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Abstract 

With the energy deficiency problem becoming more threatening, the need to find 

reliable and alternative energy resources is becoming inevitable. Hydrogen gas is considered a 

good and cleaner alternative due to its green combustion; and it is used in many applications. 

Accordingly, the use of solar energy in water splitting to produce hydrogen gas is attracting 

much attention. Finding the optimum semiconducting material that can efficiently absorb sun 

light and use it in charge carriers’ generation to split water into hydrogen and oxygen is a hot 

research topic; as many challenges exist in this regard. For instance, wide-bandgap 

semiconductors have enhanced stability, but absorption limited to the UV region. On the other 

hand, a lot of the narrow-bandgap semiconductors have poor stability in aqueous electrolytes.  

In this thesis we explore different effective pathways to overcome the wide band gap 

problem. In the first part, the fabrication of nanostructured Ti-Nb-Zr MPNTs via simple hard 

templating anodization method in an electrochemical bath using Formamide-based electrolyte 

is explained. The formation mechanism and growth model of the MPNTs is discussed using 

FESEM images. Optical properties are examined using UV-Vis as well as 

photoelectrochemical properties where the MPNTs have shown 9-fold enhancement in the 

photocurrent density over the compact counterpart. The MPNTs possess graded refractive 

index which was confirmed by ellipsometry measurement; and high light scattering owing to 

their large diameter.  

 In the second part of the thesis, the MPNTs are annealed in three different gases Air, 

Oxygen and Hydrogen where a 26-fold enhancement was achieved in the H100 compared to 

Air and O100. XPS, XRD, and Raman scattering suggested the formation of a single mixed 

oxide under Air and Oxygen atmospheres, while Zr formed a second phase ZrTiO4 under the 

reducing atmosphere. XPS core spectra confirmed that Hydrogen annealing resulted in 

formation of valence band tail states and Ti3+ defects. A thorough discussion is presented on 

the defects present and their contribution to the water splitting process.  

 Finally, CZTS is known to be a narrow-bandgap p-type semiconductor with absorption 

extending to the visible region. It was synthesized by a solvothermal method, and deposited by 

electrophoresis on the MPNTs annealed in Hydrogen. Despite of its instability in 1M KOH, a 

proof of concept was accomplished, as a great photocurrent enhancement was achieved.   
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1. Chapter 1      

 Introduction & Thesis Scope 

1.1 The Energy Problem  

There is no doubt that the continuity of human civilization is majorly dependent on its 

ability to find and secure energy sources. In fact, the industrial revolution which reshaped the 

balance of power in the world in the beginning of the 18th century was entirely related to 

dispensing wood as a main energy source and shifting to coal. In addition, the vast advances 

and development in technology in the modern 20th and 21st centuries are attributed to the Black 

Gold or petroleum. Unfortunately, and expectedly, mankind greed and reckless behaviour is 

resulting in a great energy deficiency crisis due to the continuous diminution of fossil fuels. 

This energy crisis, which if he does not appropriately address and come together to solve, could 

lead to unprecedented consequences, namely the destruction of civilization as we know it. The 

existing energy challenge has mainly four aspects which need to be addressed:  

1- Migration and over population 

Since the beginning of civilization, man has migrated to where he can find water, 

food, shelter and other primary needs fulfilled; and ever since, he has been doing the same with 

these primary needs expanding to luxurious and prosperous life styles. Ergo, we find places 

rich of oil, natural gas and coal to be over populated. For instance, Texas is the 2nd most 

populated state in the U.S., and the top in the number of oil reserves 1.  

2- War 

Man being blinded by greed and imperialism has been fighting one another and 

unrightfully exploiting resources of others.  Many wars have been fought and many lives have 

been lost to invade countries rich in oil in order to control oil reserves. The Russian intervention 

in Syria is regarded as one example of brute force use against innocent civilians for the sake of 

interest in securing oil funding. 

3- Pollution 

No doubt, the by-products produced during fossil fuels burning and consumption 

such as NOx, SOx, Cadmium, Beryllium, and Mercury are regarded as hazardous pollutants; 

especially CO2 which holds approximately 80% of the total carbon dioxide emission. Global 

warming is attributed to the increase in CO2 emissions which result in the greenhouse effect 

and causes the heat induced by infrared to become trapped and not be able to escape the earth 
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as shown in Figure 1-12. In fact, the Global Carbon Project predicted an annual increase of 

2.5% in the emission of CO2  generated from fossil fuels combustion globally 3. This will be 

reflected in a 4.3o C increase in earth’s temperature by the year 2100 4. This global warming 

impacts sea level rising and is expected to have a great effect on climate change and accordingly 

destroy the balance of many ecosystems and endanger a wide range of species of plants, 

animals and marine life; not to mention the forecasted economic crises. 

 

 

Figure 1-1 Human induced greenhouse effect versus natural greenhouse effect 2 

4- Fossil fuels depletion and the “Terawatt Challenge” 

The continuous increase in the population of the world is a direct reason for the 

continuous reduction in available non-renewable fossil fuels due to the increased energy 

consumption rates. As reported by the Association for the study of Peak Oil & Gas (ASPO), it 

is expected that in a maximum of a hundred years, we will run out of all fossil fuels including 

coal, oil and natural gas, if the current consumption rates are maintained5. However, due to the 

increase in population, this duration may be shortened even more to a maximum of 80 years6. 

In addition, the cost of a daily life supply worth of energy is becoming not affordable by many 

individuals in a wide range of world countries. Not to mention that more natural resources like 
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water are becoming depleted in developing countries due to lack of consumption rationalization 

7. Professor Rick Smalley, 1996 Nobel Prize laureate, was the first to address the energy issue 

as the Terrawatt Challenge 8. His study pointed out the urge to search for renewable energy 

resources that can replace fossil fuels. The United Nations estimates that the earth population 

will reach about 9.8 billion people by 20509. As indicated in Figure 1-2, the consumption of 

energy globally in 2050 is estimated to become 28 terawatts per year versus 16 terawatts in 

2009 10. It has been proven that the only possible way to meet this huge demand is to shift from 

the current non-renewable fossil fuel based energy supply systems to renewable ones 

independent of carbon as indicated in Figure 1-3. There are many renewable energy resources 

such as wind, biomass, geothermal and the sun. Solar energy is the only resource that can 

outweigh and exceed the total expected energy demand, as it is capable of providing up to 

23,00 terawatts, i.e. almost 800 times more than the required demand.  

 

Figure 1-2 Energy demand in 2050 and the amount of energy supplied through various resources 10 
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Figure 1-3 Ways to overcome the Terawatt Challenge: redistribution of energy resources where fossil 

fuels being the main supply on the left is shifted to Solar, wind and geothermal on the right 11 

From the previous discussion, it is concluded that the world is in dire need to join efforts 

and properly address the mentioned problems and find a proper solution to be globally 

implemented. World leaders, the people, environmental organizations, and the scientific 

community need to look for renewable, efficient and clean energy resources that can ensure 

sustainable mankind advancement.  

1.2 Hydrogen – An Alternative Fuel 

Hydrogen has emerged to be a possible fuel alternative to fossil fuels. It is a light weight 

gas that is abundant in the earth’s atmosphere and produces nearly three times more energy 

during its combustion compared to natural gas and crude oil 12. It is easily transported due to 

its light weight; in fact, it is has a much lower density than most fuels; for example, Methane 

is 8 times heavier 13. Hydrogen is produced by splitting water, a relatively abundant resource, 

and it is considered as a clean fuel because its main by-product is steam. Accordingly, it is 

regarded to be environmentally friendly. In addition, it is used in many applications as can be 

seen in Figure 1-4, including fuel cells, ammonia fertilizers manufacturing, oil refining, and 

tons of pharmaceuticals production 14.  

Hydrogen production can be obtained through various ways as shown in Figure 1-5 15. 

Although this may seem plausible, most of these processes are expensive as large amounts of 

energy are consumed throughout the process. While only 3.9% of the total Hydrogen produced 

is through water electrolysis, very large percentage (~ 96%) of the primary energy sources used 
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in Hydrogen production come from non-renewable fossil fuels. This raises questions about the 

need to invest more in the electrolysis process given that water is quite abundant which will be 

discussed further. 

 

Figure 1-4 Different applications of Hydrogen fuel 16 

 

Figure 1-5 Possible Hydrogen production routes 15 



6 

 

 

 

1.3 Solar Water Splitting for Hydrogen Production 

As seen from the preceding sections, Hydrogen gas can be considered as an ideal energy 

carrier. However, the need to find an optimized production route from energy considerations 

point of view persists. In addition, it has been shown that we must invest in solar energy 

advancement to be able to face the Terawatt Challenge. This is the root of the idea to use solar 

energy to split water into Oxygen and Hydrogen; which can be done in two ways: either through 

incorporation of photovoltaics that can generate electrical energy to a grid used to harvest this 

energy which is later to be used in water electrolysis, or through photo-assisted electrochemical 

water splitting, where semiconductors with photoactivity are used as electrodes to split water. 

Figure 1-6 shows a depiction of the first experiment run by Fujishima and Honda who used 

TiO2 as a photoanode that absorbs photons of wavelengths less than 450 nm 17. An electron 

hole pair is generated, the hole in the valence band moves to the surface and oxidizes water 

giving Oxygen, while the electron in the conduction band is transferred by a bias to a Pt 

counter-electrode to reduce water into Hydrogen. Different combinations may be used, n-type 

semiconductor as a photoanode and Pt as the counter-electrode, p-type semiconductor as a 

photocathode and Pt as the counter-electrode, or n-type semiconductor as a photoanode 

together with p-type semiconductor as a photocathode 18. Although an efficiency as low as 

0.1% was obtained in their experiment, it is still regarded as a very important one as it has 

opened new horizons for the research community to explore.  

Nanostructures and nanomaterials possess interesting properties when compared to 

their bulk counterpart. Chemical, optical, electrical, mechanical and magnetic properties 

change due to the increased surface to volume ratio and quantum confinement. Quantum 

confinement occurs when the material is reduced to a size beyond the Bohr radius, where the 

density of states become discrete unlike the continuous states in bulk as shown in Figure 1-7. 

Since materials define the performance limit of applications, and due to the interesting 

properties of nanomaterials, they are now used in numerous applications such as combustion 

engines, light-weight applications, gas storage, catalysis, electronics, and others.  

To sum up at this point, it seems that the quest to find and develop new materials that 

satisfy the requirements of the water splitting process is very much needed.  
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Figure 1-6 Depiction of Fujishima & Honda's experiment 19 

 

Figure 1-7 Change in density of states as the degree of quantization changes (a) bulk (b) 1D (b) 

2D (c) 3D 20 

1.4 Scope of Thesis 

As will be discussed thoroughly in chapter 2, for a semiconductor to be selected as a 

photo anode/cathode, it is required to maximize its absorption, and maintain efficient charge 

separation.  

Chapter 2 provides the essential scientific background that deals with different aspects of 

photoelectrochemical (PEC) water splitting 

Chapter 3 present a review of literature for recent advances in TiO2 nanotubes, and various 

approaches to tailor its properties, as well as different CZTS synthesis techniques 

Chapter 4 presents a discussion of various fabrication schemes and conditions used throughout 

thesis, as well as characterization techniques employed. 
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Chapter 5 presents the formation mechanism of MPNTs and how the morphology tuning has 

changed the optical and PEC properties. 

Chapter 6 presents the results and discussion of annealing the MPNTs in different 

atmospheres, and the consequent structural, optical and electronic changes. It also presents the 

results for CZTS nanoparticles deposition on TiNbZr MPNTs annealed in Hydrogen. 

Chapter 7 provides conclusion for the main work done in the thesis, and identifies possible 

opportunities for future work 
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2. Chapter 2     

 Scientific Background 

 In this part of the thesis, a brief review of the scientific background is presented. 

Fundamentals about solar irradiation, the PEC water splitting process, as well as 

semiconductors requirements are reviewed. Then, a brief description of synthesis techniques 

used throughout the thesis is offered.  

