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Abstract 

 

Traditional approaches to the construction site layout problem have been focused mainly on 
rectilinear facilities where the importance proximity measures are mainly based on Cartesian 
distances between the centroids of the facilities. This is a fair abstraction of the problem; 
however it ignores the fact that many facilities on construction sites assume non-rectilinear 
shapes that allow for better compaction within tight sites. The main focus of this research is to 
develop a new approach of modeling site facilities to surpass limitations and inefficiencies of 
previous models and to ensure a more realistic approach to construction site layout problems. A 
construction site layout optimization model was developed that can suit both static and dynamic 
site layouts. The developed model is capable of modeling any rectilinear and non-rectilinear site 
shapes, especially splines, since it utilizes a parametric modeling software. The model also has 
the ability to mimic the “dynamic” behavior of the objects’ shapes through the introduction and 
development of three different algorithms for dynamic shapes; where the geometrical shapes 
representing site facilities automatically modify their geometrical forms to fit in strict areas on 
site. Moreover, the model provides different proximity measures and distance measurement 
techniques rather than the normal centroidal Cartesian distances used in most models. The new 
proximity measures take into consideration actual movement between the facilities including any 
passageways or access roads on site. Furthermore, the concept of selective zoning was 
introduced and a corresponding algorithm was provided; where the concept significantly 
enhances optimization efficiency by minimizing the number of solutions through selection of 
pre-determined movement zones on site. Soft constraints for buffer zones around the site 
facilities were developed as well. The site layout modeling was formulated on commercial 
parametric modeling tools (Rhino® and Grasshopper®) and the optimization was performed 
through genetic algorithms. After each of the algorithms was verified and validated, a case study 
of a real dynamic site layout planning problem was made to validate the comprehensive model 
combining all of the modules together. Different proximity measures and distance measurement 
techniques were considered, along with different static and dynamic geometrical shapes for the 
temporary facilities. The model produced valid near-optimum solutions, a comparison was then 
made between the layout that is produced with the model and the layout that would have been 
produced by other models to demonstrate the capabilities and advantages of the produced model. 
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1 Chapter 1: Introduction 

1.1 Site Layout Planning 
Site layout planning involves identifying, sizing, and locating necessary temporary facilities on a 

construction site. Temporary facilities range from simple lay-down areas to warehouses, 

fabrication shops, maintenance shops, batch plants, and residence facilities (Yeh, 1995; Hegazy 

& Elbeltagi, 1999). The space available at the construction site is considered an important 

resource that should be carefully dealt with. In highly congested sites, space becomes a very 

scarce resource that needs to be carefully planned and efficiently utilized. On the other hand, in 

large sites having abundant space availability, the positioning of site facilities with respect to 

each other will greatly influence the efficiency of workflow (Osman et. al., 2003). Despite its 

importance, site planning is often neglected, and the attitude of engineers has been that it will be 

done as the project progresses. A well-planned site layout has an significant positive impact on 

the construction process as it participates in minimizing travel time, promoting safety, enhancing 

material and equipment transportation and handling, enhancing productivity, and decreasing 

costs, especially for large projects (Hamiani & Popescu, 1988; Tommelein et al., 1992). 

According to Ning et al (2011), the following are the key attributes for successful site layout 

plans: 

1. Efficient movement of materials 

2. Efficient tie-in with external transportation 

3. Good space utilization and configuration 

4. Ease of expansion 

5. Satisfaction of safety regulations 

6. Effective movement of personnel 

7. Efficient operations 

8. Low frequency and seriousness of potential breakdowns 

9. Security 

10. Easy supervision and control 
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1.1.1 Temporary facilities in site layouts: 

The type and number of temporary facilities needed for a specific project must be determined 

prior to their sizing and location. Table 1 provides a sample list of common temporary facilities 

that can be used in a project. Every site requires its own unique set of temporary facilities 

depending on its needs. 

Table 1: Sample of possible temporary facilities in site layouts (Elbeltagi, 2014) 

No. Temporary Facilities 
 

No. Temporary Facilities 
1 Job office 

 
20 Fabricated rebar storage yard  

2 Owner representatives office  
 

21 Storage yard for lumber 
3 Subcontractors office 

 
22 Storage yard for formed lumber  

4 First aid office 
 

23 Batch-plant and aggregate storage 
5 Information and guard house  

 
24 Craft change-house 

6 Electric supply room 
 

25 Machine room 
7 Staff/Engineer dormitory 

 
26 Sampling / Testing lab 

8 Staff/Engineer family dormitory  
 

27 Pipe jointing yard 
9 Labor dormitory 

 
28 Pipe storage yard 

10 Labor family dormitory 
 

29 Welding shop 
11 Dinning room for labor 

 
30 Parking lot 

12 Bathroom for labor 
 

31 Tanks 
13 Restroom for labor 

 
32 Long term laydown storage 

14 Equipment maintenance shop 
 

33 Electrical shop 
15 Parking lot for mechanics  

 
34 Steel fabrication shop 

16 Prefabricated rebar storage yard  
 

35 Sandblast shop 
17 Rebar fabrication yard 

 
36 Painting shop 

18 Carpentry shop 
 

37 Scaffold storage yard 
19 Cement warehouse 

 
38 Other material warehouse  

 

Nedzémlyi and Vattai (2014) provide some good guidelines for shaping and sizing the temporary 

facilities in site layouts. Three examples of their guidelines are provided in this section. 

Example 1 - Wood Yard: Although new formwork systems are constantly developed, many 

construction sites still use traditional formwork systems that require wood yards. A wood yard 

consists of a cutting yard for cutting the wood pieces, a joining yard for joining the wood pieces, 

storage yard for new materials and recycled materials, and an assembly yard for assembling and 

storing the finished pieces. A sample layout of a wood yard is provided in Figure 1.  
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Figure 1: Sample configuration of a wood yard (Nedzémlyi and Vattai, Lecture) 

Example 2 - Steel Yard: A steel yard consists of a storage yard for storing the straight rods and 

the rolls of wire that are shipped to the site, a yard for cutting, aligning, and cutting the steel, and 

another storage yard for storing the processed steel that is ready for installation (sized straight 

bars and bent bars ….etc). A sample layout of a steel yard is provided in Figure 2.  

 

 
Figure 2: Sample configuration of a steel yard (Nedzémlyi and Vattai, 2014) 

Note: All previous research efforts in site layout modeling assume a fixed configuration of the 

wood yard and the steel yard with a fixed length and width. The purpose of providing these 

examples is to highlight the fact that the wood yard and the steel yard are not just one compact 

unit each; but rather a combination of units that can be laid next to each other in different 

configurations. This research takes this fact into consideration in the modeling process; allowing 

for the wood and steel yards to have dynamic forms [See Dynamic Rectangles Algorithm, 

Section 3.2.4] that shape themselves depending on the site conditions; instead of just assuming 

fixed preset forms. 

Example 3 - Caravans: The caravans are essential in all site layouts. They are used for housing 

the staff’s offices (project managers, consultants, contractors, sub-contractors), meeting rooms, 

dining rooms, cabinets, changing rooms, bathing rooms, labor housing …etc. The caravans are 

containers that are pre-fabricated. They are transported to the site and installed there using 
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mobile cranes. The containers come in standard sizes. The single container is 2.44m x 6.06m in 

size. The double-sized container is 4.94m x 6.05m in size (Nedzémlyi and Vattai, accessed in 

2014). The containers can be laid next to each other in any arrangement. Previous efforts in site 

layout optimization model caravans as rectangles (in the 2-D level) with fixed dimensions, 

ignoring the many possible arrangements that the caravans can be arranged. This research takes 

into consideration a variety of alignments for the caravans; where it provides an algorithm [See 

Offsetted Planar Curves Algorithm, Section 3.2.2] for allowing the caravans to shape their 

alignment depending on the available shape of the space. 

1.1.2 Common problems marking poor site layout planning: 

In the absence of a precise site layout plan, the following problems may occur: a) Incorrect 

allocation of material stacks. This problem may cause double or triple handling of materials to 

the correct locations. For example: stacking materials too remote from the hoist or not within the 

radius of the crane; or stacking the materials on areas that would be excavated later; b) 

Inappropriate allocation of plant and equipment; such as locating the concrete mixer in a place 

that is inaccessible for the delivery of materials, locating the tower cranes in locations where they 

would not be able to reach all parts of the works; c) Inadequate allocation of space; causing 

safety hazards and larger travel time due to cramping.; and d) Wrongful allocation of site huts in 

relation to their effective use; such as locating the site offices too near from noisy activities or 

too remote with insufficient overview of the site, or setting the warehouses in an area with 

inadequate access for loading and unloading or located in insecure area. 

1.1.3 Types of construction sites: 

Construction sites can be categorized into 4 categories demonstrated in Figure 3: 1) open field, 2) 

local estate, 3) long and thin, and 4) restricted (Nassar, 2014). In an open field construction site, 

the available site space is abundant and the works are concentrated in a localized zone that is 

relatively small; thus providing many options for allocating the temporary facilities without 

many restrictions. In the local estate construction site, the construction zones where the works 

are undergone are scattered along the site, yet small in size. So although the available area for 

temporary site facilities is large, there are many constraints regarding the transportation and 

safety due to the small pathways and passages between the construction zones. This type of site 
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layout is very frequent in residential projects. The long and thin construction site is mainly the 

type of layout for roads. It has special considerations in the site layout planning which are 

beyond the scope of this research. In the restricted site layouts, the construction zone is taking 

the bulk area of the project thus leaving a very limited area for setting the temporary facilities. In 

this type of layout, it is important to model the site facilities accurately with minimizing the 

interpolations and the approximations to not waste area. The model developed in this research is 

highly recommended for restricted sites.  

 
Figure 3: Types of construction sites (Nassar, 2014) 

1.1.4 Static site layouts vs. Dynamic site layouts: 

In simple words, a static site layout is where the location of the temporary facilities is not 

changed throughout the duration of the project; once a temporary facility is set in a place, it stays 

in that place till the project ends or until dismantled earlier, but it does not move from a place to 

another place. In dynamic site layouts, as shown in Figure 4, the temporary site facilities change 

their locations at different stages of the projects, depending on the site conditions and the 

execution plan. Optimizing dynamic layouts takes into consideration additional criteria such as 

relocation costs. The algorithms provided in this research suit both static and dynamic site 

layouts. 

 
Figure 4: Static and dynamic site layouts 
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1.2 Previous Research in Site Layout Optimization 
The problem of site layout planning has been studied by researchers using mainly two 

techniques; heuristic techniques and mathematical optimization models to produce the optimum 

solutions. Heuristic methods produce good but not optimal solutions, and cannot be fairly be 

adopted for large complex projects. Mathematical techniques are capable of solving more 

complex site layout planning problems with different types of variables and constraints (Osman 

et al., 2003). Mathematical techniques involve the identification of one or more goals that the site 

layout strives to achieve, the modeling and mathematical term for the end goal is the “objective 

function”. The goal is to optimize the objective function by either maximizing or minimizing it 

through the alterations of the different model variables. Several mathematical techniques and 

models were developed to solve site layout problems. Most famous of them are linear 

programming (Zouein & Tommelien, 1999), genetic algorithms (Li & Love, 1998; Hegazy & 

Elbeltagi, 1999; Zouein et al., 2002; Osman et al., 2003; • Zhou et al., 2009; Khalafallah and 

El-Rayes, 2011; Nguyen, 2014), artificial neural networks (Yeh, 1995), artificial bee colony 

(Yahya & Saka, 2014), artificial ant colony (Ning et al., 2011), fuzzy logic (Tam et al., 2001; 

Elbeltagi & Hegazy, 2001; Xu & Li, 2012), simulated annealing (Andayesh & Sadeghpour, 

2014), and other hybrid optimization techniques (El-Rayes & Said, 2009; Ning et al., 2011; Lien 

and Cheng, 2012); Andayesh & Sadeghpour, 2013). (See Figure 5) 

 
Figure 5: Techniques of tackling site layout planning problems 

  

Heuristics 
• Tommelien et al. (1992)  
• Cheng & O’Connor (1996) 
 

Linear Programming 
• Zouein & Tommelien (1999) 
• Huang and Wong (2015) 
 

Genetic Algorithms 
• Li & Love (1998) 
• Hegazy & Elbeltagi (1999) 
• Zouein et al. (2002)  
• Osman et al. (2003) 
• Zhou et al. (2009) 
• Khalafallah & El-Rayes (2011) 
• Nguyen (2014) 

Artificial Neural Networks 
• Yeh (1995) 
 

Artificial Bee Colony 
• Yahya & Saka (2014) 

Artificial Ant Colony 
• Ning et al. (2011) 
 

Fuzzy Logic 
• Tam et al. (2001)  
• Elbeltagi & Hegazy (2001)  
• Xu & Li (2012) 

Simulated Annealing 
• Andayesh & Sadeghpour (2014) 
 

Hybrid Techniques 
• El-Rayes & Said (2009) 
• Lien and Cheng (2012) 
• Andayesh & Sadeghpour (2013) 
• Andayesh & Sadeghpour (2014) 
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Research in the field of site layout planning is targeted on either developing the modeling 

techniques for the site facilities and obstacles, finding better optimization techniques to find 

optimum solutions, investigating better proximity measures, examining and comparing different 

objective functions, or investigating the effect of time and scheduling on the different site layout 

variables. This research is oriented towards finding better algorithms for modeling the site 

layout facilities and obstacles since the research in this area has not been widely developed as 

shown in Figure 6. An accurate representation of the construction site is important for site layout 

modeling, as it enables the development of more realistic and efficient layouts. Li & Love (1998) 

modeled the site facilities in predetermined locations; where the number of predetermined places 

should be equal to or greater than the number of predetermined facilities. So there is no 

flexibility in moving the site facilities, except in the pre-determined locations. The variable of 

each facility would just be its location number. Hegazy & Elbeltagi (1999) presented a more 

flexible modeling for the site facilities by using a two-dimensional grid, where each facility is 

modeled as a number of grid units that add up to the facility area. Osman et al. (2003) provided a 

CAD-based model for site facilities with almost the same concept as Hegazy & Elbeltagi’s 

model (1999) by modeling the dividing the site into perpendicular grids and enclosing the 

facilities inside the grids. Andayesh & Sadeghpour (2013) represented site facilities by their 

minimum bounding circles to facilitate the optimization process. However, this representation 

also results in a waste of space. Yahya & Saka (2014) presented a model that modeled facilities 

as rectangular geometries that allow for horizontal and vertical alignment with site boundaries 

that are represented as lines with specified slopes. 

The use of grids, circles, and rectangles as shown in Figure 6 simplifies the search procedure by 

decreasing the number of possible choices for the position of objects. However, in reality, the 

construction site and facilities can acquire any shape and can be located in any place. In strict 

construction sites, it can be safely claimed that the previously mentioned models face difficulties, 

that sometimes result in not finding valid results at all, in finding solutions in strict site layouts 

due to the inefficiency of modeling the facilities through wasted area difference between the 

“actual” and the “modeled” shapes of the facilities. Moreover, all previous models assumed fixed 

“static” shapes for the site facilities; while in reality, shapes of site facilities are “dynamic” in the 

sense that their geometries change in every run enabling them to be squeezed into the available 

tight spaces. For example, a pile of sand might acquire a circular or an elliptical or even a spline 
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geometrical plan depending on the available space; this flexibility of selecting what shape to 

acquire is not available in current models. 

 

Figure 6: Development of modeling of site facilities throughout the years 

To further highlight the inefficiency of the currently available site layout optimization model, a 

small demonstration is made in  by modeling a spline shape (such as a swimming pool or a pile 

of sand) with all 4 available modeling techniques. If the shape was modeled using the orthogonal 

grids algorithm (such as in Hegazy & Elbeltagi, 1999; Osman et al, 2003) the area gap between 

the modeled shape and the real shape would be about 37%; which is a significant waste of area. 

