 
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Figure 2.14. SEM bottom images for nanotubes anodized at 20 V and (a) 0 s; (b) 1200 s; (c) 4000 s; (d) 

12,000 s after potential sweep [46]. 

When studying the effect of varying both the anodization voltage and time, Saji et al. [57] showed 

that a highly ordered NTs is formed when increasing the anodization voltage as well as the 

anodization time of Ti-35Nb-5Ta-7Zr alloy in a 1M H3PO4 electrolyte with 0.5 wt % NaF. 

Whereas, at anodization voltage (15 V) and anodization time (90 min) a nanoporous structures 

were formed, while at anodization voltage (20 V) and anodization time (180 min) a well aligned 

nanotubular structures were formed as shown in Figure 2.15 and 2.16 [57]. 

 

Figure 2.15. SEM images of the surface oxide layer formed at 15 V and 90 min giving nanoporous 

structure [57]. 
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Figure 2.16. SEM images of the surface oxide layer formed at 20 V and 180 min giving nanotubular 

structure [57]. 

From all the above, it can be seen that electrochemical anodization techniques in different F- 

containing electrolyte were used to produce different nanostructures ranging from nanoporous to 

highly ordered nanotubes in an economic and efficient way. Nanostrucutres were achieved either 

for single material such as Ti [35,37], Nb [58], Ta [59], and Zr [60]; or binary, ternary, and 

quaternary alloys with Ti as the base element in the substrate such as TiZr [43], TiNb [33], Ti-

30Ta-XZr [61], Ti-6Al-7Nb [62], and Ti–29Nb–13Ta–4Zr [46]. 

2.2. PEC Electrode Material: 

2.2.1. TiO2 Nanotubes and its Drawbacks:  

TiO2 NTs have many potential applications in different fields of solar energy conversion, catalysis 

and sensors as a result of their photoelectrochemical and semiconducting characteristics [63,64]. 

TiO2 forms three crystal structures upon crystallization, anatase, rutile, and the less stable phase 

brookite. Although anatase has indirectly slightly larger band gap than rutile (3.2 compared to 3.0 

eV), it has faster electron mobility than rutile (4 compared to 0.1 cm2V-1s-1). This is why it is 

favorable for photoelectrochemical applications [65].  The use of titanium dioxide (TiO2) as 

inorganic semiconductor photocatalyst has been very promising and is now converting from an 

emerging technology into maturing and commercial technology. It has been extensively studied 
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for the past four decades since Honda and Fujishima first discovered the use of TiO2 for water 

electrolysis when subjected to irradiation [18]. It has many advantages including elevated 

photocatalytic activity, indirect band gap, chemical and photo-corrosion resistance, abundance, 

low price, and non-toxicity [66,67]. However, there are some drawbacks of TiO2, wide band gap 

(3.2 eV for anatase and 3 for rutile). This means absorption in the ultraviolet region only, while 

for photocatalytic reactions utilizing sun light, it is desirable to extend the absorption to visible 

region in order to make use of most of the solar spectrum (UV account for less than 5% of the 

solar radiation). Additionally, TiO2 has d-shells which are partially filled and influence charge 

carriers’ low mobility, thus the photo-generated electron hole pair within TiO2 suffers fast rate of 

recombination as well as slow hot charge carrier diffusion which lowers the performance 

efficiency of TiO2 as photocatalytic material [16,66]. These drawbacks limit the use of TiO2 in 

economical practical applications. 

2.2.2. TiO2 Modification Approaches: 

To overcome TiO2 deficiencies, several approaches have been carried out in terms of bulk, surface, 

and the environment [68]. The approaches are in three main aspects in terms of photocatalysis; (1) 

generation of electron-hole pair, (2) separation and transfer of charge carriers (electron and hole), 

and (3) surface engineering [64]. Considering the first aspect, efforts were done to narrow down 

the band gap, and hence enlarge the portion of the solar spectrum over which electros will be 

excited. This might be achieved through addition of new material or crystal structure adjustment. 

As for the second aspect, to enhance charge carrier separation and transfer, passivating harmful 

trap sites at the surface, growing heterojunctions, allowing unidirectional passageway for the 

carriers while at the same time shorten lateral distance. While the third aspect is engineer the 

surface in order to produce certain facets at the reaction surface where reactant adsorption and 

product desorption would occur. Optimizing both quantity and quality of the crystal surface of the 

semiconductor would affect the resulting performance [64]. Among different approaches, we will 

explore the efforts done in some areas for the sake of enhancing charge separation and transfer, in 

addition to decreasing the recombination sites and defects. These include: doping and alloying, 

morphology optimization, and defect engineering. 
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2.2.2.1. Doping and Alloying: 

However, some of TiO2 NTs drawbacks are not overcome yet despite the enormous efforts carried 

out to resolve them. In this regard, considerable attention has been drawn to enhance TiO2 NTs 

photocatalytic efficiencies via several techniques among which is impurity doping [69], whether 

anion using N, F, P, C or S to replace the oxygen in the lattice or cation by substituting Ti cations 

with Mn, Nb, V, Fe, Ni, and Cr atoms. Other techniques involve the use of perovskites and binary 

oxides [70,71]. The latter is very promising since it somehow avoids some of the problems 

associated with doping for the sake of enhancing charge carrier mobility, such as the formation of 

recombination sites and deep localized band gap states that causes the excited electron-hole pair 

separation to be less efficient. Although doping is a widely-investigated technique, it encounters 

the problems of non-homogenous distribution. Also, nanoparticles decoration for TiO2 nanotubes 

could be considered another approach. Yet it suffers serious problems such as nanoparticle size 

variation, nanoparticles aggregation, non-uniform distribution on the surface and walls of the 

nanotubes, and possible lack of cleanness. Although bad distribution could be overcome through 

the use of some molecules as linker to attach both nanoparticles with nanotube, this would further 

cause more recombination problems of the charge carriers [72]. Another technique for doping as 

well is ion implantation, however, it possesses some limitations such as the relative high cost and 

special equipment needed to carry out the doping besides the high possibility of damaging the 

nanotubes. Likewise, cation doping achieved by immersing the nanotube structure into a solution 

containing the metal cation followed by thermal annealing to form nanoparticles of separate oxide 

phase does not happen without problems of being detached [70]. 

Alloying, on the other side, which is the use of an alloy as a substrate for nanotubes anodization, 

might aid in the homogenous distribution of an element being inserted into the unit cell, hence 

creating nanotubes with one of two, mixed oxides or doped TiO2. Nanoporous and nanotubular 

strucutres of oxide layers have been anodically grown on the surface of TiNb, TiW, TiTa, TiZr, 

TiAl, TiCu, and TiMo alloys [70]. Nevertheless, it is difficult to obtain uniform nanotubes grown 

on bi-phase Ti-alloy substrate [62,72,73]. Others fabricated NTs on the surface of single-phase 

alloy or solid solution such as Ti50Zr, Ti28Zr8Nb, Ti29Nb13Ta4.6Zr and Ti35Nb, respectively 

[34,43,44,54,73]. An interesting and extensively studied option is Nb insertion [74-78]. Nb 

presence overcomes another drawback of TiO2 which is the microstructure destruction with 

increasing annealing temperature as a result of rutile formation, which is also known for its weak 
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carrier transport properties. On one side, it increases the conductivity. On the other side, Nb was 

found to stabilize anatase and hinders its phase transformation to higher temperatures providing 

thermal stability [76-78]. Schumki et al. [79] proved that NTs having Nb exhibited higher 

photocurrent compared to TiO2 NTs due to higher electron mobility, which indicated lower 

recombination rate with the surface trapped holes. Mei et al. [62] studied the effect of Nb doping 

on the photoelectrochemical behavior and found conductivity enhancement due to replacing Ti4+ 

with Nb5+ and hence shifting Fermi level towards the conduction band. Thus, recombination would 

be lower due to better charge collection as a result of enhanced electron mobility. Similar findings 

were reported by Xu et al. [73] where they mentioned the significance of adding Nb to Ti to 

enhance the conductivity and decrease the charge transfer resistance which in turn will improve 

the electrode activity due to higher transfer rate of electrons. However, this behavior varied with 

the amount of Nb doping and the method of preparation which lead to inconsistent results [62]. 