2.1 Electromagnetic Solar Spectrum 

The sun is the main supplier of heat and light on planet earth. Being a star, and due to 

the nuclear fusion of large amounts of Hydrogen and Helium, a wide spectrum of energy is 

released by the sun. Solar irradiance is defined as the power of the electromagnetic waves 

emitted by the sun and reaching the earth per unit area, measured in kW/m2. Many factors 

influence the power density reaching the earth including: climate conditions, geographical 

nature of the place where the measurement is being taken, the sun position which depends on 

the time of the measurement during the day, and the air mass that electromagnetic radiations 

travel through. It has been shown that the presence of gases, vapours, dust, and particles in the 

atmosphere where the radiation travels influences the power density due to their interaction 

with the electromagnetic waves through absorption and scattering 1. Therefore, a term is 

proposed that includes this power loss in order to adequately describe solar irradiance, which 

is the Air Mass number (AM) shown in 2-1 

𝐴𝑀 =  
1

cos 𝜃
   2-1 

where 𝜃 is the angle between the vertical line at normal incidence and the modified line at non-

normal conditions. In order to set a reference, three known standards are used for laboratory 

experiments namely: AM 1.5, AM 1 and AM 0 as displayed in Figure 2-1 (a). AM0 refers to 

spectral irradiance at normal incidence at the top of the atmosphere, AM  1 is the same 

irradiance but taken at sea level, while AM 1.5 is the yearly average irradiance in all states of 

the US, where 𝜃 is taken to be equal 48.2o.  The normalized spectral irradiance corresponding 

to the AM 1.5 standard is 1 kW/m2. Practically, a Xenon lamp is used  in experiments along 

with AM 1.5 filter to avoid inconsistencies 2.  

As shown in Figure 2-1 (b), the electromagnetic radiation is composed of ~52% Infrared 

of wavelengths longer than 700 nm, ~45% Visible of wavelengths in the range 400-700 nm, 
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and only 3% ultraviolet of wavelengths shorter than 400 nm. It is thus preferable to have a 

semiconductor of narrow bandgap to absorb most of the solar spectrum as wide bandgap will 

have the limitation of absorbing only 3% of the entire solar spectrum. But as the discussion 

progresses, it will become evident that other factors contribute to material selection. 

   

Figure 2-1 (a) Different spectral irradiance standards 3 (b) Irradiance of AM 1.5 4 

 

2.2 Photoelectrochemical Water Splitting - Energy Considerations  

Water splitting is non-spontaneous and energy consuming, i.e. it is an endothermic 

process as expressed in 2-2. The Gibb’s free energy ∆𝐺 associated with the reaction would be 

a positive quantity of approximately 237.14 kJ/mol for one mole of reactants at standard 

conditions of 1 atm pressure and 298.15o K 5. The standard potential 𝐸 required to drive a two-

electron transfer reaction (𝑛 = 2) is calculated by 2-3 to give 1.23 V, given that the charge of 

1 mole of electrons is equal to Faraday’s constant 𝐹. However, in a typical experiment, a greater 

bias value of ~1.6 is used, to compensate for losses originating from the electrolyte resistance, 

ohmic losses, carrier recombination and other possible losses.  

𝐻2𝑂 + 𝑒𝑛𝑒𝑟𝑔𝑦 →
1

2
𝑂2(𝑔𝑎𝑠) + 𝐻2(𝑔𝑎𝑠)    2-2 

∆𝐺0 = −𝑛𝐹𝐸        2-3 

In PEC water splitting, ideally, it is required to identify a semiconducting material that 

can provide this amount of voltage through light absorption keeping the additional bias 

minimized, or better yet without any external bias. This is quite challenging, given that the 

a b 
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process of PEC water splitting is sequential, throughout which many losses occur. To 

understand the steps involved in the PEC, a schematic of a common lab use quartz PEC cell is 

shown in Figure 2-2, comprising of three electrodes: the working electrode or the photoanode, 

a counter electrode and a reference electrode. Due to the high resistance of water, as well as its 

relatively low absorption coefficient6, it cannot be used directly, but instead an electrolyte with 

salts is selected keeping in mind pH considerations which will be discussed later. Frequently, 

electrolyte refreshment maybe needed, so a circulation system is added.  

Light is illuminated upon the photoanode and the PEC process is carried out in the 

following steps: 

1- The photoanode absorbs photons of energy equal to or greater than its bandgap. 

Upon absorption, electrons are excited to the conduction band and there are un-

neutralized holes in the valence band that are free to move to the surface as shown 

in 2-4 

2ℎѴ → 2𝑒− + 2ℎ+     2-4 

2- The holes, now at the interface between the electrode and the electrolyte, can 

oxidize water giving oxygen gas and positive H+ as shown in (𝑔𝑎𝑠)   

2ℎ+ + 𝐻2𝑂 (𝑙𝑖𝑞𝑢𝑖𝑑) → 2𝐻+ + 
1

2
 𝑂2 (𝑔𝑎𝑠)  2-5 

3- The positive H+ move in the electrolyte to the counter electrode where they are 

reduced by the conduction band electrons transferred by the bias, as shown in 2-6 

2𝐻+ + 2𝑒− →  𝐻2(𝑔𝑎𝑠)    2-6 

The net reaction is shown in 2-7   

2ℎѴ +  𝐻2𝑂(𝑙𝑖𝑞𝑢𝑖𝑑) →  
1

2
 𝑂2(𝑔𝑎𝑠) +  𝐻2(𝑔𝑎𝑠)  2-7 
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Figure 2-2 Typical PEC cell setup including the three electrodes and a circulation system 2 

Considering an n-type semiconductor/photoanode, the energy band diagrams of the 

water splitting process is further explained in Figure 2-3. Before contact, the fermi level of the 

semiconductor is close to the conduction band (CB), due to the unequal probability of finding 

electrons in the CB and holes in the valence band (VB); while the fermi level of the electrolyte 

will lie between the potentials of oxidation and reduction (Figure 2-3 a). On bringing the 

photoanode in contact with the electrolyte and the metal, and since the photoanode has fermi 

level that is more cathodic than that of the electrolyte, electrons transfer from the CB to the 

electrolyte, resulting in formation of a region that is depleted of electrons rendering un-

neutralized positive donor ions, which re-orient the electrolyte ions forming a capacitive 

Helmholtz layer. An electric field builds up and consequent voltage drop is formed, referred to 

as band bending (Figure 2-3 b) 7. The width of the resulting depletion region is expressed in 2-

8, where 𝑒 is electron charge, 𝑁𝐷 is the donor states density, 𝜀 is the material permittivity, 𝜀0 

is the free space permittivity, 𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑 is the applied bias, 𝑉𝐹𝐵 is the flat band potential which 

is the potential of the fermi level before bending occurs. By electrochemical impedance 

spectroscopy, and considering that the space charge region and the Helmholtz layer are 

capacitive, then using the Mott-Schottky relation (2-9), one is able to calculate 𝑉𝐹𝐵 and 𝑁𝐷 (2-
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10). The fermi levels of the semiconductor and the electrolyte are now aligned with the metal 

work function, equilibrium is established, and no charge transfer will occur. Upon illumination 

(Figure 2-3 c), more electrons are excited to the CB leaving holes in the VB, the band bending 

is decreased, and with aid of the built-in electric field, electrons and holes cannot recombine, 

as electrons are swept towards the bulk, while holes move to the electrolyte. Since the holes 

are at lower potential than that of H2O/O2 reaction, they will be able to move to that potential. 

However, the reaction of water splitting will not proceed, since the electrons are still at a lower 

potential than that of the H+/H2 reaction, therefore and external bias (over potential) is needed 

to break that equilibrium and force them to move to the metal work function that is now at 

potential higher than that of the H+/H2 reaction, and the water splitting reaction can finally 

proceed (Figure 2-3 d) 7.  

𝑊𝑆𝐶 =  √
2𝜀𝜀0

𝑒𝑁𝐷
√(𝑉𝑎𝑝𝑝𝑙𝑖𝑒𝑑 − 𝑉𝐹𝐵)   2-8 

1

𝐶2 =  
2

𝑁𝐷𝜀𝜀0𝑒
[(𝑉 − 𝑉𝐹𝐵) −

𝑘𝑇

𝑒
]    2-9 

𝑁𝐷 =  −[
2

𝜀𝜀0𝑒
][

𝑑(1
𝑐2⁄ )

𝑑(𝑉)
]−1    2-10 

 

 

Figure 2-3 PEC water splitting mechanism using a photoanode and a metal as the 

cathode/counter electrode (a) before contact (b) after contact (c) under illumination (d) under 

illumination and external bias 7 
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2.3 Photoelectrochemical Water Splitting - Material Considerations  

Following that discussion, a decision can be made regarding the criteria of photoanode 

selection: 

2.3.1 Bandgap 

It is preferable to have a semiconductor of narrow bandgap to enable it to absorb 

most of the solar spectrum in the visible or NIR region. However, narrow bandgap 

semiconductors such as CdS8, often suffer from stability problems which will be 

discussed in section 2.3.3. Therefore, band tuning of wide bandgap metal oxides is of 

great interest. 

2.3.2 Band Edge Positions 

CBM and VBM must straddle the oxidation and reduction potentials of water to 

make the water splitting reaction thermodynamically favourable and avoid the need for 

large overpotentials, as holes move to higher energies while electrons move to lower 

energies. The band alignment of various wide and narrow bandgap semiconductors 

relative to water redox potentials at pH=0 relative to the Normal Hydrogen Electrode 

NHE is shown in Figure 2-4; it is obvious that most narrow bandgap semiconductors 

do not always straddle water redox potentials. It is also worth mentioning that the band 

alignment is dependent on the pH of the electrolyte, some semiconductors have band 

edge positions that straddle the redox potentials only in certain pH value as the case of 

TiO2 shown in Figure 2-5 .  

 

Figure 2-4 Band edge positions of some straddling and non-straddling semiconductors 9 
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Figure 2-5 Band edge positions of TiO2 at different pH relative to vacuum level and NHE 10 

 

2.3.3 Stability and Resistance to Corrosion 

For a semiconductor to be suitable for use in water splitting, it must be stable in 

the electrolyte, i.e. the holes must thermodynamically favour water oxidation over self-

oxidation and electrons must holes must thermodynamically favour Hydrogen 

reduction over self-reduction 11. This will be achieved when the conditions in 2-11 & 

2-12 are satisfied, where the free enthalpy of oxidation 𝐸𝑝,𝑑 is less than the OER potential; 

and the free enthalpy of reduction 𝐸𝑛,𝑑 is greater than the HER potential. Figure 2-6 shows 

the decomposition potentials of various semiconductors, it is obvious that most wide 

bandgap semiconductors are stable while most narrow bandgap semiconductors suffer 

from stability issues. 

 

𝐸(𝑂2/𝐻2𝑂) < 𝐸𝑝,𝑑     2-11    

𝐸(𝐻+/𝐻2) > 𝐸𝑛,𝑑     2-12  
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Figure 2-6 Decomposition potentials of some semiconductors versus water redox potentials 

relative to vacuum scale and NHE 11 

 

2.3.4 Electronic and Structural Considerations 

In water splitting process, it is important to collect all the photogenerated charge 

carriers and minimize recombination. Therefore, possible recombination centres 

(Figure 2-7) such as structural defects whether vacancies, interstitials, grain boundaries, 

and surface trap states must be curtailed 12. Structural defects introduce new allowed 

energy states in the previously forbidden bandgap, which act as electron traps and 

therefore hinders the photocurrent 13. To be specific, there are two types of defects: 

shallow and deep defects. Deep defects lie far away near mid-gap and are main electron 

traps; on the other hand, shallow defects are defect states that lie close to the CBM, and 

could be in favour of the water splitting reaction as they will easily be transferred to the 

CB because of the small energy difference 12. Moreover, ionized surface trap states, which 

are present due to reactive surface sites, attract charge carriers from bulk and could 

result in a phenomenon known as Fermi level pinning, which prevents carrier diffusion 

7.  

The presence of defects in the material is a result of the fabrication process that 

can be used to tune the density of defect states.  Although nanostructuring increases the 
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surface area which is desirable for the water splitting reaction due to the presence of 

many active sites, it may come on the expense of increasing the surface states resulting 

in fermi level pinning or increasing the possibility of surface recombination. A way of 

overcoming this problem is the attempt to form thin-walled nanotubes and hollow 

nanofibers whose thickness is equal to or less than the diffusion length of the minority 

carriers 15 (2-13). The minority carrier diffusion is the considered the rate determining 

step16. This way, the charge collection probability increases as well as light trapping in 

the tube length.  

