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COFACTOR OF BRCA1 AS A MODULATOR OF HEPATOCELLULAR 
CARCINOMA GROWTH AND MIGRATION  

 

 

ABSTRACT 

 

Cofactor of BRCA1 (COBRA1) is one of the four subunits that make up the Negative 

Elongation Factor Complex (NELF) which is involved in the stalling of RNA polymerase II 

early during transcription elongation. As such, COBRA1 is able to regulate a substantial 

number of genes involved in a number of pathways, including cell cycle control, 

metabolism, cell proliferation and DNA repair. In the field of cancer, the role of COBRA1 is 

not yet fully understood. The aim of our study was to investigate the functional role of 

COBRA1 in the tumorigenesis of hepatocellular carcinoma (HCC). We investigated the 

gene expression pattern of COBRA1 in HCC tumors using the publicly available Oncomine 

Cancer Microarray Database. Results from three different microarray datasets reveal the 

frequent overexpression of COBRA1 in HCC tumors versus their normal counterparts. To 

elucidate the biological significance for this overexpression in HCC, RNA interference was 

used to silence the expression of COBRA1 in the well differentiated HCC cell line, HepG2. 

The silencing efficiency was confirmed by both reverse transcription-polymerase chain 

reaction (RT-PCR) and Western blot analysis. Interestingly, knockdown of COBRA1 

resulted in a significant decrease in cell proliferation, accompanied by a concomitant 

decrease in the expression of the proliferation marker, Ki-67. A scratch wound healing 

assay revealed a significant decrease in the migratory potential of the HepG2 cell line in 

culture upon COBRA1 knockdown. In addition, silencing of COBRA1 was associated with 

a significant decrease in the expression of survivin, suggesting that survivin might be one 

of the mechanisms by which COBRA1 mediates its role in the tumorigenicity of HCC. 

Collectively, data findings presented here highlight an oncogenic role for COBRA1 in 

hepatocellular carcinoma. To the best of our knowledge, our study provides evidence for 

the first time to support a positive role for COBRA1 in the growth and migration of HCC.   
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CHAPTER 1. LITERATURE REVIEW 

 

1.1 Hepatocellular Carcinoma  

1.1.1  Statistics and Epidemiology 

 

Liver cancer is the second most frequent cause of cancer-related deaths worldwide, 

responsible for more than 0.5 million deaths globally per year and accounting for 0.5–1 

million newly diagnosed cases each year (Ferlay et al., 2013; Jemal et al., 2011). 

Hepatocellular carcinoma (HCC) accounts for 70- 85% of all liver cancer cases; thereby 

representing by far the most common type of liver cancer (Jemal et al., 2011). It is a male 

predominant cancer, affecting males 3 to 4 times more frequently than females (Guy & 

Peters, 2013). The incidence of the disease increases with age, occurring rarely before the 

age of 40 years and reaching its peak at about 70 years of age (El-Serag, 2011).  

 

HCC is considered one of the most aggressive cancers worldwide affecting primarily 

developing countries, which harbor more than 80% of all presented cases worldwide (El-

Serag, 2011). According to GLOBOCAN, Egypt has one of the highest incidences of liver 

cancer, ranking first in the most common cancer affecting men while second in those 

affecting women (Ferlay et al., 2013). Incidence rates in Egypt were reported to have nearly 

doubled from 4.0% in 1993 to 7.2% in 2003 (el-Zayadi et al., 2005). This is primarily 

attributed to the high hepatitis C virus (HCV) prevalence rates in the country, which is by 

far the highest worldwide reaching up to 20% and representing one of the major risk factors 

for the development of HCC (Lehman et al., 2008; Omar, Abou-Alfa, Khairy & Omar, 2013).  

 

1.1.2  Etiology 

 

The majority of HCC cases (80 -90%) develop from cirrhotic livers; rarely does a HCC case 

develop from a patient that has no cirrhotic liver (El-Serag, 2011). Factors predisposing to 

liver cirrhosis are therefore considered risk factors for the development of HCC and include 

chronic hepatitis B virus (HBV) infection, chronic HCV infection, chronic alcohol 

consumption and dietary aflatoxin consumption (Montalto et al., 2002). Other risk factors 

such as diabetes, obesity, metabolic syndrome, hemochromatosis and nonalcoholic fatty 

liver disease have been proposed to play a role in the development of HCC, however, to a 

much lesser extent (Farazi & DePinho, 2006).   

  

Chronic HCV infection has currently the largest share in the incidence of HCC, accounting 

for about 40-50% of cases (Omar et al., 2013). Prior to the introduction of the HBV vaccine, 
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HBV infection was the risk factor that had the largest contribution towards the development 

of HCC in Egypt. The influence of HBV on the etiology of HCC has however declined over 

the past 2 decades, owing to the introduction of routine mandatory HBV vaccinations and 

to the large increase in the prevalence of HCV (Lehman et al., 2008; Omar et al., 2013). 

Despite this decline, chronic HBV infection still remains an important risk factor for HCC as 

the vaccination program, although estimated to have a childhood coverage of 95-100%, 

was not initiated until the 1980s and therefore most adults over the age of 30 years are not 

vaccinated (Lehman et al., 2008). 

 

Another major contributor to the development of HCC worldwide is chronic aflatoxin 

consumption. Aflatoxins are carcinogenic fungal metabolites, produced mainly by fungal 

species Aspergillus flavus and parasiticum and contaminates many food products such as 

peanuts, maize and cottonseed. The presence of aflatoxins is more common in countries 

with hot and humid climates, which support the growth of the fungi (Waly Raphael, Yangde, 

& Yuxiang, 2012). Several lines of evidence are recently suggesting that aflatoxin is a 

growing risk factor for HCC in Egypt (Omar et al., 2013).  

 

1.1.3  Surveillance and Diagnosis 

 

Early stage HCC is asymptomatic and therefore difficult to clinically diagnose. As a result, 

most HCC patients are usually diagnosed at an advanced stage, when treatment options 

are limited. Surveillance is thus recommended for patients at high risk of HCC in order to 

allow for the early detection of HCC (El-Serag, 2011; Forner, Llovet, & Bruix, 2012).  

 

According to both the American Association for the Study of Liver Diseases (AASLD) and 

the ESMO Clinical Practice Guidelines, surveillance for HCC in liver cirrhosis patients 

should be done every 6 months using abdominal ultrasound (El-Serag, 2011; Verslype, 

Rosmorduc, & Rougier, 2012). Although alpha-fetoprotein (AFP) is the most widely used 

serological marker for the diagnosis and follow-up of HCC, it suffers from a limited 

sensitivity of 60-80% and thus guidelines do not recommend its use for surveillance (Forner 

et al., 2012). 

 

1.1.4  Prognosis and Available Treatments  

 

Despite the different treatment regimens available, prognosis of HCC still remains very 

poor with an overall 5-year survival rate less than 5% (X. Huang, Zheng, & Yuan, 2013). 

More than 0.5 million lives are lost worldwide every year to hepatocellular carcinoma 

(Jemal et al., 2011). This is attributed to the fact that potential curative therapies, which 
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includes either surgical resection or liver transplantation, are ideal for only a small subset 

of early HCC cases. Unfortunately, more than 50% of all HCCs are diagnosed at an 

advanced stage or at metastasis, making them ineligible to either treatment (X. Huang et 

al., 2013). For patients with early HCC and well-compensated cirrhosis, the superiority of 

one treatment over the other remains controversial and management will depend from one 

patient to another (Kim & Hemming, 2009) 

 

Liver transplantation (LT), theoretically, is considered an ideal treatment as it does not only 

remove the tumor, but cures the underlying disease as well (Forner et al., 2012). It has 

been associated with better overall and disease-free survival in well-selected patients  

(Bismuth et al., 1993). When used for small HCCs, survival rates have been reported 

similar to transplantations performed for non-HCC indications (Hemming et al., 2001). The 

criteria used to define ideal candidates for LT are collectively referred to as the Milan 

criteria (Forner et al., 2012; Morise et al., 2014). Within the Milan criteria, overall and 

disease-free survival at 4 years have been reported to be 92% and 85%, respectively while 

recurrence rates have been demonstrated to be as low as 4-10% (Kim & Hemming, 2009). 

However, LT suffers from a major limitation, besides from being an option available only to 

a small subset of patients. As a result of a shortage in donor organs, the transplant list is 

usually associated with long waiting times that patients do not have. With the inevitable 

progression of the HCC tumor, patients do eventually drop out from the list without 

receiving a transplant as they become with time ineligible for the procedure (Fortune, 

Umman, Gilliland, & Emre, 2013).  

 

Surgical resection suffers from a major drawback. Even with the thorough criteria put in the 

selection of surgical candidates, tumor recurrence is very common reaching up to 50-80% 

of the patients at 5 years following resection, with the majority occurring in the first 2 years 

(El-Serag, 2011; Kim & Hemming, 2009). It is believed that recurrence may either represent 

a dissemination from the primary tumor or a ‘de novo’ tumor in the remnant liver. 

Controversy however exists about the contribution of each. Dissemination from the primary 

tumor is considered the result of either microscopic tumor foci that have been missed by 

common imaging techniques and thus have not been taken into consideration, or 

cancerous cells that have spread during the surgical procedure (X. Huang et al., 2013). 

Despite the discussed drawbacks, liver resection remains an attractive option due to its 

availability and the fact that it is curative in 45% of eligible patients (Kim & Hemming, 2009).   

 

Besides surgical options, other treatments do exist for the management of HCC and 

include ablative (radiofrequency ablation, transarterial chemoembolization), and medical 

treatments (chemotherapy), however, they are usually performed either as palliative 
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treatment for patients who are ineligible for surgical treatment or as ‘bridging’ therapy for 

patients awaiting liver transplantation (Jelic & Sotiropoulos, 2010)  

 

1.1.5  Molecular Classification of HCC  

 

The inadequate availability of molecular markers has led to significant reliability on 

morphological features for the diagnosis of HCC. This makes early stages of HCC difficult 

to diagnose. This is due to the fact that clinicopathological features of early stages deviate 

only slightly from chronic liver disease (CLD). Important diagnostic features typically 

associated with more advanced forms of the disease such as radiologic findings, increased 

vascularity, elevated serological markers and histological atypia are not typically present 

in the early stages. Consequently, over 50% of HCCs are detected at an advanced stage 

and thus are limited to more palliative forms of treatment (X. Huang et al., 2013; Jelic & 

Sotiropoulos, 2010).  