Schmuki et al. [79] also presented that adding Nb in different content affected the conductivity 

when the nanotubes were annealed at 650 ºC. Nb doping and alloying have been studied by 

different researchers for its enhanced photocatalytic activity. However, contradicted results and 

performance variations were obtained [47,67,80]. Hence, it is of great importance to develop good 

understanding of the chemical and physical properties of the formed oxides microstructure and its 

correlation with photoelectrochemical response. Once this correlation is found, tailored repeatable 

and reliable performance will be achieved. Yet, it is quite hard to deduce the point defects 

introduced into the structure and directly relate them to the optical and photoelectrochemical 

behavior. Furthermore, controlled fabrication of nanotubes with desired dimensions is of great 

importance too since it will impact the microstructure, charge carriers transfer mechanism, optical 

and electrical properties. 

2.2.2.2. NTs Morphology Optimization: 

Along with passivating defects to improve the charge carriers’ dynamics through doping and 

alloying, many studies have reported the influence of nanostructure dimensions on the material 

functionality. Accordingly, it is essential to optimize the material properties in order to enhance 

the charge carriers’ transfer and collection. As stated earlier in section (2.1.2.3) that optimum 

morphology is required to enhance catalytic performance in terms of absorption and charge carrier 

transfer through the photoelectrode. In this regard, many attempts were carried out to control the 

nanotubes morphology and dimensions in terms of tubes length and diameter. It was found that it 
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enormously affected the performance for solar energy conversion positively. Having tubes with a 

diameter large enough to collect most of the solar spectrum and at the same time, thin walled 

nanotubes will fasten the charge carrier mobility and reduce recombination. It is worth mentioning 

that wall thickness of nanotubes is a determinant factor playing crucial role in the charge carrier 

dynamics and hence the photo-electrochemical behavior [81-84]. Although most published work 

deal with nanotubes with wall thickness larger than diffusion length, Amer et al. [85] and 

Mohamed et al. [86] reported the fabrication of ultrathin wall nanotubes of ZrO2 and TiO2, 

respectively. In the study of ultrathin wall TiO2 nanotubes, the great improvement in the 

photocurrent (almost the double compared to thick-walled nanotubes) was attributed to the 

photogenerated holes easily diffusing through the thin walled nanotubes to the interface between 

the semiconductor and electrolyte, and thus better charge separation [86]. 

2.2.2.3. Defect Engineering: 

In addition to ions incorporation and morphology optimization of TiO2 nanotubes photoelectrode, 

which have been extensively studied to improve semiconducting properties, defect disorder was 

reported to affect TiO2 properties as well as composition and structure. Consequently, defect 

engineering is to be the at most solution to improve the solar energy conversion performance. 

Second generation of modified TiO2 NTs is the goal through defect engineering to create in-situ 

defects [87]. Structural defects exist in all materials due to thermal processing and processing 

kinetics and greatly influence the materials properties [88]. In that sense, thermal annealing is used 

to reduce the number of structural defects and promote material crystallinity. Generally, during 

thermal annealing, the structural defects and dislocations transfer to the surface where 

adsorption/decomposition would occur and subsequently material would change its stoichiometric 

ratio and structure [89]. Such crystallinity and symmetry plays essential role in the optical and 

electronic properties of semiconductor material. The structure of the electronic band is dependent on 

the crystalline lattice. Therefore, any defects in crystalline structure would affect the structure of the 

electronic band. In crystalline lattice, atoms are arranged and the accompanied electrons orbitals 

overlap and their energies form states. For this reason, it is important to study defects and correlate 

their existence to the corresponding electronic properties [90]. For instance, the improvement of 

silicon industry the past 50 years, which mainly depended on tailoring its defects to adjust transport 

characteristics [88]. The crystal defects including point defects such as Ti3+ or oxygen vacancy 

(VO) in the crystal lattice of TiO2 was found to influence the functional properties of TiO2 namely 
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the charge transfer, electronic band structure, and the catalytic performance, therefore, it is 

favorable to overcome the drawbacks of TiO2. Introducing VO into the lattice would create a band 

below TiO2 conduction bad and hence contribute to better charge separation at the metal 

oxide/electrolyte interface as it acts as shallow donors [66]. Moreover, Marchiori et al. [91] 

proposed two point defects associated with charge compensation for the addition of Nb5+ into TiO2, 

valence induction to introduce Ti3+ or Ti+ vacancy creation per each four Nb. Khan et al. [67] used 

density functional theory (DFT) along with experimental work to study the point defects 

introduced into Nb-doped TiO2 compared to pure TiO2 anatase and their effect on the optical 

transitions and photocatalytic activities. They found that O2 annealed Nb-doped TiO2 had the 

highest photocatalytic activities compared to N2 or air annealed samples. While for the pure 

anatase TiO2, O2 annealed samples had the least value for the photocatalytic activity [67]. 
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3. Chapter III: Objectives and Scope of Work: 

The objective of this study is to enhance the efficiency of Ti-based photoanodes for solar water 

splitting through incorporating Niobium (Nb) as an alloying element to the base substrate upon 

which mixed oxide of vertically oriented, highly ordered, and ultrathin smooth nanotubes will be 

grown. Among many elements, Nb was found to increase conductivity when mixed with Ti in 

addition to enhancing photogenerated charge carrier (electrons) mobility, allowing better charge 

collection along with lower recombination as Nb can act as blocking layer restraining the 

recombination process. Moreover, Nb was reported to shift anatase-to-rutile transformation to 

higher temperatures. In addition, controlling and adjusting the obtained morphology as well as 

adding Nb are expected to enhance charge carrier dynamics and boost efficiency of the 

photoanodes. The successful fabrication of NTs on Ti-45Nb alloy with certain required dimensions 

and investigation of the evolving NTs structure to correlate the geometry, phases, and induced 

defects within the microstructure with the photoelectrochemical behavior was achieved through 

the activities shown in Figure 3.1. 

Figure 3.1 describes the flow and work strategy of the present study. First, broad and intensive 

literature survey was done to get familiar with various photoanodes prepared of TiO2 and/or TiO2-

xx nanomaterials prepared in different nanostructures for hydrogen production via solar water 

splitting shedding light on some of the efforts to overcome the problems of TiO2 nanotube arrays. 

It shows how photocatalytic performance is greatly affected by several factors such as topography, 

morphology, internal structure, and composition of the semiconductor for the photoelectrode. Then 

a description of the materials and experimental procedures followed to fabricate and characterize 

photoanodes of the current study is given. Nanotubes were grown on Ti-Nb alloy via 

electrochemical anodization and their corresponding photocatalytic behavior was investigated and 

compared with those grown on an ordinary Ti substrate. After preparing and optimizing the 

nanotubes dimensions for the required geometrical structure, the as formed tubes were annealed at 

different temperatures in air, then characterized with respect to their morphological, structural, and 

photoelectrochemical properties. Results were then reported with data analysis and interpretation. 

The results were compared to pure TiO2 NTs as reference material since it is often hard to compare 

with results from literature due to different preparation conditions. Accordingly, the photocatalytic 

performance enhancement was reported versus TiO2 NTs prepared in the same electrolyte 
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conditions. Furthermore, experimental results were correlated with the chemistry of point defects 

present in the structure where Nb insertion into the TiO2 phases occurred.  
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Figure 3.1. Thesis Objective and Work Flow Chart 
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Results and 
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• Result analysis and interpretation

• Comparison with previous findings

• Correlation between morphological, structural defects  
and photocatalytic characteristics
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correlation between the obtained structure and the 

resulting photocatalytic behaviour. 
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4. Chapter IV: Experimental Work 

4.1. Materials: 

Nanotube arrays comprising the photoanodes were grown on Titanium-45 Niobium Grade 36 (Ti-

Nb) sheets were purchased from Tico Titanium, Inc. and Titanium metal foil with purity of 99.95% 

purchased from Alfa Aesar. Chemicals used in the preparation process were brought from Sigma 

Aldrich. Hydrogen gas used in thermal annealing if the obtained nanotubes was supplied by Airgas 

Company.   