𝐿𝐷 = √𝐷𝜏    2-13 

where 𝐿𝐷 is the minority carrier diffusion length, 𝐷 is the diffusion coefficient and 𝜏 is 

the minority carrier life time. 

 

Figure 2-7 Photocarrier generation and various defects in the crystal that could act as 

recombination centres 17 

To sum up at this point, wide bandgap semiconductors possess properties that are 

desirable for the PEC water splitting reaction such as stability and resistance to corrosion; 

however, attempts need to be made in order to overcome the wide bandgap problem to tune the 

bandgap and enhance the absorption, such as nanostructuring, doping and defect introduction.  
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3. Chapter 3     

 Literature Review 

The use of nanomaterials in different applications is becoming more popular due to 

their desired properties which are highly dependent on the size and quantization; such as: high 

surface to volume ratio, enhanced mechanical properties and controlled pathway of charge 

transfer 1. Many studies are focused on metal oxides and their use in numerous electronic, 

catalytic, and biomedical applications due to their low cost, abundance and stability 2,3,4,5,6. 

Titanium dioxide is regarded as a very promising material that can be used in different 

applications 7. Fujishima and Honda’s work on TiO2 as possible photocatalyst to be used in 

PEC water splitting8 has opened the doors for many extensive research on it (Figure 3-1) and 

other metal oxides and their use in water splitting 9,10,11.  

 

 

Figure 3-1 Number of publications on Titania Nanotubes over the past few years 12 

There are two major problems faced when looking for a suitable photoanode: carrier 

recombination that hinders the photocurrent, and limited absorption due to the wide band gap 

problem present in most metal oxides. Different approaches have been previously adopted in 

order to find possible effective pathways to modify and tune the properties of TiO2 to match 

the application demands. TiO2 has a wide bandgap (~3.0 eV when it is in the Rutile structure, 

and 3.2 eV when it is in Anatase) which limits its absorption to the UV region hindering the 
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efficiency of the PEC water splitting reaction to theoretical values of 2.2% and 1.3% for Rutile 

and Anatase respectively 13. Accordingly, it is desirable to red-shift the absorption edge towards 

lower frequencies in the NIR/Vis range. This band gap tuning/engineering can be achieved 

through doping and annealing in different atmospheres.  

Another problem is the recombination and carriers’ scattering, which greatly reduces 

the photocurrent and decrease efficiency. Therefore, it is desirable to control the pathways of 

charge carriers to minimize recombination and reinforce the charge collection probability. This 

can be attained through nanostructuring and decoration where charge injection can compensate 

the carriers lost during the recombination process. Doping as well can help enhance carrier 

mobility by modifying the band egde positions. The previous is discussed in detail below.   

3.1 Nanostructuring 

As previously discussed, nanomaterials are showing very interesting properties owing 

to the quantization effect. Accordingly, the degree of quantization controls the material 

properties. Therefore, properties of nanoparticles differ from those of nanosheets or 

nanotubes/nanorods. For instance, on examining the performance of nanoparticles in DSSC, 

where high dye loading is desired on the surface of the TiO2 thin film, they become perfect for 

the application14. However, the decreased crystallinity, non-uniformity and larger number of 

grain boundaries cause charge carrier scattering and make carriers more prone to recombination 

(Figure 3-2 a); which is undesirable in the PEC water splitting process15. Nanotubes and 

nanorods provide a great solution for this problem by separating the pathways of the electron 

and holes supressing recombination. Holes move horizontally to the surface to participate in 

the OER; while electrons move vertically towards the bulk as shown in Figure 3-2 b. Nanotubes 

are preferable to nanowires as they offer a decreased wall thickness and a shorter path 

(ultimately less than the hole diffusion length) thus allowing for comparatively facile hole 

transport to the surface compared to nanowires. Also, nanotubes can by synthesized to be more 

ordered. In addition, nanowires are generally very long, with increased resistivity and more 

recombination centres 16.  
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Figure 3-2 Electron transport in (a) particles (b) nanotubes 17 

The multipodal morphology has proven to possess remarkable features making it 

suitable for use in light harvesting applications owing to its graded refractive index decreasing 

the Fresnel reflectance and its enhanced light scattering according to Mie scattering theory 17–

20. Mohammadpour et al. reported the formation of TiO2 MPNTs by anodization in diethylene 

glycol (DEG)-based electrolyte containing Hydrogen Flouride (HF) for 45 hours as shown in 

Figure 3-3 20. Rambabu et al. used DEG-based electrolyte with HF and ammonium fluoride for 

2 hours to synthesize TiO2 MPNTs 17. However, there are no reports present on the synthesis 

of complex oxide MPNTs. It is known that compact oxide barrier films form when the oxide 

is insoluble in the anodization bath, and porous films when it is moderately soluble21. In 

addition, Formamide-based electrolyte was used by Allam et al. to produce vertically oriented 

Ti35Nb5Zr nanotubes of tube lengths up to 7um22. Therefore, a formamide-based electrolyte is 

used to produce the complex MPNTs of the alloy in hand.  

 

Figure 3-3 SEM of TiO2 MPNTs synthesized in DEG-based electrolyte 20 



25 

 

 

 

3.2 Doping 

Doping can be performed to either enhance charge separation or tailor the band gap.  In 

addition to sputtering, ion implantation and other clean-room based techniques, doping can be 

obtained through using alloying. When thinking of band gap reduction, it is thought of 

incorporating cations in the lattice with another cation of lower d orbital energies than that of 

Ti4+ (Figure 3-4 a). On the other hand, one could possibly replace oxygen anions with anions 

of higher atomic 2p or 3p orbital energies than that of O to raise the VBM (Figure 3-4 b). DFT 

calculations show that (Ta, N), (Nb, N),(Mo, N) and (W, N) are optimum for engineering TiO2 

to meet band gap, optical absorption, band edge positions, and mobility criteria23. Moreover, 

binary and ternary Titanium-based alloys possibly enhance charge generation and separation, 

which is employed to introduce donor and acceptor defects and enhance the charge carrier 

density. In this sense, Nb is considered as a donor impurity24; while Zr doping is expected to 

shift the CBM towards vacuum level and maintain carrier mobility23. 

 

Figure 3-4 Atomic (a) d orbitals energy levels and (b) p orbitals energy levels of various 

cations and anions 23 

As discussed before, enhancing the crystallinity can greatly reduce recombination; 

accordingly, annealing at different temperatures, atmospheres, and times can greatly influence 

the electrical, photoelectrochemical and mechanical properties of the material 25–31. Annealing 

can be considered at times as a form of doping when carried out under different atmospheres. 

It has a great influence on the conductivity as shown in Figure 3-5 . it also controls phase 

transformation and crystallinity 26. 

a b 
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Figure 3-5 Effect of annealing time and temperature on the conductivity of 1um long TiO2 

nanotubes 26 

It has been also shown that annealing under different atmospheres can induce electronic 

structure modification and band gap tuning. For instance, Allam et al. have shown that 

Ammonia annealing of Niobium microcones incites bandgap reduction due to Oxygen 

substitution by Nitrogen which has 2p orbitals of higher potential energy than that of oxygen29. 

Taga et al. firstly reported enhanced TiO2 absorption through Nitrogen doping32, shown in 

Figure 3-6.  

 

Figure 3-6 Comparison between the absorption of doped TiO2-xNx and undoped TiO2 
32 
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 One of the very interesting band-tuning techniques is annealing in a reducing 

atmosphere. DFT calculations showed that new allowed gap states are introduced in the 

bandgap by the disordered structure formed through bonding one Hydrogen atom to Titanium 

and another Hydrogen atom to Oxygen in a process known as Hydrogenation 33. This can be 

used as another way to overcome the wide bandgap problem of TiO2 and shift the absorption 

towards visible region as shown in Figure 3-7 a. The introduced states are referred to as CB 

and VB tail states with the valence band tailing being strong and is formed by Oxygen 2p 

orbitals hybridization with Titanium 3d orbitals. On the other hand, the CB tail states are 

formed by 3d orbitals only (Figure 3-7 b).  

 

Figure 3-7 (a) Absorption shift introduced by the band tails (b) Schematic of the new density of 

states on the left compared to conventional Titania density of states 33 

It has been shown that annealing in a reducing atmosphere, results in the formation of 

Oxygen vacancies and/or Titanium interstitials, accompanied by the formation of Ti3+, which 

cause a contraction in the lattice decreasing crystallinity 34. Although the decreased crystallinity 

is expected to increase the recombination sites, the band gap reduction still persisted which is 

promising in photoelectrochemical water splitting. Also, Wang et. Al, discussed the formation 

of Ti3+ during Hydrogen annealing and detailed defect positions formed by it (Figure 3-8), 

which are 0.7-1 eV lower than the CBM. They have also showed that electronic transitions 

between the VB tails and the localized oxygen vacancies as well as transitions between the 

localized oxygen vacancies and CB contribute to NIR absorption 35. Moreover, Li et al. 

suggested that in order for Ti3+ defects to be effective in the water splitting process and 

contribute to the carrier density, they must exist in bulk not on the surface, to prevent their 

a b 
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oxidation by VB holes 36. Finally, Tusi et al. suggested that Hydrogen annealing causes 

passivation of surface states that act as trap/recombination centres increasing the carrier density 

37.  

 

Figure 3-8 E10 & E20 are Oxygen vacancies present at 0.7-1 eV below the CB 35 

It is also worth mentioning that the concept of oxide reduction has been discussed with 

other metal oxides. For example, Sinhamahapatra et al. confirmed the presence of VB tail states 

in black ZrO2-x formed by hybridization of O 2p and Zr 4d, which greatly reduced the bandgap 

from 5.09 eV to 1.52 eV 38. Moreover, Liu et al., using DFT calculations, proved that the VB 

of Anatase doped with Nb will be formed by hybridization of Oxygen 2p and Nb 4d 39. It is 

then acceptable to expect that on annealing the alloy in hand in a reducing atmosphere, VB tail 

states will merge and perhaps CB tail states too; where the aforementioned VB tail states will 

be formed by O 2p orbitals hybridization with Ti 3d, Zr 4d, and Nb 4d, while the CB tail states 

will be formed by the transition metals’ d orbitals. 
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3.3 Decoration & Coupling 

Many reports in literature discuss the decoration of Titania nanotubes with other Many 

reports in literature discuss the decoration of Titania nanotubes with other materials of desired 

properties to overcome the problems discussed earlier. One of the decorating elements used in 

literature are noble metal (such as Gold and Silver) plasmonic nanoparticles and quantum dots 

for enhanced antibacterial effect 40 and enhanced photocatalytic activity in the visible range41. 

In addition, quite often semiconductor nanoparticles of a narrow bandgap are coupled with 

Titania nanotubes to enhance the absorption, increase charge separation efficiency and enhance 

charge injection facilitated by the relative band alignment to increase the carrier density. For 

example, Tsui et al. used electrodeposition method to deposit n-type and p-type Cu2O on TiO2 

nanotubes, and obtained a fourfold enhancement in the photocurrent42. Yun et al. used ternary 

p-type CuInS2 for improving light absorption and trapping resulting in improved 

photoelectrochemical performance43. However, very few reports are present on the use of 

quaternary CZTS with metal oxide nanotubes and to our knowledge there are no reports on the 

coupling of CZTS with multinary metal oxides. Zhang et al. used electrophoresis to deposit 

(Cu2Sn)x/3Zn1-xS with x= 0.75, 0.24, and 0.09 on TiO2 nanotubes. Figure 3-9 shows the J-V plots 

obtained at different stoichiometry, with the highest photocurrent at x=0.09. They have 

attributed this enhancement to the type II alignment shown in Figure 3-10 enhancing charge 

separation efficiency; where the higher the offset between the CZTS CBM and that of TiO2, 

the higher the achieved photocurrent 44. 

 
  

Figure 3-9 J-V plots of TiO2 nanotubes (a)in dark (b) under light; and TiO2 nanotubes with 

(Cu2Sn)x/3Zn1-xS (c) x=0.75 (d) x=0.24 and (e)x=0.09 44 
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Figure 3-10 Energy band diagram showing the relative alignment of band edge positions of 

(Cu2Sn)x/3Zn1-xS and (Cu2Sn)x/3Zn1-xS 44 
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4. Chapter 4    

 Materials & Methods * 

4.1 Chemicals and Supplies 

4.1.1 TiNbZr MPNTS  

TiNbZr alloy sheet (ATI Tiadyne™ 3510) was supplied from ATI Wah Chang. 