If the shape was modeled using the rectangular algorithm (such as in Yahya & Saka, 2014) the 

area gap between the modeled shape and the real shape would be about 46%; which is a 

significant waste of area as well. Although the rotated angle algorithm was not confirmed that it 

was used before, but even if it was used to model the test subject, the wasted area would be 27% 

of the model area. If the shape was modeled using the circular algorithm (such as in Andayesh & 

Sadeghpour, 2013) the area gap between the modeled shape and the real shape would be about 

38%; which is still significant waste of area.  
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Figure 7: Modeling inefficiency of the currently available techniques for modeling site facilities and obstacles 

1.2.1 Problem Statement 

The geometrical representations for site facilities in pervious research efforts result in 

noteworthy inefficiencies due to the rectilinear and simple approximations of complex and non-

rectilinear shapes resulting in area loss and misuse of site area; such misuse cannot be afforded in 

strict construction sites. In strict construction site layouts it is important to be able to model site 

facilities and obstacles as close as possible to reality to be able to produce valid solutions by the 

optimization model. 

1.3 Research Objectives 
The objectives of this research are to:  

1. Present new algorithms for accurately modeling regularly and irregularly shaped site 

facilities, and for mimicking their dynamic behavior to ensure a more realistic approach 

to construction site layout problems.  

2. Provide algorithms for new proximity relationships and distance measurement techniques 

between the different site facilities.  

3. Introduce the concept of selective zoning that significantly minimizes the model running 

time by limiting the areas of movements for the different facilities to only the valid zones. 

4. Formulate a full site layout optimization model that utilizes all of the introduced 

algorithms in a parametric modeling software. 
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1.4 Research Methodology 
The following points summarize the used methodology in pursuing this research: 

1. Study the previous site layout optimization models and investigate their modeling 

inefficiencies. 

2. Specify the problem statement and set the research objectives. 

3. Demonstrate the capabilities of using a new parametric modeling platform in modeling 

complex and irregularly shaped static geometries, thus minimizing the area losses and 

inefficiencies in modeling; which solves a part of the problem stated in the problem 

statement. 

4. Develop three different algorithms for “dynamic” geometrical shapes and provide 

instructions on their formulation on the used parametric modeling platform. The purpose 

of the dynamic geometrical shapes is to enhance the model’s ability to find near-optimum 

solutions in strict sites with irregular spaces. 

5. Verify and validate the developed algorithms of the dynamic geometrical shapes. 

6. Define the concept of selective zoning and develop an algorithm for it. The algorithm 

development is to be followed by its verification and validation.  

7. Develop an algorithm for collision and overlapping prevention constraint using an area 

union concept. The algorithm development is then followed by its verification and 

validation. 

8. Develop an algorithm for in-site constraint, which ensures facilities are inside the site 

boundaries throughout the model runs, using an area union concept. The algorithm 

development is to be followed by its verification and validation. 

9. Develop an algorithm for buffer zones around the facilities as soft constraints. The 

algorithm development is to be followed by its verification and validation. 

10. Present an algorithm for the Shortest Walk distance as an added distance measurement 

technique and demonstrate its formulation on the used parametric modeling platform. 

Afterwards, a comparison is to be made between it and the direct Cartesian distance 

measurement technique. 
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11. Present four different proximity relationships (Center-to-Center, Point-to-Point, Center-

to-Point, and Side-to-Side) and demonstrate their formulation on the used parametric 

modeling platform 

12. State the optimization procedure and the different parameters (variables, objective 

function, constraints, and optimization technique). 

13. Verify the capability of the developed algorithms to be integrated into one model by 

testing them in a case study of site layout optimization problem. 

14. Validate the integrated model by analyzing the logic of the results and comparing them to 

results of previous optimization models from the literature. 

1.5 Thesis Organization 
This thesis is organized into five chapters. Chapter 1 provides a general introduction about site 

layout planning, the software (Grasshopper®) that is used for the model development, and the 

problem statement ending with the research objectives. Chapter 2 presents a review of the 

problem solving techniques for the site layout problem and the previous research efforts made in 

that topic. Chapter 3 discusses in details the model development and its different newly 

introduced algorithms that serve for the purpose of the research objectives. The model uses a 

commercial parametric software for developing the algorithms that has never been used for site 

layout optimization purposes, this chapter provides detailed demonstrations about the different 

developed algorithms with examples for verification. Chapter 4 presents a case study where the 

developed algorithms are applied to a real construction project and the results are analyzed to 

validate the model. Chapter 5 summarizes and concludes the research and provides 

recommendations for future research in the site layout optimization field. The thesis structure is 

shown in Figure 8. 
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Figure 8: Thesis organization 
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2 Chapter 2: Literature Review 

2.1 Problem-solving Techniques in Site Layout Planning 
Many problem-solving techniques have been utilized in site layout optimization such as 

mathematical modeling, knowledge based systems, artificial intelligence, and evolutionary 

algorithms. There is no settlement between researchers on a certain problem solving technique 

that proves to be more suitable than others, since all of them have different advantages and 

shortcomings. Site layout optimization techniques can be categorized into two categories: 

heuristic and mathematical techniques.  

2.1.1 Heuristic techniques 

Due to weak capabilities of the computing powers at the time, early research in site layout 

planning depended on heuristic designs. Tommelien et al. (1992) provided an expert system for 

construction site layout planning named SightPlan. SightPlan models how people place facilities 

in the construction site and encodes the domain knowledge applied in the process using common 

lisp. Inputs for SightPlan are: 1) dimensions and locations of permanent site facilities, 2) 

dimensions and locations of access roads, 3) dimensions of temporary site facilities, 4) 

constraints on the temporary facilities regarding their location relevant to the locations of the 

permanent facilities, and 5) zones dividing the construction site area into smaller areas. 

According to Tommelien et al. (1992), SightPlan is highly case-specific and requires a lot of 

development to be generic enough to be applied at a wider range of construction sites since it 

was only tested in industrial site layouts with under-constrained systems. 

An automated site layout system named ArcSite was presented by Cheng & O’Connor (1996). 

The system was for the objective of automating the planning tasks for laying out temporary site 

facilities with the objective of minimizing construction conflicts and improving efficiency. 

ArcSite used an integration of a database management system (DBMS) and a geographic 

information system (GIS) as inputs. ArcSite consists of knowledge specific to construction site 

layout, temporary facilities databases, Arc/Info databases, and algorithms for integrating and 

automating temporary facility layout design. The system offers a methodology to systematically 

acquire and interpret experts' knowledge and experience in site planning, then it uses the concept 

of searching by elimination to develop a heuristic approach to model the process of human 
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decision-making and generate the potential locations for the temporary facilities. The procedures 

developed in ArcSite to develop its knowledge-based heuristic algorithm are classified into three 

phases as shown in Figure 9: 1) compilation of the experts’ knowledge of site layout planning, 2) 

interpretation of the obtained knowledge, and 3) translation of the knowledge into the system’s 

implementation forms. 

 
Figure 9: ArcSite system architecture (Cheng & O’Connor, 1996) 

According to the authors, one of the disadvantages of ArcSite is that it only consists of up to 25 

temporary facilities. Another disadvantage is that ArcSite does not have the ability to draw 

objects such as polygons, lines, or points on the site.  

2.1.2 Mathematical techniques 

Mathematical techniques are capable of solving more complex site layout planning problems 

with different types of variables and constraints. However, as the variables and constraints 

increase, the computational powers needed to solve the problems increase as well, and 

sometimes that increase is exponential. Mathematical techniques involve the identification of one 

or more goals that the site layout strives to achieve. The modeling and mathematical term for the 

end goal is the “objective function”. The goal is to optimize the objective function by either 

maximizing or minimizing it through the alterations of the different model variables.  

Several mathematical techniques and models were developed to solve site layout problems. Most 

famous of them are linear programming, genetic algorithms, artificial neural networks, ant 

colony, fuzzy logic, and dynamic programming. 
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2.1.2.1 Linear Programming: 

Linear programming is a type of mathematical modeling with the focus of allocating limited 

resources to known goals through mathematical formulations to meet a certain objective such as 

minimizing losses or maximizing efficiency. One of the most distinct characteristics of linear 

programming is that the object function and the constraint functions are linear in nature. Linear 

programming is simple in its nature and is used in many engineering applications; especially in 

problems with few and uncomplicated constraints. There is not much research allocated in 

utilizing linear programming in site layout planning problems due to the complexity and the non-

linear behavior of such problems.  

Zouein & Tommelien (1999) presented a site layout model employing linear programming in 

solving their dynamic site layout. The objective function is to minimize (Inter-facility 

Transportation Cost + Facility Relocation Costs). The model works as combining heuristic rules 

with linear programming functions. A resource would be selected heuristically one at a time, 

then the model would calculate sets of valid positions that satisfies all constraints. Consequently, 

a linear equation is solved to find the optimal location of each resource in the pursuit of 

minimizing the objective function. The model performs the assignment process with time frames 

in chronological order. So, the assignment of a resource is dependent on the assignment of the 

preceding resource; thus the presented algorithm does not provide optimum solutions, but rather 

feasible solutions. The model also is purely a mathematical approach, with very limited graphical 

modeling capabilities, and according to the author, it can fail to detect overlaps between 

geometrical entities. The resulting sequence of layouts, if one is found, is suboptimal in terms of 

the stated objective. This is nonetheless a desirable outcome when solving a problem for which 

no closed-form mathematical solution exists. 

2.1.2.2 Genetic Algorithms:  

Genetic algorithms (GA) belong to the larger class of evolutionary algorithms (EA), which 

generate solutions to optimization problems using techniques inspired by natural evolution, such 

as inheritance, mutation, selection, and crossover. Computer scientists originally studied 

evolutionary in the 1950s and 1960s as a way of reaching optimal solutions for engineering using 

the concepts of evolution. Genetic Algorithms were conceived by John Holland in the 1960s and 
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were developed by Holland and his students and colleagues at the University of Michigan in the 

1960s and the 1970s (Mitchell, 1996). 

As defined by Mitchell (1996) “GA is a method for moving from one population of 

"chromosomes" (e.g., strings of ones and zeros, or "bits") to a new population by using a kind of 

"natural selection" together with the genetics−inspired operators of crossover, mutation, and 

inversion. Each chromosome (solution) consists of "genes" (e.g., bits), each gene being an 

instance of a particular "allele" (e.g., 0 or 1). The selection operator chooses those 

chromosomes in the population that will be allowed to reproduce, and on average the fitter 

chromosomes produce more offspring than the less fit ones. Crossover exchanges subparts of 

two chromosomes, roughly mimicking biological recombination between two 

single−chromosome ("haploid") organisms; mutation randomly changes the allele values of 

some locations in the chromosome; and inversion reverses the order of a contiguous section of 

the chromosome, thus rearranging the order in which genes are arrayed” 

GA engages 3 types of operators: selection, crossover, and mutation. 1) Selection is where the 

chromosomes in the population are selected for reproduction (breeding). The fitter chromosomes 

are more likely to reproduce. 2) Crossover is the mating of two chromosomes where some genes 

from a fit chromosome are taken and combined with other genes from another fit chromosome to 

produce two offspring that are a mix of the genes of the parent fit chromosomes. The crossover 

operator roughly mimics biological recombination between two single−chromosome (haploid) 

organisms. 3) Mutation is where some genes are mutated in the breeding by randomly flipping 

some of the bits in a chromosome. Mutation can occur at each bit position in a string with a very 

small probability that is controlled by the user. Each iteration is called a generation. The entire 

set of generations is called a run. The methodology of how GA operates is provided in the 

flowchart in Figure 10.  
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Figure 10: Procedures of Genetic Algorithms 

Advantages and disadvantages of evolutionary algorithms: Evolutionary algorithms are slow 

when it comes to solving an optimization problem with several millions of valid solutions. This 

is not the shortcoming of the algorithm itself, but rather the limitation of the computing power 

available at the time of running. Nowadays, problems become more and more complex and the 

number of variables becomes excessive, thus requiring an immense computational and 

processing powers. Another drawback of evolutionary algorithms is that if the mutation rate is 

not high enough, the evolutionary solver might not reach a global optimum and reaches a local 

optimum instead. On the other hand, if the mutation rate is very high, it would take the solver a 

much longer time to reach an optimum solution. Moreover, evolutionary algorithms do not 

guarantee an “optimum” solution; especially in cases of excessive variables where it would need 

infinite time to try all combinations and obtain the “optimum” solution. Instead, they obtain 

“near-optimum” solutions much more quickly. So, the user must know that the obtained solution 

is most probably the “near-optimum” solution in large problems. In order to minimize the 

running time of evolutionary algorithms, it is preferred to feed the first population with a good 

valid solution with high fitness if possible. This makes the breeding more likely to produce better 

solutions quickly. 
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On the good side, there are many benefits for evolutionary algorithms that make them unique 

amongst other computational methods. Evolutionary algorithms are remarkably flexible and are 

able to tackle a wide variety of problems. Evolutionary algorithms can tackle problems that are 

under-constrained or over-constrained or otherwise even poorly formulated. Furthermore, 

because the run-time process is progressive, intermediate answers can be harvested at practically 

any time. Unlike many dedicated algorithms, Evolutionary solvers spew forth a never-ending 

stream of answers, where newer answers are generally of a higher quality than older answers. So 

even a pre-maturely aborted run will yield something which could be called a result. It might not 

be a very good result, but it will be a result of sorts. According to Rutten (2010), “Evolutionary 

Solvers allow -in principle- for a high degree of interaction with the user. This too is a fairly 

unique feature, especially given the broad range of possible applications. The run-time process 

is highly transparent and browsable, and there exists a lot of opportunity for a dialogue between 

algorithm and human. The solver can be coached across barriers with the aid of human 

intelligence, or it can be goaded into exploring sub-optimal branches and superficially dead-

ends.” According to Fonseca and Fleming (1998), evolutionary algorithms became favorable 

over other multi-objective mathematical approaches because of its population-based search and 

efficiency in discontinuous and non-differential problems.  

GA have been applied to solving the facility layout problem in the area of production facilities 

(Tanaka and Yoshimoto 1993; Tate and Smith 1993, 1995; Hamamoto et al. 1999) and to solving 

the ‘‘construction site-level facility layout’’ (Li and Love, 1998). In both applications, the layout 

problem was modeled as a location-allocation problem, which consists of allocating a set of 

predetermined facilities into a set of predetermined sites where the smallest site can 

accommodate the largest facility. 

One of the early researches to tackle the site layout optimization using GA was made by Li and 

Love (1998), where they presented an investigation of applying the genetic algorithm (GA) 

system to search for the optimal solution for a construction site-level layout problem. Their 

model was tested on an example of a site with 11 facilities with the objective function of 

minimizing the total traveling distance TD of site personnel between facilities according to 

Equation 1 (Li and Love, 1998): 
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 . . . . . . . . . . . . . . . . . . . . . . . . [Eqn.  1]

 

 

One limitation in their model is that in the problem description, locations have to be 

predetermined as shown in Figure 11. The number of predetermined places should be equal to or 

greater than the number of predetermined facilities. So there is no flexibility in moving the site 

facilities, except in the pre-determined locations. The model does not take into consideration 

geometrical features and deals with the facilities as objects that can be put in any of the pre-

determined locations regardless of their sizes and geometrical shapes.  

 
Figure 11: Predetermined locations for site facilities (Li and Love, 1998) 

 

Hegazy and Elbeltagi (1999) presented an evolution-based site layout planning model (EvoSite)  

that utilized GA to optimally place facilities within a construction site. Their model was more 

generic, comprehensive, and flexible than the one presented by Li and Love in 1998. EvoSite 

models any irregular user-defined site using a two-dimensional grid, where each facility is 

modeled as a number of grid units that add up to the facility area. Such representation is made on 

spreadsheet modeling, where each grid unit is represented on a cell. A facility is placed on the 

grid as a number of units (cells) as shown in Figure 12. EvoSite provides three alternative 

methods for placing a facility on the site grid, starting from the facility’s location reference: (1) 

horizontal; (2) vertical; and (3) rectangular. 

Where, 
N: Number of facilities 
δij: permutation matrix variable 
fij: frequency of trips by personnel between facilities i and j 
dij: Distance between locations m and n 
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Figure 12: Site representation of the EvoSite model (Hegazy and Elbeltagi, 1999) 

The basis of specifying the closeness relationships representing how should close should the 

facilities be place in relationship to each other are not highly discussed EvoSite model, but rather 

left generic to the user’s preferences. However, for the case study in the model, an exponential 

relationship with desired closeness were used. The objective function of the EvoSite model is to 

minimize the travel distance according to Equation 2 (Hegazy and Elbeltagi, 1999). 