 

Research currently aims to identify expression profiles and signatures associated with 

early HCC (Mas et al., 2009; Sakamoto, Effendi, & Masugi, 2010). From ~12,600 genes 

analyzed in a gene-expression profiling study performed on nodule-in-nodule type HCC, 

heat shock protein 70 (hsp70) was reported to be significantly upregulated in the early 

component of the cancer when compared to either its progressed counterpart or 

noncancerous liver (Chuma et al., 2003). The fact that hsp70 expression was undetectable 

in other benign nodular lesions, hepatocellular adenoma and focal nodular hyperplasia, 

indicated the potential of such a marker in differentiating early HCC from other benign liver 

lesions (Sakamoto, 2009). Comparable approaches have suggested other potential 

markers of early HCC as well such as, cyclase-associated protein2 (CAP2) (Shibata et al., 

2006), glypican-3 (GPC3) (Hippo et al., 2004) and glutamine synthetase (GS) (Osada et 

al., 1999). Di Tommaso et al. (2007) demonstrated that a combination of the 3 markers, 

HSP70, GPC3 and GS can promote the accuracy of diagnosing early HCC, indicating thus 

the applicability of using a panel of markers instead of just one to allow for increased 

accuracy in diagnosis. 

 

Similar attempts were carried out to subclassify HCC. Studies successfully identified gene 

expression profiles that can distinguish HBV- from HCV-associated HCC, early from late 

intrahepatic recurrence of HCC, and HCCs with different prognoses (Farazi & DePinho, 

2006; Mas et al., 2009; Roessler et al., 2010; Wurmbach et al., 2007).  

 

Proper HCC management remains largely hindered by the lack of molecular biomarkers 

for the early diagnosis, prognosis & therapy monitoring of HCC. The hope of finding truly 
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sensitive and specific molecular markers to subclassify HCC and hence, to support patient 

management is still in its infancy and requires further extensive research. 

 

1.1.6  Molecular Biology of HCC Progression 

 

The exact mechanisms lying behind the development and progression of HCC remain very 

much a mystery. Several signaling pathways are known to be deregulated in HCC such as 

the IGF, Wnt/β-catenin, TGF-β, Ras/MAPK, VEGF, EGFR, HGF/MET and P13/PTEN/AKT 

pathways (Cornellà, Alsinet, & Villanueva, 2011; Waly Raphael et al., 2012). In addition to 

the disrupted signaling pathways, HCC is associated with a large number of activated 

oncogenes and suppressed tumor-suppressor genes such as TP53, ErbB receptor family 

members, E-cadherin and cyclooxygenase 2. Genomic instability has also been described 

in HCC in the form of defects in chromosomal segregation (Farazi & DePinho, 2006).  

 

Despite significant progress in the understanding of the genetic and epigenetic changes 

associated with HCC, we are still a long way from a clear understanding of the molecular 

mechanisms that govern the multi-step progression or evolution of the disease. This is 

largely due to the heterogeneity and underlying complexity of the disease. Therefore, 

research in HCC is currently directed towards the characterization of these molecular 

mechanisms. A more comprehensive understanding of this progression will in effect allow 

the discovery of novel treatment strategies (Cornellà et al., 2011; Wong & Ng, 2008).  

 

Up until recently no systemic chemotherapy was available for HCC. However, in 2007, a 

recently discovered Raf kinase inhibitor (Sorafenib, NEXAVAR®) was approved by the US 

Food and Drug Administration (FDA) for use in HCC. By targeting the RAF/MEK/ERK 

pathway, Sorafenib shows antiproliferative, antiangiogenic, and proapoptotic activity (S. 

Wilhelm et al., 2006). In a phase III randomized controlled trial (SHARP), it was able to 

increase overall survival in patients with advanced HCC by about 3 months (Llovet et al., 

2008). Shortly after its discovery, Sorafenib was shown capable of inhibiting a number of 

other receptor tyrosine kinases as well involved in tumor progression. Thus, why it is 

currently referred to as a multi-kinase inhibitor (S. M. Wilhelm et al., 2008).  

 

As discussed earlier, characterization of the unique genetic changes associated with HCC 

will not only allow a more comprehensive understanding of the genetic basis of the disease 

but will also allow the discovery of more promising targets for therapy. In this study, our 

interest lies in one of the genes recently implicated as a potential player in the development 

and progression of several cancers, known as COBRA1.  
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1.2 Cofactor of BRCA1 

 

Cofactor of BRCA1 (COBRA1) was originally isolated from a human ovary cDNA library. It 

encodes a 580-amino acid leucine-enriched protein with 3 repeats of the LXXLL motif (L-

leucine, X-any amino acid). This motif, commonly present in transcription coactivators, is 

responsible for mediating ligand-dependent interactions with nuclear receptors (NRs) (Ye 

et al., 2001). The importance of COBRA1 was later established through in vivo studies, 

where a general knockout of the murine Cobra1 gene was shown to be lethal in the embryo. 

In addition, no COBRA1-/- embryos appeared to develop beyond embryonic day 5, 

indicating an important role for COBRA1 in early embryogenesis (Amleh et al., 2009).  

 

COBRA1 was initially identified as a novel BRCA1 interacting protein through a yeast two-

hybrid screen (Ye et al., 2001). It was not until later that Narita et al. (2003) identified 

COBRA1 as the same protein as NELF-B, one of the 4 subunits that make up the human 

negative elongation factor (NELF) complex. NELF is a well-characterized complex involved 

in the stalling of RNAPII during transcription elongation and hence, responsible for the 

regulation of a significant number of genes involved in cell cycle control, proliferation, 

metabolism as well as cellular responses to stimuli and stress (Sun & Li, 2010).  

 

In eukaryotes, COBRA1’s role in the regulation of gene expression is not limited by any 

means to its interaction with BRCA1 and NELF. With no DNA binding domain, COBRA1’s 

ability to regulate genes occurs via its interaction with other site-specific transcription 

factors. In fact, it was shown to act as a cofactor for another complex known as Activator 

Protein-1 (AP-1), to regulate AP-1’s transcriptional activity of downstream targets (Zhong 

et al., 2004). Given the major role the AP-1 signaling pathway plays in determining cellular 

fate, it is postulated that COBRA1 will have a similar contribution to those cellular decisions. 

 

In 2004, Aiyar et al. demonstrated a novel role for COBRA1 as a transcriptional corepressor 

in the repression of hormone-responsive transcription. It was shown to directly bind to 

estrogen receptor-alpha (ERα) and repress ERα-mediated gene transcription (Aiyar et al., 

2004). Given the positive role ERα-mediated signaling has on the development of breast 

cancer (Foster, Henley, Ahamed, & Wimalasena, 2001; Persson, 2000), COBRA1’s 

physiological role in suppressing the estrogen-dependent growth of breast cancer cells 

was illustrated and established (Aiyar et al., 2004). In agreement, lack of COBRA1 in breast 

cancer was later demonstrated a poor predictor of prognosis (Sun et al., 2008).  

 

In addition to ERα, COBRA1 was also reported to bind with various degrees of affinity to 

other nuclear receptors such as the progesterone receptor B (PRB) and the glucocorticoid 
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receptor (GR). In particular, COBRA1 was demonstrated to strongly bind to the androgen 

receptor (AR) & repress AR-mediated transcription (Sun, Blair, Aiyar, & Li, 2007). Similar 

to the ERα-signaling pathway, AR-mediated signaling is also well established in mediating 

the development and/or progression of different malignancies such as prostate cancer and 

HCC (Lonergan & Tindall, 2011; Ma, Lai, Yeh, Cai, & Chang, 2014). However, the role that 

COBRA1 or NELF-B plays in these different malignancies has not been yet studied and 

remains unknown. 

 

Even though COBRA1 has been extensively studied over the years, in the field of cancer, 

the role of COBRA1 is not yet fully understood. In this study, our interest lies in unraveling 

the role of COBRA1 in HCC. A summary of current knowledge of COBRA1 however will 

be first reviewed below.  

 

1.2.1 Breast Cancer Type 1 Susceptibility Protein (BRCA1) 

 

BRCA1 is the first breast and ovarian cancer susceptibility gene to be identified. Germ line 

mutations in BRCA1 predispose patients to familial breast and ovarian cancers and are 

responsible for 50% of all familial early onset breast cancers, which account for ~2-5% of 

all breast cancers (Couch & Weber, 1996; Ye et al., 2001). It represents one of the most 

recognized tumor suppressors and is currently widely used to diagnose the likelihood of 

patients to develop breast and ovarian cancer.  

 

Being a predominantly nuclear protein, BRCA1 is normally involved in multiple nuclear 

functions, including the regulation of transcription, recombination, checkpoint control and 

DNA repair. These functions are mediated via its ability to induce large-scale chromatin 

unfolding (Ye et al., 2001). In an attempt to identify cofactors recruited by BRCA1 to induce 

chromatin unfolding, Ye et al. (2001) employed a yeast two-hybrid screen and discovered 

a novel protein that was named cofactor of BRCA1 (COBRA1). Surprisingly, COBRA1 was 

reported sufficient for the induction of large-scale chromatin decondensation in the 

absence of BRCA1 (Ye et al., 2001).  

 

In a gene expression profiling study performed in breast cancer, a significant overlap was 

uncovered in the genes that are regulated by COBRA1 or BRCA1. Both have been shown 

to share common downstream target genes, many of which have been implicated in breast 

cancer progression (Aiyar, Cho, Lee, & Li, 2007). In agreement, similar to BRCA1’s 

recognized role as a tumor suppressor in breast cancer, several lines of evidence have 

been reported that highlight a role for COBRA1 as a tumor suppressor in breast cancer as 

well (Sun et al., 2008). However, this will be discussed later.  
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1.2.2  Negative Elongation Factor Complex (NELF)  

 

Shortly after its initial discovery in 2001, COBRA1 was identified by Narita et al. (2003) as 

the same protein as NELF-B, one of the 4 subunits that make up the NELF complex. NELF 

is a complex that is activated with the assembly of its 4 subunits; NELF-A, NELF-B (or 

COBRA1), NELF-C/D and NELF-E. Upon assembly and activation, the complex is 

recruited together with DRB sensitivity-inducing factor (DSIF) to induce the stalling of RNA 

polymerase II (RNAPII) early during transcription elongation. It is believed that NELF 

recruitment occurs immediately after transcription initiation, stalling the elongation of the 

RNA transcript in a process referred to as promoter proximal pausing. This is characterized 

by the association of NELF with a paused Pol II complex 30–50 bps downstream of the 

transcription start site (Yamaguchi et al., 1999).  

 

NELF is a 4-subunit complex; NELF-A (66 kDa), NELF-B (COBRA1; 62 kDa), NELF-C (60 

kDa) or NELF-D (59 kDa) and NELF-E (46 kDa). The NELF-C and NELF-D subunits 

represent translation variants from a common mRNA through the alternative use of 

translation initiation codons. However, either NELF-C or NELF-D will be present in a NELF 

complex at any one point. NELF-C/D together with COBRA1 (NELF-B) form the core of the 

NELF complex, bridging NELF-A and NELF-E. The NELF-A subunit contains the RNAPII 

binding domain, through which the NELF complex is able to bind to RNAPII. NELF-E is the 

smallest subunit and contains a conserved RNA binding domain, through which the NELF 

complex is able to bind to nascent RNA transcripts (Narita et al., 2003).  