4.2. Methods of Nanotubes Formation: 

4.2.1. Sheet Preparation: 

Ti and Ti-Nb alloy sheets were cut into plates of 2 × 1 cm2. As for Ti-Nb sheets, mechanical 

grinding and polishing was applied before cleaning. The sheets were mechanically grinded with 

Silicon Carbide papers of coarse grit followed by finer grits under running water. SiC papers 

employed were of 600, 800, 1000, and 1200 grits respectively. In order to get even smoother 

surface of lower crystal structure deformation, the sheets were then polished with Alumina 

suspension and piece of cloth on a disc to eliminate the damage caused by the grinding process. 

Finally, the sample were placed under running water to remove the Alumina residuals of the 

specimen surface.  

4.2.2. Potentiostatic Anodization: 

First, Ti-Nb sheet as well as Ti foil was ultrasonically cleaned by immersion in acetone, ethanol, 

and distilled water for 15 minutes, respectively. The sonicator was set at 25% of its maximum 

amplitude. Then potentiostatic anodization was carried out using two electrode electrochemical 

cell in order to form the nanotube arrays on Ti-45Nb and Ti substrates. The substrates (Ti-45Nb 

and Ti) were connected to the positive pole of the Agilent E3612A DC power supply (working 

electrode) while a platinum foil (counter electrode) was connected to the negative pole of the 

electrochemical cell. Three electrolytes were used in the optimization of nanotubes morphology 

and dimensions, two ethylene glycol-based and one aqueous-based containing different amounts 

of fluoride. Electrolyte A: 0.3 M NaF + (C2H6O2 + Water 50/50), Electrolyte B (Aqueous): 1 M 

(NH4)2SO4 + 0.25 M NH4F, and Electrolyte C (Organic): 25 ml C2H6O2+ 25 ml H2O + 0.5 gm 

NH4F.Voltage was applied with ramp of 0.1 V /sec. and kept at 40 V. for various time intervals. 
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The anodization was carried out at room temperature of approximately 23 °C. The obtained 

samples were rinsed in acetone and distilled water after anodization and then left to dry in air. 

4.2.3. Thermal Annealing: 

The as-formed amorphous nanotube arrays were thermally annealed using LINDBERG/Blue M 

TF55030C tube furnace. The samples were placed in a quartz tube inside the tube furnace and 

heated to different temperatures 350, 450, 550, and 650 ºC at an upward ramp of heating rate 5 

ºC/min for 2 hours in air. 

Figure 4.1 shows a flow chart for the preparation procedure of the photoanodes. 

 

Figure 4.1. Flow chart of the preparation procedure of photoanodes. 

4.3. Methods of Nanotubes Characterization: 

4.3.1. Morphological and Compositional Characterization: 

In order to tailor the surface oxide properties, good understanding of the chemical and physical 

properties of this surface is crucial to be able to control these interactions effectively. 

4.3.1.1. Optical Microscope: 

The as received substrates were grinded and polished in order to investigate the microstructure of 

the alloy using optical microscope. 
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4.3.1.2. Field Emission Scanning Electron Microscope (FESEM): 

The surface morphology of nanotubes produced at different conditions were examined using was 

investigated using field emission scanning electron microscope FESEM-Zeiss SEM Ultra 60. The 

average nanotubes length, diameter and wall thickness as well as the standard deviation were 

calculated from three different FESEM images of five different locations on the sample surface. 

4.3.1.3. Energy Dispersive X-ray Spectroscopy (EDX): 

Elemental composition in addition to the distribution were determined by Energy Dispersive X-

ray spectroscopy (EDS; Oxford ISIS 310, England) at an accelerating voltage of 22 kV, working 

distance 9.5 mm, and aperture of 60 µm for the EDX detector. 

4.3.1.4. X-ray Photoelectron Spectroscopy (XPS): 

Composition determination of alloyed samples is difficult. Accordingly, the chemical state and the 

surface composition analysis of the samples were investigated using Thermo-Scientific K-Alpha 

X-ray photoelectron spectroscopy (XPS) with an Aluminum anode. The operating mode was 

Constant Analyzer Energy (CAE 50). Background was subtracted from Ti2P, O1s, S2p, and Nb3d 

core level spectra and fitted using Gaussian-Lorentzian peaks in order to find the components peak. 

O1s carried out at 532 eV was taken as charge reference for the spectra. It is worth mentioning 

that XPS analysis is confined to the surface layer and does not provide information concerning the 

bulk composition of the samples. 

4.3.2. Structural Characterization: 

4.3.2.1. Raman: 

Phase composition as well as samples crystallinity and vibrational properties were characterized 

using Raman spectroscopy. Raman-scattering is favorable to analyze the presence of oxides which 

cannot be detected by other methods due to sensitivity of its signals to crystal structure and defects.  

Raman spectra of both Ti and Ti-Nb nanotube arrays annealed at different temperatures and 

atmospheres were recorded at room temperature using Raman Spectroscopy (ProRaman-L 

Analyzer). Laser Beam of 532 nm wavelength was used for the excitation as a source of 

monochromatic light. Scans were performed on a range (100 -1000 cm-1) with exposure time of 

20 sec. in order to allow the recognition of different phases present in the samples. 
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4.3.2.2. X-ray Diffraction (XRD): 

In order to identify and detect crystalline phases present in the structure of as-formed and thermally 

annealed nanotubes grown on Ti and Ti-Nb substrates, X-ray diffraction pattern was recorded on 

PANalytical X’Pert PRO XRD diffractometer using monochromatic Cu-Kα radiation (λ=0.1548 

nm) at 40 kV and 40 mA. The samples were scanned from 10º to 90º with a step size of 0.02 º2Th.  

4.3.3. Optical and Photo-Electrochemical Characterization: 

4.3.3.1. Ultra Violet – Visible (UV-Vis): 

The optical properties of both Ti and Ti-Nb nanotube arrays were evaluated using UV-Vis 

spectrophotometer with an integrating sphere and reflectance attachments consisting of solid-

sample holder for the reflectance measurements. Diffuse reflectance spectra were recorded over a 

wavelength range of 200 – 900 nm and then transformed mathematically using Kubelka−Munk 

function, F(R) = (1−R)2/2R. Tauc plots were created using this function and the band gaps were 

determined from the absorption spectrum onset. 

4.3.3.2. Photoelectrochemical Measurements: 

Evaluation of photocatalytic water splitting performance was studied for the photoelectrode trough 

two tests. First, Current-Voltage (I-V) measurements were recorded applying linear sweep 

voltammograms mode with a scanning potentiostat (CH Instruments, model CHI Model 600B 

Series) Electrochemical Workstation which was used to plot dark and illuminated currents at a 

scan rate of 10 mV/s for applied bias from -1 to 1 V versus Saturated Calomel Electrode (SCE) 

acting as the reference electrode. Photoelectrochemical measurements were conducted in a 

standard three-electrode cell configuration utilizing 1 M KOH solution to increase the conductivity 

of the water (Figure 4.2). The working electrode (WE) comprised of the nanotube arrays grown 

on the substrate surface of photoanode, which was connected to the cell through attaching copper 

sheet via conductive silver paste to the metallic contact of the samples, while a platinum foil served 

as a counter electrode.    

The cell with quartz surface was enlightened with a Spectra Physics 300 W Xenon lamp passing 

by Air Mass 1.5 filter (Oriel) in order to simulate solar light arriving the surface of the earth. The 

cell position with respect to the light source was set so as to acquire incident light power of 100 

mW/cm2.  
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Second, photcurrent-time measurements (OR open-circuit potentitial) was carried out at 0.5 V 

using Amperometric current-time (i-t) curve over period of 200 s.  

Under illumination and bias application, holes are generated at the anode in addition to the 

electron, as a consequence, electrolyte oxidation occurs at the anode while the electrons flow 

through the wire to the cathode where water molecules are reduced to produce hydrogen. 

 

Figure 4.2. Schematic representation of the photoelecrochemical measurements device. 