The alloyed was used as received without treatment but cut into samples with 

dimensions about ~ 20 mm x 10 mm. The breakdown of the alloy constituents is as 

follows: 55% Ti, 35% Zr, and 5%Nb. Formamide (AppliChem, 99.5%, Analytical 

grade), Ammonium Flouride (Alfa Aesar, 96%), and Phosphoric acid (Chem-Lab nv, 

85%) were to prepare the electrolytic anodization bath. Potassium Hydroxide 

(AppliChem, Pharma Grade, 85%) was used to prepare 1M KOH solution to be used as 

the electrolyte in PEC cell.  

4.1.2 CZTS nanoparticles 

Copperic Chloride dihydrate (Fine-Chem Limited, Analytical grade), Zinc 

Chloride (Fine-Chem Limited, Analytical grade), Stannous Chloride dihydrate 

(Lobachemie, 98%, Analytical grade), Thiourea (Lobachemie, 98%, Analytical grade), 

Polyethylene Glycol 400 (Oxford, Analytical grade) were used in the solvothermal 

preparation of CZTS nanoparticles. Toluene (LobaChemie, Analytical grade) was used 

to prepare the electrophoretic deposition solution to be used to deposit CZTS 

nanoparticles on Hydrogen annealed samples.  

4.2 Synthesis and Fabrication 

4.2.1 MPNTs Anodization & Annealing 

The fabrication of Ti-Nb-Zr-O nanotubes was performed by anodizing titanium 

alloy ATI Tiadyne™ 3510 (Ti-35Zr-10Nb) with a size of ~ 20 mm x 10 mm. Before 

anodization, the samples were polished using SiC emery paper up to 2500-grit, and then 
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ultrasonically cleaned successively in Acetone, Ethanol, and deionized (DI) water, each 

for 10 minutes. Subsequently, anodized samples were rinsed thoroughly with DI water 

followed by drying under an air stream. Anodic oxide layers were produced by 

anodization using a 2-electrode electrochemical cell (Figure 4-1), with the alloy serving 

as the anode / working electrode (WE) and a graphite counter electrode (CE). The 

separating distance between the electrodes was set to 2 cm, and operating temperature 

was set to room temperature (24±2C). Compact oxide barrier films form when the 

oxide is insoluble in the anodization bath, and porous films when it is moderately 

soluble. 

Anodization was performed by sweeping the potential using Agilent E3612 DC 

power supply under potentiostatic conditions from 0 V to the target potential (60 V for 

compact nanotubes and 100 V for Multipodal ones) at a rate of ~ 0.6 V.s-1, and then 

keeping the potential for the specified time based on the experimental condition. As-

prepared samples were annealed in Thermoscientific programmable tube furnace model 

Lindburg/Blue M Tf55030C for 4 hours under flow of air with a heating rate of 20 C/min 

when compared to Compact nanotubes, but on comparing the effect of the three 

different annealing atmospheres, heating and cooling rates of 10 C/min were used. The 

samples annealed in Oxygen and Hydrogen were annealed under Oxygen and Hydrogen 

respectively using a flow rate of 100 SCCM.  

 

Figure 4-1 Anodization setup 1 
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4.2.2 Solvothermal Synthesis & Electrophoretic Deposition 

CZTS nanoparticles were synthesized in a three-neck flask, by a solvothermal 

method using a solvent of high boiling point (PEG 400) and non-stoichiometric molar 

concentrations of the precursors at 350o C for four hours under Nitrogen bubbling. Next, 

the obtained precipitate was thoroughly washed several times using Acetone, Ethanol, 

and distilled water to get rid of the organic residuals. For electrophoretic deposition 

(Figure 4-2) on Hydrogen annealed samples, 5 mg of the obtained CZTS powder were 

sonicated for 10 minutes in 25 ml Toluene and two of the MPNTS samples were 

connected to the positive and negative terminals of the Agilent E3612 DC power 

supply; where 50V was used for 90 minutes to deposit the CZTS nanoparticles.  

 

Figure 4-2 Electrophoretic deposition schematic, where the surface charge of the particles 

suspended controls the deposition direction 2 

4.3 Characterization 

4.3.1 Morphology & Structure 

A Zeiss SEM Ultra 60 field emission scanning electron microscope 

(FESEM) was used to characterize the morphology of the fabricated MPNTs. 

Investigations of the crystalline phases of the annealed samples were performed 

using a Raman microscope (Pro Raman-L Analyzer) with an excitation laser 

beam wavelength of 532 nm, as well as PANalytical X’pert Pro PW3040 MPD 
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X-Ray Diffractometer (XRD) using copper Cu Kα radiation (λ= 0.15406 nm) in 

the range of 5° to 80° at a scan rate (2θ) of 3° s-1. XPS studies were carried out 

in a Kratos Axis Ultra DLD spectrometer equipped with a monochromatic Al Kα 

X-ray source (hν = 1486.6 eV). Binding energies were referenced to the C 1s 

binding energy of adventitious carbon contamination (CC/C-H), which was taken 

to be 284.8 eV. CASAXPS software was used for the fitting and deconvolution 

of the XPS data. Vesta software was used to draw and identify the interstitial sites 

in the anatase microstructure.  

4.3.2 Optical & Photoelectrochemical 

A 3-electrode electrochemical cell was used to study the photoelectrochemical 

performance of the prepared MP and compact NTs with Ag/AgCl as a reference 

electrode and Platinum as a counter electrode. The measurements were carried out using 

Biologic SP-200 Potentiostat using a Xenon lamp with AM 1.5 filter illumination in 

1M KOH as the electrolyte. Chronoamperometric measurements were done at 0.5 V. 

Mott-Schottky measurements were done at 1 kHz in the voltage range -1.0 to 1.0 V. 

Spectroscopic Ellipsometry measurements were done using HORIBA Jobin Yvon 

Ellipsometer. 
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5. Chapter 5     

 Multipodal Ti-Nb-Zr: Formation Mechanism, Optical and 

Photoelectrochemical Properties * 

The purpose of this chapter is to present a theoretical perspective that considers NTs as 

a bottom-fixed cantilever in order to understand the formation mechanism of MPNTs. The 

effect of the multipodal morphology on the optical and photoelectrochemical properties is 

studied through a comparison between multipodal and regular compact nanotubes. 

5.1 Morphological Analysis 

Figure 5-1 a and b show FESEM images of a tilted surface and a top-view surface, 

respectively of a 2-hr anodized sample in a formamide-based electrolyte at 100 V. MPNTs can 

clearly be recognized all over the sample surface (indicated by the yellow arrows). The high 

magnification images of a bipodal as well as tripodal NTs in the insets of the figure confirm 

the presence of a common top pore with 2 and 3 pods (legs) underneath. Further validation was 

proved via the cross-sectional view image shown in Figure 5-1 c, indicating independent, 

discrete NTs fusing at the middle portion leading to a common pore near the top surface of the 

oxide layer, an insight which would help in the explanation of the formation mechanism 

discussed later. The samples synthesized under these anodization conditions are characterized 

by widely separated NTs with large inter-tubular spaces compared to the regular compact NTs 

synthesized at 60 V in the same electrolyte (Figure 5-1 d). These wide separations arose from 

the dissolution of a fluorine-rich layer that exists between pores before transforming into 

separate tubes. While the  presence of fluorine-rich layer underneath the NTs at the metal/oxide 

interface was confirmed via EDX and XPS analyses1,2, AES analysis provided a direct proof 

that the fluoride concentration increases toward the NT/NT junctions reaching its maximum in 

between the walls of the NTs3. As a result, once the oxide is formed at the metal/metal oxide 

interface, fluoride ions attack both the metal and the oxide to form water soluble fluoride 

complexes. Subsequently, the inter-connecting layers between the tubes are consumed. In 
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addition, the high electric field accelerates the dissolution during anodization4. Therefore, it is 

rational to assume that the presence of this layer and its dissolution is the main cause for the 

large tube separations observed3. In this context, it is noteworthy that using a low water content 

in an organic-based electrolyte resulted in the formation of smooth NT sidewalls with no 

ripples or inhomogeneities observed at the upper portion (Figure 5-1 c)5. 

Figure 5-1 (a) FESEM images of the as-prepared Ti-Nb-Zr-O MPNTs tilted surface where the 

inset shows a high magnification image of a tripodal NTs, (b) normal top-view image, arrows 

point to the different pods for the same mouth and the inset shows a high magnification image 

of a bipodal NTs, (c) cross-sectional view of as-prepared MPNTs, where different formation 

stages are pointed out by the arrows, (d) compact nanotubes 

Several prerequisites concerning the magnitude of the forces acting on the NTs 

as well as their geometry are mandatory for the MPNTs to be formed. These conditions 

can be estimated by modeling the NT as a vertical cantilever fixed from its bottom end, 

Figure 5-2. This cantilever is loaded at its top with a perpendicular force (Fnet) generated 

by the surface tension of the electrolyte. Forces were assumed to act from the outside 

only as it was reported that wetting is not uniform over the entire top surface of the NTs, 

but favourably takes place in the intertubular spaces6. Moreover, while the forces 

exerted due to surface tension can either be a repulsive or attractive forces between the 

d 
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NTs depending on the contact angle of the meniscus between NTs7, these forces must 

overcome the stiffness of the NT to start leaning and reposing on its neighbour. In order 

to keep the NT bent, stresses generated from the applied force should either exceeds the 

yield strength of the NT material (i.e. material starts plastic deformation), or elastically 

bend till reaching a distance by which van der Waals attraction force can keep them in 

contact8.  

 

Figure 5-2 A schematic illustration of the force resolution on a bent NT fixed from the bottom. 

Figure 5-2 shows a schematic illustration of the bending force generated as a 

result of the electrolyte capillary force (Fc). Note that for simplification, we neglected 

the effect of electrostatic repulsion forces from like-charges buildup on the NTs. 

𝐹𝑛𝑒𝑡 = 𝐹𝑐 𝑠𝑖𝑛 𝜃 = 2𝜋𝑅𝛾 𝑠𝑖𝑛 𝜃     5-1 

where 𝛾 is the surface tension of the electrolyte, 𝑅 is the outer radius of the NT, and θ 

is the static equilibrium contact angle of the electrolyte with the NT surface. Two 

different conditions can occur causing the NTs to lean on each other: First, applied force 

causes bending plastically, at this case stresses (𝜎) induced by Fnet must exceed the yield 

strength (𝜎𝑦) value of the oxide. Bending stresses can be calculated using the following 

formula9: 

𝜎 =
𝑀𝑦

𝐼
=

(𝐹𝑛𝑒𝑡 .𝐿)𝑅

𝐼
≥  𝜎𝑦          5-2 

where M is the bending moment due to the Fnet, y is the distance from the neutral axis 

of the cross-section with a maximum value equals R, and I is the 2nd moment of area of 
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the cross-section, for a hollow circle: 𝐼 =
𝜋(𝑅4−𝑟4)

4
, where r is the inner radius. 

Accordingly, for the NTs to start plastic deformation 𝐹𝑛𝑒𝑡 ≥
𝜎𝑦𝐼

𝐿𝑅
  , thus 2𝜋𝑅𝛾 𝑠𝑖𝑛 𝜃 ≥

𝜎𝑦𝐼

𝐿𝑅
        

Therefore, a critical length for the NTs to start plastic deformation (L𝑝
∗ ) can be 

calculated as: 

𝐿𝑝
∗ ≥

𝜎𝑦𝐼

2𝜋𝑅2𝛾 𝑠𝑖𝑛 𝜃
       5-3 

Yet, before reaching the plastic deformation region, a second mechanism can be active 

by which NTs can start bending elastically, and in case the resultant deflection was large 

enough, NTs can repose on each other. The critical length can then be calculated by 

making use of the deflection dependence on the applied force: 

𝛿 =
𝐹𝑛𝑒𝑡𝐿3

3𝐸𝐼
           5-4 

where 𝛿 is the deflection at a distance L from the bottom of the tube, E is the elastic 

modulus of the oxide, and the value of EI represents the materials stiffness or the 

resistance of the material to elastic bending. Moreover, for the NTs to repose on each 

other, each NT must deflect with half the intertubular space, which was estimated, based 

on the FESEM images, to be approximately R/2. 