 

It is important to mention that although NELF-A and NELF-E are the binding domains by 

which the NELF complex will bind to RNAPII and RNA, respectively, all of the four subunits 

including COBRA1 (NELF-B) and NELF-C/D are necessary for the assembly and function 

of the complex (Narita et al., 2003). In fact this explains the well-established interdependent 

nature of the NELF subunits, whereby knockdown of any NELF subunit results in the 

simultaneous co-depletion of the remaining subunits (Narita et al., 2007; Sun & Li, 2010; 

Sun et al., 2008).  

 

There are three major steps to transcription: initiation, elongation and termination, each of 

which is now known to be tightly controlled. Originally, the transcriptional regulation of 

eukaryotic genes was believed to occur almost exclusively at the initiation phase of 

transcription. Hence, it had been the focus of much research and is why it is considered to 

be the most understood phase of transcription. However, recent findings have revealed 

that the elongation step of transcription is also a very highly regulated step and can actually 

http://www.novusbio.com/research-areas/transcription-factors-and-regulators.html
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be rate-limiting in the regulation of the expression of many genes in eukaryotic cells (J.Sims 

III, Belotserkovskaya, & Reinberg, 2004). 

 

The elongation step is regulated both during the early steps of elongation as well as during 

the phase of productive elongation. During early elongation, just before the RNAPII 

transitions to productive elongation, RNAPII can pause at the promoter proximal region, 

30–50 base pairs (bps) downstream of the transcription start site in a process referred to 

as promoter proximal pausing. Contrary to transcriptional termination or arrest, promoter 

proximal pausing is reversible and represents one of the important mechanisms by which 

transcription can be regulated at the elongation phase (Adelman & Lis, 2012; J.Sims III et 

al., 2004; Jonkers & Lis, 2015).  

 

Even though, the process of RNAPII stalling was well established, it was reported only at 

the promoters of very few genes such as Hsp70 (Wu et al., 2003), estrogen-responsive 

genes in breast cancer (Aiyar et al., 2004) and mammalian proto-oncogene junB (Aida et 

al., 2006), leading many to view it as a rare phenomenon. It was not until later that genome-

wide studies in Drosophila demonstrated the association of RNAPII with the promoters of 

thousands of genes with either low levels of transcription or none at all, in an indication 

that the process of RNAPII stalling is more widespread than originally anticipated (Muse et 

al., 2007; Zeitlinger, Stark, Kellis, & Hong, 2007). Now, the regulation of RNAPII pausing 

during transcription elongation is believed to be cornerstone in the repression of a large 

number of genes in a variety of biological systems (Gilchrist et al., 2008).  

 

Surprisingly, stalled RNAPII was found associated in the promoter regions of ~50% of the 

most highly expressed genes in Drosophila, demonstrating the capability of promoter 

proximal pausing of enhancing gene expression rather than only repressing it (Gilchrist et 

al., 2008; Lee et al., 2008). Even though this was the first time the NELF-mediated RNAPII 

stalling event was shown to have a positive effect on activating gene expression, a previous 

microarray study reported the downregulation of a significant number of genes upon NELF-

depletion (Narita et al., 2007). However, it was not until later that this phenomenon was 

understood and linked directly to the NELF-mediated RNAPII stalling event. In fact, it is 

now even believed that the stalling process of RNAPII might enhance gene expression by 

maintaining a permissive chromatin architecture at the promoter-proximal region of those 

genes (Gilchrist et al., 2008). This was again further demonstrated in yet another study 

whereby short interfering RNA (siRNA)-mediated knockdown of NELF lead to the down-

regulation of the vast majority of NELF-regulated genes, most of which are involved in cell 

cycle progression (Sun & Li, 2010). Taken together, this indicated the importance of NELF 
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in maintaining the transcription of its target genes and challenged the prior view of RNAPII 

stalling being a strictly transcriptional repressor.  

 

1.2.3  Nuclear Receptors  

 

Upon binding of estrogen to ERα, the receptor undergoes conformational changes and 

becomes activated. An activated ERα will then bind to estrogen-responsive elements 

present in the promoters of estrogen-responsive genes to enhance their transcription. ERα 

represents one of the mechanisms by which estrogen is able to mediate its widespread 

biological effects, under both physiological and pathological conditions (Aiyar et al., 2004).   

  

Different mechanisms are normally in place in order to allow for such a process to be tightly 

regulated and readily reversible. In 2004, Aiyar et al. demonstrated a novel role for 

COBRA1 as a transcriptional corepressor in the repression of estrogen-responsive 

transcription. In response to estrogen, COBRA1 is recruited along with the rest of the NELF 

complex, to the promoters of a subset of estrogen-responsive genes where it acts to stall 

RNAPII and repress ERα-mediated transcription. Given the positive role ERα-mediated 

signaling has on the development of breast cancer (Foster et al., 2001; Persson, 2000), a 

physiological role for COBRA1 as an inhibitor of estrogen-dependent growth of breast 

cancer cells was established (Aiyar et al., 2004).  

 

In addition to ERα, COBRA1 was also shown to bind with various degrees of affinity to 

other NRs such as PRB and GR. In particular, COBRA1 was reported to bind strongly to 

the AR and repress AR-mediated transcription. Of the NRs examined in the study (GR, PR 

and AR), AR was shown to exhibit the strongest affinity for COBRA1 and thus, the most 

susceptible to COBRA1-mediated repression (Sun et al., 2007). COBRA1’s interaction with 

a number of nuclear receptors goes in agreement with its previously characterized protein 

structure, which contains multiple copies of NR-binding “LXXLL” motifs (Ye et al., 2001).  

 

1.2.4  AP-1 Complex 

 

The biological roles of COBRA1 is yet to be fully elucidated. With no DNA binding domain 

of its own, its ability to regulate genes is mediated via its interaction with different DNA 

transcription factors, as seen with both BRCA1 and the NELF complex. COBRA1 was 

shown to interact with yet another widely recognized transcription factor, known as AP-1 

(Zhong et al., 2004). AP-1 is a complex that regulates the expression of a large number of 

genes; genes involved in mediating cellular responses to stimuli, including growth factors, 

cytokines, stress, bacterial and viral infections as well as oncogenic stimuli (Hess, Angel, 
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& Schorpp-Kistner, 2004). The AP-1 signaling pathway, while essential for cell survival, 

extensive literature exists to support its role in inducing apoptosis. The role of AP-1 in 

determining cellular fate (life or death) appears to largely depend on cellular context. Its 

opposing nature on cell fate has interestingly triggered some to refer to it as a “nuclear 

decision-maker” (Ameyar, Wisniewska, & Weitzman, 2003).   

 

COBRA1 was shown to act as an AP-1 cofactor, where it was shown to physically bind to 

AP-1 family members and inhibit AP-1 transcriptional activity of downstream targets. It has 

been proposed that COBRA1 may utilize its ability to recruit the NELF complex in order to 

attenuate AP-1 transcriptional activity; however, this has not been shown and renders 

further investigation. Given COBRA1’s ability in affecting the AP-1 pathway, COBRA1 has 

also been proposed to have an identical role in determining cell fate decisions, such as 

proliferation, apoptosis and differentiation (Zhong et al., 2004). 

 

1.3 COBRA1 in Cancer  

 

The pathological role of NELF-B or COBRA1 in cancer is not yet fully understood and is of 

current interest. To date, it has only been studied in breast and gastrointestinal cancer.  

In breast cancer, several lines of evidence highlight COBRA1 as a tumor suppressor with 

a major role in the tumorigenicity of the cancer. In a study by Sun et al. (2008), COBRA1 

expression was demonstrated lower in breast cancer when compared to normal mammary 

epithelium. In addition, the expression of COBRA1 mRNA was also found to be inversely 

correlated with breast cancer progression, with significantly lower expression in patients 

with distant metastasis and local recurrence (Sun et al., 2008).  

 

COBRA1-regulated genes were found to enrich pathways involved in cell cycle control, 

metabolism, cell proliferation and DNA repair. In addition, a significant number of these 

identified genes had wide implications in cancer. The direction of COBRA1’s regulation of 

these genes was found to support its role in suppressing breast cancer development (Aiyar, 

Blair, Hopkinson, Bekiranov, & Li, 2007; Aiyar, Cho, et al., 2007). This goes in line with the 

previously reported role of COBRA1 in the proliferation and tumorigenesis of breast cancer. 

In that study, the authors demonstrated a significant reduction in the rate of proliferation of 

T47D cells upon the ectopic expression of COBRA1 (Aiyar et al., 2004). Similarly, siRNA 

knockdown of COBRA1 resulted in an increase in cellular proliferation as assessed by both 

two- and three-dimensional tissue culture systems. Surprisingly however, the increase in 

cellular proliferation was evident only when exogenous estrogen was added to the culture 

media, indicating thus a physiological role for COBRA1 in repressing the estrogen-

dependent growth of breast cancer cells (Aiyar et al., 2004). The absence of estrogen 



12 
 

might explain why COBRA1 knockdown in a later study by Sun & Li (2010) was shown to 

have no effect on the cell proliferation of T47D. In agreement, subsequent findings 

associated the low expression of COBRA1 with metastasis and recurrence in breast cancer 

(Sun et al., 2008).  

  

In contrast to breast cancer, significant overexpression of COBRA1 was reported in 79% 

of upper gastrointestinal cancers (UGCs), suggesting COBRA1 as a novel oncogene in 

UGC. Interestingly, COBRA1 overexpression was found associated with an attenuated 

expression of trefoil factor 1 (TFF1) (McChesney et al., 2006) – a well-established UGC 

tumor suppressor (Im et al., 2012; Tanaka et al., 2013). TFF1 is a member of the trefoil 

factor family of secreted peptides that is normally expressed and secreted in the upper 

gastrointestinal tract, with several protective and healing roles (Emami et al., 2004). While 

COBRA1 knockdown led to an increase in TFF1 expression, overexpression of COBRA1 

had an opposite effect, thus highlighting the physiologic role of COBRA1 as an inhibitor of 

TFF1 expression in UGC (McChesney et al., 2006). This evidence further supported the 

oncogenic role for COBRA1 in UGCs.  

 

Even though COBRA1 has only been studied in breast and gastrointestinal cancer only, 

findings seem to highlight a cancer type-dependent role for COBRA1. It is also important 

to mention that COBRA1 was recently identified in a proteomics study in lung cancer as a 

novel target of the oncogenic Ras/MAPK signaling pathway (Sudhir et al., 2011). This was 

consistent with prior findings reported by Pohl et al. (2005), where COBRA1 was one of 

the major downregulated genes upon the inactivation of the MAPK pathway in ovarian 

cancer. Interestingly, this was accompanied by a profound decrease in the growth of the 

ovarian cancer cells. Taken together, these data suggest an important role for COBRA1 in 

cancer. 