4.3.3.3. Incident Photon-to-Current Conversion Efficiency (IPCE): 

For further investigation of the nanotubes quantum efficiency and to better understand the role of 

defects and their influence on the collection of charge carriers, incident photon-to-current 

conversion efficiency (IPCE) was measured. The IPCE is a measure of the magnitude of electrons 

photogenerated and collected per photon irradiated on the photoelectrode surface. The test was 

taken out in an arrangement of two electrodes with the nanotube being the working photoelectrode 

and a platinum foil as the counter electrode. The two electrodes were immersed in 1M KOH 

electrolyte and subjected to irradiation from a 300 W Xenon lamp coupled with monochromator 

at different wavelength. At each wavelength, the IPCE was calculated in accordance to the 

following equation (Equation 4.1) [92]:  

IPCE = (1240 x IPH) / (λ x Plight)    (4.1) 

Where, IPH is the photocurrent density at certain λ, λ is wavelength of the incident light, Plight is the 

intensity of incident light or in other terms photon flux (mW/cm2) and 1240 is unit correction factor 
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exemplifying incident light photon energy. The measurements were recorded utilizing New port 

QEPVSI-B with no applied bias. 

It should be noted that each semiconductor has a critical maximum efficiency that can be reached 

depending on its band gap and corresponding to whether Xe lamp or AM 1.5 G is used. Figure 4.3 

shows such efficiencies. 

 

Figure 4.3. Maximum critical efficiency of different semiconductor band gap for both xenon arc lamp and 

AM 1.5 [92]. 

Another way to express hydrogen generation efficiency is calculating the output power to the input 

light power. The power generated within the photoelectrochemical cell to drive the chemical 

reaction of water splitting divided by the input light irradiance represents the efficiency as in 

Equation 4.2 [92]: 

η =  
I (1.23−V𝑏𝑖𝑎𝑠)

Jlight ×A
×100%      (4.2) 

Where I is the photocurrent (mA), 1.23 V is the required potential to cause water-splitting, Vbias is 

the external applied bias (V), Jlight is the simulated solar light irradiance (mW/cm2), and A is the 

irradiated area (m2). This efficiency expression follows the assumption that all the charges being 

photogenerated are depleted in the chemical reaction.  
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5. Chapter V: Results and Discussion 

5.1. Morphological and Geometrical Characterization: 

The as received Ti-45Nb alloy substrate was examined under optical microscope to ensure the 

formation of solid solution β single phase. The substrate consisted of equiaxed β-grains with an 

average grain size of 52.85 μm, as illustrated in Figure 5.1a. Nb is a β stabilizer. This step is very 

important and determinant for developing anodization scheme to be followed in order to obtain 

uniform sized nanotubes with ultrathin and smooth walls. As stated in the literature review section, 

substrates of dual phase would be more difficult to grow nanotubes on their surface due to the 

possibility of dealloying. Figure 5.1b displays such grains above which Nanotubes have been 

grown. 

  

Figure 5.1. (a) Optical image of the Ti-45Nb metal substrate, (b) FESEM image of NTs formed on the Ti-

45Nb alloy upon anodization. 

It is challenging to grow uniform homogenous NTs on the surface of Ti-45Nb alloy as the diffusion 

coefficient of the two metals differs. During oxide formation, Ti migrates faster than Nb [52]. First, 

bimodal size nanostructure was obtained upon using Electrolyte A, which was in agreement with 

what Das et al. [93] reported earlier due to difference in dissolution rate of TiO2 and Nb2O5 in 

fluoride containing electrolytes as a result of dissimilar geometrical situations. Moreover, obtained 

nanotubes were of very thick walls as depicted in Figure 5.2. Accordingly, modifications were 

done to the electrolyte by trying aqueous electrolyte instead of organic counterparts with the 

addition of ammonium fluoride to the electrolyte that caused an increase in current densities as 

higher amounts of F- ions lead to higher current densities during anodization due to the greater 

oxide dissolution rate as a result of formation of water soluble TiF6
2- complex [94]. With 

(a) (b) 
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anodization time, reaction temperature increased leading to higher electrolyte dissolution ability. 

Hence, oxides solubility is decreased upon reducing the electrolyte dissolution ability in order to 

produce NTs of similar morphologies [50]. NTs reach steady state growth rate when 

electrochemical etching rate at the bottom equals the chemical dissolution rate at the top [47].  

 

 

Figure 5.2. FESEM images of (a,b) top surface, (c) bottom, and (d) cross-section of the nanotubes formed 

in Electrolyte A 

In order to fabricate nanotube arrays with the required morphology and dimensions, applied 

voltage was kept constant at 40 V as while changing the time intervals (10, 20, 30, 40, 50, 60, 120, 

and 180 min) for anodization carried out in electrolyte B, so as to develop model of nanotube 

growth onto the surface of an alloy consisting of single phase solid solution. At the beginning of 

the anodization, oxide layer is formed instantaneously on the surface of the alloy substrate as a 

result of surface positive ions reacting with negative oxygen ions present in the electrolyte. The 

oxide layer is formed uniformly across the surface according to the following reactions (Eqs. 5.1 

and 5.2):  

(a) (b) 

(c) (d) 
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2H2O → O2 + 4𝑒
− + 4H+     (5.1) 

Ti + O2 → TiO2      (5.2) 

For small time interval anodization, porous structure was observed as seen in Figure 5.3 a due to 

the localized field-assisted dissolution, which prevailed chemical dissolution since the formed 

oxide layer was thin and therefore the electric field was relatively large. The small pits served as 

centers for pore formation and were formed according to Eq. 5.3:  

TiO2 + 6F
− + 4H+ → TiF6

2− + 2H2O   (5.3) 

Afterwards, the pits grew into larger pores, increase in density, and then they become distributed 

uniformly across the whole surface as show in Figure 5.3b,c of the structure obtained after slightly 

longer anodization times. The pores grew in size as a result of the formation of more dense oxide 

inward at the bottom of the pore. The positive ions would migrate inward from the metal to the 

oxide/electrolyte interface and hence get dissolved by the F- ions. The oxide growth and dissolution 

rate occurring at the interface of metal/oxide and pore bottom/electrolyte, respectively, reach a 

point where they become equal. The nanotube length would continue to grow until chemical 

dissolution rate equals electrochemical etch rate (field-assisted oxidation and field-assisted 

dissolution). It is worth mentioning that the rate of electrochemical etching is dependent on the 

applied potential of anodization as well as electrolyte composition, while the rate of chemical 

dissolution is dependent on the F- ions concentration within the electrolyte in addition to the 

electrolyte pH [45]. Figure 5.3d shows top FESEM image of the nanotubes anodized for sufficient 

period. The smallest obtained wall thickness was 8 nm for NTs prepared for 120 min as presented 

in Figure 5.4, which is the smallest reported so far and smaller than the hole diffusion length in 

TiO2.   
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Figure 5.3. FESEM images of nanotubes formed on Ti-45Nb in electrolyte B at 40 V for (a) 10, (b) 20, 

(c) 40, and (d) 120 min. 

 

Figure 5.4. Effect of anodization time on the NTs diameter and wall thickness prepared in electrolyte B. 

To further decrease the wall thickness of the anodized nanotubes, ethylene glycol was used to 

obtain uniform unimodal size NT arrays (Figure 5.5) as suggested by Xu et al. [53]. The less 
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corrosive organic electrolyte would result in uniform NT arrays formed on alloys. The mechanism 

of NTs formation encompasses two opposing processes, electrochemical etching occurring at the 

metal/oxide interface while at the tips of the NTs, chemical dissolution takes place [49]. NTs 

formed from anodizing Ti-45Nb alloy was successfully achieved with optimized dimensions of 

large diameter and ultrathin wall thickness. It is also interesting to notice that NTs preserved their 

shape after annealing at 650 ºC which was not the case with NTs grown on Ti. This makes NTs 

formed on the surface of the Ti-45Nb alloy much more stable against scratch test compared to NTs 

grown on the Ti substrate. Similar observation was reported by Yang et al. [95]. Top view FESEM 

images of NTs grown on Ti-45Nb are shown in Figure 5.5a. The tubes are not all perfectly circular. 

These variations in the circumferential shape of the NTs were still observed due to differences in 

chemical composition as reported for Ti13Nb13Zr [56]. The outer diameter of the NTs reached 

180-200 nm with ultrathin wall thickness as small as 5-8 nm due to the higher dissolution of oxides 

as well as migration of anions form the electrolyte as a result of electric field, which in turn is 

determined by ion size and electrical conductivity. This is of significant importance for better 

charge carrier dynamics. The layer thickness of the NT arrays was 2-2.8 µm. Figure 5.5b displays 

the change in NTs diameter and wall thickness with anodization time.  From the above results, 

NTs prepared in electrolyte C at 40 V for 60 min would be used to further characterize their 

properties (structural and photoelectrochemical). 