𝑅

4
≤

2𝜋𝑅𝛾 𝑠𝑖𝑛 𝜃𝐿3

3𝐸𝐼
           5-5 

Then, L* can be calculated as: 

𝐿𝑒
∗ ≥ (

3𝐸𝐼

8𝜋𝛾 𝑠𝑖𝑛 𝜃
)

1
3⁄

                       5-6 

The value of (EI) represents – but not equal to - the stiffness or elastic resistance of the 

NT. Thus, the product of E and I value would determine whether the elastic or the plastic 

bending mode will be active first. From Equations 5-3 & 5-6, L* is directly proportional 

to the radius of the NTs given that other properties are constant for the oxide and 

electrolyte (σy, 𝐸, 𝛾, and θ). Therefore, to intentionally form MPNTs, tradeoff between 

R and L must be made.  From another perspective, the force required to deflect the NT 

a certain distance can be calculated as:   

𝐹𝑛𝑒𝑡 =
3𝐸𝐼

𝐿3  𝛿                   5-7 
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Therefore, Fnet is inversely proportional to L or L3 depending on the active mode of 

bending, while Fc is independent of the length. Therefore, L* represents the value at 

which the capillary force is large enough to induce the minimum amount of deflection 

required for NTs to repose on each other given that other parameters are constant. As a 

result, for NTs shorter than L*, NT stiffness (elastic resistance) would be enough to hold 

the NT vertically without reaching required deflection. In addition, at first sight, time 

appears to have no effect on the magnitude of the acting force, yet a more careful 

analysis leads to a different conclusion. Equation 5-1 shows that the capillary force is 

dependent on the outer diameter, which increases with time. Hence, as time increases, 

the acting force on the NTs increases, together with the fact that deflection is a function 

of not only the acting force but also the length of the NT. Thus, deflection increases as 

the length increases even if the force remains constant. In the light of this investigation, 

it can be concluded that anodization time has a dual effect on the deflection, through 

both the magnitude of force and the NT length. Nevertheless, if the NTs formed are 

compact, NTs would have no room to bend and lean, this explains the existence of long 

NTs without being multipodal.  

 

5.2 Optical Analysis 

In order to investigate the effect of the multipodal morphology on the optical as 

well as the photoelectrochemical behavior of the material, diffuse reflectance, linear 

sweep voltammetry (LSV), chronoamperometry, and Mott- Schottky analyses were 

performed. Figure 5-3 a shows the diffuse reflectance spectrum, indicating higher 

scattering from the structure of the MPNTs than that for the compact NTs counterpart 

(Figure 5-1 d). This is in accordance with the Mie scattering theory suggesting that light 

is scattered more efficiently when the diameter of the tube matches that of the incident 

wavelength. This would result in enhanced light harvesting yielding better performance 

upon their use in optical devices. Note that the diameter of the compact nanotubes in the 

range of 170 nm, thus acting as subwavelength structures that scatter light in a Rayleigh 

fashion10. It is also expected that the MPNTs provide a graded refractive index 

behaviour owing to the gradual increase in porosity. The refractive index is gradually 

matched to that of the surrounding medium (air in this case), thus decreasing the 

difference between the refractive index of the material and that of air, resulting in 
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decreased reflectance according to Fresnel’s equations11. To our knowledge, there are 

no previous reports for the refractive index of the mixed oxide under study. Therefore, 

ellipsometry was used to measure the effective refractive index of the compact 

nanotubes in the wavelength range 300-800 nm then the refractive index was selected 

at wavelength= 590 nm as convention. Next, information from FESEM images was used 

in volumetric calculations to obtain the refractive index of the oxide layer underlying 

the NTs (no) following the effective medium theory12,13.  

𝑛𝐶 = [ 𝑓
𝐶

∗ (𝑛𝑂

𝑞 ) +  𝑓
𝑎𝑖𝑟

∗ (𝑛𝑎𝑖𝑟

𝑞 )]
1

𝑞⁄
    5-8 

𝑅 = (
𝑛𝑂−𝑛𝑎𝑖𝑟

𝑛𝑂+𝑛𝑎𝑖𝑟
)2       5-9 

where R, 𝑓𝐶 and 𝑓𝑎𝑖𝑟 are the reflectance, and filling factors of the compact layer and air, 

respectively. The refractive index of the compact tubes (nc) layer is calculated to be 1.5 

with reflectance at incidence normal to the plane = 4%. The refractive index of air (nair) 

is set to 1 and the exponent is set to 2/3, resulting in no=4.48. However, adding the 

MPNTs portion of the tubes, results in two layers: discrete NTs and MPNTs (Figure 5-1 

c) with refractive indices of nd=2.48 and nM=1.34 respectively assuming constant length 

for each portion throughout the sample, and reflectance = 2.11%. This proves that the 

MPNTs provide graded refractive index behavior decreasing reflectance from the 

surface. This would open the door for a low-cost morphology optimization technique 

that can influence the refractive index in favourable ways since the multipodal portion 

of the nanotube act as a self-induced antireflective coating14. 
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Figure 5-3 (a) Diffuse reflectance and (b)absorbance spectra of MPNTs and compact NTs. 

5.3 Photoelectrochemical Analysis 

Upon their use as photoanodes to split water photoelectrochemically, the large 

diameter (~360 nm) MPNTs showed a photocurrent that is almost 9 times larger than 

that of the comparatively smaller diameter compact NTs under AM 1.5 illumination 

(100 mW/cm2) (Figure 5-4 a). The MPNTs showed a photocurrent of 48.4 µA/cm2 at 1 

VAg/AgCl compared to 5.2 µA/cm2 for the compact NTs. Figure 5-4 b shows the results 

of transient photocurrent (J–t) tests carried out under light On/Off conditions at a 

constant external bias of 0.5 VAg/AgCl. It has been shown that trapped electrons and holes 

have transient absorption in the visible region15 as shown in the absorption of the 

compact nanotubes, Figure 5-3 b. In addition, it is clear that the transient response has 

decreased in the MPNTs, which is reflected in the I-t curves where the samples exhibited 

sharp and fast current decay upon turning the light off indicating the presence of a high 

concentration of shallow oxygen vacancies on the surface16, as well as being stable over 

the test duration.  
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Figure 5-4 Photoelectrochemical performance of MPNTs and compact NTs: (a) LSV, (b) 

normalized Chronoamperometric measurements conducted at 0.5 V, (c) LSV of H2 annealed 

samples, and (d) Mott-Schottky plots. 

 

However, the enhancement cannot be related only to the light absorption 

capability of the material, Figure 5-3 b as there are two competing factors: the large 

diameter providing higher scattering, and the graded refractive index reducing surface 

reflectance. Therefore, Mott-Schottky (MS) analysis was performed to get an insight of 

the charge carriers density and flat-band potential of the MPNTs. Figure 5-4 d shows 

the MS plots of the compact and MPNTs, which were used to calculate the charge 

density and the flat-band potential as:   

1

𝐶2
=  

2

𝑁𝐷𝜀𝜀0𝑒
[(𝑉 − 𝑉𝐹𝐵) −

𝑘𝑇

𝑒
]                5-10   

𝑁𝐷 =  −[
2

𝜀𝜀0𝑒
][

𝑑(1
𝑐2⁄ )

𝑑(𝑉)
]

−1

       5-11           

where ND is the donor density, e is the electron charge, ε0 is the permittivity of free 

space, ε is the dielectric constant calculated from the measured refracted index where ε 

= n2 = 20.07, V is the electrode applied voltage, VFB is the flat-band potential, k is 
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Boltzmann’s constant and T is the temperature set to 25 C. The positive slopes of the 

MS plots indicate the n-type semiconducting behaviour of the tested electrodes. The 

slope was extrapolated to obtain the flat-band potential17–19. The VFB of the compact and 

MPNTs were found to be -1.115 V and -0.835 V, respectively. The positive shift in the 

VFB of the MPNTs indicates that less voltage is required to overcome the decreased band 

bending at the interface17–19. Moreover, the calculated charge densities are 51.83 × 1018 

cm-3 and 24.74 × 1018 cm-3 for the MPNTs and compact NTs, respectively. The larger 

ND may result in increased probability of charge collection, which can explain the 

observed enhancement in the photocurrent and implying that the multipodal structure 

may be passivating some of the surface states that act as recombination centers20. 

To confirm the large diameter MPNTs effect, the samples were sonicated to remove the 

MPNTs portion of the nanotubes. The photoelectrochemical measurements were done 

before and after the sonication step. Figure 5-4 a shows that the photocurrent has 

decreased after sonication. To further confirm that this effect is independent of the 

annealing conditions, a batch of samples were annealed under Hydrogen gas flow 

instead of Air. The same behavior persisted where the photocurrent has decreased after 

sonication (Figure 5-4 c). The higher photocurrent can be attributed to the effect of the 

large diameter of the MPNTs providing a larger surface area in contact with the 

electrolyte that can facilitate hole transfer to the present species undergoing oxidation21.  
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6. Chapter 6     

 Towards Enhancing the Optical & Photoelectrochemical 

Properties of MPNTs* 

As seen from the literature review, annealing in different atmospheres can be one way 

to manipulate the material properties and tune the bandgap. Following the morphology 

optimization phase, the aim of this phase was study possible routes for enhancement of optical 

and PEC properties. The effect of the annealing atmosphere on the structure, optical and PEC 

properties of the MPNTs is studied in sections 6.1-6.4; and CZTS deposition on H100 MPNTs 

is studied in section 6.5. 

6.1 Morphological Analysis 

Figure 6-1 shows FESEM images of the as-synthesized MPNTs and after their 

annealing under oxygen (O100), Air (Air0) and hydrogen (H100) streams. Note the 

uniform distribution of the MPNTs on the surface. Upon annealing in hydrogen (H100), 

a noticeable decrease in the nanotubes diameter is observed. Outer diameters of O100, 

Air0 & H100 are 418.31, 411.33 and 371.45 respectively. Figure 6-2 a,b shows the top, 

side, and bottom views of the synthesized nanotubes confirming the formation of 

compact NTs at the bottom (Figure 6-2 b inset) and their bending as they grew longer. 

MPNTs are created as a result of the bending and fusion of discrete NTs once they 

exceed a critical length. Moreover, Figure 6-2 c shows a high-resolution cross-sectional 

FESEM image of a MPNT where two NTs merge, confirming the proposed formation 

mechanism discussed in the previous chapter.  

                                                      

 

 

* Parts of this chapter are submitted as a paper   



54 

 

 

 

 

Figure 6-1 FESEM images of the (a) as-prepared Ti-Nb-Zr-O MPNTs via anodization for 2 

hours at 100 V in formamide-based electrolyte. (b-d) After annealing in (b) Oxygen, (c) Air0, 

(d) Hydrogen 
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Figure 6-2 FESEM images of MPNTs via anodization for 2 hours at 100 V in formamide-based 

electrolyte. (a) Tilted surface where the inset shows a high magnification image of the MPNTs, 

(b) bottom view of the MPNTs confirming the presence of a compact NTs at the bottom (c) closeup 

image of a tripodal nanotube, the inset shows cross-sectional view 
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6.2 Structural Analysis 

Figure 6-3 shows the diffraction patterns obtained for the samples annealed under 

different conditions. The Air0 and O100 peaks can be indexed to the characteristic 

diffraction peaks of the anatase phase of TiO2, indicating a polycrystalline structure. 

The sharp and strong peak at (100) indicates that the presence of highly crystalline 

anatase. It should be noted that no significant peaks for neither ZrO2 nor Nb2O5 phases 

are observed. The absence of peaks relevant to other oxides indicates the coherent 

integration of Zr and Nb into the lattice of the TiO2. Hence, the XRD suggests the 

formation of an anatase-dominant structure of mixed complex oxide Ti-Nb-Zr-O rather 

than different binary oxides1.  