 

1.4  COBRA1 in Hepatocellular Carcinoma  

 

In hepatocellular carcinoma, the role of COBRA1 remains unclear. To date, only one study 

has analyzed the expression pattern of COBRA1 in HCC. This study explored the 

differential expression of COBRA1 at both the RNA and protein level in HCC tumor 

samples relative to noncancerous peri-tumor tissue from the same patient. Samples were 

collected from Egyptian patients undergoing either surgical resection or transplantation 

from different hospitals based in Cairo and an upregulated expression pattern was reported 

implicating COBRA1 as an oncogene in HCC (Kamel, 2012). However, the biological role 

that COBRA1 plays in the progression of HCC still remains unclear.  
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HYPOTHESIS AND SPECIFIC OBJECTIVES 

 

As a functional component of major transcriptional complexes and by acting as a cofactor 

for several nuclear receptors, COBRA1 can regulate a substantial number of genes (Aiyar, 

Blair, et al., 2007; Aiyar, Cho, et al., 2007). Based on previous preliminary data from our 

lab implicating COBRA1 as a potential oncogene in HCC (Kamel, 2012), a deregulation in 

the expression pattern of COBRA1 will imply aberrant expression of all its regulated genes. 

Hence, our hypothesis for a role for COBRA1 in the pathogenesis of HCC. To address this 

hypothesis, our study had three main objectives.  

  

1. To expand on the lab’s prior findings and further explore on a larger scale the 

expression pattern of COBRA1 in HCC expression array data available online.  

 

2. To optimize and establish a siRNA-mediated COBRA1 knockdown in the well 

differentiated HCC cell line, HepG2. The HepG2 cell line is a non-tumorigenic cell line 

derived from a 15-year old Caucasian, American male with early stage HCC. The cells 

have a characteristic cobblestone-like, epithelial appearance with no detectable HBV 

surface antigens (Costantini, Di Bernardo, Cammarota, Castello, & Colonna, 2013). 

 

3. To analyze the effect of COBRA1 silencing on cellular proliferation and migration.       
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CHAPTER 2. MATERIALS AND METHODS 

 

2.1. Cell lines and Culture 

The well-differentiated human hepatocellular carcinoma cell line, HepG2, was a generous 

gift from Dr. Mehmet Ozturk from the Department of Molecular Biology and Genetics, 

Bilkent University, Turkey. Cells in the logarithmic phase of growth from passage numbers 

6-20 were used in all experiments described below. They were routinely cultured in 

complete media composed of RPMI 1640 (Invitrogen, USA) supplemented with 10% fetal 

bovine serum (FBS) (Invitrogen, USA), 100 units/ml penicillin and 100 mg/ml streptomycin 

(Invitrogen, USA). Cells were cultured in a humidified incubator at 37°C and 5% CO2 and 

propagated at 70-80% confluence according to the American Type Culture Collection 

protocol. Cells were observed using an inverted microscope (Olympus IX70, USA). 

 

2.2. Viable Cell Count 

The viable cell count was performed using the trypan blue exclusion method. The cell 

suspension was mixed well by repeated pipetting to disperse any cell clumps. In a 1.5 ml 

Eppendorf tube, a fifty μl aliquot of this cell suspension was mixed with 50 μl 0.4% trypan 

blue in phosphate-buffered saline (PBS). Ten microliters (μls) from this suspension was 

then loaded into each chamber of a hemocytometer (Hausser Scientific, USA). The number 

of cells in each of the four outer squares in the two chambers were counted. To calculate 

the number of cells per ml, the following equation was used:  

Number of cells /ml = Total no. of cells / total no. of squares x dilution factor x 10,000. 

 

2.3. RNA Interference  

To achieve knockdown of COBRA1 (NCBI Genebank: NM_015456), a pool of 4 different 

siRNAs targeting different regions of the COBRA1 mRNA (siGENOME SMARTPool; M-

015839-00) was used, which was purchased from Dharmacon. Target sequences and 

exons of the COBRA1 siRNAs are shown in Table 1. Positive Control GAPDH siRNA 

(SI02653266) and AllStars Negative Control siRNA (SI03650318) were purchased from 

Qiagen. All siRNAs were resuspended in RNase-free water to a final concentration of 20 

μM, according to the manufacturer’s instruction. Positive Control GAPDH siRNA was used 

to ensure the efficiency of the transfection procedure in achieving siRNA delivery to the 

cells. AllStars Negative Control siRNA is a validated and tested siRNA with no homology 

to any known mammalian gene (“AllStars Negative Control siRNA - QIAGEN - AllStars 

Negative Control siRNA,” n.d.), that was used to control for any changes induced by the 

siRNA transfection procedure itself.  
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2.4 siRNA Transfection 

Reverse transfection of COBRA1 siRNA into HepG2 cells was carried out in 6-well plates 

using Lipofectamine RNAiMAX (Life Technologies). An RNase-free environment was 

maintained at all times. As controls, cells were either left untreated (blank) or treated with 

Lipofectamine only (mock). The optimized transfection conditions mentioned below were 

maintained in all experiments. Approximately 2.5 x 105 cells were reverse transfected with 

25 nM of siRNA using 5 μl of Lipofectamine RNAiMAX according to the manufacturer’s 

protocol in a final volume of 2 ml. In a 1.5 ml Eppendorf tube, 2.5 μl of the siRNA (20 μM) 

was mixed with 500 μl of serum-free DMEM. After 5 minutes (mins) incubation at room 

temperature (RT), 5 μl of Lipofectamine was added and then left for another 10-20 mins to 

allow for complexation. The siRNA-Lipofectamine mix was then transferred to one of the 

wells of a 6-well plate, after which 2.5 x 105 cells were added in 1.5 ml complete RPMI 

media without antibiotics. Growth media was replenished 24 h after transfection. Cells were 

cultured for 72 hours (hrs) after which they were harvested for RNA and protein analysis. 

Knockdown efficiency was analyzed using Western blot analysis.  

 

 

Table 1. Target sequences and the corresponding exon locations of COBRA1 siRNAs 

(NCBI Genebank: NM_015456) used in the study. 

 

2.5. RNA Extraction  

Total RNA was extracted using Trizol reagent (Invitrogen, USA) according to the 

manufacturer's protocol. An RNase-free environment was maintained at all times. 

Extracted RNA was dissolved in diethylpyrocarbonate-treated (DEPC) water. The quantity 

and quality of the RNA were verified by measuring the absorbance at both 260 and 280 

nm using a UV spectrophotometer (Shimadzu, Japan).  

 

2.6. Primer Design  

All used forward and reverse primers are located on two different exons. The sequences 

of these primers as well as their amplicon size and PCR conditions are listed in Table 2. 

siRNA Identifier siRNA Target Sequence (5’-3’) Target Exon 

siGENOME 
SMARTPool 

(M-015839-00) 
 

1 CCGAAAGCUUCACUAAGUU 9 & 10 

2 GCGACUUGGCCUUUGGCGA 11 

3 GAGCCUGGGACAUGAUCGA 8 

4 CGUCUAAGCUGGAGGCGUU 12 
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Table 2. Semi-quantitative RT-PCR primer sequences, amplicon sizes, annealing 

temperatures and number of cycles (F: forward primer, R: reverse primer, bp: base pair) 

Gene  
Name 

Primer Sequence (5’-3’) 
Amplicon 
size (bp) 

PCR 
conditions 

B-ACTIN 
F: GCAAAGACCTGTACGCCAAC 
R: GAGACCAAAAGCCTTCATACATCTC 

777 
58°C              

27 cycles 

COBRA1 
F: ACATCACCAAGCAGAGGAA  
R: GATCCAGCTGTTCCAGCTTC 

366 
59.5°C              

32 cycles 

Survivin 
F: TTGAATCGCGGGACCCGTTGG  
R: CAGAGGCCTCAATCCATGGCA 

Isoform 1: 477 
Isoform 2: 359 
Isoform 3: 546 

61˚C  
27 cycles 

NELF-A 
F: GTCGGCAGTGAAGCTCAAGT                                           
R: TTCACACTCACCCACCTTTTCT  

250 
60˚C  

35 cycles 

NELF-C/D 
F: GAAGAAGGAGAGACCCCAGC                            
R: GTGCCCAAGGCTAGTGTGAT  

443  
56˚C   

28 cycles 

NELF-E 
F: TGGTGAAGTCAGGAGCCATCAG                    
R: CGCCGTTCAGGGAATGAATC 

565 
63˚C  

28 cycles 

Ki-67 
F: CTTTGGGTGCGACTTGACG 
R: GTCGACCCCGCTCCTTTT 

199 
60˚C  

28 cycles 

 

2.7. Reverse Transcription Polymerase Chain Reaction (RT-PCR) 

Analysis of differential gene expression was performed using semi-quantitative RT-PCR. 

Total RNA (1 μg) was reverse transcribed using random primers in a final volume of 20 μl, 

using a RevertAid First Strand cDNA synthesis Kit (Thermo Scientific, USA) according to 

the manufacturer’s protocol.  

 

The PCR amplification was performed in a final volume of 25 μl, consisting of 1 μl cDNA 

template, 2.5 μl 10X DreamTaq Green Buffer (includes 20 mM MgCl2) (Thermo Scientific), 

0.5 μl dNTP mix (10 mM each) (Thermo Scientific), 0.25 μl DreamTaq DNA Polymerase 

(Thermo Scientific) and 0.75 μl of each primer (forward and reverse). B-ACTIN was used 

as the internal control. PCR conditions were the same for all except for annealing 

temperatures and cycle numbers, which are mentioned in Table 2: 95°C for 5 mins, 

followed by cycles of (95°C for 30 secs, annealing temp for 30 secs and 72°C for 45 secs), 

before a final extension at 72°C for 7 mins. The amplified PCR products were run on 1.5-

2% agarose gel according to the size of the PCR amplicon and then visualized using Gel 

Doc EZ System (Bio-Rad, USA).  

 

2.8. Immunoblotting 

Unless stated otherwise, all steps were performed at 4°C. Cells were rinsed with ice cold 

PBS and lysed by repeating pipetting in ice-cold Laemmli Lysis Buffer (50mM Tris pH6.8, 
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2% sodium dodecyl sulfate (SDS), and 10% glycerol), supplemented with 1X Halt Protease 

Inhibitor Cocktail (ThermoScientific, USA). Samples were incubated at 4°C for 60 min with 

shaking followed by centrifugation at 12,000 rpm at 4°C for 20 minutes. The protein-

containing supernatant was then collected and quantified using BCA Protein Assay Kit 

(Pierce Biotechnology, USA) according to the manufacturer’s protocol.  