  . . . . . . . . . . . . . . . . . . . . [Eqn.  2] 

 

Despite the flexibility provided by EvoSite model at the time of its presentation, it has some 

shortcomings such as the long time of calculations and the hardships of laying large site facilities 

after laying  the smaller ones in a scattered manner; leading to adding some heuristic rules of 

laying the large facilities first before running the model to place the small facilities; which takes 

away its advantage of being a generic model. Another shortcoming is that EvoSite deals only 

with geometrical shapes formed of square grids, so modeling a spline or another complex 

geometrical shape would be inefficient since a lot of area would be wasted while interpolating 

the edges to be incorporated in square grids. 

Zouein et al. (2002) presented a model applying genetic algorithms for solving the site layout 

problem, as characterized by rectangular facilities with proximity requirements between them 

Where, 
n: Number of facilities 
Rij: Desired proximity weight value between facilities i and j 
dij: Distance between locations m and n 
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and with geometric constraints that further restrict their relative positions. The objective function 

is to minimize the transportation cost of materials. Object positions around the site are the 

variables. The GA operators are programmed so that to maximize the probability of locating 

valid position for the objects. The used GA were highly problem oriented, and the research 

focused more on the investigation of the modified GA than on developing an integrated site 

layout planning system. While testing the model, the authors commented that in most cases 

where the total- objects-to-site-area ratio did not exceed 60%, the algorithm returned close to 

optimal solutions in a reasonable time. However, in problems with higher total-objects- to-site-

area ratio the algorithm failed to find ‘‘good’’ and in some cases feasible solutions. Another 

drawback of the model is that it only models rectangular facilities in rectangular site boundaries 

with no other varieties. It also does not provide different choices for proximity measures. 

Osman et al. (2003) presented a CAD-based site layout optimization model that consisted of an 

genetic algorithm optimization engine and a geometric input / output interface. The link between 

the optimization engine and the geometrical data contained in AutoCADTM drawings was made 

through AutoCADTM VisualBasicTM Applications. All site-related geometrical data were 

programmed to be detected as an orthogonal 2-D grid. The CAD-based GA approach was 

extended to include the changes that take place in the construction site throughout the project 

lifespan, thus also enabling solving for dynamic site layouts. The model was tested on an actual 

24,000 m2 construction site. The model produced a site layout that accomplished nearly a 25% 

saving in total layout cost compared to the layout actually adopted. The dynamic site layout 

optimization algorithm was based on the Mini-Min approach. The Mini-Min approach considers 

all possibilities for choosing the critical phase. It performs the dynamic optimization of all 

phases Nphase times, Nphase being the number of phases. It calculates the total costs for all phases 

Nphase times and chooses the trial having the least cost as the Minimum-Minimum solution. The 

presented model provided a good example of the benefit of the interaction between visual 

software and programming in solving site layout problems, however, the model depended on 

perpendicular grids to model the layout boundaries and facilities as shown in Figure 13, thus 

posing inefficiencies in the use of site space causing the resulting of no valid solutions in heavily 

crowded sites. 
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Figure 13: Site representation of the model by Osman et al. (2003) 

2.1.2.3 Artificial Bee Colony Algorithm 

The artificial bee colony (ABC) algorithm is one of the most recent swarm intelligence based 

algorithms introduced by Dervis Karaboga in 2005. The artificial bee colony algorithm mimics 

the foraging behavior of honey bees. Yahya and Saka (2014) proposed a multi-objective artificial 

bee colony (MOABC) via Levy flights algorithm to determine the optimum construction site 

layout. The model is intended to optimize the dynamic layout of unequal-area under two 

objective functions. The first objective function is to minimize the total handling cost of 

interaction flows between facilities as shown in Equation 3 (Yahya and Saka, 2014). Whereas the 

second objective function is to minimize safety hazards/environmental concerns facilities as 

shown in Equations 4 and 5 (Yahya and Saka, 2014).  

  . . . . . . . . . . . . . . . . . . . . . [Eqn.  3]
 

  . . . . . . . . . . . . . . . . . . . . [Eqn.  4]
 

  . . . . . . . . . . . . . . . . . . . . . . . [Eqn.  5]
 

 

Where, 
(xi,yi) & (xj,yj): Cartesian coordinates of the centroids of facility i and j; which are treated as design variables.  
eij : Euclidean distance between centroids of facilities i and j.  
rij : Modified rectangular distance between centroids of facilities i and j that considers the  
       presence of obstruction.  
SEijp : Closeness relationship values for safety & environmental concerns. 
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One of the advantages of the model is that it takes into consideration the obstacles while 

calculating distances between facilities, unlike other previous models. Figure 14 demonstrates 

the two different distance measurement techniques in Yahya and Saka’s model (2014); the 

Cartesian distance and the modified rectangular distance. Yet, the paper did not describe the 

exact algorithm of calculating the modified rectangular distance. The significance of the 

MOABC model rises from the fact that it is the first site layout problem to be modeled using the 

artificial bee colony algorithm, which is the optimization technique, however, it does not 

introduce new advances in the core essence of site layout planning itself. The facilities are still 

modeled as rectangular shapes and the model’s efficiency was not tested on strict construction 

sites; but it is expected to fail to obtain feasible results in heavily strict construction sites due to 

the Cartesian linear modeling of the facilities, as all other site layout optimization models. 

 
Figure 14: Traveling distance measurement in Yahya and Saka’s model (2014) 

2.1.2.4 Artificial Neural Networks: 

Yeh (1995) presented a discrete combinatorial optimization problem using the Annealed Neural 

Networks for construction site layout. His model used the method of assigning the facilities at 

predetermined locations whilst satisfying a set of constraints. His model combined the algorithm 

of Hopfield neural networks, which are suitable for solving discrete combinatorial optimization 

problems, and simulated annealing. The main drawback of using Hopfield’s neural network is its 

limitation in escaping local minima. That is why the simulated annealing was used in parallel to 

it. Simulated annealing is known to finding global minimum by combining gradient decent with 

a random process; however it requires high computational powers.  
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2.1.2.5 Fuzzy Logic: 

Fuzzy logic was first introduced by Zadeh (1965), who defined it by: ‘‘A fuzzy set is a class of 

objects with a continuum of grades of member- ship. Such a set is characterized by a 

membership (characteristic) function which assigns to each object a grade of membership 

ranging between zero and one.’’ 

Tam et al. (2002) tackled the construction site layout problem from an evaluative angle rather 

than a problem solving angle by presenting a nonstructural fuzzy decision support system 

NSFDSS that integrates both experts’ judgment and computer decision modeling, making it 

suitable for the appraisal of complicated construction problems. The NSFDSS follows three 

steps: 1) decomposition; for wich the problem is structured into elements of different elements of 

different levels working downward from the goal on the top through criteria bearing to the goal 

on the second level and then to subcriteria on the third level, and so on, 2) comparative 

judgment, where constructed pairwise comparisons are made of the relative importance of the 

elements with respect to the shared criterion or property on the level above, giving rise to the 

corresponding matrix and 3) synthesis of priorities, by multiplying local priorities with the 

priority of their corresponding criterion on the level above, and weighting each element on a 

level according to the criteria it affects. The NSFDSS is not an optimization model that tries to 

find optimum solutions for site layout problems, but rather an evaluation tool for site layouts 

made by project managers. So, there was no emphasis on finding new techniques of modeling 

site facilities or formulating site layout problems. 

Xu and Li (2012) formulated a fuzzy random multi-objective decision-making model for 

dynamic site layout optimization. The model utilized the following two objective functions: 1) 

minimizing the total cost of site layout; and 2) maximizing the distance between the ‘high-risk’ 

facilities and the ‘high-protection’ facilities to reduce the possibility of safety or environmental 

accidents. In the model, The interaction cost and the operating cost of facilities are regarded as 

fuzzy random variables. The fuzzy random uncertainty in the mathematical modeling of 

construction site layout planning is considered. The model is not focused on modeling the 

geometries of the site facilities and their geometrical constraints. Moreover, the model assumes 

predetermined locations for the objects; where objects are only allocated in these predetermined 

locations; which is not realistic.  
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2.1.2.6 Ant Colony: 

Multi-objective optimization, also referred to as Pareto-based ant colony optimization, is where 

there is no one single objective function, yet there are multiples of them, and they might be 

conflicting. So, there is no one optimum solution, but rather a stream of good solutions with 

trade-offs between two ore more objective functions where the user has the final decision to 

select the suitable solution from the stream of good solutions. A good example of multi-objective 

optimization problem is the decision to buy a car with an objective function to minimize cost and 

at the same with another objective to maximize comfort. Usually, static site layout problems 

involve only one objective function; on the other hand, dynamic site layout problems involve 

multi-objective optimization due to their different layout stages.   

 Ning et al. (2011) proposed a decision-

making system to solve dynamic and unequal-

area, multi-objective optimization 

construction site layout problems. The system 

has two objective functions: 1) minimizing the 

likelihood of accidents happened to improve 

the safety level (f1), and 2) minimizing the 

total handling cost of interaction flows 

between the facilities associated with the 

construction site layout (f2), which is based on 

interaction relationship between the facilities. 

Two optimization models, one is single-

objective-function model and the other is 

multi-objective-function model, are employed 

to solve multiple objective site layout 

planning problems using the methodology 

shown in Figure 15. 

 

Figure 15: Methodology of the decision-making system 

presented by Ning et al. (2011) 
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2.2 Summary of Literature Review 

2.2.1 Proximity measures  

The proximity relationships represent the preference of the site planner in locating the facilities 

near or far from one another. There are quantitative and qualitative methods for specifying these 

proximities. The quantitative methods consider the actual transportation time and cost of 

personnel and materials between the facilities. The qualitative method consider subjective 

numerical proximity weight to represent the desired inter-facility proximity (close or far), or, in 

other words, closeness relationships. The developed model suits both methods as it generic. The 

user has the flexibility to input the proximity weights that he desires. For demonstration purposes 

in this research, the qualitative method is used. The method used in this research is the 

qualitative method. If the two facilities are required to be close to each other, the proximity 

weight between them would have a high value. As stated in the literature review, several scales 

have been adopted to represent the proximity weights representing the qualitative importance of 

closeness of objects in numerical values.  presents a summary of the used qualitative closeness 

matrices used in the different research efforts mentioned in the literature. The same table shows 

in the last column the proximity weights used in the current research, where a negative value 

represents the “undesirable” proximity between facilities; which was selected to be the negative 

of the value representing the “important” proximity. 

Table 2: Different proximity measures used in previous research 

Desired relationship 
between facilities 

Proximity 
Weight (1) 

Proximity 
Weight (2) 

Proximity 
Weight (3) 

Proximity 
Weight (4) 

Proximity 
Weight (5) 

[A] Absolutely Necessary 65=7,776 81 7500 81 81 

[E] Especially Important 64=1,296 37 1500 27 37 

[I] Important 63=216 9 250 9 9 

[O] Ordinary Closeness 62=36 3 50 3 3 

[U] Unimportant 61=6 1 10 1 1 

[X] Undesirable 60=1 0 1 0 -9 
(1) Hegazy & Elbeltagi (1999), (2) Askin et al. (1993) and Osman et al. (2003),  
(3) Elbeltagi (Lecture), (4) Yahya & Saka (2014), (5) Current research (2015) 

Since the objective function is to minimize the overall score (which is the multiplication of the 

proximity weight and the inter-facility distances), as the proximity weight increases, the model 
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targets to decrease the distance to minimize the score. The drawback in the models with no 

negative values in the “undesirable” proximity measures is that when two facilities are required 

to be far from each other the model would not really focus on getting them far from each other. 

Accordingly, those models focus on minimizing the distances between facilities with strong 

relationships without really focusing on maximizing the distances between the facilities with 

undesirable relationships. That is why in this research, any two facilities with undesirable 

relationship would have a proximity weight of a negative value, so as the distance between those 

two facilities increases the smaller the score. Accordingly, the model would focus on both 

minimizing the distances between facilities with strong relationships and maximizing the 

distances between the facilities with undesirable relationships. 

2.2.2 Different objective functions 

 provides a summary of the different objective functions used in the site layout optimization 

models of the previous research mentioned in the literature.  

Table 3: Different objective functions used in previous research 

Research Objective Function 
Yeh (1995) Min. Cost of facility construction + Interactive cost between facilities 
Li & Love (1998) Min. frequency of trips made by construction personnel 
Zouein & Tommelien (1999) Min. Proximity weight + Relocation weight 
Hegazy & Elbeltagi (1999) Min. proximity weight on an exponential scale 
Tam et al. (2001) Min. total transportation costs of resources between facilities 
Elbeltagi & Hegazy (2001) Min. proximity weight on an exponential scale 
Zouein et al. (2002) Min. proximity weight 

Khalafallah & El-Rayes (2002) 

1) Max. construction safety,  
2) Max. construction-related aviation safety 
3) Max. construction-related security level,  
4) Min. while minimizing all relevant site layout costs 

Cheung et al. (2002) Min. total transportation costs of resources between facilities 
Osman et al. (2003) Min. proximity weight  
El-Rayes & Said (2009) Min. total site layout cost (transportation + relocation) 
Ning et al. (2011) 

1) Min. total handling cost of interaction flows between facilities.  
2) Min. safety hazards/environmental concerns. Xu & Li (2012) 

Yahya & Saka (2014) 
Andayesh & Sadeghpour (2014) Min. proximity weight 
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3 Chapter 3: Model Formulation 

3.1 Background and Model Methodology 
The outcome of this research is the creation of a series of new algorithms for modeling site 

layout facilities and the production of an optimization model using these algorithms to find 

optimum locations, angles, geometrical formations, and arrangements for the different facilities. 

The developed site layout optimization model is mainly formed of four modules: 1) inputs 

module, 2) calculations module, 3) optimization module, and 4) output module, each of the 

modules consists of sub-modules as shown in Figure 16.  

In the inputs module, the user inputs the a) site boundaries, where the boundaries can assume any 

geometrical rectilinear or non-rectilinear forms, b) geometries of the site obstacles such as the 

fixed facilities and access roads, c) geometries of the static and dynamic representations of the 

temporary facilities, d) desired proximity weights between the facilities, e) desired proximity 

relationships between the facilities, and f) desired distance measurement technique between the 

facilities. 

In the calculation module, the movement and rotation parameters are set and the model 

calculates the actual distances between the facilities and the objective function. In this module, 

the model also has sub-modules that a) ensure non-overlapping between objects, b) ensure the 

objects to be always inside the site boundaries, c) put soft constraint for buffer zones around the 

facilities, and d) ensure the dynamic geometrical shapes to be within the given area range. 

In the optimization module, the model takes uses Genetic Algorithms described in Section 

2.1.2.2 to reach the near-optimum solution.  

In the output module, the model outputs the final near-optimum site layout plan and its 

corresponding layout score. 
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Figure 16: Methodology of the developed optimization model 
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Several attempts have been investigated to model irregular static and dynamic shapes using 

normal platforms such as Microsoft Excel® and Matlab® but excessive difficulties where faced as 

they required intensive scripting capabilities. Grasshopp	
   er® has been found to be the most 

suitable modeling platform for executing the developed algorithms in this research for its 

powerful visual programming capabilities. For that reason, the modeling capabilities of 

Grasshopper® were used to execute the algorithms described in this research. So users who wish 

to execute the discussed algorithms and/or add further developments are preferred to have 

introductory knowledge of the basic Grasshopper® tools and interface, which is not difficult to 

obtain. Since there are no found records of using Grasshopper® in construction site layout 

planning before, this research is considered to introduce researchers to the use of Grasshopper® 

as the parametric modeling platform (graphical algorithm editor) in site layout optimization; for 

that reason, formulation of the developed algorithms is extensively demonstrated using different 

screen shots from the software showing the different visual programming components and 

parameters of the software that are corresponding to the algorithms. 

Grasshopper® is a plug-in for Rhinoceros 3D®, referred to as Rhino®, modeling software. Rhino® 

is mainly used by architects to facilitate drawing and modeling complex geometrical shapes that 

are difficult to model using other related software such as AutoCAD 3D® and Revit 

Architecture®. Grasshopper® is a plug-in for Rhino® that enables parametric modeling; allowing 

users to model and perform analysis on even more complex shapes in Rhino® by inputting 

parametric data and formulating parametric relationships instead of drawing. Grasshopper® also 

has many add-ins for different architectural and environmental analysis modules such as light 

analysis, heat analysis, ventilation analysis. Grasshopper® combines the mostly graphical 

approach of working in Rhino® with the powerful algorithmic techniques found in scripting. The 

benefit of using Grasshopper® is that users don't need to have a high level of scripting or 

programming experience to generate complex models. Figure 17 provides an example of the 

capabilities of Grasshopper®.  
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Figure 17: The Hangzhou Stadium covering fully modeled by Grasshopper® in a set of algorithmic steps (Miller, 2009) 

The technical term for a Grasshopper® file is a “definition”. The objects that make up a 

Grasshopper file fall into two main classes: Parameters and Components (Figure 18). 