 

Figure 6-3 XRD of H100, Air0 & Oxygen showing incorporation of Zr & Nb in an anatase 

crystal structure in O100 & Air0, with formation ZrTiO4 phase in H100 

However, the obtained peaks appear at a 2θ ca. 0.4° lower than the reference 

anatase peaks, which can be attributed to the change in the lattice constant and the 

heterogenous tensile strain in the structure owing to the incorporation of secondary 

metals2–7.  Quantitative analysis was performed for the XRD data in order to calculate 

the interplanar distances (d-spacing), crystallite size (D), the full width at half maximum 

(FWHM) of the different peaks, and the resultant lattice strain at each condition, Table 
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6-1. The crystallite size can provide a direct measure for the coherence of different 

crystalline domains, and can be calculated using Scherrer’s Equation (6-1)8: 

𝐷 =
0.94𝜆

𝛽𝑐𝑜𝑠𝜃
       6-1 

where 𝜆 is the incident x-ray wavelength, 𝛽 is the FWHM, 𝜃 is half of the Bragg’s angle, 

0.94 is a shape factor. While the lattice strain (𝜀) can be estimated from the Williamson-

Hall equation (assuming a uniform deformation model in 9: 

𝜀 =
𝛽𝜀

4tan 𝜃
  6-2 

Table 6-1 Detailed calculation of shift, d-spacing, crystallite size, FWHM, and resultant strain 

 

Moreover, the lattice parameters a and c are estimated from the lattice geometry 

and the d-spacing of the planes as shown in equation 6-3 

1

𝑑ℎ𝑘𝑙
2 =

ℎ2+𝑘2

𝑎2 +
𝑙2

𝑐2  6-3 

No. Index Pos. [2θ] Ref. (2θ) Shift d-spacing [Å] β [°2Th.] Crystallite Size only [Å] Strain

1 100 24.8824 25.224 -0.3416 3.57846 0.3936 236.1264 0.44602

2 100 (ZrTiO4) 30.3837 30.442 -0.0583 2.94193 0.4723 198.2648 0.43483

3 200 (ZrTiO4) 36.0155 35.641 0.3745 2.49376 0.9446 99.90288 0.72646

4 121 (ZrTiO4) 41.7961 41.9 -0.1039 2.16127 0.9446 101.6994 0.61848

5 105 53.1278 53.867 -0.7392 1.72394 0.9446 106.2288 0.47232

No. Index Pos. [2θ] Ref. (2θ) Shift d-spacing [Å] β [°2Th.] Crystallite Size only [Å] Strain

1 100 24.84 25.224 -0.3851 3.58464 0.1181 924.4797 0.13407

2 103 36.53 36.903 -0.3734 2.45985 0.2952 327.0922 0.22361

3 200 47.37 47.848 -0.4737 1.91898 0.2952 339.2672 0.16822

4 202 51.96 51.96 0.0029 1.75981 0.9446 105.696 0.48458

5 211 54.12 54.848 -0.7262 1.6946 0.2362 442.608 0.11559

No. Index Pos. [2θ] Ref. (2θ) Shift d-spacing [Å] β [°2Th.] Crystallite Size only [Å] Strain

1 100 24.9697 25.224 -0.2543 3.56616 0.1181 924.6465 0.13335

2 103 36.6271 36.903 -0.2759 2.45352 0.2362 414.6774 0.17841

3 4 37.5976 37.814 -0.2164 2.39239 0.3542 271.4241 0.26013

4 112 39.2144 38.459 0.7554 2.2974 0.4723 203.1017 0.33146

5 202 52.4229 51.96 0.4629 1.74544 0.3542 286.5126 0.17987

6 211 54.2202 54.848 -0.6278 1.69176 0.3542 288.8119 0.17297

O100

Air0

H100
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The calculations for both Air0 and O100 samples resulted in a lattice parameter of a= 

b= 3.58 and 3.56 Å, c= 10.15 and 10.14 Å, respectively. It should be noted that these 

values differ from that of the standard anatase (JCPDS No. 01-075-2545, a=3.799 Å and 

c=9.509 Å). This shift corresponds to the effect of incorporation of larger diameter six-

fold coordinated Nb5+ (0.064 nm) and Zr4+ (0.072 nm), compared to that of the host Ti4+ 

(0.061 nm)1,10. In addition, a dissimilar strain is noticed between the 2 axes of the lattice 

a and c, which suggests the presence of an induced anisotropic tensile stress in the 

lattice.  

On the other hand, annealing in a reducing atmosphere (H100) leads to the 

formation of different phases. As shown in Figure 6-3, new diffraction peaks can be 

observed for H100 samples which cannot be indexed solely against anatase, but also 

orthorhombic ZrTiO4 (JCPDS: 00-034-0415). Significant peak broadening can be 

observed relative to Air0 and O100, this increase in the FWHM can be ascribed to the 

particle size as well as the strain effects as mentioned earlier as the crystallite size in 

H100 was equal 236.12 Å, almost ¼ that of the Air0 or O10011. In addition, the increased 

FWHM for the (100) anatase combined with the decrease in its intensity indicates 

decreased crystallinity resulting from the structural disorder after the interaction of the 

H2 atoms with the oxide. However, a strong peak at 30.5°, which is attributed to the 

ZrTiO4, would suggest that annealing in a reducing atmosphere would favour the Zr 

ions to form an orthorhombic ZrTiO4 crystal rather than being incorporated in the 

tetragonal anatase. Hence, retarding the anatase phase12. 

Raman spectra were collected to further characterize the structure since Raman 

spectroscopy is much more sensitive to short-range distortions as the Raman modes are 

determined by the symmetry and bonding of the molecular species13. Figure 6-4 a shows 

the different peaks obtained for the alloy over the range 100-1000 cm-1. For the Air0 

and O100, peaks observed at 628, 508, 362, a weak shoulder at 202, and a major peak 

at 132 cm-1 are consistent with the Eg, B1g, A1g/B1g, and Eg vibrational modes of the 

tetragonal crystal structure of the anatase, respectively. Moreover, a weak broad band 

can be observed from 700-900 cm-1 centred near 800 cm-1 can be assigned to the B1g 

mode (397 cm-1) first overtone14. No peaks were observed for rutile, Nb2O5, or ZrO2; 

which supports what have been previously discussed that the formed oxide is a single 

mixed oxide. It is worth noting that there are no significant variations seen between the 
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peaks of the Air0 and O2 annealed samples. However, significant shift as well as slight 

broadening in the characteristic Eg peak (132 cm-1) can clearly be seen compared to the 

nominal anatase, Figure 6-4 b. The broadening or shift of Eg mode in TiO2 has been 

previously attributed in literature to defects, nonstoichiometry, non-homogeneity of size 

distribution, strain, and phonon confinement15–21. 

 

 

Figure 6-4 Raman Spectra of the samples (b) Raman Band at 134 cm-1 magnified and the 

vertical dashed line represents the nominal position of the Eg peak of Anatase. 

The dependence of the phonon position on particle size is expressed in equation 6-4 
22:  

∆𝑥∆𝑝 ≥
ℎ2

4
   6-4 

where ∆𝑥 is the particle size, ∆p  is the phonon momentum distribution and h is the 

reduced Planck’s constant. Increased phonon confinement occurs as the particle size 

being smaller, this leads to increased phonon momentum distribution, i.e. broadened 

peak for the scattered phonon momentum, and shift in the Raman band wave number.  

Hence, an observable red shift occurred in the Eg and B1g mode. On the other hand, no 

remarkable shift in the A1g and the other Eg mode. This dissimilar shift in the Raman 

frequencies (wave numbers) can be attributed to the anisotropic tensile stress in the 

lattice discussed earlier, besides the increased bond length resulting from Nb and Zr 

doping. The entry of Nb and Zr in the lattice -whether in interstitial or substitutional 

sites - would affect the lattice symmetry resulting in a distorted TiO6
8- octahedron as a 

a b 
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result of the ionic radius mismatch leading to a change in the phonon vibrations. The 

bond length can be calculated from the bond length/Raman frequency/covalency 

relationship assuming distinct Ti-O bond with no vibrational interaction between the 

neighbouring Ti-O bonds in the lattice 23:  

𝜈𝑇𝑖−𝑂 = 722𝑒−1.54946(𝑅−1.809)   6-5 

where R is the Ti – O bond length (Å) and ʋ represents the Raman shift (cm-1). These 

calculations resulted in bond lengths for Ti-O bond of 2×1.89, 3×2.03, and 2.25 Å based 

on the 628, 508, 362 cm-1 Raman bands, which is longer than the standard anatase bond 

lengths (apical Ti-O bond length: 2×1.9797, equatorial Ti-O bond length: 4×1.9338). 

While the calculated Ti-Ti bond length based on the sharp peak at 132 cm-1 resulted in 

2.91 Å, compared to 2.876 Å for the pure anatase24. These results are consistent with 

the assumptions of the distorted octahedral and strained lattice discussed earlier in the 

XRD analysis. This confirmed distortion, along with the fact that no separate phases are 

present, indicates that the Nb and Zr entered the lattice in either an interstitial or a 

substitutional site. Previous geometrical calculations based on the hard sphere model 

showed that the max. radius for an ion to fit in between the native ions in the larger 

interstitial site (I2) equals to 0.57 Å for a stable geometrical configuration, i.e. smaller 

than the radius of both the Nb and Zr 25. This said, it is clear that neither the Nb nor the 

Zr can fit in the interstitial site to form an interstitial solid solution. On the other hand, 

for a substitutional solid solution to form, Hume-Rothery rules must be satisfied, which 

is the case between the Nb, Zr, and the Ti ions. 

Raman spectra of the H100 the anatase peaks diminished and no other peaks were 

observed. This can result from either the formation of new Raman-inactive species or 

the presence of a significantly low crystalline domains. However, after trying different 

positions and exposing the samples to the Raman laser beam for prolonged time, 

significant increase in the 136 cm-1 peak was observed as well as the growth of new 

peaks, Figure 6-5. These observations along with the XRD pattern confirms the presence 

of partially-amorphous as well as crystalline domains with good crystal quality in the 

H100. Moreover, these features suggest that significant structural changes have 

occurred after annealing in hydrogen, resulting in increased structural disorder at the 

surface. This structural disorder can be the reason for the appearance of new signals 
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after annealing, indicating that the original symmetry of the anatase crystal structure 

was destroyed 26,27. Therefore, owing to the phonon confinement effects and the 

breaking down of the Raman selection rule, new Raman-forbidden modes can be 

activated and are held responsible for the new Raman signals 28,29. 

 
 

 

Figure 6-5 Raman spectra of H100 at different times 

 

XPS analysis was carried out to investigate the present surface species, i.e. Ti4+, 

O2-, OH-, Ti3+, and oxygen vacancies (Vo). For the Air0 and O100, Ti 2p spectra 

exhibited two significant broad peaks at 458.17 ± 0.07 (Ti 2p3/2) and 463.9 ± 0.08 eV 

(Ti 2p1/2) with a spin-orbit splitting of 5.75 eV (Figure 6-6 a,b) confirming that the 2 

peaks represents fully oxidized Ti ion in a sole chemical state Ti4+. Careful investigation 

for the shape of the peak eliminates the possibility of the presence of neither Ti2+, which 

should be separated by ~ 3-4 eV from the Ti4+ maxima, nor Ti3+ 30,31. While Figure 6-6 

d-f shows the Nb 3d photoemission spectra, broad doublets and symmetric peaks at 

206.73 ± 0.05 and 209.58 ± 0.05 eV can be observed, characteristic of Nb5+ 32,33. In 

addition, a peak for the Zr at ~ 184.35 ± 0.1 eV with a spin-orbit splitting of 2.4 eV in 

Figure 6-6 g-i suggests the existence of zirconium in the form of Zr4+ 1,33,34. No 

significant relative changes in the binding energies or the FWHM between both Air0 

and O100, confirming that both conditions lead to the same oxidation states30. 

O1s spectra showed a wide asymmetric peak with a tail towards higher binding 

energies in the Air0 samples, while for the O100, a multiple splitting exists, Figure 6-6 
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j-k. The presence of the asymmetric peak in the Air0 samples suggests the existence of 

different chemical states for the O1s.35 Hence, peaks were carefully deconvoluted and 

fitted to 3 main components corresponding to 3 different chemical states located at 

529.55 ± 0.03, 530.5 ± 0.3 and 532.1 ± 0.5 eV. Generally speaking, the binding energies 

present near 530 eV are assigned to the oxide ions of the lattice, and those of higher 

binding energies are assigned to the non-lattice/adsorbed oxygens30,36,37. The 

photoemission spectra at 529.55 eV was assigned to the intrinsic oxygen (Ti-O bond) in 

the anatase TiO2 crystal lattice. Next, the peaks at 530.5 and 532.1 eV were attributed 

to loosely bound oxygen on the surface in the form of OH and H2O
38. The deconvoluted 

single peak at 529.55 eV confirms the presence of the lattice oxygen in a single oxidation 

state, supporting the claim that a single mixed oxide is formed rather than multiple 

oxides39,40. On the other hand, the observed splitting in the O100 is ascribed to the 

increased peak of the adsorbed oxygen on the surface due to the presence of an oxygen 

rich atmosphere during annealing which facilitates its adsorption to the surface.  