 

Equal amounts of whole cell lysates (20-50 μg) were mixed with 6X SDS-Laemmli loading 

dye (60% Glycerol, 360 mM Tris-HCl pH 6.8, 12% SDS, 0.06% bromophenol blue, 30% 

beta-mercaptoethanol) in a final volume of 24 μl. Samples were boiled at 99°C for 10 mins 

before loading them onto a 12% SDS–polyacrylamide gel. The protein samples were then 

run at 120V along with a pre-stained protein ladder until the tracking dye ran out. Resolved 

proteins were transferred from the gel onto a nitrocellulose membrane (GE Healthcare) 

using a wet transfer apparatus (120 V, 90 mins). The membrane was blocked for 1 hr using 

5% non-fat dry milk in 1X PBST (0.01% Tween-20 in PBS), then incubated with a primary 

antibody overnight at 4°C. After 3 washings in 1X PBST (5 mins each), the membrane was 

incubated 1 hr at RT with an alkaline phosphatase conjugated secondary antibody (either 

goat anti-rabbit IgG (KPL) or goat anti-mouse (KPL)) at 1:10,000 dilution in 5% non-fat dry 

milk in 1X PBST. After 3 washes in 1X PBST (5 mins each) and two in 0.2 M Tris base (pH 

9-9.5), the membrane was incubated with the chemiluminescent PhosphoGLO Substrate 

(55-60-04, KPL) for 1 min and then exposed to a film that was manually processed. Films 

were then visualized using a Gel Doc EZ System (Bio-Rad, USA). Primary antibodies used 

in this study were as follows; anti-B-TUBULIN (Sigma, T7816) (1:20,000 in 5% non-fat dry 

milk), anti-COBRA1 (AbCam, ab167401) (1:1000 in 5% non-fat dry milk). 

 

To incubate the same membrane with another primary antibody, after detection 

membranes were stripped using a homemade harsh stripping buffer (0.5 M Tris-HCl, 10% 

SDS and beta-mercaptoethanol). The membrane was incubated in the buffer for 15 

minutes at 65°C after which it was washed thoroughly with water to remove any traces of 

beta-mercaptoethanol and re-blocked with 5% nonfat dry milk in 1X PBST before 

incubating it with another primary antibody.  

 

2.9. Scratch Wound Healing Assay 

Differences in cell migration were assessed using a classical scratch wound healing assay 

as previously described (Qin & Cheng, 2010; Yu et al., 2014). Twenty-four hours post-

transfection, cells were reseeded in 24-well plates. At 72 hr post-transfection, the cell 

monolayer was carefully scraped using a 20 μl pipette tip, once horizontally and once 

vertically to create a cross in the center of the well. The cells were then washed with PBS 

to remove any floating cells and then incubated for another 24 hrs. The migration of the 
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cells was monitored with an inverted microscope. Images were taken with phase contrast 

at 10X magnification power at the start (0 hr) and at the end (24 hr) of the incubation. Three 

different wound locations were chosen per well. The wound area was analyzed using the 

TScratch software (Gebäck, Schulz, Koumoutsakos, & Detmar, 2009) and the percentage 

wound closure was then calculated as follows:  

 

Percentage wound closure = [(wound area24 hr/wound area0 hr)/ wound area24 hr] x 100 

 

2.10. Data Analysis 

Densitometric analysis was performed using ImageJ Software (National Institute of Health, 

USA, http://www.imagej.nih.gov/ij). For both the PCR and Western Blot, quantified band 

intensities were normalized to the loading control B-ACTIN or B-TUBULIN, respectively. 

Relative changes in gene expression are expressed as fold change from the negative 

siRNA-transfected cells (control), unless specified otherwise.   

 

Graphical representations and statistical analyses were performed using GraphPad Prism 

5.0 (GraphPad, San Diego California USA, http://www.graphpad.com/). All values 

represent the mean ± standard deviation (SD) from three independent experiments, unless 

specified otherwise. For pairwise comparisons, statistical significance was assessed using 

an unpaired student's t-test (two-tailed). One-way ANOVA, followed by a Bonferroni post-

test was used to analyze the difference between multiple experimental groups in case of a 

single variable, while a two-way ANOVA was used in cases of two variables. A p-value 

less than 0.05 was considered significant (*p <0.05; **p value <0.01; ***p value <0.001).  

 

2.11. Data Mining  

The Oncomine cancer microarray database (http://www.oncomine.org/, last accessed July 

18, 2015) (Rhodes et al., 2004) was used to query the expression profile of COBRA1 

mRNA in HCC tissues versus their normal counterparts. Statistical significance was 

automatically computed by the default Oncomine algorithms using a two-tailed Student’s 

t-test. HCC microarray datasets utilized in this study are summarized in Table 3.  

 

 

 

 

 

 

 

http://www.graphpad.com/
http://www.oncomine.org/
http://www.hindawi.com/journals/jo/2012/416927/tab1/
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Table 3. Oncomine microarray datasets used in this study.  

Study  Sample Type 
No. of 

Patients 
(n) 

Patients  
/Sample 

Year of 
Study 

Reference 

Mas  
Liver 

Normal Liver 
Cirrhotic 
Hepatocellular Carcinoma 

115 
19 
58 
38 

2009 
(Mas et al., 

2009) 

Roessler 
Liver  

Paired Non-Tumor  
Hepatocellular Carcinoma 

43 
21 
22 

2010 
(Roessler et 

al., 2010) 

Roessler  
Liver 2 

Paired Non-Tumor 
Hepatocellular Carcinoma 

445 
220 
225 

2010 
(Roessler et 

al., 2010) 

Wurmbach  
Liver 

Normal Liver 
Cirrhotic  
Liver Cell Dysplasia 
Hepatocellular Carcinoma 

75 

10 
13 
17 
35 

2007 
(Wurmbach 
et al., 2007) 
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CHAPTER 3. RESULTS 

  

 

3.1. Expression of COBRA1 mRNA in human hepatocellular carcinoma tissues 

relative to normal liver tissue 

   

All publicly available HCC microarray data in the Oncomine® Cancer Microarray database 

(http://www.oncomine.org/) were analyzed in order to explore the differential expression of 

COBRA1 at the RNA level. A query search on the differential expression of COBRA1 in 

HCC tumor tissues versus normal liver tissue yielded results from 4 different datasets, from 

3 independent studies (Mas et al., 2009; Roessler et al., 2010; Wurmbach et al., 2007). In 

both the Mas and Wurmbach study, samples were from patients with an HCV etiology with 

no other known HCC etiologies or CLD causes (Mas et al., 2009; Wurmbach et al., 2007). 

However, the vast majority of the samples in the Roessler study were from patients with a 

history of HBV infection or HBV-related cirrhosis (Roessler et al., 2010).  

   

The analysis of these datasets revealed a significant overexpression of COBRA1 mRNA 

in HCC tumor tissues versus their normal tissue counterparts (p ≤ 0.05) (Figure 1). 

Although 1 of the 4 datasets (Mas et al., 2009) found that COBRA1 expression did not 

differ significantly between normal liver tissue and either cirrhotic or HCC tissue, the 

remaining 3 datasets (Roessler et al., 2010; Wurmbach et al., 2007) demonstrated 

otherwise. All 3 datasets show a significant overexpression of COBRA1 mRNA in HCC 

tumor tissues versus normal or non-tumor liver tissue. Both the Roessler Liver 2 and Liver 

datasets (Roessler et al., 2010) show comparable results, with a fold change of 1.614 

(p=2.61E-43) and 1.635 (p=5.29E-6), respectively (Figure 1). In agreement with the 

Roessler datasets, the Wurmbach et al. (2007) study shows a similar result as well with a 

fold change of 1.402 (p=0.002). In the latter, no significant differences in expression were 

observed between normal tissue & either cirrhotic or dysplastic tissue.  

  

3.2. siRNA-mediated knockdown of COBRA1 in the HCC cell line, HepG2 

 

Having noted an upregulated expression pattern for COBRA1 in HCC tumors from both 

our previous lab findings (Kamel, 2012) as well as from our in silico study (Roessler et al., 

2010; Wurmbach et al., 2007), we analyzed the effect of siRNA-mediated knockdown of 

COBRA1 on the HCC cell line, HepG2. To efficiently knockdown COBRA1, the different 

transfection conditions (siRNA concentration, volume of the lipid-based reagent, in this 

case, Lipofectamine and the duration of incubation) had to be initially optimized following 

the supplier’s recommendations, in order to achieve the highest knockdown efficiency.  

http://www.oncomine.org/
http://www.breast-cancer-research.com/content/17/1/28/figure/F1
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Figure 1. Overexpression of COBRA1 mRNA in hepatocellular carcinoma versus 

normal liver tissue The Oncomine™ cancer database of publicly available microarray data 

was queried to examine the differential expression of COBRA1 in hepatocellular carcinoma 

versus normal liver tissue. Three datasets from 2 independent studies (Roessler et al., 2010; 

Wurmbach et al., 2007) were analyzed (A) Roessler Liver 2 dataset (B) Roessler Liver 

dataset (C) Wurmbach Liver dataset. Oncomine™ results are illustrated as boxplots, with the 

top and bottom of the box representing the lower quartile and upper quartile, respectively and 

the bar across the box, the median. The bars represent the 10th and 90th percentile and dots 

represent the minimum and maximum values (range of data within each category). For each 

study, the number of patients in each category is indicated in brackets as well as the fold 

change and p value as determined by the Student’s t-test. * p < 0.05; **** p < 0.0001.  
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3.2.1. siRNA concentration 

 

The concentration of siRNA is an important transfection parameter. Concentrations that 

are too high can risk off-target activity, where the siRNA will not only result in the 

degradation of the mRNA of interest but will degrade other mRNAs that are partially 

homologous or even non-homologous (Semizarov et al., 2003). On the other hand, siRNA 

concentrations that are too low will result in low knockdown efficiencies. Different 

concentrations across the range recommended by the supplier were tested; 25 nM, 50 nM, 

and 100 nM. Knockdown efficiency was analyzed 96 hr following transfection by a Western 

blot, and as shown in Figure 2A, all tested siRNA concentrations resulted in comparable 

knockdown efficiencies. Being the lowest concentration to result in an efficient protein 

knockdown, the 25 nM was therefore used for all subsequent siRNA transfections. It is 

important to mention that cell viability as observed by microscopy, was jeopardized in all 

siRNA and mock-treated cells. However, this was not the case in untreated cells. This is 

usually associated with most commonly used lipid-based transfection reagents and was 

addressed by optimizing the volume of Lipofectamine.  

 

3.2.2. Incubation duration 

 

RNAi-mediated knockdown is known for being a transient knockdown and not a stable one. 

To achieve maximal protein knockdown while allowing at the same time sufficient time for 

phenotypic changes to be visible, time points for analysis should typically range from 48-

96 hrs. To identify the optimum time for analysis, knockdown efficiency was analyzed at 

both 72 hr and 96 hr post-transfection. As shown in Figure 2B, at both time points, 

knockdown efficiency was comparable showing no significant difference. Therefore, all 

subsequent siRNA transfections in the HepG2 cell line were performed at 72 hrs. 

 

3.2.3. Lipofectamine volume 

 

The volume of Lipofectamine is also an important parameter that has to be optimized. Too 

much will expose the cells to unnecessary stress, while too little will jeopardize transfection 

efficiency. Here, two different strategies recommended by the supplier were analyzed. 