Parameters store data whereas components process data. Components are generally divided into 

three main parts: 1) a name that is usually located in the middle bar of the component, 2) input 

grips, on the left side of the component, that take input data to use in whatever operation the 

component handles, and 3) output grips, on the right side of the component, that contain 

whatever information is passed on after the component processes it's input. Output grips are 

sometimes connected to the input grips of other components, chaining them together into 

additional operations. A parameter has just one input and output grid. Since the parameter only 

stores data it never needs more than one of each.  

 

 

 

Figure 18: Components and Parameters in Grasshopper® 

Galapagos is an add-in tool in Grasshopper® that employs GA in finding near-optimum 

solutions within Grasshopper®. Galapagos was developed by David Rutten, a developer with 

McNeel & Associates, and was revealed in 2010 in a lecture by himself in a lecture named 

“Computing Architectural Concepts” at the Architectural Association in London (Aweida, 2011).  

The use of Galapagos itself is simple and does not require the user to have strong knowledge 

Input nodes 

Output nodes 

Component name 

a) Component 

Input node 

Output node 
Parameter name 

b) Parameter 
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about GA. Galapagos requires the user to input two main inputs: 1) the variables, and 2) the 

objective function. The user also has the ability to set the mutation rate, the objective 

(minimization or maximization of the objective function), the population number, and the 

stopping criteria. Galapagos performs several runs by changing the variables in every run; in 

each run the objective function is calculated and analyzed. The runs are iterated until the 

stopping criteria takes place (either by reaching a user-set number of runs, by reaching a user-set 

stagnant results, or by user-set total running time).  

The following shall be noted while using Galapagos: 

• Variables connected to Galapagos must be Number Slider parameters. 

• Objective function connected to Galapagos must be a Number parameter. 

• Unlike other GA tools such as Evolver in Microsoft Excel, there are no hard constraints 

in Galapagos. However, this can be maneuvered by setting very high penalties for 

constraints in Grasshopper®. 

• Galapagos is a single-objective optimization tool. In the case of multi-objective 

optimization problems it is recommended to use other optimization plug-ins or to convert 

the problems into single-objective optimization function by funding an equation linking 

the multi-objectives and converting them into one objective. 

 

3.2 Modeling the Site Facilities 
The site layout facilities acquire different geometrical shapes as seen from a top view. The first 

step of modeling the site facilities is to model their geometrical shapes. Previous site layout 

optimization models assumed static shapes for the facilities, meaning that the shapes are the 

same in all iterations. So if a facility is modeled as a square, it stays a square with the same 

dimensions during all iteration of the optimization model. In this research, an addition is made 

by introducing dynamic shapes; where a facility is assumed to acquire a certain shape and in 

every iteration it changes its shape given certain constraints until it reaches a shape that fits in the 

unoccupied land in the site.  
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Types of shapes used for modeling the site facilities (Figure 19): 

• Static (fixed) Shapes: 

1. Rectangle 

2. Triangle 

3. Circle 

4. Irregular polygon 

5. Ellipse 

6. Free-form (splines, bezire curves 

…etc)  

• Dynamic (non-fixed) shapes: 

1. Offsetted Planar Curves  

2. Dynamic Freeforms 

3. Dynamic Rectangles 

4. 1 

5. 1 

6. 1 

 

 
Figure 19: Different shapes used for modeling site facilities (objects) 

The following sub-sections describe each of the static and dynamic shapes and their formulation 

in Grasshopper®. The formulation of the static shapes modeling the site facilities is very simple 

on Grasshopper® and does not require the use of many parametric components. However, the 

formulation of the dynamic shapes requires full understanding of their algorithms, so in each of 

the sub-sections discussing the dynamic shapes, the following order was made: 1) introduction; 

covering the use of the shape and the algorithm behind it, 2) steps of modeling; covering how the 

algorithm is executed on Grasshopper®, 3) variables; stating the variables of the dynamic shape, 
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4) flexibility; showing samples of the different forms of the dynamic shapes by changing the 

variables, and 5) verification; providing a verification model to verify the formulated algorithm 

and ensure the absence of any modeling errors. 

3.2.1 Modeling Static Shapes 

A static shape is defined in this research as a geometrical shape with certain parameters; where 

the parameters do not change in the different iterations, so the initial form and size of the shape 

is exactly as its final form and size. In other words, a static shape is a geometrical shape that its 

size-changing and form-changing parameters are not variables in the optimization model. It can 

be safely acclaimed that all previous research in the site layout modeling assumed static shapes.  

3.2.1.1 Modeling Rectangular Surfaces 

Rectangular surfaces are the mostly used geometrical shapes in site layout modeling. They can 

be used to model many of the site facilities such as storage areas, caravans, workshops, parking 

lots, external restrooms …etc. To create a rectangle on the used parametric modeling software, 

Grasshopper®, the Rectangle component is used to create a rectangle with known parameters and 

places it in the origin (0,0,0) of the layout. The different parameters of the rectangle are specified 

by the Panel parameter and connected to the input nodes of the Rectangle component. The 

Rectangle component requires 4 inputs: 1) P; which is the plane of the rectangle, 2) X; which is 

the dimension of the rectangle in the X-direction, 3) Y; which is the dimension of the rectangle 

in the Y-direction, and 4) R; which is the rectangle corner fillet radius. The plane of the rectangle 

is already preset to the world XY plane. For the dimensions in the X and Y directions, the user 

inputs the range of these dimensions in a Text Panel. So, if the dimension in X-direction is 4m, 

the user inputs “-2 to 2” in the Text Panel connected the input node marked X in the Rectangle 

component. For sharp edges, the radius of the corner fillet is 0, while for round edges the radius 

of the corner fillet is larger than 0 as demonstrated in the comparison shown in Figure 20. 

The use of the Surface parameter is after creating the curve (rectangle, circle, freeform …ec). 

Creating the curve just draws the outer boundaries, while connecting the curve to the Surface 

parameter creates a filled surface with an area inside the boundaries of the curve; hence the rose 

filling of the geometrical shapes in most of the figures. So in all of the geometrical shapes 

modeling methodologies, the Surface parameter is used. 
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Figure 20: Creating a rectangle using the Rectangle component in Grasshopper® 

3.2.1.2 Modeling Triangular Surfaces 

Triangular surfaces are not used frequently in site layout modeling. However, it is still beneficial 

to be able to model triangular facilities as triangular instead of fitting them into rectangular 

models. There is no tool in Grasshopper® for the sole purpose of creating triangles; but there is a 

tool for creating polygons. A triangle is a polygon with 3 sides. The Polygon component is used 

in this case as shown in Figure 21.  

   
Figure 21: Creating a triangle using the Polygon component in Grasshopper® 

The different parameters of the triangle are specified by the Panel parameter (colored in yellow 

in Figure 21) and connected to the input nodes of the Polygon component. The Polygon 

component requires 4 inputs: 1) P; plane of the polygon, 2) R; radius of polygon (distance from 

center to tip), 3) S; number of sides of the polygon, and 4) Rf; polygon corner fillet radius. The 

polygon plane is already preset to the world XY plane. The number of sides is 3.  

3.2.1.3 Modeling Circular Surfaces 

Very few site layout models actually model circular site facilities as circles; the rest model them 

as squares. Circular surfaces are perfect for modeling circular tanks in the site. The most 

convenient component for creating circular surfaces is the Circle CNR component. 

The Circle CNR component creates a circle defined by center, normal vector of base plane, and 

radius (Figure 22). The center coordinates and the radius are specified by the user exactly as the 

Grasshopper® window Rhino® window 

A) No fillet (sharp corners) 

Grasshopper® window Rhino® window 

B) Fillet radius of 0.5m 

Grasshopper® window Rhino® window 

A) No fillet (sharp corners) 

Grasshopper® window Rhino® window 

B) Fillet radius of 0.7m 
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radius is specified in the Circle component. The normal vector of the base plane is preset to 

(0,0,1); which means that the plane of the circle is the XY plane.  

 
Figure 22: Creating a circle using the Circle CNR component in Grasshopper® 

3.2.1.4 Modeling Irregular Polygonal Surfaces 

An irregular polygon is a polygon with unequal sides and unequal angles.  In reality, most of the 

site layout facilities are irregular polygons, but site layout models model them usually as 

rectangles; which causes a waste of area and presence of inefficiencies in modeling. One of the 

main benefits of using Grasshopper® is the ability to model irregular polygons as is, without 

having to make unnecessary fittings or interpolation. 

To create an irregular polygon with any number of sides, the coordinates of its vertices have to 

be specified first using the Point parameter as shown in Figure 23. The points are then connected 

together by a polyline through connecting the Point parameters to a Polyline component. It is 

very important to ensure that the formed polygon is closed by the changing value of the input 

node marked by C to 1. This algorithm enables the creation of all possible shapes of irregular 

polygons. 

 
Figure 23: Sample of creating an irregular polygon using the Polyline component in Grasshopper® 

3.2.1.5 Modeling Elliptical Surfaces 

The Ellipse component in Grasshopper® creates an ellipse defined by a base plane and 2 radii. 

The Ellipse component requires 3 inputs: 1) P; plane of the ellipse, 2) R1; radius in X-direction, 

Grasshopper® window Rhino® window 

Grasshopper® window Rhino® window 
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and 3) R2; radius in Y-direction. The ellipse plane is automatically preset to the world XY plane. 

The user specifies the ellipse radii by a text Panel as shown in Figure 24. 

 
Figure 24: Creating an ellipse using the Ellipse component in Grasshopper 

3.2.1.6 Modeling Freeform Surfaces 

Freeforms are the most realistic ways of modeling some temporary facilities such as the material 

piles; especially that materials such as sand and gravels occupy non-linear space. So, it is highly 

inaccurate to model these material piles as rectangles or linear polygons. A significant addition 

of this research to the ongoing site layout modeling research is the ability to model one of the 

most flexible geometrical shapes; which is the freeform. 

Modeling freeform surfaces is not a very difficult task by normal parametric programming 

software such as Excel® and Matlab® since each point on the curve can be obtained by specific 

equations depending on the interpolation technique (polynomial, Bezier, NURBS …etc). 

However, the difficulty comes in developing an algorithm for avoiding collision and overlapping 

between the freeform surfaces and the other surfaces because the number of points on the 

freeform surface are infinite and each of the points is at a different distance from the shape 

centroid. Accordingly, programming the freeform surfaces using scripting was not utilized, and 

the visual programming using the graphical algorithm editor Grasshopper® was used for its 

capabilities in simplifying coding and replacing long written scripts into graphical modules. 

Creating a freeform on Grasshopper® starts be creating the control points. Creating the control 

points it made through using the Point parameter for each point, connected to it the 

corresponding coordinates as shown in Figure 25. There are several ways of interpolating 

between points; each type of interpolation results in a different curve. One of the interpolation 

components is the Interpolate component; which enables the user to interpolate between the 

control points at any degree while ensuring that all the points are on the interpolated curve 

boundary as shown in Figure 25. The main inputs of the Interpolate component are 1) V; the 

Grasshopper® window Rhino® window 
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control points, 2) D; degree of interpolation, and 3) P; a Boolean value for whether the curve is 

close or open (1 for closed and 0 for opened).  

 
Figure 25: Creating a freeform surface using the Interpolate component in Grasshopper® 

Another famous method of interpolating between points in the NURBS curve. The Non-Uniform 

Rational B-Splines, NURBS, is a mathematical parametric model generating and representing 

curves and surfaces. Typically, each point of the curve is computed through the weighted sum of 

a number of control points. The weight of each point varies according to the governing 

parameter. To interpolate between points using NURBS curve on Grasshopper®, the control 

points are specified exactly the same as in the normal interpolation technique. Then the points 

are connected to the NURBS Curve component along with the required degree and the Boolean 

1 specifying that the curve is a closed one. Figure 26 shows the formulation of a sample freeform 

by using the NURBS curve interpolation. Mathematical representations of other interpolation 

techniques such as the cubic Bezier curve interpolation and quadratic Bezier curve interpolation 

are provided in Equations 10 and 11 respectively. 

 
Figure 26: Creating a freeform surface using the NURBS Curve component in Grasshopper® 

  

Grasshopper® window Rhino® window 

Grasshopper® window Rhino® window 
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3.2.2 Modeling Offsetted Planer Curves  

3.2.2.1 Introduction to the Offsetted Planar Curves 

In this method, the purpose is to form a geometrical shape that ensures a certain minimum width 

while flexible enough to squeeze itself into tight areas and non-uniform boundaries. In such 

geometrical shape, the width is fixed all over the span. In the Offsetted Planer Curves Method, a 

main curve – referred to as the Spine – is formed from several control points; where these points 

define the shape of the spine using any type of interpolation available in the software. Note: 

Grasshopper® provides many options for point interpolation such as Bezier curves, NURB 

curves, polyline, arc interpolation, curve interpolation by many possible degrees … etc. The 

Offsetted Planer Curve is suitable for modeling caravans in site; since caravans are placed next 

to each other where their width is fixed. In strict sites with tight available spaces, laying caravans 

in a straight line is not a luxury, so it is important to provide a tool that not only models the 

possibility of irregular layout of caravans, but also provide a proposal of the near-optimum form 

while ensuring the minimum width and a certain range of plan area.  

3.2.2.2 Mathematical Representation of OPC 

The Offsetted Planar Curve is constructed by forming a planar curve c(t) that is offsettd in 

directions that are perpendicular to its direction. Forming the planar curve in this research is 

made by forming 5 points; a base point P1 and 4 variable points shown as follows: 

 𝑃! = 𝑃! + 𝑉1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Eqn.  6] 

 𝑃! = 𝑃! + 𝑉3  . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . [Eqn.  7] 

 𝑃! = 𝑃! + 𝑉4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Eqn.  8] 

 𝑃! = 𝑃! + 𝑉5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . [Eqn.  9] 

Where, Vi is the movement vector between Pi-1 and Pi. 

For cubic Bezier curve interpolation between the points, the path traced by the function c(t), 

given any four points is as follows (Michiel, 2011):  

 𝐜 𝑡 = 1− 𝑡 !𝑃!!! + 3(1− 𝑡)!𝑡𝑃! + 3 1− 𝑡 𝑡!𝑃!!! + 𝑡!𝑃!!! . . . . [Eqn.  10] 

Where, t∈ [0,1], and 2 ≤ i ≤ 3 
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For quadratic Bezier curve interpolation between the points, the path traced by the function c(t), 

given any three points is as follows (Michiel, 2011):    

 𝐜 𝑡 = 1− 𝑡 !𝑃!!! + 2 1− 𝑡 𝑡𝑃! + 𝑡!𝑃!!! . . . . . . . . . . . . . . [Eqn.  11] 

Where, t∈ [0,1], and 2 ≤ i ≤ 4 

Other interpolation techniques can be used to interpolate between the control points such as 

NURB curves, B-splines, third degree polynomial interpolation …etc. 

After obtaining the parametric representation of a planar curve c(t) = (x(t) , y(t)) the curve shall 

be oriented by increasing values of the parameter t. The unit normal vectors n(t) are computed 

then these vectors are obtained by rotating the oriented tangent vectors c’(t) = (x’(t) , y’(t)) 

counterclockwise through 90 degrees. Then they are normalized to unit length through the length 

of c’(t) Equation 12 (Pottmann et al., 2007): 

 𝒏 𝑡 = (!!! ! ,!! ! )
!!(!)!!!!(!)!

  . . . . . . . . . . . . . . . . . . . . . . . . [Eqn.  12] 

The offset cd(t) at distance d to c(t) is obtained as: 

 𝐜𝒅 𝑡 = 𝐜(𝑡)± 𝑑 ∙ 𝐧(𝑡)  . . . . . . . . . . . . . . . . . . . . . . . . [Eqn.  13] 

 

3.2.2.3 Steps of Modeling Surfaces Using Offsetted Planer Curves 

Step 1: Defining the points of the spine 

The points of the spine are defined using the Construct Point component. In order to minimize 

the number of variables in the spine coordinates, the points are made in relation to each other. 