Table 6-2 summarizes the peak positions, as well as the shifts compared to pure 

anatase for the 3 conditions. Although the presented data is in a good agreement with 

the literature, the binding energies of pure oxides of Ti, Nb, and Zr, all peaks showed a 

remarkable shift towards lower binding energies. This shift in positions indicates the 

influence of the Zr and Nb addition on the oxidation states of O and Ti. O1s peak showed 

a shift of ~ 0.4 eV towards lower BE compared to pure anatase (530.87 eV).41 This shift 

originates from the influence of the new neighbouring atoms surrounding the oxygen in 

the lattice. The shift in the binding energies in the studied alloy is attributed to: (1) the 

difference in electronegativities between the dopant and the host atoms (χTi=1.5, 

χNb=1.6, χZr=1.3). The binding energy is directly proportional to the neighbouring 

atoms’ electronegativity. Hence, the addition of Zr (less electronegative atom) with 

higher percentage compared to Niobium in a substitutional site tends to lower the 

binding energies of Ti4+ and O2-, owing to the increased electron cloud density around 

the Ti as well as the increased electron shielding effect42. (2) the presence of oxygen 

vacancies around the Ti4+, Nb5+, and Zr4+ ions43. These shifts correspond to the shifts in 

the Raman frequencies as well as in the diffraction angles of the anatase discussed 

before, confirming that the Nb and Zr as incorporated in the anatase lattice in a 

substitutional mode 12,44,45. 
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Meanwhile, annealing in a reducing atmosphere resulted in a different behaviour 

and subsequent change in the stoichiometry. The reduction of Titania leads to a defective 

structure either by formation of oxygen vacancies TiO2-x or Ti interstitials Ti1+xO2, and 

in both cases O is deficient with respect to Ti, and is accompanied by the presence of 

Ti3+ species46,47. Nevertheless, in our case the presence of Ti interstitials were ruled out 

as it probably forms under more harsh conditions like high-temperature vacuum 

annealing 46–49, besides, annealing in an oxygen-deficient environment would 

energetically favour the oxygen vacancies formation rather than Ti interstitials 50,51. XPS 

spectra in Figure 6-6 c reveals a shoulder in the Ti 2p½ at binding energy 456.7 eV, in 

addition to Ti 2p3/2 at 463.12 eV, which can be ascribed to Ti3+ 52–54. It is fairly well 

known in literature that annealing in reducing atmosphere results in the formation of 

point defects in the anatase crystal lattice. As the hot H2 molecules interacts with the 

surface of the TiO2, it favours the disruption of the Ti-O bonds as it overcomes the 

activation energy of the lattice rearrangement, creating oxygen vacancies 52.  

 
 

 

Table 6-2 XPS peak positions and shifts relative to the Anatase peaks 

 
 

 

 

The O1s spectrum of the H100 exhibited a tail towards higher binding energies. 

However, it cannot be attributed to the adsorbed OH as in the O100 samples since 

hydrogen is a reducing atmosphere which would prohibit the bridging of OH on the 

surface due to the oxygen-poor environment. Thus, the O1s asymmetric peak was fitted 

into 2 peaks centred at 529.63 and 530.96 eV. Those 2 peaks match well with the peak 

Element Orbital Reference BE (eV) BE (eV) Shift (eV) BE (eV) Shift (eV) BE (eV) Shift (eV)

2p 3/2 458.76 458.24 0.52 458.1 0.66 458.3 0.46

2p 1/2 464.46 463.98 0.48 463.82 0.64 464.09 0.37

split 5.7 5.74 -0.04 5.72 -0.02 5.79 -0.09

3d 5/2 207.4 206.78 0.62 206.68 0.72 206.7 0.7

3d 3/2 210.1 209.53 0.57 209.43 0.67 209.45 0.65

split 2.7 2.75 -0.05 2.75 -0.05 2.75 -0.05

3d 5/2 182.8 182.09 0.71 181.83 0.97 181.83 0.94

3d 3/2 185.2 184.48 0.72 184.23 0.97 184.23 0.94

split 2.4 2.39 0.01 2.4 0 2.4 0

Lattice 530 529.57 0.43 529.52 0.48 529.63 0.37

530.8 530.34

532.53 531.6

O100 Air0 H100

Ti

Nb

Zr

O (TiO2) Non-

lattice
530.96
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splitting observed in the O1s in ZrTiO4. Moreover, this is confirmed by the small shift 

in the Zr 3d peak as previously reported55,56. It was reported that the peak at 529.63 eV 

relates to the oxide ion of the Ti-O-Zr coordination, while the one at 530.96 eV belongs 

to the less negatively charged oxide ions  Ti-O-Ti56. Also, the peak at 530.96 eV will 

closely match both the O1s in anatase and ZrTiO4. This difference in binding energies 

originates from the difference in coordination of different oxide ions (Zr-O-Ti, and Ti-

O-Ti)56, besides shifting to lower binding energies resulting from the phase 

transformation during annealing52. These results are analogues to that of the XRD 

confirming the presence of ZrTiO4 after hydrogen annealing.  

This said, the picture that emerges is that the oxygen and Air0 annealing led to the 

formation of a single mixed oxide as the Nb and Zr ions substituted that of the Ti in the anatase 

lattice, while annealing in a reduced atmosphere led to the formation of 2 oxides, ZrTiO4 and 

anatase. 
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Figure 6-6 XPS core spectra of samples annealed in Air0, O100 and H100, (a-c) Ti, (d-f) Nb, 

(g-i) Zr, (j-l) O. 
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6.3 Optical Analysis  

Diffuse Reflectance (DR) of the annealed MPNTs is shown in Figure 6-7 a. It 

can be seen that light scattering is the lowest in H100 which might be an argument 

suggesting decreased absorption probability. However, seeing that the surface 

reflectance is least in the wavelengths range 300-700 nm in H100 refutes that claim. It 

is also reasonable to find higher scattering in Air0 and Oxygen annealed samples (Air0 

& O100) owing to their relatively larger diameters according to Mie scattering theory57. 

To understand how Hydrogen annealing affected the optical properties, a simple 

approach was used to calculate the refractive indices of the three samples similar to that 

followed in our previous work58 and by Rambabu et al.57. Uniform morphology 

throughout the entire sample was assumed and following the effective medium theory 

as shown in equations 6-6 & 6-7. The needed volumetric calculations were performed 

by analyzing the SEM images to determine the filling factors of the samples. Table 6-3 

shows the calculated refractive indices, external diameters and consequent Reflectance 

where it is evident that H100 has the lowest surface Reflectance in the range 300-700 

nm. 

𝑛𝑀 = [ 𝑓𝑀 ∗ (𝑛𝑂
𝑞 ) +  𝑓𝑎𝑖𝑟 ∗ (𝑛𝑎𝑖𝑟

𝑞 )]
1

𝑞⁄    6-6 

𝑅 = (
𝑛𝑂−𝑛𝑎𝑖𝑟

𝑛𝑂+𝑛𝑎𝑖𝑟
)2     6-7 

where R, 𝑓𝑀 and 𝑓𝑎𝑖𝑟 are the reflectance; filling factors of the MPNTs, and Air0, respectively. 

The refractive index of Air0 (nAir0) is set to 1 and the exponent is set to 2/3.  

 

Figure 6-7 (a) DR and (b) Absorption Spectra of H100, Air0 & O100 

a b 
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Moreover, a clear hump up to ~ 800nm is shown in DR absorbance spectra of 

H100, Figure 6-7 b. This hump suggests the presence of states in the forbidden gap 

contributing to the absorption. It has been shown previously that holes generated 

through photon absorption may become trapped at OH- groups adsorbed on the surface 

forming OH. centers with absorption maximum at 350 nm up to 480 nm59 i.e. deeply 

trapped.60 Holes may also be trapped at bridging lattice O2- forming O- radicals 

absorbing in the NIR/Vis range60,61. It is worth mentioning that the incremental increase 

of absorption observed in the three samples beyond 850 nm may be attributed to the 

delocalized electron intra-band transition61. Accordingly, it is inevitable to say that both 

deep and shallow defects are present in the H100 where electronic transitions are 

possible, either from the VB to the defect states or from the defect states to the CB 

depending on the coupling between them62. This extended absorption range is in line 

with the samples’ black colour, indicating defective states between CB and VB after 

reduction63,64.  

 
 

Table 6-3 Outer diameter, Refractive index, Reflectance and estimated band gap of the three 

conditions O100, Air0, and H100 

Annealing Condition O100 Air0 H100 

Outer Diameter (nm) 418.31 411.33 371.45 

Refractive Index 1.28 1.34 1.27 

Reflectance (%) 1.54 2.13 1.41 

Band Gap (eV)  3.25 3.27 3.1 tailed to 2.5 

6 

 

 

 

 

 

 

 

To further understand the nature of the states, VB XPS spectra were analyzed, 

Figure 6-8 b-e. A thorough analysis for the H100 shows a tail towards lower binding 

energies present, where the main absorption onset is located at 2.7 eV and maximum 

energy was blue shifted to 2.1 eV. Moreover, XPS fitting shows the presence of Ti3+ 

accompanied by the presence of Oxygen vacancies which in turn are formed due to the 

reductive atmosphere where oxygen leaves the surface in the form of H2O after being 



68 

 

 

 

reduced by Hydrogen atoms at temperatures above 300°C 68. In addition, the valence 

band spectra of H100 shows strong emission in the antibonding orbitals relative to Air0 

and O100, this may be explained by the reduction of Ti4+ to Ti3+, which causes an 

increase in the occupancy number of the antibonding orbitals 69. These defective sites 

are present at 0.7 - 1 eV below the CBM in TiO2 and Ti doped with Niobium 69,70. Figure 

6-9 shows the previously described defect positions present in the samples contributing 

to absorption making use of the band gap values calculated from Tauc plots (Figure 6-8 

a) using indirect band-gap substitution.  

A reduction in the bandgap of the H100s can clearly be observed, owing to the 

synergistic effect of the structural distortions, defects and the VB tail states discussed 

earlier, causing a lowering in the CBM with respect to the Fermi level. In addition, 

although the addition of Zr is expected to uplift the CBM and increase the band gap 

compared to TiO2 owing to its higher d orbitals71, the presence of ZrTiO4 in H100 

decreases the bandgap 12. Finally, from the XRD results, the induced tensile strain is 

larger in H100 compared to O100 or Air0, leading to a reduction of the band gap 72. This 

reduced band gap and defect states present in the H100 is expected to reflect in the 

density of charge carriers and lead to high photoactivity.  

 

 

Figure 6-8 (a) Tauc Plots and (b-e) Valence band Spectra  

a b 

c 

d e 
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Figure 6-9 Schematic Illustration of the density of states, possible excitation mechanisms are 

indicated by dashed arrows 

 

6.4 Photoelectrochemical Analysis  

Photoelectrochemical water splitting performance was investigated for all the 

samples. Figure 6-10 shows the I-V plots, H100 showed much higher photocurrent 

compared to O100 and Air0 which is attributed to the reduced bandgap and the presence 

of valence band tail states discussed earlier. A positive/anodic shift in OCP is observed 

in H100 indicating the presence of high surface state density 73. 