First, the titration of the volume of Lipofectamine within the range recommended by the 

supplier (4-6 μl) to determine the lowest volume of Lipofectamine required to ensure an 

efficient knockdown. Second, the addition of more FBS-supplemented media 6-8 hr from 

transfection while keeping the same established Lipofectamine volume (6 μl). The cells 

transfected with 6 μl of Lipofectamine (with or without 8 hr media addition) showed the 

highest knockdown, with an almost complete knockdown. Similarly, cells transfected with 
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Figure 2. Optimization of transfection conditions of COBRA1 siRNA in HepG2. For each 

transfection parameter, different conditions were compared with respect to their knockdown 

efficiency, which was analyzed by Western blot analysis. Optimization of (A) siRNA 

concentration. Different concentrations (25 nM, 50 nM and 100 nM) were analyzed. For all 

tested concentrations, volume of Lipofectamine (6 μl) and incubation time (96 hr) were kept 

constant. (B) Incubation duration. Knockdown efficiency was analyzed at both 72 hr and 96 

hr post-transfection. siRNA concentration (25 nM) and volume of Lipofectamine reagent (6 μl) 

were kept constant. (C) Lipofectamine volume. Lipofectamine was titrated within the range 

recommended by the supplier (4, 5, 6 μl) and compared with respect to their knockdown 

efficiency. In one condition, the 6 μl Lipofectamine volume was maintained and more FBS-

supplemented media was added 8 hr post-transfection. The bands intensities were quantified 

by ImageJ and normalized to the loading control B-TUBULIN. Relative expression is 

expressed as fold change to the siNTC. siNTC - Negative siRNA, 6 μl + M - 6 μl plus media 

addition 8 hr post-transfection.  
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4 μl and 5 μl of Lipofectamine effectively decreased COBRA1 expression by 92% and 95%, 

respectively (Figure 2C). The previously observed cytotoxicity was no longer visible in all 

of the newly tested conditions. Taking into consideration knockdown efficiency as well as 

cell viability, the 5 μl was chosen as the optimal volume of reagent required for transfection. 

All subsequent siRNA transfections were thus performed as such.  

 

3.3. SMARTPool siRNA effectively silences COBRA1 expression in HepG2  

 

The COBRA1 siRNA was successful in silencing COBRA1 expression, resulting on 

average in a 93% COBRA1 knockdown at the protein level, relative to the negative siRNA 

(Figure 3A). To determine whether protein knockdown correlated with mRNA knockdown, 

the effect of siRNA-mediated silencing of COBRA1 on the levels of COBRA1 mRNA was 

analyzed by semi-quantitative PCR. As shown in Figure 3B, the pool significantly silenced 

COBRA1 expression at the RNA level, which is consistent with the knockdown observed 

at the protein level. No significant difference was found between the different control groups 

(siNTC, mock- treated and untreated cells). It is important to mention that knockdown of 

COBRA1 had no significant effect on the overall patterns of cell morphology, as observed 

under the inverted microscope (40X) (Figure 4). To investigate whether COBRA1 silencing 

affects the expression of the other NELF subunits as well, the mRNA expression patterns 

of NELF-A, NELF-C/D, and NELF-E subunits were compared prior and after COBRA1 

knockdown. Interestingly, COBRA1 knockdown did not significantly affect their expression 

(p > 0.05) (Figure 5).  

 

 

 

 

 

 

 

 

 

  

Figure 3. COBRA1 siRNA effectively silences COBRA1 expression at both the RNA and 

protein level. (A) Knockdown efficiency of COBRA1 siRNA in silencing COBRA1 protein 

levels, relative to the negative siRNA (B) RNA expression was analyzed by semi-quantitative 

RT-PCR. The band intensities were quantified by ImageJ and normalized to the internal control 

B-ACTIN. Relative expression is expressed as fold change to siNTC. Data represents the 

mean ± SD of three independent experiments (n = 3). Statistically significant at *** p < 0.001. 

siCOBRA1 - COBRA1 siRNA, siNTC - Negative siRNA. 
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Figure 4. No significant morphology changes associated with COBRA1 knockdown observed in HepG2 cells (40X). Photos were taken at 

40X magnification power 72 hr post-transfection for cells transfected with either COBRA1 siRNA or Negative siRNA. Cells that were either left 

untreated or mock-treated with Lipofectamine only were used as controls.  
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3.4. Silencing of COBRA1 suppresses cell proliferation of HepG2. 

 

To examine the effect of COBRA1 knockdown on cellular proliferation, HepG2 cells, were 

transfected with either 25 nM COBRA1 siRNA or Negative siRNA and harvested at different 

time points. Cell counting was performed to construct a growth curve and assess the rate 

of cell proliferation. Significant suppression was observed in the growth of cells transfected 

with COBRA1 siRNA at day 3 and 4 post-transfection, when compared to control cells 

(Figure 6).  

 

In order to further investigate the effect of COBRA1 knockdown on cell proliferation, the 

expression of an important marker of cellular proliferation, Ki-67, was examined. Ki-67 is a 

nuclear protein that is present in all active phases of the cell cycle (G1, S, G2, and mitosis), 

with the exception of the resting (G0) phase (Scholzen & Gerdes, 2000). Even though little 

is known about the function of Ki-67, its presence is believed to be an absolute requirement 

Figure 5. COBRA1 knockdown does not affect the expression of the remaining NELF 

subunits. Semi-quantitative RT-PCR analysis of NELF-A, NELF-C/D and NELF-E transcripts 

prior and following COBRA1 knockdown. The band intensities were quantified by ImageJ and 

normalized to the internal control B-ACTIN. Relative expression is expressed as fold change 

to siNTC. Data represents the mean ± SD of three independent experiments (n = 3). No 

statistically significant differences were observed (p > 0.05) (one-way ANOVA, Bonferonni’s 

post-test). siCOBRA1 - COBRA1 siRNA, siNTC - Negative siRNA. 
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for cell cycle progression and the maintenance of cell proliferation (Schlüter et al., 1993). 

Recently, it was shown to play an important role in the stabilization and maintenance of 

mitotic spindles (Vanneste, Takagi, Imamoto, & Vernos, 2009). Consistent with the 

previous cell count data, semi-quantitative PCR revealed a significant reduction of ~20% 

in the expression of Ki-67 mRNA upon COBRA1 knockdown, when compared to control 

cells (p<0.01; Figure 7). No significant difference in the expression of Ki-67 was found 

between the different control groups.  

 

3.5. Silencing of COBRA1 inhibits cell migration of HepG2. 

 

The effect of COBRA1 knockdown on the migratory potential of HepG2 cells was analyzed 

using a classical scratch wound healing assay (Qin & Cheng, 2010; Yu et al., 2014). After 

24 hr from inflicting the wound in the cell monolayer, the wound area in the transfected 

cells was compared to the initial wound area and used to calculate the percentage wound 

closure. Visual assessment of each well revealed a noticeable difference in the area of the 

wounds; the wound area in COBRA1 knockdown cells was wider than that of the negative 

control cells (Figure 8A). Wound areas were automatically analyzed by the TScratch 

software and revealed a ~60% decrease in the migration rate following COBRA1 

knockdown (p<0.001; Figure 8B). While the control cells showed a 31.86% wound closure 

after 24 hrs, COBRA1 knockdown cells showed a delayed wound closure rate at 13.12%.  

 

3.6. Silencing of COBRA1 significantly suppresses survivin gene expression 

 

Deregulation of cell proliferation and migration in cancer is usually associated with the 

deregulation of many key signaling pathways (Hanahan & Weinberg, 2011; Malumbres & 

Carnero, 2003). To explore the underlying mechanisms by which COBRA1 regulates the 

proliferation and migration of HepG2 cells, semi-quantitative PCR was utilized to examine 

the expression of genes commonly reported misregulated in cancer and play key roles in 

the proliferation as well as survival of cancer such as survivin. Of the 3 transcript variants 

analyzed, the wild-type survivin transcript represents the dominant form of survivin in 

HepG2. As shown in Figure 9A, knockdown of COBRA1 significantly suppresses the 

expression of the 3 different variants of survivin compared with cells transfected with 

control siRNA. While survivin-2B and survivin-deltaex3 were downregulated by 21.5% and 

16.4%, respectively, the wild type (WT) survivin was the one most affected, with 40% 

downregulation in the knockdown cells when compared to the control siRNA (Figure 9B).  
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Figure 6. Knockdown of COBRA1 inhibits the cell proliferation of HepG2 cells. (A) The 

growth of cells transfected with either COBRA1 siRNA or Negative siRNA were monitored for 

4 days post-transfection in order to analyze the growth rate. Cells were harvested at the 

indicated time points following transfection and counted using a hemocytometer. Data 

represents the mean ± SD of at least two independent experiments (n = 2). Statistically 

significant at ** p<0.01, * p < 0.05 (two-way ANOVA, Bonferonni’s post-test)  

 

Figure 7. Effect of COBRA1 knockdown on the expression of the cellular proliferation 

marker, Ki-67.  Effect of COBRA1 knockdown was analyzed by semi-quantitative RT-PCR. 

The bands intensities were quantified by ImageJ and normalized to the internal control B-

ACTIN. Relative expression is expressed as fold change to the siNTC. A significant reduction 

was observed in the expression of Ki-67 following COBRA1 knockdown, relative to siNTC. 

Data represents the mean ± SD of 2 independent experiments (n = 3). Statistically significant 

at ** p < 0.01, * p< 0.05 (one-way ANOVA, Bonferonni’s post-test). siCOBRA1 - COBRA1 

siRNA, siNTC - Negative siRNA. 
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Figure 8. Silencing of COBRA1 impairs HepG2 cell migration. (A) Wound healing assay 

was utilized to analyze the migration of HepG2 cells after knockdown of COBRA1. Seventy-

two hrs following transfection, the cell monolayer was scratched by a sterile pipette tip and 

migration monitored for the following 24 hrs. (B) Quantitative analysis of wound closure in 

COBRA1-knockdown cells versus negative siRNA-transfected cells. Automated analysis of 

the wound area was performed using TScratch software (Gebäck et al., 2009). Wound areas 

were then used to calculate the percentage wound closure. Data represents the mean ± SD 

from three independent experiments (n = 3). Statistically significant at *** p < 0.001 (Student 

t-test, two-tailed). siCOBRA1- COBRA1 siRNA, siNTC - Negative siRNA. 
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Figure 9. Silencing of COBRA1 suppresses Survivin expression. (A) At 72 hr post-

transfection of COBRA1 or Negative siRNA in HepG2 cells, the expression of Survivin was 

analyzed by semi-quantitative RT-PCR. B-ACTIN was used as a loading control. Primers 

used detect 3 different isoforms of Survivin; Wild-type Survivin, Survivin-2B and Survivin-

DeltaEx3. (B) The bands intensities were quantified by ImageJ and normalized to B-ACTIN. 

Relative expression is expressed as fold change to the siNTC. A significant reduction was 

observed in the expression of all 3 isoforms of Survivin following COBRA1 knockdown, 

relative to siNTC. Data represents the mean ± SD of 3 independent experiments (n = 3). 