Meaning that each points depends on the point preceding it; just like the spine of any living 

organism. For example, as shown in Figure 27, the first point in the spine is defined using the 

Construct Point component with a specified x and y coordinates using the Number Slider 

parameter. The second point is defined using a combination of the Move component and the 

Vector XYZ component. This makes the second point dependent on the first point. The physical 
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meaning of this definition is: point 2 is the projection of point 1 that is moved along a vector 

with the inputted X, Y, and Z distances.  

 
Figure 27: Formulation algorithm of the spine points for the Offsetted Planar Curves 

 

In point 2, the range of the movement in the X-direction starts from 1 to 10 according to the 

Number Slider attached to the Vector XYZ component. The range can be changed at any time by 

the user. The range of the movement in the y-direction starts from -5 to 5 according to the 

Number Slider attached to the Vector XYZ component. The range can be changed at any time by 

the user. Figure 28 shows the range of each point relevant to the point preceding point.   

 

Table 4 shows a set of symbols used to specify the relationship of the upper and lower limits of 

the movement vectors (movement zones) of each of the spine points. It also shows a set of 

proposed numbers to facilitate the calculations to the users. These numbers are the ones used to 

verify the algorithm formulation on Grasshopper®. The minimum length of the curve is 4 meters 

Figure 28: The orange zone represents the movement zone of 

any point in the spine with reference to its preceding point 

X 

Y 

Pt. i Pt. i+1 

Pt.1 Pt.2 
Pt.3 

Pt.4 Pt.5 

Grasshopper® window Rhino® window 
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while the maximum is 40 meters in the X-projection. Figure 27 shows the formulation of step 1 

in the algorithm of forming the spine on Grasshopper®. 

Table 4: Movement ranges of the spine points (Note: movement is relative to the first point) 

 Generic values* Proposed values 
 X-direction Y-direction X-direction Y-direction 
 Min. Max. Min. Max. Min. Max. Min. Max. 
Control Point 2 1 A -B B 1 10 -5 5 
Control Point 3 1 A -B B 1 10 -5 5 
Control Point 4 1 A -B B 1 10 -5 5 
Control Point 5 1 A -B B 1 10 -5 5 
Values in this table represent the ranges in the number sliders of the vectors forming the spine points. 
Each number represents a distance between each point and the point preceding it. 
* Values of A and B are specified by the user 

 

Step 2: Forming the Surface 

After the spine points are formed, the Interpolate (IntCrv) component is used to form a curved 

line connecting the spine points. The formed curved line shall be referred to as “the spine”. The 

spine can be connected using other curve interpolation components such as Bezeir Span or 

Nurbs Curve or PolyArc. The different combination of the spine points coordinates results in a 

very flexible range of spine shapes from straight lines to 4th degree curves. Examples of the 

flexibility in connecting the spine points are shown in Figure 29; where different interpolation 

components were used for the same reference points of the spine. For example, a user might 

prefer to connect the spine points with lines instead of third degree curves since the caravans are 

linear in shape.  

The spine is then offsetted, perpendicular to its axis, using the Offset tool as shown in Figure 27. 

For demonstration purposes the offset value used was 2 meters in each direction, resulting in a 

total shape width of 4 meters. These two curved lines resulting from the offset shall be referred 

to as “the offsetted curves”. The Ruled Surface component is then used to form a surface 

between the offsetted curves.  
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Figure 29: Grasshopper® window showing the formulation algorithm of the Offsetted Planar Curves 

    

 

Step 3: Adding Rotation and Selective Zoning 

To enable the resulting surface to rotate, its formulation is connected to the Rotate component 

and the rotation angle is kept as a variable. Object rotation is discussed in Section 3.3.2. In order 

to minimize the number of possible solutions to reduce the processing time, the resulting surface 

is bound to the selective zoning algorithm, where it cannot move outside of some pre-specified 

zones. The selective zoning algorithm and formulation are discussed in Section 3.2.5. 

3.2.2.4 Variables of the OPC 

The different variables of the OPC are shown in Table 5. Changing the values of the movement 

vectors of points 2, 3, 4, and 5 in the X and Y directions results in changing the geometrical form 

of the OPC such as the length and the different angles while keeping the offset width constance 

throughout the OPC length. The variables responsible for changing the location and rotation of 

the OPC as a whole (whithout changing its form) are variables number 1, 2, 11, and 12 in Table 

5. 

  

Figure 30: The different shapes resulting from changing the interpolation technique while keeping the control points 
constant. a) interpolating using polyline, b) interpolating using a combination of polyline and 3rd degree curve, c) 

interpolating using 3rd degree curve interpolation, d) interpolating using NURBS curve. 

A B C D 

Grasshopper® window Rhino® window 
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Table 5: Variables of the Offsetted Planar Curves Algorithm 

 Variables Recommended Range Number of possible inputs 

1 X coordinate of point 1 0 to 5 6 
2 Y coordinate of point 1 0 to 5 6 
3 Movement in X direction of point 2 1 to 10 10 
4 Movement in Y direction of point 2 -5 to 5 11 
5 Movement in X direction of point 3 1 to 10 10 
6 Movement in Y direction of point 3 -5 to 5 11 
7 Movement in X direction of point 4 1 to 10 10 
8 Movement in Y direction of point 4 -5 to 5 11 
9 Movement in X direction of point 5 1 to 10 10 

10 Movement in Y direction of point 5 -5 to 5 11 
11 Surface Rotation 0 to 180 (increments of 30o) 7 
12 Selective Zoning 1 to 4 4 

 

3.2.2.5 Flexibility of the OPC 

The OPC algorithm produces very flexible surfaces that can take any curved shapes with fixed 

widths as shown in Figure 31. The flexibility of this method allows the modeled OPCs to fit into 

complicated zones that are difficult, and almost impossible, to model using traditional modeling 

tools. .In the example used for demonstration, the produced surface has a maximum length of 40 

meters and a minimum length of 4 meters. The user can easily change that range by changing the 

range of the relative X-direction vector movement of the spine points. With the numbers stated in 

Table 5 there are 1.48x108 different shapes that can be formed using the OPC algorithm.  

         

         
Figure 31: Examples of different possibilities of surfaces modeled using the offsetted planer curves method 
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Producing real-life caravan layouts on site taking the shapes of the produced geometries from the 

OPC algorithm might result in internal area waste for the un-evenly distributed areas for the 

offices. To overcome this waste, it is recommended to create the geometries in the OPC 

algorithm with additional 10% of area in the model formulation. 

3.2.2.6 Verification and Validation of the OPC algorithm 

In order to verify the integrity of the Offsetted Planer Curves Method and ensure the absence of 

any modeling flaws or bugs, a small site layout optimization model was created where the site 

had four obstacles A, B, C, and D – colored in rose in Figure 32. The obstacles are non-

rectilinear geometrical shapes and spaced relatively close to each other so that it is very difficult 

to lay the test object – colored in blue – using traditional linear modeling methods. The objective 

function is to minimize the distance between the centroid of the test object and the centroid of 

obstacle B. The variables were the coordinates of the control points of the spine and the rotation 

of the offsetted planer surface. The two constraints were: 1) avoid overlapping between any of 

the objects on the layout, and 2) keep the offsetted planer surface area between 80 m2 and 120 

m2. Figure 32 shows a snapshot of the formulation of the full verification model on 

Grasshopper®. The OPC algorithm is said to be verified if it runs without programming mistakes 

and produces results. The OPC algorithm is said to be validated if the outputted results by the 

model are as they were expected where the logical solution is reached without interferences.  

 
Figure 32: Grasshopper® window showing the full formulation for the verification of the Offsetted Planer Curves Algorithm. 
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The optimization engine obtained many valid results with no bugs or errors. Four of the valid 

results are shown in Figure 33 and Table 6. In each of the solutions, the shape of the object is 

different due to its adaptive and highly flexible nature. Since the model is verified, it is safe to 

state that it can work on a larger scale on a real site layout problem in parallel with other 

modules and object shapes. The Offsetted Planar Curves algorithm is not recommended to be 

used in non-strict site layouts since it requires relatively lengthy running time due to the large 

number of its variables. Normal static shapes are recommended for non-strict site layouts. 

However, in strict site layouts, static geometrical shapes may fail in providing valid solutions due 

to their inefficiencies in the area usage and their failure in adaptation with the surrounding site 

obstacles. Since this simple model ran without programming errors or running bugs, the OPC 

algorithm is verified. The solution with the lowest score that is reached by the model is logical 

and as anticipated; where the centroid of the test object is most close to that of obstacle B while 

maintaining enough distance to avoid collision; accordingly the OPC algorithm is validated. 

Table 6: Verification of the Offsetted Planar Curves Modeling (4 sample solutions) 

 

 
Figure 33: Rhino® window showing possible valid solutions of the verification of the Offsetted Planar Curves Modeling 

 
Numeric values in the connected number slider 

 
Sample Solution 1 Sample Solution 2 Sample Solution 3 Sample Solution 4 

  X Y X Y X Y X Y 
Point 1 37 12 2 17 0 24 7 31 
Point 2 7 0 6 -3 3 5 5 2 
Point 3 6 0 6 -1 4 3 4 2 
Point 4 4 0 4 -1 7 3 7 -1 
Point 5 4 0 4 -2 4 1 5 -5 
Rotation 90 Degrees 0 Degrees 0 Degrees 0 Degrees 
Score 43.5 28.3 12.5 8.6 
Area (m2) 84 85.8 90.6 97.1 
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If the caravans were modeled as normal rectangles as in the literature, the only solution would be 

sample solution number 1 in Figure 33, which was going to be the near optimum according to 

literature; however by utilizing the OPC algorithm, other solutions were found and closer to the 

optimum. So, not only the verification model does verify and validate the algorithm, but it also 

provides a vivid demonstration of the capabilities of the OPC algorithm.  

3.2.3 Modeling Dynamic Freeforms 

3.2.3.1 Introduction to the Dynamic Freeforms 

A freeform is a curve that has control points connected together using one of many available 

curves such as 3rd degree polynomial interpolation, Bezeir curve, Nurb curve …etc. A Dynamic 

freeform is defined in this research as a freeform with flexible control point; meaning that the 

coordinates of the control points are variables in the optimization model, thus allowing for many 

flexibilities. 

In this algorithm, the purpose is to form a geometrical shape that is very flexible– not limited by 

a specified shape – to have the ability to be shaped and squeezed into narrow complex areas. 

Such modeling algorithm is very beneficial for modeling the material piles such as excavation 

piles and waste piles. Previous site layout optimization models model piles as squares or other 

linear geometrical shapes. This is not accurate in nature and causes many modeling difficulties 

such creating waste of space instead of efficiency in using space. In other cases, the models 

would not find valid solutions in strict site layouts due to the inefficiency of modeling curvilinear 

shapes and modeling them as approximate linear shapes instead.  

Since the material piles are non-uniform and curvilinear in nature, the best way to model them is 

by curvilinear freeform shapes. Not only this algorithm allows the modeling of freeform shapes, 

it also allows for changes in the shapes in the different model runs to fit into narrow and complex 

available spaces on site.  

The algorithm works as follows: A point is defined and named the “Reference Point”. Then six 

surrounding points are defined as “Control Points” of the freeform. The control points are 

relevant to the reference point. Meaning that the location of each of the control points is defined 

as the location of the reference point added to a certain vector. The vectors have upper and lower 
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limits for each of the control points. A curve is then interpolated between the control points 

shaping the freeform. So in order to move the whole freeform, only the reference point needs to 

be moved and the rest of the control points will automatically move in the same direction since 

they are all connected to the reference point. The shape of the freeform is changed by changing 

the different vectors of the control points. So, the variables are the coordinates of the reference 

point and the vectors of the control points.  

3.2.3.2 Mathematical Representation of Dynamic Freeforms 

The mathematical representation of the dynamic freeforms algorithm is as follows: 

 𝑃! = 𝑃! + 𝑉1  . . . . . . . . . . . . . . . . . . . . . . . . . . . [Eqn.  14] 

 𝑃! = 𝑃! + 𝑉2  . . . . . . . . . . . . . . . . . . . . . . . . . . . [Eqn.  15] 

 𝑃! = 𝑃! + 𝑉3  . . . . . . . . . . . . . . . . . . . . . . . . . . . [Eqn.  16] 

 𝑃! = 𝑃! + 𝑉4  . . . . . . . . . . . . . . . . . . . . . . . . . . . [Eqn.  17] 

 𝑃! = 𝑃! + 𝑉5  . . . . . . . . . . . . . . . . . . . . . . . . . . . [Eqn.  18] 

 𝑃! = 𝑃! + 𝑉6    . . . . . . . . . . . . . . . . . . . . . . . . . . . [Eqn.  19] 

Where, Vi is the movement vector between P0 and Pi. 

For cubic Bezier curve interpolation between the points, the path traced by the function B(t), 

given any four points is as follows (Michiel, 2011):  

 𝐵 𝑡 = 1− 𝑡 !𝑃!!! + 3(1− 𝑡)!𝑡𝑃! + 3 1− 𝑡 𝑡!𝑃!!! + 𝑡!𝑃!!!  . . . . [Eqn.  20] 

Where, t∈ [0,1], and 2 ≤ i ≤ 4 

For quadratic Bezier curve interpolation between the points, the path traced by the function B(t), 

given any three points is as follows (Michiel, 2011):    

 𝐵 𝑡 = 1− 𝑡 !𝑃!!! + 2 1− 𝑡 𝑡𝑃! + 𝑡!𝑃!!!  . . . . . . . . . . . . . [Eqn.  21] 

Where, t∈ [0,1], and 2 ≤ i ≤ 5 

Other interpolation techniques can be used to interpolate between the control points such as 

NURB curves, B-splines, third degree polynomial interpolation …etc. 
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Table 7 shows a set of symbols and relationships used to specify the upper and lower limits of 

the movement vectors (movement zones) of each of the dynamic freeform control points. It also 

shows a set of proposed numbers to facilitate the calculations to the users. The proposed values 

in the table are where the value of A equals to 3, B equals to 10, C equals to 7, and D also equals 

to 7. The proposed numbers in the table are reflected in Figure 34 where the range of movement 

of each of the control points relevant to the reference point of the Dynamic Freeform algorithm is 

represented in a rectangle. According to the current range, there are 48.189x109 possible 

freeform shapes that can be formed using this algorithm; each run in the model constitutes a 

different shape. 

Table 7: Movement ranges of the control points (Note: movement is relative to the reference point) 

 Generic values* Proposed values 
 X-direction Y-direction X-direction Y-direction 
 Min. Max. Min. Max. Min. Max. Min. Max. 
Control Point 1 -A A 0 B -3 3 0 10 
Control Point 2 A A+C 0 D 3 10 0 7 
Control Point 3 A A+C -D 0 3 10 -7 0 
Control Point 4 -A A -B 0 -3 3 -10 0 
Control Point 5 -A-C -A -D 0 -10 -3 -7 0 
Control Point 6 -A-C -A 0 D -10 -3 0 7 
Values in this table represent the ranges in the number sliders of the vectors forming the control 
points. Each number represents a distance between the control point and the reference point. 
* Values of A, B, C and D are specified by the user 

 

 

Figure 34: The range of movement of each of the control points relevant to the reference point 

A 
B 

D 

C 
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3.2.3.3 Steps of Modeling Surfaces using Dynamic Freeforms  

Step 1: Defining the reference point 

The reference point is defined using the Construct Point component that is connected to two 

Number Slider parameters at its input node marking the X and Y coordinates as shown in Figure 

35..  

Step 2: Defining the reference points 

Each of the reference points is defined by using a combination of the Move and Vector XYZ 

components. The Move component takes the reference point as its input geometry and takes the 

Vector XYZ component output as its input movement vector; thus resulting in a new point 

(reference point) that it the translation of the reference point in a certain vector. The Vector XYZ 

component takes two Number Slider parameters as its input (one for X-movement and one for 

Y-movement). This is repeated in all of the six reference points with changes in the values of the 

maximum and minimum limits of the Number Slider parameters connected to the Vector XYZ 

components. These values are defined in a way not to overlap the zone of movement of any of 

the control points with each other. A set of equations are shown in Table 8 that are used to 

specify the relationship of each of the upper and lower limits of the movement vectors 

(movement zones) of each of the control points. It also shows a set of proposed numbers to 

facilitate the calculations to the users. These numbers are the ones used to verify the algorithm 

formulation on Grasshopper®. 