 

Figure 5.5. (a) FESEM top image of ultrathin NTs prepared in electrolyte C, (b) Effect of anodization 

time on the NTs diameter and wall thickness anodized in electrolyte C. 

It is very difficult to perform BET measurements to get the surface area of the NTs due to the 

attachment of the tubes to the metal substrate. Hence, geometric roughness factor (R) can be 
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calculated to indicate the real surface area through the ratio of flat and cylindrical surfaces of the 

tube arrays (top, bottom, inner, and outer) to the congruous projected area, which is in return a 

function of length, inner diameter, and wall thickness of the NTs [86]. NTs porosity was also 

calculated using the same parameters. Porosity and roughness factors were calculated using Eqs. 

5.4 and 5.5, respectively [48].  

P = 1 −
2πw(w+di)

√3(di+2w)
2      (5.4) 

R = 1 +
4πl(w+di)

√3(di+2w)
2
      (5.5) 

where internal tube diameter (di), tube length (l), and wall thickness (w). The calculated porosity 

and roughness were found to be P = 0.885 and R = 92.517, respectively, calculated at di=180, w=6, 

and l=2.5×1000 nm. Whereas in the case of bare TiO2, P and R were found to be 0.723 and 

208.831, respectively, for NTs prepared at the same conditions but with slightly varying 

dimensions di=80, w=8, and l=3×1000 nm. 

5.2. Compositional Characterization: 

Energy Dispersive X-ray (EDX) of the fabricated NTs was carried out to further investigate the 

Ti,Nb, and O weight percentages along the formed NTs. Ti/Nb/O weight ratio obtained was 

30.19/28.69/41.13 as indicated in the bar chart (Figure 5.6). These percentages support the 

hypothesis of the formation of mixed oxide of TiO2 and Nb2O5 on the surface of the Ti-45Nb 

substrate. And this comes in line with the previously reported electrochemical behavior that TiO2 

dissolves in the electrolyte at a faster rate than Nb2O5, and with the mechanisms proposed later in 

the defect equations section for Nb charge compensation by creating Ti vacancies [54]. It was also 

deduced from the EDX that Ti, Nb, and O elements are uniformly distributed along the NTs 

through line scan and mapping of different positions of the NTs as shown in the inset of Figure 

5.6 [96]. However, EDX does not give any information about the oxidation state of the elements. 
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Figure 5.6. EDX weight percentage of Ti, NB, and O present in the NTs anodized in electrolyte C at 40 V 

for 60 min. 

Therefore, XPS was used to confirm Nb presence and determine its chemical state within the oxide. 

Quantitative evaluation of the survey spectrum was done to determine the chemical composition 

of the oxide films in terms of atomic percentages. Previous studies showed the higher stability of 

Nb oxides against chemical etching caused by F- ions and the preferential dissolution of Ti oxide 

during electrochemical anodization [34]. Peaks associated with tetravalent Ti and pentavalent Nb 

appear in XPS spectra (Figure 5.7) with the binding energies values of photoemission spectra 

corresponding to Ti2p, Nb3d, and metal oxides O1s being 464.88 (2p1/2), 459.38 (2p3/2), 207.68 

(3d3/2), 210.38 (3d5/2), and 530.58 (O1s), respectively. For Ti2p, the spin orbit splitting was 5.5 eV 

conforming oxidation state of Ti4+ in anatase; while for the Nb3d it was 2.7 eV, which conforms 

to Nb5+ oxidation state. Also, Nb3d binding energy at 207.68 eV and not 206 eV further confirms 
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Nb5+ (Nb2O5) instead of Nb4+ (NbO2) [97]. These findings confirm the results of both Raman and 

XRD where Nb2O5 is formed separately. Note that the position of the peak detected for 1s in the 

surface-sensitive mode manifested a little shift to lower energies than in the bulk mode.  

  

  

Figure 5.7. XPS spectra of the (a) global survey spectrum, (b) Ti 2p, (c) Nb 3d and (d) O 1s emission 

peaks for TiO2/Nb2O5 NTs formed in electrolyte C at 40 V for 60 min. 

5.3. Structural Characterization: 

Understanding both physical and chemical properties of the oxide and being able to correlate these 

properties will enable us to better control the surface interactions through developing the required 

oxide properties. Some studies reported the effect of Nb addition on the grain size development, 

strain, and the phase transformation from anatase to rutile. However, very few systematic 

investigations have been carried out to correlated physical, structural and photo-electrochemical 
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properties. NTs surface stability and characteristics as well as phase transitions are affected by the 

NTs morphology, size, and crystal structure. In the following section will summarize the 

dependence of XRD and Raman spectra pattern on the size of NTs.  

5.3.1. X-ray Diffraction (XRD) Analysis: 

Generally, the formed nanotubes are characterized in terms of microstructure and 

photoelctrochemical performance and efforts are being done to correlate and link both 

characteristics together. Tremendous interest has been given to TiO2 NTs [48,87,98,99], however 

TiO2 doped or oxide mixture of TiO2 with other oxides are not being well investigated yet. For 

instance, there has been a debate in the literature concerning the nature of phases and oxides NTs 

formed of Ti and Nb either as Nb-doped TiO2 or for NTs grown on Ti-Nb alloy of various 

compositions. As a starter, some reported the formation of mixed oxide TixNbyOz while others 

stated that the formed NTs are combination of TiO2 and Nb2O5 oxides [67,80]. Detailed XRD 

analysis has been conducted so as to resolve this issue through crystal size determination, pattern 

fitting and matching, and finally relate the proposed structure to the corresponding defect 

equations. 

XRD measurements were carried out to study the effect of evolving crystal structure on the 

photoelecromechical properties of NTs formed on Ti-45Nb compared to NTs formed on Ti. XRD 

patterns show that at the beginning no oxide peaks were observed for both NTs, instead, only peaks 

from the substrate were recorded indicating the amorphous structure. After annealing, reflection 

peaks appeared for anatase-TiO2, and with increasing temperature fraction of anatase present in 

the structure increased (Figure 5.8). Ti-45Nb NTs showed additional peaks for monoclinic Nb2O5 

appeared indicating the formation of composite oxides. Increasing the annealing temperature to 

650 ºC leads to the formation of rutile phase in case of NTs grown on bare Ti metal, however, in 

the case of Ti-45Nb, the presence of Nb hindered the formation of rutile phase at such elevated 

temperatures (Figure 5.9) and anatase remained the major phase. It was also noted that at higher 

annealing temperatures, Nb oxides crystallized into orthorhombic rather than monoclinic. The 

effect of Nb on the mechanism of anatase to rutile phase transformation was studied using peak 

intensity ratios extracted from XRD spectra to quantify the transformation from anatase to rutile. 

The anatase/rutile ratio was calculated empirically using Depero et al. relationship (Eq. 5.7): 
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R(T) = 0.679
IR

IR+IA
+ 0.312 (

IR

IR+IA
)
2

   (5.7) 

where R(T) is the rutile percentage at different temperatures, IA is the intensity of anatase 

diffraction peak (101) (2θ = 25.1595º), and IR is the intensity of the main rutile diffraction peak 

(110) (2θ = 27.2794º). It is observed that for samples with no Nb, the antase to rutile ratio reached 

0.788 at 650 ºC. The transformation from anatase to rutile took place due to coarsening of anatase 

crystal till it reached the critical size leading to the breakage of Ti-O bond and rearranging in the 

octahedral site to form rutile [100]. While for samples with Nb, rutile phase did not form till 650 

ºC and no peaks were observed. TiO2 film breakdown occurred at 40 V unlike the TiO2-Nb2O5 

film confirming the role of Nb in stabilizing the film and suppressing the anodic titania transition 

from amorphous to crystalline, which is favorable to overcome the weak carrier transport of rutile 

phase [76,80]. In general, the mixed oxide layers on TiNb have higher mechanical and chemical 

stability than comparable pure TiO2 NTs where considerable collapse of the NTs was observed 

[33,42,51]. 

 

Figure 5.8. XRD pattern of TiO2 NTs annealed at 450 and 650 ºC. 