Statistically significant at ** p < 0.01, * p< 0.05 (one-way ANOVA, Bonferonni’s post-test). 

siCOBRA1- COBRA1 siRNA, siNTC - Negative siRNA. 
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CHAPTER 4. DISCUSSION 

  

Despite the different treatment regimens available, prognosis of HCC remains very poor 

with an overall 5-year survival rate of less than 5% (X. Huang et al., 2013), making it the 

second most common cause of cancer-related mortality worldwide (Ferlay et al., 2013). 

The lethal nature of HCC stems from the aggressive course of the disease combined with 

the high risk of tumor recurrence (Capece et al., 2013). In addition, due to the lack of 

biomarkers that can detect the disease in its early stages, the majority of HCCs are 

diagnosed at advanced stages when curative surgical treatment options are no longer 

available. This makes their treatment very difficult (Farazi & DePinho, 2006).  

 

It is believed that proper molecular markers will not only aid in the early diagnosis of HCC, 

but also in the prognosis and therapy monitoring of the disease. Therefore, research is 

currently directed towards identifying molecular markers that are sensitive and specific 

enough to allow for efficient patient management. In addition, due to the heterogeneity and 

underlying complexity of HCC, the molecular mechanisms lying behind the development 

and progression of HCC remain largely unknown. A comprehensive understanding of the 

multiple layers of genetic and epigenetic changes associated with this disease will provide 

a platform for the discovery of novel treatment strategies (Cornellà et al., 2011).   

  

In this study, our interest was in one of the genes recently implicated as a potential player 

in the development and progression of several cancers, known as COBRA1 (McChesney 

et al., 2006; Sun et al., 2008). COBRA1 is part of the transcriptional regulatory machinery 

of the cell, by which the cell is able to regulate a substantial number of genes (Aiyar, Blair, 

et al., 2007; Aiyar, Cho, et al., 2007; Aiyar et al., 2004; Sun & Li, 2010). Even though it has 

been extensively studied over the years, the majority of these studies have mostly reported 

roles for COBRA1, either as a functional component (Narita et al., 2003) or as a cofactor 

for site-specific transcription factors (Aiyar et al., 2004; Sun et al., 2007; Zhong et al., 2004). 

In the field of cancer, the role of COBRA1 is not yet fully understood and much of the data 

that currently exists regarding its role is conflicting. Nonetheless, data that exists does 

demonstrate an important role for COBRA1 in cancer and the fact that much of it is 

conflicting highlights the underlying complexity of COBRA1’s role. Here, we provide several 

lines of evidence for the first time to support a critical role for COBRA1 in supporting HCC. 

 

4.1. Overexpression of COBRA1 in HCC tumor tissues versus normal liver tissue 

 

To date, little is known about COBRA1 in HCC. Previous research in Amleh’s Lab (Kamel, 

2012) provides preliminary data supporting an upregulated expression pattern for COBRA1 
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mRNA (68%) and protein (50%) in HCC tumor tissues, when compared to peri-tumor 

tissues collected from the same patient. However, the small sample size was a major 

limitation of the study. In the current study, we extended on the lab’s previous data findings 

and utilized microarray data publicly available online to further explore this variation in 

expression on a larger scale. Analysis of HCC microarray data available in the Oncomine 

database revealed 3 datasets that collectively demonstrated a significant overexpression 

of COBRA1 mRNA (1.4-1.6 folds) in HCC tumor tissues versus normal liver tissues. 

 

Chronic HBV and HCV infection have together the majority of the share in the incidence of 

HCC. Similar to previous research in Amleh’s lab, samples in the Wurmbach study were 

from patients with an HCV etiology. In contrast, the large majority of the samples in the 

Roessler study were from patients with a history of HBV infection or HBV-related cirrhosis. 

This strongly suggests that the overexpression of COBRA1 is a feature associated with 

both etiologies of HCC. It is important to mention that even though 3 datasets were in 

agreement with regards to the differential expression of COBRA1 between HCC tissue and 

either normal liver or paired non-tumor tissue, one dataset (Mas Liver dataset) did not show 

any significant difference. However, this might be attributed to experimental factors related 

to variabilities in RNA handling, used probe sequences or differences in the computational 

methods used. Therefore, further meta-analysis of data from these datasets is necessary 

to gain a more reliable insight.   

 

Furthermore, the Mas Liver dataset does not show any difference in the expression of 

COBRA1 between normal tissue and cirrhotic tissue. In agreement, the Wurmbach dataset 

also shows no difference between normal liver tissue & either cirrhotic or dysplastic tissue. 

This data suggests the potential of COBRA1 as a biomarker in differentiating HCC from 

other chronic liver disorders. However, this still requires further study on a wider range of 

samples. Taken together, data presented here demonstrates the frequent overexpression 

of COBRA1 in HCC tumors versus their normal counterparts and suggests a potential 

oncogenic role for COBRA1. 

 

4.2. Efficiency of SMARTPool siRNA in the Silencing of COBRA1  

 

To clarify a role for the frequent overexpression of COBRA1 in HCC, RNA interference 

(RNAi) was used to silence COBRA1 expression. RNAi is the cellular mechanism by which 

double stranded RNAs trigger silencing of gene expression, by targeting complementary 

mRNA sequences for degradation (Echeverri & Perrimon, 2006). With a higher expression 

of COBRA1 mRNA and protein relative to the normal human hepatocyte cell line MIHA, 

the HepG2 cell line (as observed by Amleh Lab) was chosen as our cell model.  
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Despite its power, off-target activity is inherent to the siRNA technology and complicates 

the interpretation of all knockdown experiments. Attempts so far have only been able to 

reduce but not eliminate off-target activity (Echeverri et al., 2006; Jackson & Linsley, 2010). 

Due to the concerns over off-target activity commonly associated with siRNAs combined 

with the large variabilities that exist in the knockdown efficacies of individual siRNAs, it has 

become standard practice in siRNA experiments to analyze different siRNAs per target (at 

least 2-3). There are 2 common approaches by which these siRNAs can be delivered; 

either individually or as pools. Conflicting data exists regarding the pros & cons associated 

with using either. Nonetheless, both remain standard knockdown strategies (Echeverri et 

al., 2006; Parsons, Schindler, Evans, & Foley, 2009).  

 

Here, a siRNA pool was utilized to establish a transient COBRA1 knockdown in the HepG2 

cell line. The strong, near complete knockdown observed indicated that the siRNAs were 

successful in silencing COBRA1 expression at the protein level. This was important for our 

study as it was previously reported that a silencing threshold must sometimes be reached 

before a detectable loss-of-function (LOF) phenotype can be observed. In fact, the authors 

reported that sometimes a complete protein knockdown is essential in order to make an 

accurate assessment of gene function (F. Huang, Khvorova, Marshall, & Sorkin, 2004). In 

support, a recent study reported experiments performed with pooled siRNAs to be more 

likely associated with LOF phenotypes than single siRNAs (Parsons et al., 2009).  

 

In addition, Dharmacon RNA Technologies (http://www.dharmacon.com/) have shown that 

their pooling strategy of 4 different siRNAs superior to individual siRNAs in diluting off-

target effects. With each siRNA having a distinct off-target signature of its own, the overall 

off-target signature of the entire pool is less than any of the individual siRNAs. Furthermore, 

pooling siRNAs is known to reduce the contribution of each of the single siRNAs to the final 

pool and thus perceived to reduce off-target activity. In this respect, Semizarov et al. (2003) 

reported siRNA concentrations ≤ 20 nM sufficient to eliminate off target activity. In our 

study, 25 nM of the pool was used. Thus, ~6.25 nM from each of the 4 single siRNAs. 

Nonetheless, it is still important to mention that off-target activity is impossible to rule out 

and much of the data that exists regarding how it should be minimized is conflicting. 

Therefore, to ensure a more rigorous study, further analysis of the single siRNAs that 

constitute the pool is necessary.   

 

4.3. Knockdown of COBRA1 Inhibits Cellular Proliferation of HepG2  

 

Deregulation of cellular proliferation is one of the major hallmarks of cancer (Hanahan & 

Weinberg, 2011; Malumbres & Carnero, 2003). Here, our data indicates that COBRA1 is 

http://www.dharmacon.com/
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essential for maintaining the cellular proliferation rates of the HepG2 cell line. This positive 

effect that COBRA1 has in mediating the growth of HCC goes in line with its previously 

reported role in maintaining the transcription of a large number of genes involved in cell 

cycle control, cell proliferation, cell death and DNA repair (Aiyar, Blair, et al., 2007; Aiyar, 

Cho, et al., 2007). In fact, this is not the first time COBRA1 has been implicated in the 

proliferation of cancer. Aiyar et al. (2004) reported a significant reduction in the rate of 

proliferation of T47D cells upon the ectopic expression of COBRA1. Similarly, knockdown 

of COBRA1 resulted in an increase in the estrogen-dependent growth of the cells, thereby 

establishing an inhibitory role for COBRA1 in breast cancer tumorigenesis. However, in 

contrast to breast cancer, COBRA1 knockdown significantly inhibited  HepG2 proliferation 

as shown by both the reduced count and decrease in the expression of Ki-67. Taken 

together, data presented here supports a positive role for COBRA1 in the growth of HCC.  

 

These findings go in line with other studies that also suggest a positive role for COBRA1 

in the growth of both ovarian and lung cancer. In both cancers, COBRA1 was shown a 

novel target of the widely established oncogenic Ras/MAPK pathway (Pohl et al., 2005; 

Sudhir et al., 2011). Chemical inactivation of the pathway resulted in a profound decrease 

in the proliferation of different ovarian cancer cell lines accompanied by a substantial 

downregulation (>3-fold) in the expression of COBRA1 (Pohl et al., 2005). It is important 

to mention that the contribution of COBRA1’s downregulation towards the observed 

phenotype is still not known. Nonetheless, the fact that COBRA1 was identified as a target 

of the pathway and the impact of this pathway in supporting carcinogenesis, strongly 

suggest a positive role for COBRA1 in mediating the effects of this pathway.  

 

4.4. Knockdown of COBRA1 Inhibits Migratory Potential of HepG2 

 

Local invasion and distant metastasis is another key cancer hallmark and an indicator of 

poor prognosis (Hanahan & Weinberg, 2011). In line with COBRA1’s established role in 

breast cancer as a tumor suppressor, lack of COBRA1 in cancerous tissues is associated 

with distant metastasis and recurrence in patients and thus considered as an indicator of 

poor prognosis (Sun et al., 2008). In agreement, the expression pattern of many genes 

reported earlier to be regulated by COBRA1 have been associated with advanced and/or 

metastatic breast cancer (Aiyar, Blair, et al., 2007; Aiyar, Cho, et al., 2007; Aiyar et al., 

2004). In contract to breast cancer, where COBRA1’s expression is inversely correlated 

with metastasis, our data findings suggests a positive role for COBRA1 in metastasis. The 

molecular basis behind the tissue-specific nature of COBRA1’s functions remain unknown 

and warrants further study. It is also important to mention that this study has to be further 

extrapolated to other cell lines to gain a comprehensive understanding of COBRA1 in HCC. 
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4.5. Interdependent Nature of NELF Subunits  

 

COBRA1 is a functional component of the NELF complex. It has been reported that upon 

knockdown of any NELF subunit, co-depletion of the remaining subunits occur almost 

simultaneously (Narita et al., 2007; Sun & Li, 2010; Sun et al., 2008). Even though our 

results show otherwise, findings from these studies have shown that the changes observed 

in the expression levels of the NELF subunits occurred exclusively at a post-transcriptional 

level (Narita et al., 2007; Sun & Li, 2010; Sun et al., 2008). Therefore, further examination 

is required before a conclusion can be drawn here. 