 

Figure 6-10 Linear sweep voltammetry of H100, Air0, & O100 
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In order to thoroughly explain this photocurrent enhancement, Mott-Schottky 

(MS) analysis was needed to extract the band-edge positions and have an insight on the 

charge carriers’ density and flat-band potentials of the MPNTs. Figure 6-11 shows the 

MS plots obtained at 1 KHz of the annealed samples, which were used to calculate the 

charge density and the flat-band potential as described in equations 6-8 & 6-9 

1

𝐶2
=  

2

𝑁𝐷𝜀𝜀0𝑒
[(𝑉 − 𝑉𝐹𝐵) −

𝑘𝑇

𝑒
]    6-8 

𝑁𝐷 =  −[
2

𝜀𝜀0𝑒
][

𝑑(1
𝑐2⁄ )

𝑑(𝑉)
]−1    6-9 

where ND is the donor density, e is the electron charge, ε0 is the permittivity of free space, ε is 

the dielectric constant calculated from the measured refracted index where ε = n2 = 20.07, V is 

the electrode applied voltage, VFB is the flat-band potential, k is Boltzmann’s constant and T is 

the room temperature 25C. It can be observed that the plot of C-2 versus V in H100 is not very 

linear, this behaviour could be related to the non-uniform nature of the multipodal morphology 

combined with the reducing annealing atmosphere, resulting in defective and distorted 

structure. This defective structure would affect the geometric distribution of the lattice defects 

74. Furthermore, the non-linear MS behaviour can be attributed to the abundance of lattice 

defects, deep trap states and grain boundary electron traps formed by reduced crystallinity; 

where these states progressively ionize with increasing the applied potential 75. 

Table 6-4 lists the VFB and ND of Air0, O100 and H100, where H100 shows the most 

negative/cathodic VFB compared to O100 and Air0. Although this may indicate the need for 

higher overpotential to overcome the increased band bending formed by the larger depletion 

region width (W𝑠𝑐) according to equation 6-10, good charge separation is achieved due to the 

sufficiency of the depletion region width obtained.  

 W𝑠𝑐 = √
2εε0

ⅇND
(V − V𝐹𝐵)    6-10 
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Figure 6-11 MS plots of H100, Air0 & O100 

Table 6-4 OCP, VFB vs. Ag/AgCl at pH=14, ND, ECB (vs. NHE at pH=0), EVB (vs. NHE at pH=0) 

of the three conditions O100, Air0, and H100 

Annealing Condition O100 Air0 H100 

OCP (V) -0.46 -0.6 -0.45 

VFB (vs. Ag/AgCl at pH=14) -0.774 -0.633 -1.048 

Donor Density (cm-3)  2.17E+19 2.57E+19 3.19E+23 

ECB (vs. NHE at pH=0) 0.23 0.37 -0.29 

EVB (vs. NHE at pH=0) 3.50 3.65 2.26 

 

It can be also seen that the donor density in H100 has increased by four orders of 

magnitude. From valence band XPS spectra, it is observed that the Fermi level is closer 

to the CBM in the H100, this occurs when there is an increase in the donor density. This 
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can be attributed to two reasons: the addition of Niobium which acts as a donor impurity 

owing to its high electron cloud density76, and the presence of donor-like surface states 

made of Oxygen vacancies/Ti3+  which increase the charge carriers density as can be 

seen from the defect Equations 6-11 to 6-14 60. Although Titanium (Ti4+) substitution 

by Niobium(Nb5+) favours the presence of excess Oxygen owing to its higher oxidation 

state, the presence of a reducing atmosphere forming oxygen vacancies will 

synergistically contribute to the excess in charge carriers, which is the case in H100. 

This is reflected in the donor density obtained from MS analysis. The addition of Zr will 

not contribute to the carrier density other than the bandgap  reduction discussed earlier, 

as ZrTiO4 is not photoactive 12. However, ZrTiO4 may create deep defects that act as 

recombination centres, hindering the photocurrent. This said, it is clear that the 

aforementioned valence band tail states, the band gap reduction, the formation of Ti3+, 

the reduced refractive index, along with the reduced surface reflectance in H100 are 

believed to be adding to the charge carriers’ generation probability.  

Formation of Ti3+  

Ti𝑇𝑖
𝑥 + 3O𝑂

𝑥  + 3H2 →  Ti𝑖
∙∙ + 3e− +  3H2O   6-11 

Formation of Oxygen vacancies   

𝑂𝑂
𝑥 →

1

2
𝑂2 +  𝑉𝑂

∙∙ + 2𝑒−   6-12 

Titanium substitution by Niobium in a non-reducing atmosphere 

Nb2O5 →  2Nb𝑇𝑖
∙ + 4O𝑂

𝑥 + 2𝑒− +  
1

2
O2    6-13 

Titanium substitution by Niobium in a reducing atmosphere 

Nb2O5 →  2Nb𝑇𝑖
∙ + V𝑂

∙∙ + 4𝑒− +  
5

2
O2   6-14 

To get a deeper insight on the defects present in the samples, a careful-3 examination of 

the J-t transient current response curves measured at constant external bias of 0.5 VAg/AgCl in 

Figure 6-12 is needed. As expected, the O100 and Air0 show almost zero dark currents. This 

is in alignment with the structural analysis defying the presence of mid-gap states, as those 

states act as trap states and are the main source of the dark current. On the other hand, a high 

dark current is observed in the H100. It is noted that the nature of Ti3+ defects whether localized 
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or de-localized will affect their coupling with the delocalized conduction band states. Localized 

defects result in deteriorating the mobility of electrons and may eventually not contribute to 

the photocurrent. The much higher photocurrent of H100 relative to O100 and Air0 suggests 

the presence of bulk and abundant Ti3+ forming Oxygen vacancies which are uneasily oxidized 

and are considered as electron suppliers to the CB. However, the high dark current suggests 

the presence of easily oxidized localized surface Ti3+  close to the CB minimum which could 

pin the Fermi level, resulting in a high dark current 8,62,77. This could also explain the anodic 

shift in the OCP and cathodic shift in VFB 
73. Moreover, the inactive ZrTiO4 formed by Zr ions 

segregation from Anatase phase, lead to decreased crystallinity, resulting in the formation of a 

smaller depletion region, which is supported by the increase in donor density according to 

Equation 6-10. This may have influenced the scattering of the charge carriers, making them 

become trapped at deep defects, and leading to a rise in the dark current 78.  

The stability of the photoanodes can be assessed also from the J-t curves, where the 

samples have shown good stability over the test duration. In addition, It can be seen that a very 

sharp decay is present under light-off conditions in all the samples indicating the ease of carrier 

transport, equation 6-15 79,80. 

I =  I0 𝑒−𝑡 𝜏𝑑⁄    6-15 

where I is the photocurrent, I0 is the initial photocurrent, t is time, and 𝜏𝑑 is the decay time.  

 

Figure 6-12 J-t plots of H100, Air0, and O100 
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Finally, the relative band alignment for the three conditions is plotted in Figure 6-13 for 

further clarification using equation 6-16. 

E𝑁𝐻𝐸 =  E𝐴𝑔/𝐴𝑔𝐶𝑙 + 0.197 +  0.059 ∗ pH    6-16 

 

Figure 6-13 Band alignment vs. NHE and Vacuum of pure TiO2, H100, Air0, and O100 relative 

to the water redox potentials at pH=0 
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6.5 CZTS Deposition  

CZTS nanoparticles were synthesized using non-stoichiometric concentrations of the 

precursors via a facile solvothermal methods; where the particle size as shown in Figure 6-14 

b is in the range of ~200nm. It is worth noting that before the washing off the polyethylene 

glycol 400 used in the preparation, the nanoparticles look like flakes (Figure 6-14 a) which 

may be attributed to the surface passivation aided by the long chain solvent 81. Electrophoresis 

was used to deposit the CZTS nanoparticles on H100 samples as shown in Figure 6-14 c, the 

particles are well distributed on the surface. Figure 6-15 shows the XRD of CZTS, where the 

three sharp peaks indicate enhanced crystallinity 82 and are assigned to (111), (220) and (311) 

which confirm the presence of tetragonal high quality Kesterite phase 83.  
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Figure 6-14 SEM images of CZTS (a) before washing (b) after washing (c) top view of CZTS 

deposited on Ti-Nb-Zr MPNTs 

a 

b 

c 
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Figure 6-15 CZTS XRD 

On attempting to study the photoelectrochemical performance of the H100 with CZTS 

deposited on them, it was found that a great enhancement in the photocurrent was achieved, 

about 6 times as shown in Figure 6-16. Upon examining the absorbance spectra of both, we see 

that only a slight shift is induced by the CZTS addition. Therefore, it cannot explain the large 

photocurrent. On testing several cycles it is noticed that the CZTS is not stable in the alkaline 

electrolyte; however, the large current could indicate the generation of a pn junction with 

desirable alignment that enhance charge separation and cause charge carrier injection 84. 

 

Figure 6-16 J-V plots of H100 vs H100+CZTS at different runs 
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Figure 6-17 Absorbance Spectra of H100 & H100+CZTS 
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7. Chapter 7      

 Conclusion & Future Work *,† 

 From the discussion presented in the preceding chapters, we can say that the objectives 

of the Thesis were achieved. In chapter 6, we have seen that complex Ti-Nb-Zr-O MPNTs were 

synthesized in a narrow window of anodization conditions using a formamide-based electrolyte 

containing NH4F. The formation mechanism was discussed. MPNTs proved to possess a 

refractive index gradient, being maximum at the bottom oxide layer and decreasing as we get 

closer to the air at the top of the tubes, this increases light scattering probability. In addition, 

this refractive index can be precisely tuned by manipulating the NTs dimensions through 

synthesis conditions. As a proof, Air annealed MPNTs exhibited ~ 900% enhancement in the 

photocurrent compared to compact NTs, owing to the more positive flat-band potential, easier 

charge transfer, and higher carrier density. H2 annealed samples showed the same trend 

confirming that this improvement is related to the presence of the MPNTs and independent of 

the annealing condition. Further verification was obtained by removing the multipodal portion 

of the NTs via sonication, the sonicated samples showed significantly lower photocurrent. 

Mott-Schottky analysis showed a positive shift in the flat band potential for the MPNTs 

compared to the compact one, along with almost double the donor density. To conclude, 

MPNTs have a tremendous potential as a route for enhancing metal oxides 

photoelectrochemical performance. 

In chapter 7, we have seen that one step facile fabrication of complex multipodal 

Ti-Nb-Zr-O in a Formamide-based electrolyte was confirmed. SEM images confirmed 

the previously discussed growth mechanism, providing generic guidelines for the 

synthesis of MPNTs. Next, the effect of annealing in different atmospheres (Air, 

Oxygen, Hydrogen) on the structural and photoelectrochemical properties was studied. 

Raman, XRD and XPS suggest the presence of single mixed oxide Ti-Nb-Zr-O in a 

                                                      

 

 

* Parts of this chapter was published in: Omar, M. M.; Fawzy, S. M.; El-Shabasy, A. B.; Allam, N. K.; Large-Diameter Light-Scattering 

Complex Multipodal Nano-tubes with Graded Refractive Index: Insights into their Formation Mechanism and Photoelectrochemical 

Performance. J. Mater. Chem. A. 2017, 5, 23600 - 23611 
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strained anatase lattice under Air and Oxygen environments, where the Nb and Zr ions 

substitute Ti ions in the lattice in agreement with the infamous Hume-Rothery rules. 

However, annealing in a reducing atmosphere results in a more strained lattice, and a 

defective structure containing Ti3+/Oxygen vacancies, beside the formation of a new 

phase, ZrTiO4. XPS valence band spectra showed the presence of valence band tail 

states formed by hydrogen annealing leading to band gap reduction and extended 

NIR/Vis absorption. Mott-Schottky analysis showed four orders of magnitude increase 

in the donor density owing to the downshift of the CBM towards the Fermi level. The 

more negative flatband potential observed in H100 indicates enhanced charge 

separation. Also, Titanium substitution by Niobium under Hydrogen gas flow has 

resulted in excess charge carriers. All the previous considerations explain the 

tremendous photocurrent enhancement (~25 fold). To conclude, reduced complex 

MPNTs have shown enhanced photoelectrochemical performance due to the presence 

of defect states which enhance the absorption and increase charge carriers. We also see 

that CZTS sensitization has shown enhanced photocurrent but suffered from stability 

issues. 

It is believed that the work presented in this thesis opens the door for many 

possible future work including: 

1- Extending the multipodal nanotube morphology to other metal oxide 

semiconductors and other alloys such as TiO2, BiVO4,
 and others; as well as 

studying the effect of their annealing in different atmospheres. 

2- Use simulations to get deeper insights regarding the graded refractive index 

phenomenon, and how it can be utilized to the maximum. 

3- Attempt to stabilize CZTS by trying different aqueous electrolytes 
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