Although some previous work reported the formation of mixed oxides [93], having Nb2O5 

incorporated into the TiO2 lattice, our results showed clear evidence of the formation of individual 
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Nb2O5 oxides [42].  Experimental and tabulated data were compared and monoclinic Nb2O5 peaks 

were observed as shown in Figure 5.9. The main anatase peak (101) found in TiO2 at 25º [78] was 

slightly shifted to lower positions in TiO2-Nb2O5 NTs (24.9º). The atomic radius of Nb5+ is 0.64 

ºA, whereas that of Ti4+ is 0.605 ºA, making it easy for Nb5+ to substitute Ti4+ in the anatase lattice 

and hence causes a slight increase in the lattice d-spacing, which explains the decrease in the peak 

position. Pei et al. [101] reported that Nb5+ substituting Ti4+ in the lattice acts as an n-type dopant 

and forms hybridized states of Nb4d-Ti3d in the conduction band. 

 

Figure 5.9. XRD pattern of the as formed TiO2-Nb2O5 NTs and annealed at 450 and 650 ºC. 

It is important to have a good understanding of physical and chemical properties of the formed 

oxide to be able to tailor its properties by controlling the various parameters such as crystallite size 

and induced lattice strain. In this regard, many studies have been carried out to investigate the 

effect of Nb doping on the TiO2 lattice [74,75,102], whereas very few systematic researches have 

been conducted on TiO2-Nb2O5. Accordingly, the mean crystallite size, lattice parameters and 

microstrain were calculated using Debye-Scherrer’s equation, Bragg’s equation and Wilson’s 

equation (Eqs. 5.8, 5.9 a,b, 5.10) [103]. The results are listed in Tables 5.1 and 5.2.  
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𝑑 =
0.9𝜆

𝛽𝑐𝑜𝑠𝜃
       (5.8) 

𝑛𝜆 = 2𝑑 𝑠𝑖𝑛𝜃       (5.9) 

1

𝑑2
=
ℎ2+𝑘2

𝑎2
+
𝑙2

𝑐2
 𝑇𝑒𝑡𝑟𝑎𝑔𝑜𝑛𝑎𝑙     (5.9-a) 

1

𝑑2
=

1

sin2𝛽
(
ℎ2

𝑎2
+
𝑘2 sin2𝛽

𝑏2
+
𝑙2

𝑐2
−
2ℎ𝑙 cos𝛽

𝑎𝑐
)𝑀𝑜𝑛𝑜𝑐𝑙𝑖𝑛𝑖𝑐 (5.9-b) 

𝜀 =
𝛽𝜀

4 tan𝜃
       (5.10) 

where d is the mean crystallite size, the shape factor equals to 0.9, λ is the x-ray wavelength of 

1.5406 Ǻ, β is the instrument broadening due to crystallite size at half the maximum intensity (full-

width at half-max or FWHM), which is obtained after instrumental correction (i.e. βstructural = 

βobserved – βstandard) using Si standard sample, θ is half the Bragg diffraction angle, n is integer 

number, d is the spacing between planes with Miller indices (hkl), and βε is the broadening due to 

lattice strain in radian. 

Figure 5.8 shows that for bare TiO2 NTs, increasing annealing temperature leads to narrowing of 

the peaks width, which indicates the extent of crystallinity of structure and the increase in the 

crystallite size and lattice parameters for both anatase and rutile. Whereas a decrease in the micro-

strain was observed (Table 5.1). This might be referred to the higher temperature providing higher 

energy for the growth of the crystal grains, removal of the grain boundary defects, and relief of the 

internal stresses which in turn reduces the lattice strain [98,99]. Pabu at al. [99] reported that higher 

strain values are caused by excess amount of atom and defects present in the amorphous grain 

boundaries, which results in a stress field and introduces strain in the region. 

As for TiO2-Nb2O5 NTs, Table 5.2. indicates that anatase (101) lattice parameters were enlarged 

due to insertion of Nb with larger ion size into 4a Wyckoff site [65]. Both a and c lattice parameters 

increased from 3.762 and 9.457 Å to 3.838 and 10.315 Å. However, with increasing annealing 

temperature, a decrease in the crystallite size and lattice parameters, corresponding to peaks 

broadening and shift to lower diffraction angles, was observed for both phases present of tetragonal 

anatase and monoclinc pentoxide (Figure 5.9). This might be owing to the increased number of 

defects present within the lattice in addition to the role Nb plays in hindering the ability of the 

grains to grow and release the stresses and consequently reduce the strain. Moreover, it was 



 

59 

 

suggested that grain coarsening obstruction might be attributed to decreased ionic oxygen mobility 

[104]. 

Table 5.1.  Summary of the lattice parameters, crystallite size, induced microstrain, and mass fraction of 

anatase and rutile phases present within TiO2 NTs. 

 Annealing 

Temperature [oC] 
Phase 

Lattice 

Parameters [Å] 
Crystallite 

Size [nm] 

Micro-strain 

(ε) 

Mass 

Fraction 
a = b   c 

450 Anatase (1 0 1) 3.762 9.457 24.37 0.00809 --- 

650 
Anatase (1 0 1) 3.868 9.741 37.63 0.00585 0.21154 

Rutile (1 1 0) 4.623 2.966 41.57 0.005 0.78846 

 

Table 5.2. Summary of the lattice parameters, crystallite size, induced microstrain, and mass fraction of 

tetragonal TiO2 anatase and monoclinic Nb2O5 phases present within and TiO2-Nb2O5 NTs. 

Annealing 

Temperature 

[oC] 

Phase 

Lattice Parameters [Å] 
Crystallite 

Size [nm] 

Micro-strain 

(ε) a b c 

450 

Tetragonal Anatase 

(1 0 1) 
3.838 10.315 128.97 0.00253 

Monoclinic Nb2O5 

(1 1 3) 
4.572 3.448 13.141 52.80 0.00297 

550 

Tetragonal Anatase 

(1 0 1) 
3.846 9.421 103.48 0.0029 

Monoclinic Nb2O5 

(1 1 3) 
4.033 3.803 12.89 45.67 0.0033 

650 

Tetragonal Anatase 

(1 0 1) 
3.83 9.502 80.36 0.00341 

Monoclinic Nb2O5 

(1 1 3) 
4.016 3.634 12.837 21.12 0.00606 

 

The previous experimental results could be correlated with the chemistry of point defects present 

in the structure. The XPS data confirmed the presence of Nb5+ and the XRD results depicted small 
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changes in the induced strain upon addition of Nb due to the resemblance of atomic radii in six-

fold coordination for both Nb5+ (50.70 Å) and Ti4+ (0.68 Å), which corresponds to what Arbiol et 

al. [102] suggested that Nb insertion into the TiO2 phases would be based mainly on how charge 

compensation is achieved instead of stresses being induced.  

Generally, the anatase is considered n-type semiconductor due to the presence of oxygen vacancies 

at the ambient temperature and pressure. Other types of defects also exist within the anatase 

structure such as Ti vacancies and interstitials with different ionization degree. However, the most 

influential defects on the properties are oxygen vacancies (2+), Ti interstitial (Ti3+), Ti vacancy 

(Ti4+), and electronic defect caused by electron holes localized on the sites of O- ion and electrons 

localized on the sites of Ti3+ in the lattice [102,105]. This also can be referred to the well-known 

fact of ioninc compounds tendency to form Schottky (cation VTi′′′′ and anion VO
•• vacancy) and 

Frenkel (Tii
•••) defects (Eq. 5.11) [65]. 

OO
x  ↔  VO

∙∙ + 2e′ + 
1

2
O2(g)     (5.11-a) 

2OO + TiTi ↔ Tii
∙∙∙ + 3e′ + O2(g)    (5.11-b) 

O2  ↔  2OO + VTi
′′′′ + 4h∙     (5.11-c) 

nil ↔  e′ + h∙       (5.11-d) 

TiTi
x + 2OO

x → VTi
′′′′ + 2 OO

∙∙ + TiO2(surface)   (5.11-e) 

where OO
x, VO

••, Tii
•••, VTi′′′′ represents oxygen ion of neutral charge on a regular oxygen site, 

doubly ionized oxygen vacancies, trivalent Ti interstitial, and tetra-valent Ti vacancies, 

respectively. While e′ denotes electron and h• denotes hole. Oxygen vacancies are considered the 

majority charge carriers. As the electrically charged vacancies are being compensated through 

electrons ejection to the conduction band.  