  

Similar to COBRA1, the rest of the NELF subunits (NELF-A, NELF-C/D and NELF-E) have 

also been implicated in different cancers (Mehra et al., 2011; Oka, 2012; Zou et al., 2010). 

Given the previously established interdependent nature of the NELF subunits (Narita et al., 

2007; Sun & Li, 2010; Sun et al., 2008), a disease-based deregulation in the expression 

pattern of one subunit is expected to equally reflect in the remaining subunits. It is therefore 

tempting to speculate overlapping roles for the different NELF subunits in the same cancer. 

Limited with the small number of studies, this pattern has been observed so far in breast 

cancer. Both NELF-B (COBRA1) and NELF-C/D were reported independently to have 

negative roles in the growth and progression of breast cancer. In addition, the expression 

of either negatively correlated with the aggressiveness of breast cancer (Sun et al., 2008; 

Zou et al., 2010). Here, we believe our results follow the same pattern and goes in line with 

previous data published regarding the role of other NELF subunits in HCC. NELF-E (also 

known as RDBP) was shown to have a higher expression pattern in HCC tumors versus 

their paired non-HCC tissues. In line with its preferential overexpression in tissues with 

portal vein invasion, NELF-E expression was also reported an independent risk factor for 

intrahepatic recurrence. Furthermore, knockdown of NELF-E resulted in a decrease in cell 

proliferation rate of the hepatoma cell line, HLE, with no significant changes observed in 

the cell cycle distribution (Oka, 2012). This was also earlier established by Midorikawa et 

al. (2002) who reported the dedifferentiation process of HCC, one of the events that define 

the multi-step progression of hepatocarcinogenesis, associated with the overexpression of 

RDBP, among others. 

 

4.6. Silencing of COBRA1 Suppresses Survivin Expression  

 

Survivin represents one of the genes that is commonly upregulated in almost all human 

malignancies including HCC and known to play key roles in cellular proliferation and 

survival (Fukuda & Pelus, 2006). It is a member of the inhibitor of apoptosis (IAP) family of 

proteins that play key roles in inhibiting different pathways of programmed cell death 
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(Elmore, 2007). While in normal tissue survivin has minimal expression levels, in cancer 

its expression is upregulated and correlates with a more aggressive disease and a poor 

prognosis (Jaiswal, Goel, & Mittal, 2015). Survivin expression is cell-cycle dependent, 

being low in the G1 phase, high in the S phase (6 times higher) and at its peak in the G2/M 

phase (40 times higher) (Boidot, Végran, & Lizard-Nacol, 2014). In line with its cell cycle-

dependent expression, survivin functions mainly as both a regulator of cell division and an 

inhibitor of apoptosis (Mita, Mita, Nawrocki, & Giles, 2008).  

 

Besides the 4-exon WT survivin transcript, at least 6 alternatively spliced variants have 

been identified to date: WT survivin, survivin-2b, survivin-ΔEx3, survivin-3b, survivin-2a, 

survivin-2b+32 and survivin-image (Pavlidou, Kroupis, & Dimas, 2014). Of those, only 3 

are well established and have been extensively studied. These are the WT survivin, 

survivin-2b and survivin-ΔΕx3. In one study, the 3 variants were shown to represent nearly 

98% of the mRNA expression from the survivin gene (Mull, Klar, & Navara, 2014). While 

survivin-2b arises from the inclusion of a cryptic exon that lies within intron 2, survivin-ΔΕx3 

arises from the removal of exon 3 and a frameshift that results in the inclusion of part of 

the 3’-untranslated region (UTR) (Li, 2005; C Mahotka, Wenzel, Springer, Gabbert, & 

Gerharz, 1999) (Figure 10).  

 

 

 

 

 

 

  

Figure 10. Alternatively Spliced Survivin Transcripts. The survivin pre-mRNA includes four 

exons (exon 1-4) and two cryptic exons (exon 2b, 3b). The survivin pre-mRNA generates at 

least seven alternatively spliced variants identified to date. The forward and reverse primers 

used in this study pick up only three of these survivin transcripts: WT survivin, survivin-2b and 

survivin-ΔEx3. WT survivin is derived from exons 1-4. Survivin-2b arises from the inclusion of 

a cryptic exon referred to as exon 2b, located within intron 2. Survivin-ΔΕx3 arises from the 

removal of exon 3 and inclusion of part of the 3’-UTR. Black arrows indicate the positions of 

PCR primers (Exon 1 and exon 4). WT: wild type, UTR: untranslated region (Mokuda et al., 

2015; Turkkila et al., 2015) 
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Even though, these 3 variants have been extensively studied, little is known about their 

functions. In contrast to WT survivin, survivin-2b and survivin-ΔEx3 do not seem to have a 

role in the regulation of cell division (Noton et al., 2006). Instead, they have only been 

shown until now to play a role in the regulation of apoptosis; while survivin-ΔEx3, similar 

to WT survivin has an anti-apoptotic function, survivin-2b is believed to have a pro-

apoptotic function (Pavlidou et al., 2014). Even though this is the case, reported data for 

survivin-2b sometimes suggest otherwise (Y. Huang et al., 2011; Nakano et al., 2008; 

Vivas-Mejia et al., 2011).  

 

Our results show that of the 3 transcripts examined, WT survivin represents the dominant 

splice variant expressed in HCC which goes in line with previous literature (Kannangai, 

Wang, Liu, Sahin, & Torbenson, 2005). In fact, it is worth to mention that the predominant 

expression of WT survivin has been reported in many other cancers as well (Fangusaro et 

al., 2005; Krieg et al., 2002; Csaba Mahotka et al., 2002; Ryan et al., 2005; Taubert et al., 

2005). In HCC, Takashima et al. (2005) reported that that high levels of WT survivin mRNA 

correlated with a more malignant cancer. In addition, it was shown that while the mRNA 

expression levels of WT survivin and survivin-ΔEx3 correlated with high proliferative 

activity, that of survivin-2b did not (Takashima et al., 2005). Even though not enough data 

is available to draw a conclusion for the role of survivin-2b in HCC, the overexpression of 

survivin transcripts observed in HCC compared to normal tissue is believed to be 

associated with hepatocarcinogenesis (Kannangai et al., 2005; Takashima et al., 2005). 

Therefore, taken together, the suppression of survivin expression upon COBRA1 

knockdown suggests that survivin might be one of the mechanisms by which COBRA1 

mediates its involvement in HCC growth and migration. It is also worth to mention that this 

finding is in line with a previously published microarray study in breast cancer that also 

demonstrated survivin to be downregulated upon COBRA1 knockdown (Aiyar, Cho, et al., 

2007).   

  

In summary, COBRA1’s role in cancer seems to be highly cancer type-dependent. While 

previously reported a tumor suppressor in breast cancer with an expression pattern directly 

correlated with prognosis, data in UGCs seems to support its role as an oncogene 

(McChesney et al., 2006; Sun et al., 2008). Here, in HCC, our data findings collectively 

highlight an oncogenic role for COBRA1 in HCC, similar to that in UGC. 
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CONCLUSION 

 

To the best of our knowledge, our study provides several lines of evidence for the first time 

to support a positive role for COBRA1 in the growth and migration of HCC.   

 

First, we show through in silico analysis of publicly available gene expression data on a 

large number of tissue samples, the frequent overexpression of COBRA1 in HCC tumors 

versus their normal counterparts. In addition, we highlight the potential of COBRA1 as a 

selective HCC biomarker, given no differences in COBRA1 gene expression were found 

between normal tissue and tissue from other non-HCC chronic liver diseases. Second, we 

show that COBRA1 expression is important for the proliferation and migration of HCC cells. 

Finally, the deregulation of cell proliferation and migration observed in cancer is usually 

associated with the deregulation of multiple mechanisms that normally exist to suppress 

tumor formation and metastasis. Here, data findings from our study also show that one of 

the possible mechanisms by which COBRA1 mediates its positive role on the growth and 

migration of HCC might be through the upregulation of survivin expression.  
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FUTURE RECOMMENDATIONS 

 

Microarray data remains to date a rich, untapped source of knowledge that remains largely 

underutilized. Further analysis of publicly available HCC gene expression datasets should 

be done, to study the correlation between COBRA1 expression and clinicopathological 

parameters. This will help clarify the potential of COBRA1 mRNA as a prognostic factor, in 

predicting the aggressiveness of HCC. Analysis should also be extrapolated to the protein 

level via immunohistochemistry of tissue arrays.  

  

As earlier discussed, off-target effects are inherent to the siRNA technology and attempts 

have so far have only been able to reduce but not eliminate off-target activity (Echeverri et 

al., 2006). Even though the utilized pooling strategy has been shown by Dharmacon RNA 

Technologies (http://www.dharmacon.com/) to dilute off-target effects observed with single 

siRNAs, the superiority of pooled siRNAs to individual siRNAs in this respect remains 

controversial among researchers (Echeverri & Perrimon, 2006; Smith, 2006). Confirmation 

with redundant silencing reagents remains the gold standard for demonstrating siRNA 

specificity (Echeverri et al., 2006). Therefore, our data should be further confirmed with at 

least 2-3 individual siRNAs. In addition, analysis of the effect of COBRA1 overexpression 

in HepG2 will further validate the specificity of our data findings. 

 

Extrapolation of the methodology to include more HCC cell lines, representing different 

stages of HCC, will ensure a more reliable assessment of COBRA1’s function. In addition, 

further analyses of COBRA1-knockdown cells should be done for a more comprehensive 

understanding. For example, cell cycle analysis can be performed to further investigate the 

molecular mechanisms underlying the decrease in proliferation by analyzing both the cell 

cycle distribution (G1, G2 and S phases) and the apoptotic cell fraction upon knockdown. 

 

The frequent overexpression of COBRA1 mRNA in HCC tumors raises the question of as 

to how this upregulation is achieved and the molecular mechanisms behind it. Further 

studies should investigate whether the oncogenic Ras/MAPK pathway, as an upstream 

regulator of COBRA1, plays a role in mediating COBRA1’s positive role in HCC 

proliferation & migration. In addition, given COBRA1’s role in suppressing AR-signaling 

pathway and the impact of this pathway in mediating carcinogenesis of HCC, it would be 

interesting also to find out the functional link between both in HCC. 

 

  

http://www.dharmacon.com/
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