Step 3: Forming the Surface 

After the control points are formed, the Interpolate (IntCrv) component is used to form a curved 

line connecting the spine points. The curve can be connected using other curve interpolation 

components such as Bezeir Span or Nurbs Curve or PolyArc. The Surface component is then 

used to form a surface between the boundaries of the formed freeform curve as shown in Figure 

35.  
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Figure 35: Grasshopper® window showing the formulation algorithm of the Dynamic Free-forms 

3.2.3.4 Variables of the Dynamic Freeforms 

Table 8 shows the variables in the dynamic freeforms algorithm. The variables and their ranges 

shown in the table can be modified depending on the project. It is noted that the rotation is not a 

variable since the flexibility of the produced dynamic freeforms allows them to mimic the 

behavior of rotation by just changing the values of the control points movement vectors. 

Table 8: Variables of the Dynamic Free-forms Modeling (Note: movement is relative to the central reference point) 

 Variables Range Number of possible inputs 

1 X coordinate of reference point 0 to 10 10 
2 Y coordinate of reference point 0 to 10 10 
3 Movement in X direction of point 1 -3 to 3 7 
4 Movement in Y direction of point 1 0 to 10 10 
5 Movement in X direction of point 2 3 to 10 8 
6 Movement in Y direction of point 2 0 to 7 7 
7 Movement in X direction of point 3 3 to 10 8 
8 Movement in Y direction of point 3 -7 to 0 7 
9 Movement in X direction of point 4 -3 to 3 7 

10 Movement in Y direction of point 4 -10 to 0 10 
11 Movement in X direction of point 5 -10 to 3 8 
12 Movement in Y direction of point 5 -7 to 0 7 
13 Movement in X direction of point 6 -10 to -3 8 
14 Movement in Y direction of point 6 0 to 7 7 
15 Selective Zoning 1 to 4 4 

Grasshopper® window Rhino® window 
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3.2.3.5 Flexibility of the Dynamic Freeforms 

The dynamic freeform algorithm provides an unprecedented flexibility marking a breakthrough 

in the site layout modeling research pool. Figure 36 shows a sample of the different formed 

shapes using the dynamic freeform algorithm. Each run constitutes a different shape. Shapes 

formed by the dynamic freeform algorithm can fit into complex narrow areas in the site. With the 

numbers stated in Table 8 there are 48.189x109 different shapes that can be formed using the 

dynamic freeform algorithm. Figure 36 shows just 8 examples. 

    

    
Figure 36: Examples of different possibilities of surfaces modeled using the Dynamic Freeforms algorithm 

3.2.3.6 Verification and Validation of DF algorithm 

In order to verify the integrity of the Dynamic Freeform algorithm and ensure the absence of any 

modeling flaws or bugs, a small site layout optimization model was created where the site had 

four obstacles A, B, C, and D – colored in rose in Figure 37. Some of the obstacles are non-

rectilinear geometrical shapes and spaced relatively close to each other so that it is very difficult 

to lay the test object – colored in blue – using traditional linear modeling methods. The objective 

function is to minimize the distance between the centroid of the test object, which is the dynamic 

freeform object, and the centroid of obstacle B. The variables were the coordinates of the 

reference point and the movement vectors, in both X and Y directions, of the control points of 

the dynamic freeform. The two constraints were: 1) avoid overlapping between any of the 

objects on the layout, and 2) keep the freeform surface area between 80 m2 and 120 m2.  Figure 

38 shows a snapshot of the formulation of the full verification model on Grasshopper®. 
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The purpose of Figure 38 is just to provide a broad view of the full formulation on 

Grasshopper®.  The optimization engine obtained many valid results with no bugs or errors. Four 

of the valid results are shown in Figure 37 and Table 9. Since this simple model ran without 

programming errors or running bugs, the DF algorithm is verified. The solution with the lowest 

score that is reached by the model is logical and as anticipated; where the centroid of the test 

object is most close to that of obstacle B while maintaining enough distance to avoid collision 

and maintaining an area between the minimum and maximum limits; accordingly the DF 

algorithm is validated. Since the model is verified and validated, it is safe to state that it can work 

on a larger scale on a real site layout problem in parallel with other modules and object shapes. 

 
Figure 37: Rhino® window showing possible valid solutions of the verification of the Dynamic Freeforms Algorithm 

 
Figure 38: Grasshopper® window showing the full formulation for the verification of the Dynamic Freeforms Algorithm.  

Score = 21 Score = 42.5 Score = 31 Score = 14.6

A

B

C

D

Sample Solution 1 Sample Solution 2 Sample Solution 3 Sample Solution 4

A

B

C

D

A

B

C

D

A

B

C

D
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Table 9: Verification of the Dynamic Freeforms Algorithm (4 sample solutions) 

 
Numeric Value in the connected number sliders 

 
Sample Solution 1 Sample Solution 2 Sample Solution 3 Sample Solution 4 

  X Y X Y X Y X Y 
Reference Point* 23 27 6 40 4 14 49 10 
Control Point 1** -1 4 -2 6 0 6 -1 20 
Control Point 2** 7 5 4 5 4 6 4 1 
Control Point 3** 5 -2 3 -2 3 -1 3 -3 
Control Point 4** -2 -4 -2 -6 3 -10 0 -9 
Control Point 5** -6 -5 -6 -5 -4 -5 -3 0 
Control Point 6** -9 1 -7 1 -4 1 -3 1 
Score 21 42.5 31 14.6 
Area (m2) 119.8 113.2 105.1 94.2 
*  Value in this row represent the X and Y coordinates of the reference point. 
**Values in this row represent values in the number sliders of the vectors forming the control points. Each 
number represents a distance between the control point and the reference point. 

 

It is noticeable from Figure 37 that the test object (dynamic freeform) has a different shape in 

each of the solutions; allowing for it to fit in complex non-rectilinear spots, which is impossible 

to model using previous modeling algorithms. 

3.2.4 Modeling Dynamic Rectangles 

3.2.4.1 Introduction to Dynamic Rectangles 

The term “Dynamic Rectangles” refer to a set of rectangular shapes –forming rectangles– 

connected together at the edges forming one larger geometrical shape that has rectilinear edges 

with 90o angles. The dynamic property in the “Dynamic Rectangles” reflects the ability of the 

forming rectangles to connect to each other in different arrangements; where the optimum 

arrangement is selected by the optimization model, so each run would have a different 

arrangement. 

The algorithm of Dynamic Rectangles is developed for the main purpose of modeling site 

facilities that are composed of several rectangular components such as steel and wood yards. 

Usually as shown in Figure 39, a wood yard has a cutting yard, a joining yard, an area for storing 

recycled material, an area for storing new material, and an area for storing the finished units. All 

of these areas are almost rectangular in shape. Previous site layout optimization models used a 

simple rectangle to model the wood yard assuming a common arrangement as shown in Figure 
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39. Such modeling is not valid in the cases of changed arrangements; where, for example, the 

area of storing the finished units could be put right next to the recycled material storage; forming 

an outer boundary for the whole wood yard that is no rectangular as shown in Figure 39. From 

here arose the urge of finding new algorithms to model site facilities formed from small 

rectangular shapes. The Dynamic Rectangles algorithm fill this gap by dividing the facility into 

small rectangular units; where each small rectangular unit, referred to as the forming rectangle, 

model an element inside the facility as shown in part B of Figure 39. The forming rectangles are 

then programmed to have several possible arrangements such as the ones shown in Figure 40 

with taking into consideration that they all have to be connected as to form one final shape 

without any gaps; meaning that each of the forming rectangles has to be connected to another 

one or more forming rectangles. The optimization model then selects the optimum arrangement 

of the forming rectangles depending on the shape and size of the available area in the site layout. 

               

Figure 39: An example of the components of the wood yard (on the left) and its modeling as a series of connected rectangles 

(on the right) instead of one big rectangle 

 

 

 

 

 

Figure 40: Different possible arrangements for the wood yard using the dynamic rectangles algorithm 

The dynamic rectangles algorithm is composed of three steps: 1) Creating the forming 

rectangles, 2) Setting the different arrangements, and 3) forming the facility surface from the 

external boundaries of the overall shape. 

Modeling 

A) Wood yard components B) Modeling of the wood yard 

Sample Arrangement 1 Sample Arrangement 2 Sample Arrangement 3 Sample Arrangement 4 
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It shall be noted that the circulation between the different rectangles should be taken into 

consideration by the user while designing the different arrangements. It also shall be noted that 

the user, not the mode, specifies the arrangements using the algorithm stated in this research. By 

understanding the algorithm, users can specify as much arrangements as they desire and save 

them to the model. The function of the model is to set the optimum arrangement and location of 

the DR in the overall site layout given the different conditions.  

3.2.4.2 Mathematical Representation of the Dynamic Rectangles algorithm 

The overall geometrical shape formed by the dynamic rectangles algorithm is the union of 

several rectangles R, in the scope of this research, the number of rectangles is 5; R1, R2, R3, R4, 

and R5. Each rectangle has its own dimension in the x direction denoted by Lx, and dimension 

in the y direction denoted by Ly. The reference point of each rectangle is on its bottom left 

vertex; where the reference points of the five rectangles are referred to as CR1, CR2, CR3, CR4, and 

CR5. The movement of any reference point with a certain translation vector results in the 

movement of its corresponding rectangle with the same magnitude and direction of the 

translation vector. The location of each of the 5 rectangles differs depending on the required 

arrangement according to the following equations: 

 𝐶!! ! = 𝑂!! + 𝑉1!  . . . . . . . . . . . . . . . . . . . . . . . [Eqn.  22]  

  𝐶!! ! = 𝑂!! + 𝑉2!  . . . . . . . . . . . . . . . . . . . . . . . [Eqn.  23]  

  𝐶!! ! = 𝑂!! + 𝑉3!  . . . . . . . . . . . . . . . . . . . . . . . [Eqn.  24]  

  𝐶!! ! = 𝑂!! + 𝑉4!  . . . . . . . . . . . . . . . . . . . . . . . [Eqn.  25]  

  𝐶!!(!) = 𝑂!! + 𝑉5!  . . . . . . . . . . . . . . . . . . . . . . . [Eqn.  26] 

Where, 𝑪𝑹𝒋(𝒊)is the coordinates of the reference point of rectangle number j in the arrangement 

number i, 𝑶𝑹𝒋 is the initial coordinates of the reference point of the rectangle number j, and 𝑽𝒋𝒊 

is the translation vector of rectangle number j in the arrangement number i. 

3.2.4.3 Steps of Modeling of Dynamic Rectangles: 

Step 1: Creating the forming rectangles 

The number of forming rectangles in each facility (such as wood yard) is different. For 
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demonstration purposes the number of forming rectangles in this research is 5 rectangles with 

varying sizes. Rectangles 1 and 2 have a width (x-direction dimension) of 7m and length (y-

direction dimension) of 5m. Rectangles 4 and 5 have a width of 8m and length of 5m. Rectangle 

5 has a width of 10m and a length of 10m. Creating each rectangle in Grasshopper® is made by 

using the Rectangle component as shown in Figure 41.The Rectangle component is connected to 

a Panel parameter in its X-dimension input node and to another Panel parameter in its X-

dimension input node. The numbers in the Panel parameter specify the dimensions of the 

rectangles. Note: The user can use any number of rectangles.  

Step 2: Setting the different arrangements 

A Number Slider parameter named “Arrangement” 

is created with a minimum of 0 and a maximum of 

4. So its set of output is {0,1,2,3,4}. Meaning that in 

this model, there are 5 different possible 

arrangements. The user can specify as much 

arrangements as he needs. 

The location of each forming rectangle is different 

in different arrangements. To be able to form this 

algorithm, the Stream Filter component is used to 

output the numbers of the forming rectangles’’ 

movement in the X,Y, and Z direction depending on 

the inputted arrangement. The output from the 

Stream Filter component is the vector for the 

movement of the forming rectangles relevant to the 

origin. So, for example, in rectangle number 5, if 

the arrangement is 1, the location of the rectangle 

would be 15 meters in the X-direction and zero 

meters in the Y-direction measured from the origin. 

Also, if the arrangement is 2, the location of the 

rectangle would be 0 meters in the X-direction and Figure 41: Grasshopper® window showing the 

formulation algorithm of the Dynamic Rectangles 
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10 meters in the Y-direction measured from the origin. To be able to do the movement, the Move 

component is connected to the output of the Stream Filter component for each forming 

rectangle. The algorithm formulation for the Dynamic Rectangles in Grasshopper® is shown in 

Figure 41.  

Note: The output node of the “arrangement” Number Slider parameter is connected to each of 

the input nodes marked “G” (Gate) of all Stream Filter components of the rectangles. However, 

this connection is hidden in Figure 41 in order for the excessive connection lines not to cause  

3.2.4.4 Flexibility of the Dynamic Rectangles 

The Dynamic Rectangles algorithm is a new algorithm for modeling site facilities made of 

rectangular elements. The flexibility is very high, and depends on the number of possible 

arrangements that the user determines. For demonstration purposes, the number of preset 

arrangements used is 5, shown in Figure 42. The different arrangements provide different 

external boundaries; where, the most suitable arrangement is selected by the optimization model 

depending on the area and shape of the available space in the construction site. 

     

Figure 42: Different arrangements for the same facility using the Dynamic Rectangles algorithm 

3.2.4.5 Variables 

The formed final shape made by the dynamic forming rectangles has the ability to move 

anywhere in the site layout using the movement module and will also be able to rotate using the 

rotation module. So the variables would be: 1) arrangement of dynamic rectangles, 2) movement 

of full facility in X direction, 3) movement of full facility in Y direction, 4) rotation of full 

facility in 90o increments, and 5) number of movement zone in the selective zoning module. 
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3.2.4.6 Verification and Validation of the DR algorithm 

In order to verify the integrity of the Dynamic Rectangles algorithm and ensure the absence of 

any modeling flaws or bugs, a small site layout optimization model was created where the site 

had four obstacles A, B, C, and D – colored in rose in Figure 43. The obstacles were spaced 

relatively close to each other so that it is very difficult to lay the test object – colored in blue – 

using traditional linear modeling methods. The objective function is to minimize the distance 

between the centroid of the test object and the centroid of obstacle B. The variables were the 

arrangement number (0 to 4), the movement of the final test object in X and Y directions, and the 

rotation of the final test object (increments of 90o). The constraint was: avoid overlapping 

between any of the objects on the layout (using the collision and overlapping prevention module) 

Figure 44 shows a snapshot of the formulation of the full verification model on Grasshopper®. 

 
Figure 43: Rhino® window showing possible valid solutions of the verification of the Dynamic Rectangles Algorithm 

The optimization engine obtained many valid results. Four of the valid results are shown in 

Figure 43 and Table 10. Since this simple model ran without programming errors or running 

bugs, the DR algorithm is verified. The solution with the lowest score that is reached by the 

model is logical and as anticipated; where the centroid of the test object is most close to that of 

obstacle B while maintaining enough distance to avoid collision; accordingly the DF algorithm is 

validated. Since the model is verified and validated, it is safe to state that it can work on a larger 

scale on a real site layout problem in parallel with other modules and object shapes. 
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Figure 44: Grasshopper® window showing the full formulation for the verification of the Dynamic Rectangles Algorithm. 

Table 10: Verification of the Dynamic Rectangles Algorithm (4 sample solutions) 

Name of 
Number Slider 

Numeric Value in the connected number slider 
Sample Solution 1 Sample Solution 2 Sample Solution 3 Sample Solution 4 

Arrangement 4 3 2 0 
X-movement 17 14 25 11 
Y-movement 20 14 30 3 
Angle Slider 2 0 0 3 

Score 20.5 18.4 28.3 16.4 
 

It is noticeable from Figure 43 that the test object (blue) has a different arrangement in each of 

the solutions; allowing for it to fit in complex spots, which is impossible to model using previous 

modeling algorithms. In past site layout optimization models, the test object would have been 

modeled as just a rectangle, so there would be only few valid solutions in this case, because it 

wouldn’t have fit anywhere in the site except in few places. However, by utilizing different 

arrangement, the number of valid solution is much higher; where the object can fit in many 

places on site; which is more realistic in behavior. 
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3.3 Selective Zoning 

3.3.1 The Concept of Selective Zoning 

One of the contributions of this research to the construction modeling field is the selective 

zoning for moving objects. Picture a construction site with irregular boundaries and internal 

obstacles taking a lot of the site’s area resulting in the minimization of the available area of 

movement for the site layout objects (such as caravans and workshops). In past models, this 

presents a difficulty because of the many invalid optimization solutions; while in this model, by 

introducing the idea of selective zoning, such “difficulty” is actually a positive opportunity that 

leads to significant decrease in possible solutions; thus minimizing the running time of the 

optimization model.  