As for the NTs grown on the Ti-45Nb surface, the expected charge compensation would be 

achieved by the following equilibria reactions (Eq. 5.12): 

Nb2O5 → 2 NbTi
∙ + 4OO

x + Oi
′′    (5.12-a) 

2Nb2O5 → 4NbTi
∙ + VTi

′′′′ + 10OO
x     (5.12-b) 
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Nb2O5 →  2NbTi
∙ + 2e′ + 4OO

x + 
1

2
O2(g)   (5.12-c) 

where, NbTi
• accounts for Nb5+ substitutionally replacing cation Ti site (Ti4+) in the lattice causing 

the above stated 3 mechanisms for charge compensation via insertion of oxygen interstitial (Oi′′) 

per two Nb, fully ionized titanium vacancies (VTi′′′′) per four Nb, and formation of two free 

electrons (2 e′) per two Nb. However, this free electron may reduce Ti4+ into Ti3+ (TiTi
′) per Nb 

introduced. It was previously mentioned in literature that the reduction of Ti4+ is more likely to 

occur at higher temperatures and under reducing conditions. Annealing in oxidizing atmosphere 

would favor the formation of Ti vacancies as demonstrated by Sheppard et al. [106] and Mei et al. 

who assumed that charge compensation would be achieved by the formation of Ti vacancies. [74] 

One should expect the amount of oxygen vacancies to reduce at the expense of the extra positive 

charge added to the Ti lattice as a result of Nb introduction [102]. However, oxygen vacancies 

were reported to be the prevailing ionic defects instead of electronic Nb compensation when the 

NTs treatment is carried out in very low conditions of oxygen activity at which the behavior is 

intrinsic [106]. The following chemical equilibria governs the oxygen vacancies formation (Eq. 

5.13): 

OO
x ↔ VO

∙∙ + 2e′ +
1

2
O2(g)     (5.13) 

This would in turn has an influence on the photoelectrochemical properties as described below. 

5.3.2. Raman Analysis: 

Phase evaluation, bond configuration, and short-range order of annealed Ti and TiNb samples were 

further investigated using Raman spectroscopy to confirm the XRD results. From the Raman 

spectra displayed in Figure 5.10, the as-prepared NTs exhibited two very broad bands at 190 and 

450 cm-1, which are assigned to Ti-O bending and at 610 cm-1 for Ti-O stretching. Those bands 

with the additional broad feature appearing at 894 cm-1 confirms the existence of amorphous TiO2 

[107]. However, the annealed NTs showed the four well known characteristics bands present in 

TiO2 at 144, 394, 518, and 630 cm-1 which are attributed to anatase TiO2 of tetragonal structure 

with D4th space groups [108-111]. These bands are associated with Eg (O-Ti-O symmetric 

stretching), B1g (O-Ti-O symmetric bending), A1g (O-Ti-O Antisymmetric bending), and Eg (O-

Ti-O symmetric stretching) lattice vibrational modes of TiO2 tetragonal anatase, respectively 

[112,113]. Additionally, weak shoulder appears at 196 cm-1 corresponding to Eg mode.  
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Figure 5.10. Raman spectra of as formed TiO2 NTs, and TiO2 NTs annealed at 450 and 650 ºC 

As annealing temperature is increased from 450 to 650 °C (Figure 5.10), rutile starts to evolve as 

indicated by the bands at 242, 450 (Eg mode), and 615 (A1g mode) cm-1. Although anatase peaks 

still exist, the rutile phase becomes the dominant at 650 °C. [114] Anatase to rutile transformation 

is observed to be hindered at elevated temperatures due to the presence of Nb. Such findings are 

consistent with XRD results and the finding of Pittman and Bell [115]. Accordingly, the optimum 

annealing temperature would be 450 °C, where anatase phase is dominant allowing enhanced 

electrons percolation and hence increased photocurrents. This is why it is preferred in photovoltaic 

applications [116].  

On the other hand, as shown in Figure 5.11, the NTs grown on Ti-Nb alloy showed anatase 

structure with additional peak at 948 cm-1 which can be ascribed to Nb=O vibrations [71, 115]. 

Peaks shift and broadening due to distortion as well as polarization occurring to TiO6 octahedra, 

internal strain, and charge imbalance as a result of Nb5+ being of higher valence and bigger ionic 

radius compared to Ti4+ was observed. The resulting non-stoichiometry accounts for the change in 

the lattice vibrations [117]. The Eg peaks shift to lower wave number at 144 and 630 compared to 

148 and 648 are correlated with longer bond length. The shoulder peak appearing at 690 cm-1 refers 

to orthorhombic Nb2O5 (O-Nb-O symmetric stretching mode) [118]. 

Rutile to anatase weight ratio was found to follow linear relationship [WR/A = 3.64 × (I446 /I396)] 

during the study of physical crystalline mixtures of anatase and rutile. [114] This semi-quantitative 
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measure of the rutile to anatase weight ratio uses intensity of Raman peaks for rutile at 446 cm-1 

and anatase at 396 cm-1. The relative concentration of rutile increased from WR/A = 2.165 at 450 

ºC to WR/A = 8.9 at 650 ºC. It is worth mentioning that this is applied with the limitation that it is 

semi-quantitative since the cross sections of Raman scattering of anatase and rutile vary with the 

degree of crystallinity [13]. The broad signal at 900 cm-1 corresponds to Ti=O stretching when the 

oxide is interacting with metal clusters [119]. Covalence / bond length / frequency correlations 

were used to relate Ti-O bond length (R) and Raman frequency shift (v) through the following 

relationship (Eq. 5.6): 

νTi−O = 722e
−1.54946(R−1.809)    (5.6) 

Calculated bond lengths for Ti-O bonds present in the amorphous titania at 610 and 450 cm-1 are 

found to be 5 × 1.92 and 2.11 Å corresponding to TiO6
8- octahedra, which agree with the average 

structures of TiO2 anatase and rutile phases having average calculated bond lengths of 5 × 1.93 

and 2.12 Å [114]. 

Raman bands observed for anatase at 630, 518, and 394 cm-1 (Figure 5.10) gave corresponding Ti-

O bond lengths of 2 × 1.90, 3 × 2.02, and 2.19 Å compared to previously reported Ti-O bond 

lengths of 4 × 1.9338 and 2 × 1.9797 Å for bulk anatase, which indicate some degree of distortion 

in TiO6
8. Also, the calculated bond length for the most intense Raman band observed at 144 cm-1 

is 2.85 Å corresponding to Ti-Ti bonding in the octahedral chains. 

As for NTs anodized on Ti-45Nb, bond length calculations support the findings of our XRD results 

of smaller crystallite size. The calculated Ti-O bond length equivalent to shifted Raman band at 

648 cm-1 is slightly smaller [2 × 1.88 Å, and 2.83 Å] for the Raman band at 148 cm-1, which is 

consistent with Ti-Ti bonding. 
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Figure 5.11. Raman spectra of as formed TiO2 NTs, and TiO2-Nb2O5 NTs annealed at 450 ºC. 

5.4. Optical and Photoelectrochemical Characterization: 

Figure 5.12a,b shows the absorption spectra of  the fabricated TiO2 NTs. The samples 

demonstrated light absorption till early visible light region. Some samples showed high absorption 

tail in the visible light region due to light scattering caused by the metal substrate underneath the 

NT arrays [78].  

     

Figure 5.12. Absorption spectra of TiO2 NTs; (a) as formed versus annealed at 450 ºC, (b) annealed at 450 

versus 650 ºC. 

The NT arrays grown on Ti-45Nb showed slightly shifted light absorption compared to those 

grown on Ti (Figure 5.13a), which could be attributed to the higher distortion in the crystal lattice 

(a) (b) 
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as a result of NT specific architecture in addition to the larger NTs diameters which will in turn 

cause stronger light scattering and thus better light-harvesting efficiencies [78,120]. Shallow defect 

states created by oxygen vacancies just below the conduction band by 0.75 eV and 1.18 eV 

facilitate the absorption of visible light, and thus the electrons present at these defect states can be 

easily diffused to the surface [121]. 

Moreover, earlier studies confirmed that red shift observed in the UV-vis spectrum is attributed to 

pentavalent oxide and demonstrated the absence of Burstein-Moss effect resulting from filling 

conduction band. Brancho and Barlett referred red shift to Nb(4d) states being within anatase TiO2 

conduction band, which is then thought to lead to absorption between impurity pairs [16]. In the 

present study, the formation of mixed oxide was noted and evidenced with Raman as well as XRD 

results. One more feature apparent in the absorption spectra of Ti-Nb NTs is the higher background 

level occurring at longer wavelengths (615 nm) is indication of more defects generated as well as 

trapped holes [122,123]. As noted in XRD results, upon annealing more defects are introduced 

into the system, this might explain the finding that annealed TiO2-Nb2O5 NTs showed rather 

shifted light absorption.  

The Ti-45Nb NTs, they absorbed till ≈ 390 nm corresponding to band gap of ≈ 3.2 eV by 

extrapolating the linear part of the absorption curves presented in the inset of Figure 5.13b while 

for tubes grown on Ti, they absorbed till ≈ 400 nm with band gap of 3.25 eV. 

    

Figure 5.13. (a) The absorption spectra of TiO2 compared to TiO2-Nb2O5 NTs, and (b) Tauc plot of TiO2 

and TiO2-Nb2O5. 

(a) (b) 
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Although the absorption was nearly the same for TiO2 and TiO2-Nb2O5 NTs, higher photocurrent 

was observed for TiO2-Nb2O5 NTs (Figure 5.14). Photoelectrochemical measurements showed 

much higher photocurrent for NTs anodized on Ti-Nb alloys (0.3 mA/cm2) than on Ti (0.18 

mA/cm2) prepared under the same conditions for the sake of comparison.  

Several microstructural factors play a role in the resulting photocurrent behavior. These factors 

might have contradicting effect on the photoelectrochemical behavior. For instance, these factors 

include the defects, conductivity, absorption, crystallite size, lattice microstrain, surface 

roughness, and NTs dimensions. The mechanism by which each factor impacts the eventual 

photocurrent differs. Defects existing within the crystal lattice as stated above in the defect 

equations showed that the most dominant defects were oxygen vacancy and subsequently faster 

carrier mobility. 

 

Figure 5.14. Photocurrent-time measurement of TiO2 and TiO2-Nb2O5 NTs. 

In addition to the well-established understanding that Nb enhances the conductivity of TiO2 NTs, 

and consequently accelerates the charge carrier transfer within the oxide, crystallite size as well as 

lattice microstarin also affect the charge carrier dynamics. The greater crystallite size of TiO2-

Nb2O5 compared to TiO2 means reduced boundary crystallite region, which could be related to 

recombination sites of the photogenerated charge carriers and eventually higher charge collection 

efficiency [124]. The TiO2-Nb2O5 NTs had smaller microstrain than TiO2, indicating fewer 

substoichiometric Ti2+ and Ti3+ defects in the oxides NTs and thus had detrimental influence on 

the electron transport [125]. Hence, better charge dynamics contribute to the higher photocurrent. 

Having low recombination rate could indicate that formed defects and electron traps are shallow. 
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In Figure 5.14 TiO2-Nb2O5 shows stable photocurrent over time, while TiO2 NTs experienced 

slight decrease in photocurrent with time, which indicates more recombination occurring. This 

may indicate as well shallow localized states rather than deep ones. 

Geometric smoothness and orderliness enhanced the charge transfer [126]. Therefore, charge 

mobility would be better for TiO2-Nb2O5 NTs with much lower surface roughness (as calculated 

earlier) rather than TiO2 NTs. Being able to fabricate thin-wall NTs of composite TiO2 and Nb2O5 

with relatively large diameter had a positive influence on both photon absorption due to the large 

diameter as mentioned earlier. Small wall thickness leads to efficient electron-hole separation since 

such wall thickness is being smaller than minority carrier (holes) diffusion length [127]. 

Furthermore, holes are not separated far from the semiconductor-electrolyte interface. Wall 

thickness restricts the anatase crystallite width. Potential drop across the wall thickness s governed 

by Eq. 5.14: 

∆ϕ0 = kTr0
2/6eLD

2       (5.14) 

where T is temperature, r0 is half wall width, LD is Debye length which can be represented as 

shown in Eq. 5.15 [127]: 

LD = [ε0εkT/2e
2ND]

1/2     (5.15) 

where ND is the number of ionized donors per unit volume [cm3]. 

Incident Photon-to-Current Conversion Efficiency (IPCE) was measured for TiO2 and TiO2-Nb2O5 

NTs in order to study the effect of Nb alloying on the performance of the material. The IPCE 

response is presented in Figure 5.15 where a shift towards longer wavelengths is evident. The cut-

off of incident photon to current efficiency (IPCE) for the mixed oxide TiO2-Nb2O5 NTs was 

shifted to higher wavelengths (475 nm) than TiO2 (380 nm). Such enhancement in the 

photoresponse is attributed to improved electron mobility due to the aforementioned reasons and 

may indicate that band gap of TiO2-Nb2O5 was slightly lowered (fermi level shifted near the 

conduction band).  
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Figure 5.15. IPCE measurements of TiO2 and TiO2-Nb2O5. 
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6. Chapter VI: Conclusion and Future Recommendation 

6.1. Conclusions: 

In the present study, ultra-thin wall nanotubes of complex oxides were successfully obtained with 

very good ordering and smoothness. The nanotubes were fabricated via anodization process in an 

organic electrolyte to produce 5 – 8 nm wall thickness, 180 – 200 nm diameter and 2 – 2.8 µm. 

Such geometry of large diameter would allow for maximum solar light absorption, whereas small 

wall thickness would allow better charge carrier transfer. Optimized annealing temperature to 

crystalline the amorphous oxide was found to be at 450 ºC. Raising annealing temperature up till 

650 ºC did not result in the formation of rutile emphasizing the role of Nb in stabilizing the anatase 

phase.  Some compositional and structural characterization techniques of Raman, XRD, XPS, and 

EDX were combined to help study and revealed the formation of complex oxides of TiO2-Nb2O5 

on the expense of TixNbyOz reported elsewhere. Besides Nb peak appearing in the Raman spectra, 

such findings were confirmed via crystal size measurements, lattice parameters, and induced 

microstrain.  The attained nanotubes exhibited enhanced stability over a wide range of annealing 

temperatures where the transition from anatase to rutile shifted to higher temperature. Besides the 

NTs arrays showed better mechanical stability and higher resistance to scratch and detachment 

from the substrate. A correlation between the resultant structure with photocurrent was made to 

elucidate the increase in the photocurrent, thus the more efficient water splitting. To this end, 

correlation between structure, property, and function was demonstrated and accomplished to aid 

design and tailor photoanodes with controlled morphology, crystallinity, shallow trap states (local 

defects), and electronic properties of Ti-Nb based photoanodes via anodization and post thermal 

treatment. 

6.2. Future Work: 

Having been able to fabricate mixed oxide nanotubes of TiO2 and TiO2-Nb2O5 with ultra-thin 

walls, electrochemical enhancement was achieved as a result of NTs morphology on addition to 

the Nb existence which enhanced the electrochemical efficiency. Suggestion for future work would 

be co-doping the nanotubes, i.e to combine cationic doping (Nb) with anionic doping (Nitrogen, 

N). This could be performed through annealing the obtained NTs in different atmospheres such as 

Hydrogen (H2) and ammonia (NH3) rather than just air. Although the effect of both medium on 

the optical and electrical performance is not well understood yet, earlier studies reported that H2 
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and NH3 annealing would passivate surface traps and hence improve charge carrier separation and 

collection by reducing recombination in addition to decreasing the band gap by creating defect 

band just below the conduction band and consequently improve the absorption and shift it to the 

visible region of the solar spectrum. Although N-doping could be hard to achieve since it is 

unstable and easy to diffuse away of the structure, Nb presence within TiO2-Nb2O5 was reported 

to enhance N-insertion and thus gives better stability of the obtained layer. This is expected to 

boost the photoelectrode efficiency. To develop deep understanding of the reactions occurring at 

the surface of the photoelectrode, impedance and Mott Schottky are to be performed. This would 

give clear visualization and understanding of the electronic structure of the resulting mixed 

oxide/oxynitride photoanodes.  
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