In traditional site layout optimization models, the zone for which the objects are allowed to move 

is the area bound by the extremes of site boundaries. Such zone has many invalid solutions for 

the movement of the objects where the model just runs and produce invalid solutions until it 

reaches valid ones; which wastes a lot of valuable time. The invalid solutions are the result of the 

1) presence of out-of-site areas inside the modeling zone, especially if the site is L-shaped or 

irregularly shaped, and 2) the presence of the permanent obstacles. Moreover, another drawback 

is that the number of solutions (valid and invalid) is extremely high in traditional site layout 

optimization models. 

The idea of selective zoning is a simple procedure where, instead of setting the variables to move 

in one big movement zone with many invalid solutions, many small similar zones are pre-

specified and the variables are set to move only in these selective zones. The selective zones are 

identified by the user and laid in the areas of valid solutions only. This causes a major decrease 

of the number of possible solutions, thus significantly reducing the running time. Not only this, 

but also the percentage of valid solutions relative to the total number of possible solutions is very 

high. 

The concept of selective zones is demonstrated in Figure 45 where a sample site layout is 

presented. The site is L-shaped and has two permanent obstacles. For just demonstration, one 

object is required to be put on the site without either overlapping with any of the obstacles or 
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getting off of the site boundaries. In traditional optimization models, the zone of movement of 

the object coordinates is just one zone with the following ranges:  

• X-coordinate [Min à 1; Max value à A; no. of possible solutions à A],  

• Y-coordinate [Min à 1; Max value à A; no. of possible solutions à A]. 

This zone is square-shaped and is represented in part B of Figure 45. Thus the total number of 

possible solutions is A x A = A2. 

In part C of Figure 45, where the concept of selective zoning is applied, the total number of 

similar zones = 4. Each of the zones has the dimensions of A/4 and A/2. Thus the total number of 

possible solutions in this case is (A/4) x (A/2) x 4 = A2/2 ; which is half of the number of 

solutions of the traditional method.  

Not only does the number of possible solutions decrease significantly by applying the selective 

zoning concept, the efficiency of the outputted solutions is raised. In part B of Figure 45, the 

number of valid solutions constitutes only 11.5% of the total number of solutions due to the fact 

that the movement zone covers areas outside the site and the areas of the obstacles as well. 

While, on the other hand, in part C of Figure 45, the number of valid solutions constitutes 92% 

of the total number of solutions due to the fact that the zones are distributed in areas of valid 

solutions only with minimum overlapping with invalid solutions. 

 
Figure 45: Demonstration of the selective zoning concept. 
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3.3.2 Mathematical Representation of the Selective Zoning Algorithm 

In the selective zoning algorithm, an object is moved using two translation vectors. The first 

translation vector tsz = (asz,bsz) translates each of the points in the object between the zones. The 

second translation vector tiz = (aiz,biz) translates each of the points in the object in the zones 

themselves. Accordingly, the point p1 = (x1,y1) , which is the mapping of the point P = (x,y) after 

translation, is obtained by simply adding the vector tsz and the vector tiz to the vector p = (x,y). 

Thus the vector of the image p1 is calculated via (x+asz+asz, y+bsz+biz) and a translation can be 

described with: 

 x1 = x + asz + asz  . . . . . . . . . . . . . . . . . . . . . . . [Eqn.  27] 

 y1 = y + bsz + biz  . . . . . . . . . . . . . . . . . . . . . . . [Eqn.  28] 

3.3.3 Selective Zoning Algorithm Formulation on Grasshopper® 

The selective zoning algorithm depends on the use of a combination of the Stream Filer and the 

Move components to specify the preset movement zones. The first step is to create the object that 

needs to be moved and located on site. For demonstration purposes, the object is a circular 

surface with a radius of 2.5m and formed by the Circle component as shown in Figure 46. After 

that there are two modules; 1) Shifting between zones, and 2) Inter-zone movement. The two 

modules are connected in series. 

Module 1: Shifting between zones: The function of this module is to set the different movement 

zones that the shape is allowed to move in. A Number Slider parameter named “Zone” is created 

with a minimum of 0 and a maximum of 3. So its set of output is {0,1,2,3}. Meaning that in this 

model, there are 4 different possible movement zones. Then, the Stream Filter component is 

used to output the numbers of the forming the object’s movement in the X,Y, and Z direction 

depending on the inputted zone number. The output from the Stream Filter component is the 

vector for the movement of the object relevant to its original location. So, for example, if the 

zone is 0, the coordinate of the object center would be (27.5, 2.5, 0), which is the addition of its 

original location (27.5, 2.5, 0) [Top left of Figure 46] and the result from the Stream Filter 

component (0,0,0) [bottom left of Figure 46]. And if the zone is 1, the coordinate of the object 

center would be (27.5, 22.5, 0), which is the addition of its original location (27.5, 2.5, 0) and the 

result from the Stream Filter component (0,20,0). The Move component is connected at its input 
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node to the output node of the Stream Filter component to make the object move to the zone 

corresponding to the number from the “Zone” number slider. 

Module 2: Inter-zone movement: The function of this module is to set the maximum X and Y 

limits of the object movement inside each of the zones. A Vector XYZ component is connected 

at its input nodes to 2 number sliders; one for X-direction movement and one for Y-direction 

movement. The Vector XYZ component is connected to a Move component to set the movement 

of the object inside the zone. The limits of the number sliders are the limits of the boundaries of 

the movement zone. So, if the movement zones are required to have an area of 20m x 10m each, 

the values of the number sliders connected to the Vector component should be as follows: 1) X-

direction: min 0 & max 20, and 2) Y-direction: min: 0 & max 10. So, after the model decides a 

movement zone, from module 1, it determines the location of the object inside that zone from 

module 2.  

 
Figure 46: The formulation algorithm of the selective zoning algorithm 

To demonstrate the outcome of the selective zoning algorithm, Figure 47 shows the same object 

in 4 different zones without changing the inter-zone movement sliders.  

       
Figure 47: Demonstration of the movement zones using the selective zoning algorithm 

Grasshopper® window Rhino® window 
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3.3.4 Verification and Validation of the Selective Zoning Algorithm 

In order to verify the integrity of the Selective Zoning algorithm and ensure the absence of any 

modeling flaws or bugs, a small site layout optimization model was created where the site had 

two rectangular obstacles. The site itself is L-shaped as shown in Figure 48.  The objective 

function is to minimize the distance between the centroid of the circular test object and the 

centroid of the upper rectangular obstacle. The variables were the zone number (0 to 3), the 

movement of the test object in X and Y directions [Inter-zone movement]. The constraint was: 

avoid overlapping between any of the objects on the layout (using the collision and overlapping 

prevention module). Since the problem is simple, the optimum location is known without 

running the optimization model, but the optimization model was run in order to compare its 

solution with the known optimum solution for validation. The optimization model ran with no 

errors so the algorithm is verified. The optimization model outputted the optimum solution and 

resulted in a location for the object with the minimum possible score. The outputted optimum 

solution by the model is both logical and anticipated; where the centroid of the test object is most 

close to that of the upper rectangular obstacle while maintaining enough distance to avoid 

collision; accordingly the selective zoning algorithm is validated. Since the model is verified and 

validated, it is safe to state that it can work on a larger scale on a real site layout problem in 

parallel with other modules and object shapes. 

 
Figure 48: Optimum solution provided by the verification  

and validation model using selective zoning algorithm 
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3.4 Movement and Rotation of Objects 
A primary variable in all site layout optimization problems is the movement of site facilities. The 

model moves the site facilities (objects) several iterations. In each iteration it calculates the 

optimization score. Another primary variable that is not present in some of the older site layout 

optimization models is the rotation. Rotating the site facilities is important because the purpose 

of modeling is to get as close as possible from reality; and in reality, the site layout planers lay 

facilities at different angles in order to ensure the site needs are maintained whilst avoiding 

collision and overlapping with obstacles. This section explains the formulation of movement and 

rotation in Grasshopper® and setting them as variables in the optimization model. 

3.4.1 Movement of Facilities 

3.4.1.1 Mathematical Representation 

According to Pottman et al. (2007), a movement (translation) is defined by a translation vector t, 

which specifies the direction and magnitude of the translation. To derive a mathematical 

description, the position of every point p is denoted with p – where the position vector points 

from the origin 0 to the point p(x,y). If a translation is defined by the vector t = (a,b), which 

maps a point p into a point p1. Then the vector p1 = (x1,y1) is obtained by simply adding the 

vector t to the vector p = (x,y). Thus the coordinates of the image p1 is calculated via (x+a, y+b) 

and a translation can be described with (Pottmann et al., 2007): 

 x1 = x + a  . . . . . . . . . . . . . . . . . . . . . . . . . . . [Eqn.  29] 

 y1 = y + b  . . . . . . . . . . . . . . . . . . . . . . . . . . . [Eqn.  30] 

3.4.1.2 Formulation of object movement on Grasshopper® 

To move any object on Grasshopper®, the Move component is used. The Move component takes 

the geometry (shape surface) and the vector of movement as inputs. For the vector input, the 

Vector component is used. The Vector component is where the movement vector is defined by 

X, Y, and Z-direction translation. Since the model is 2D, there is no need for translation in the Z-

direction; that is why in Figure 49 the Z input for the Vector component is not connected to 

anything. The number slider is used for both X and Y inputs of the Vector component. The 

number sliders are the variables in this set-up. Maximum and minimum values of the number 

sliders can be set by double clicking on them and opening their properties window. The 
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optimizer “Galapagos” understands that these two number sliders are variables – by connecting 

them to it – and changes their values in each iteration to reach the optimum solution. Figure 49 

shows the formulation of a movement order for a sample object. In problems with more than one 

object, every object should be connected to a Move component. So for each temporary facility, 

there are 2 variables for the movement; one for the X-direction and one for the Y-direction. 

 
Figure 49: Formulation of object movement on Grasshopper® 

 

3.4.2 Rotation of Facilities  

3.4.2.1 Mathematical Representation 

According to Pottmann et al. (2007), a rotation is defined by a fixed point c, the center of 

rotation, and the rotational angle θ. To rotate an object around the origin o, any point p(x,y) 

would change its coordinates to be p1(x1,y1); where (Pottmann et al., 2007): 

 x1 = x . cos(θ) – y . sin(θ)  . . . . . . . . . . . . . . . . . . . . . [Eqn.  31] 

 y1 = x . sin(θ) + y . cos(θ)  . . . . . . . . . . . . . . . . . . . . . [Eqn.  32] 

In order to rotate an object around its centroid c(xc,yc), the centroid would be considered as its 

origin so that the following equations would be used to determine the location of the rotated 

points (Pottmann et al., 2007): 

 x1 = [(x–xc) . cos(θ)] – [(y–yc) . sin(θ)] + xc  . . . . . . . . . . . . . [Eqn.  33] 

 y1 = [(x–xc) . sin(θ)] + [(y–yc) . cos(θ)] + yc  . . . . . . . . . . . . . [Eqn.  34] 
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3.4.2.2 Formulation of object rotation on Grasshopper® 

To rotate any object on Grasshopper®, the Rotate component is used. The Rotate component 

takes the geometry (shape surface), the angle of rotation (in radian or degrees), and point of 

rotation as inputs (the point that the object will rotate around). The point of rotation of any shape 

is its centroid in all the cases in this research. To achieve that, the Surface component is 

connected to the Area component that outputs the area and centroid of the object. The centroid is 

then connected to the point of rotation input of the Rotate component. With regards to the 

rotation angle, it is preferred to rotate the objects in increments of multiples of angles such as 

increments of 15o or 30o or 45o, depending on the user needs. As the increment decreases, the 

number of possible solutions increase, which increases the running time. A convenient increment 

of rotation is 30o. To program the increment in the model, the Multiply component is used in 

between the number slider and the angle input in the Rotate component in the arrangement 

shown in Figure 50-A. The value of the number slider shall be ranging from 0 to 

[(360/increment)-1] to cover the 360o rotation of the object. In Figure 50-B, the shape is rotated 

90o by setting the number in the number slider to 3 (because it is then gets multiplied by 30 to 

result in 90).  

 

 
Figure 50: Formulation of object rotation on Grasshopper® (Rotation angle = 90o) 
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3.5 Collision and Overlapping Prevention  

3.5.1 Background about Collision and Overlapping Prevention 

After modeling the site layout elements using one or more of the modeling methods previously 

discussed in Section 3.2, and defining their variables, the constraints have to be defined. The first 

constraint is collision prevention. Since the main variables in the site layout components are their 

coordinates, there is a large probability that two or more of them to collide and overlap in the 

model; which is not realistic in the real world. So, a module was developed to ensure the 

prevention of collision and overlapping of the different elements in the model. 

In Grasshopper® there is no direct way of preventing collision and overlapping, however there is 

a component that detects collision only and another component that detects overlapping only 

where both tools have to be used in parallel (Discussed in method 1). In order to simplify the 

model and minimize the used program components – to minimize the running time – two other 

modules were developed that detect both collision and overlapping at the same time (Discussed 

in method 2 and 3).  

Since the used optimizer Galapagos® does not have a direct method of inputting optimization 

constraints, the constraints are inputted as penalties that are added or subtracted from the 

objective function (The addition or subtraction of the penalty depends on whether the user 

requires to maximize the overall score or minimize it).  

3.5.2 Method 1: Combining the built-in collision detection and inclusion detection 

modules 

In this method, a combination of the built-in collision detection and the inclusion detection 

components were used. 

3.5.2.1 Collision Detection 

The Collision Many\Many Component is used to test for collision between multiple objects. It 

takes input from the Parameter that has the surfaces (objects) that the user needs to check for 

collision. The Collision Many\Many Component outputs a Boolean List of results of the 

collision tests performed; True [1] for collision, and False [0] for non-collision. For example, if 
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there are 4 objects that need to be tested for collision and two of them are colliding with each 

other, the output of the Collision Many\Many Component would be {False 0, True 1, True 1, 

False 0} (the arrangement of the True and False order depends on which objects in the input are 

colliding, the important thing is that the output shows two True values for the collision and tow 

False values for the non-collision). If the four objects were not colliding, then the output would 

be {False 0, False 0, False 0, False 0}. 

The List outputted from the Collision Many\Many Component is connected as input to the 

Create Set Component. The Create Set Component creates and outputs the valid set from a list 

of items; where the valid set contains only distinct elements. In other words, the Create Set 

Component takes a list and removes the repeated additional items from it. For example, if the 

input list is {False 0, True 1, True 1, False 0}, the output set would be {False 0, True 1}. 

The set outputted from the Create Set component is connected as a component to the Mass 

Addition Component. The output of the Mass Addition component is the summation of all the 

value in the set of input. So, in the case of one or more collisions, the output of the Mass 

Addition component would be =1. In the case of no collision, the output of the Mass Addition 

component would be = 0. 

Without using the Create Set Component and by just connecting the output list from the 

Collision Many\Many component to the Mass Addition component, the resultant would be the 

number of collisions occurring in the model, which could be as high as the number of analyzed 

objects. But by using the Create Set component, the resultant of the Mass Addition component is 

either 0 in case of no collision, or 1 in the case of collision no matter how many objects collide. 

This Boolean-like output simplifies the following step, which is the step involving the Stream 

Filter component. 

The Stream Filter component filters a collection of input streams. This component acts like a 

railroad switch; only one of the input streams is allowed to flow to the output parameter 

depending on the gate stream. It is like an “if statement”. In Figure 51-A, the inputs to the 

Stream Filter component are the gate, 0, and 1. The Gate is the resultant from the Mass Addition 

component, which is either 0 or 1. In case the gate input is 0 (meaning there is no collision), the 
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penalty is 0. In case the Gate input is 1 (meaning that there is collision), the penalty is 

10,000,000 or as the user specifies. 

Figure 51-A shows the full collision detection algorithm of method 1. The penalty is 0 since 

there is no collision between the objects as shown in the Rhino® window of the same figure. In 

Figure 51-B, the penalty is 10,000,000 since there is collision between some objects as shown in 

the Rhino® window in the same Figure. 

  

 

 
Figure 51: Method 1 of the collision detection algorithm (case of collision) 

Drawback: the collision detection algorithm in this method detects only collision of the 

boundaries of objects. It fails to detect inclusions where an object is inside another object as 

shown in Figure 51-C. Thus, another algorithm is developed to test for inclusion and both 

algorithms are run in parallel.  
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3.5.2.2 Inclusion Detection: 

The inclusion detection module in Grasshopper® has the main function of testing two objects for 

inclusion and providing an integer representing the result of whether object 2 is including 

(surrounding) the selected point in object 1 or not. The resulted integer is translated into penalty 

in case of inclusion. This module is used in parallel to the collision detection module because the 

later alone fails to detect full inclusions; it can only detect partial inclusions and collisions 

between objects. The following paragraphs describe the algorithm and formulation of the 

inclusion detection by itself, then a description of the utilization of both collision and inclusion 

detections in parallel is provided. 

The Point in Curve component is used to test a point for containment in a closed curve. It takes 

input from the Parameter that has the surfaces (objects) that the user needs to check for inclusion. 

The input node “P” is where the point for region inclusion test is connected, which is usually the 

point representing the centroid of the shape that is tested for inclusion. The input node “C” is 

where the curve forming the boundary region is connected. The Point in Curve component 

outputs an integer representing the input/region relationship from the resulting inclusion test; 

[Zero 0] meaning that the tested point is outside the region boundary, [One 1] meaning that the 

tested point is exactly coinciding with the region boundary, and [Two 2] meaning that the tested 

point is inside the region boundary.  

The output node of the Point in Curve component is connected to an Equality component that is 

programmed to output a Boolean of {True 1} in the case of full inclusion; where the output from 

the Point in Curve component equals to 2. The output of the Equality component is connected as 

an input gate at a Stream Filter component which is programmed to result in a penalty in the 

case of full inclusion; where the output from the Equality Component equals to 1.  

Figure 52-A shows the full inclusion detection algorithm of method 1 in the Grasshopper® 

window. In that figure, the penalty is 0 since there is no inclusion (the circular surface is not 

contained by the freeform surface) as shown in the Rhino® window. In Figure 52-B, the penalty 

is 10,000,000 since there is a case of full inclusion; where the circular surface is fully contained 

by the freeform surface.  
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Figure 52: The inclusion detection algorithm of Method 1  

Drawback:  the inclusion detection algorithm fails to detect partial inclusion or collision. As 

shown in Figure 52-C the inclusion detection algorithm gave a penalty of 0 despite the fact that 

the shapes are overlapping and colliding. Such failure occurs because the point that is selected to 

be tested for inclusion is the centroid; which in the case of the circular surface lies outside the 

boundary of the enclosing surface.  

 

3.5.2.3 Combination of collision and inclusion detection modules: 

The collision detection algorithm of method 1 detects collision (partial inclusion) and fails to 

detect full inclusion. And the inclusion detection algorithm of method 1 detects full inclusion and 
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fails to detect collision (partial inclusion). Accordingly, both algorithms have to be combined 

and used in parallel in order to provide credible results in all cases of partial and full inclusion. 

Table 11 shows the different outputs of the different components in both the collision and 

inclusion detection modules used in method 1.  

Table 11: Different results from the method 1 collision and inclusion modules 

Method 1 of collision and overlapping detection  In the case of collision 
(partial inclusion) 

In the case of full 
inclusion 

Collision detection 
module 

Output from the Collision Many\Many 
Component 1 0 

Penalty provided by algorithm Yes No 
Inclusion detection 
module 

Output from the Equality Component 0 1 
Penalty provided by algorithm No Yes 

Combination of 
both 

Output from the Mass Addition 
Component 1 1 

Penalty provided by algorithm Yes Yes 
 

The purpose of using a combination of both modules is to produce an algorithm that has a 

unified output for both partial and full inclusion. To perform so, the output nodes of both the 

Equality component and the Collision Many\Many component are connected as inputs to a 

Merge component as shown in Figure 53-A. The Merge component merges a group of data 

streams. Its output is connected to the input node of a Create Set Component that creates and 

outputs the valid set from a list of items; where the valid set contains only distinct elements. A 

Mass Addition component is connected to add all the numbers in the set. The addition would 

always be equal to 1 in the case of either partial or full inclusion. The addition would be equal to 

0 in the case of no inclusion or collision. 

3.5.2.4 Verification and Validation of Method 1 (Using the combination of modules): 

In order for Method 1 to be verified, it was tested in the following three cases: no overlapping, 

partial overlapping (collision), and full overlapping (full inclusion). Figure 53-A demonstrates 

the Grasshopper® formulation of Method 1 showing no penalty due to the fact that there is no 

overlapping of objects shown in the Rhino® window of the same figure. In the case of partial 

overlapping shown in Figure 53-B the Grasshopper® formulation outputs a penalty. In the case of 

full overlapping - inclusion - shown in Figure 53-C, the Grasshopper® formulation outputs a 

penalty. Thus, Method 1 is verified and validated.  
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Figure 53: Combination of Modules of Method 1 (full overlapping) 

3.5.2.5 Drawbacks of method 1 

Using a combination of the built-in collision and inclusion detection modules of Grasshopper® 

provides a valid algorithm to penalize the cases of partial and full overlapping in a penalty 

function that would be understood by the optimization model as a constraint. However, it poses 

two drawbacks. The first drawback is that the formulation of this algorithm on Grasshopper® is 

relatively complex; which contradicts one of primary purposes of using Grasshopper® as a 
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modeling tool; especially that there are other methods that were found to be much less complex 

(See method 2 and method 3). The second drawback, which is the primary reason for not 

selecting this method, is that it cannot test for the inclusion of more than one object in another 

object; so it is unrealistic to use this since it is crucial to test for overlapping and inclusion in all 

of the objects. 

3.5.3 Method 2: Using the Area Union Approach  

3.5.3.1 The algorithm of Method 2 in collision and overlapping prevention 

In this method, a whole new mathematical approach is followed for overlapping detection. This 

approach is made applicable by the Region Union Component of Grasshopper®. The algorithm 

behind this method is as follows: 

1. Specify the area of each object [Ai]. 

2. Get the summation of the areas of the objects [ΣAi]. 

3. Union the surfaces of the objects into one surface. 

4. Specify the area of the resultant of the union of surfaces [Au]. 

5. There are only two possible outcomes: 

a. ΣAi = Au à means that there is NO overlapping à No penalty. 

b. ΣAi > Au à means that there is overlapping à Penalty. 

 

 
Figure 54: Visual explanation of the idea behind overlapping detection using the surface union 

Figure 54 provides a visual explanation of the utilization of the surface union in the overlapping 

detection. In the left side of Figure 54, objects A and B are not overlapping, the union of their 

surfaces is actually their same surfaces with no change in the boundaries or areas. So the addition 
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of their areas as separate surfaces is equal to the area of the union of their surfaces. On the other 

hand, in the right side of Figure 54, objects A and B are overlapping, so the union of their shapes 

deletes the repetition of the overlapped area. Accordingly the union of their shapes is one shape 

with an area that is less than the summation of the their areas separated. 

3.5.3.2 Formulation of Method 2 on Grasshopper®: 

As shown in Figure 55, after the surfaces are specified, the process is branched into an upper 

branch and lower branch then it is combined back again into a single branch comparing both to 

each other.  

The upper branch yields the summation of the areas of the shapes separately. The Area 

component is connected at its input node to all of the objects that are tested for overlapping. The 

output is a list of the areas of all the connected objects. Then all of the numbers (areas) in the list 

are added using the Mass Addition component resulting in [ΣAi] discussed in Section 3.5.3.1. 

The lower branch yields the area of the union of objects. The Region Union component is 

connected at its input node to all of the objects that are tested for overlapping. The output is a 

single surface that is defined by the union of all of the connected surfaces. The area of the 

outputted surface is obtained and represented as [Au].  

The [ΣAi] and the [Au] are then connected to the Inequality components that tests for inequality; 

where [ΣAi] is connected to Input Node A and [Au] is connected to Input Node B. The Output 

Node marked [=] provides a Boolean output; where “1” means that A = B and “0” means the A ≠ 

B. The Output Node marked [=] is conneted to the Stream Filter component that imposes a 

certain penalty in the case overlapping. A More detailed description of the Stream Filter 

component is provided in section 3.2.2.  

3.5.3.3 Verification and Validation of Method 2: 

In order for Method 2 to be verified, it was tested in the following three cases: no overlapping, 

partial overlapping, and full overlapping. Figure 55-A demonstrates the Grasshopper® 

formulation of Method 2 showing no penalty due to the fact that there is no overlapping of 

objects. In the case of partial overlapping shown in Figure 55-B, the Grasshopper® formulation 
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outputs a penalty. In the case of full overlapping - inclusion - shown in Figure 55-C, the 

Grasshopper® formulation outputs a penalty. Thus, Method 2 is verified and validated.  

 

 

 
Figure 55: Formulation of Method 2 in overlapping detection algorithm   

3.5.4 Method 3: Using the Area Union Approach – Visual Basic Replacing the Stream 

Gate Component 

3.5.4.1 The algorithm of Method 3 in collision and overlapping prevention 

The algorithm in this method is exactly the same as in Method 2. The only difference is in the 

means.  

3.5.4.2 Formulation of Method 3 on Grasshopper®: 

This method uses the same formulation in Grasshopper® as in Method 2 with only one 

difference. In this method, the VB.NET Scripting component is used to decide the penalty 

instead of the Stream Filter component used in Method 2.  

The VB.NET Scripting component compiles and runs user specified Visual Basic code. By 

default there are two input parameters {x,y} and one output parameter {A}, all of which are of 

Grasshopper® window Rhino® window 

Grasshopper® window Rhino® window 

Grasshopper® window Rhino® window 

A) No Overlapping 

B) Partial Overlapping 

C) Full Overlapping (Inclusion) 
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type System.Object. Input and output parameter can be added, deleted and renamed through the 

component menu.  

In this method, the VB.NET Scripting component is connected at its input node to the equality 

output of the Inequality component. The Visual Basic code is written in the component as an if-

then-statement as shown in Figure 56.  

 
Figure 56: The Visual Basic code used in Method 3 

3.5.4.3 Verification and Validation of Method 3: 

In order for Method 3 to be verified, it was tested in the following three cases: no overlapping, 

partial overlapping, and full overlapping.  

Figure 57-A demonstrates the Grasshopper® formulation of Method 3 showing no penalty due to 

the fact that there is no overlapping of the objects. In the case of partial overlapping shown in 

Figure 57-B, the Grasshopper® formulation outputs a penalty. In the case of full overlapping - 

inclusion - shown in Figure 57-C, the Grasshopper® formulation outputs a penalty. Thus, Method 

3 is verified and validated.  
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Figure 57: Formulation of Method 3 in overlapping detection algorithm 

3.5.4.4 Drawback of method 3 

The only drawback in this method is its relatively long processing time. Grasshopper® takes 

longer time (relative to Method 2) to run a model containing Visual Basic script because in each 

run it has to open the Visual Basic component and reads the code and compiles it to a format that 

matches the rest of the Grasshopper® code. 

3.5.5 Comparison of methods in collision and overlapping detection 

Method 1 utilizes the Grasshopper® built-in collision detection and inclusion detection modules. 

However, its coding is relatively complex and it gets more complicated as the number of 

analyzed objects increases. Method 2 uses a different approach; which is the area union 

approach. The advantage of this method is that it is not complicated and does not get 

complicated by increasing the number of objects. The algorithm and formulation is the same 

regardless what the number of objects is. Method 3 uses the same approach of Method 2 but with 

a minor change in the Grasshopper formulation by using Visual Basic to provide the penalty in 

case of overlapping. This method has the same advances of simplicity as Method 2. However it 

has a drawback that it takes relatively longer time to run. 

Accordingly, the selected method for overlapping detection and prevention is Method 2. 

Grasshopper® window Rhino® window 
A) No Overlapping 

B) Partial Overlapping 

C) Full Overlapping (Inclusion) 

Grasshopper® window Rhino® window 

Grasshopper® window Rhino® window 
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3.6 In-site Constraint 

3.6.1 Algorithm of the In-site Constraint 

The objective of the In-site constraint is to ensure that facilities are inside the site boundaries. If a 

facility (object) is partially or fully outside the site boundaries in any of the model runs, the In-

site constraint would result in a penalty that is added to the objective function. The resulting 

penalty is named the Out-of-Site Penalty. The In-site constraint uses the same methodology –the 

area union approach- used in the collision and overlapping prevention constraint; method 2 

(Refer to section 4.4.3 for further demonstrations of the concept of the area union approach). The 

algorithm for the In-site constraint is as follows: 

1. Form a surface from the site boundaries, in order for the site to be considered as an 

object. 

2. Specify the area of the site [As]. 

3. Union the surfaces of the objects and the site into one surface. 

4. Specify the area of the resultant of the union of surfaces [Au]. 

5. There are only two possible outcomes: 

a. As = Au à means the objects are inside the site boundaries à No penalty. 

b. As > Au à means the objects are inside the site boundaries à Out-of-site penalty. 

3.6.2 Formulation of the In-site Constraint on Grasshopper®  

As shown in Figure 58, after the surfaces of the objects and the site are specified on 

Grasshopper®, the process is branched into an upper branch and lower branch then it is combined 

back again into a single branch comparing both to each other. The upper branch fetches the area 

of the site [As] using the Area component connected to the input node of the Surface component 

representing the site. The lower branch obtains the area of the union of objects. The Region 

Union component is connected at its input node to all of the Surface components representing 

the site facilities and the site area. The output is a single surface that is defined by the union of 

all of the connected surfaces. The area of the outputted surface is obtained and represented as 

[Au]. The [As] and the [Au] are then connected to the Inequality component that tests for 

inequality; where [As] is connected to Input Node A and [Au] is connected to Input Node B of 

the Inequality component. The Output Node marked [=] provides a Boolean output; where “1” 
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means that A = B and “0” means the A ≠ B. The Output Node marked [=] is connected to the 

Stream Filter component that imposes a certain penalty in the case any of the facilities are out of 

the site boundaries. A More detailed description of the Stream Filter component is provided in 

Section 3.2.2.  

3.6.3 Verification of the In-site Constraint Algorithm 

In order for the algorithm to be verified, it was tested in the following two cases: case 1) all 

objects inside the site boundaries, and case 2) some objects are inside the site boundaries and 

others are partially outside the site boundaries. Figure 58-A demonstrates the Grasshopper® 

formulation of the In-site Constraint algorithm where all facilities are inside the site boundaries; 

thus no penalty was applied. In the case 2, as shown in Figure 58-B the Grasshopper® 

formulation outputs a penalty due to the fact that some facilities are outside of the site 

boundaries. Thus, the algorithm is verified and validated.  

 

 
Figure 58: Formulation of In-site Constraint Algorithm 

The use of In-site Constraint algorithm is essential in every site layout optimization module to be 

formulated using Grasshopper®. Since the in-site constraint using the area union algorithm is 

verified and validated, it can be used with any number of site facilities and any shape of site 

boundaries. 
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3.7 Area Constraint For Dynamic Geometrical Shapes 

3.7.1 Algorithm of the Area Constraint 

Dynamic objects (Sections 4.2.2, 4.2.3, and 4.2.4) change their form in every run in the 

optimization model. By changing the form, the area changes as well. Sometimes the site planner 

is bound to specify upper and lower limits for the shapes areas depending on other planning 

criteria. For example, a sand pile is modeled as a Dynamic Freeform (Section 4.2.3) where it 

shapes itself depending on the site conditions. However, the area of the pile of sand should have 

a range depending on the site. So, if the site planner needs 80m2 of land to be used a sand pile, he 

would set an upper limit of 90m2 and lower limit of 70m2. The model runs and provides a 

suitable shape for the sand pile with an area within the range set by the planner. The algorithm 

behind the Area Constraint is as follows: 

1. Obtain the area [A] of the dynamic shape. 

2. Set minimum [Amin] and maximum [Amax] limits of the area. 

3. If A > Amin AND  A ≤ Amax, then no penalty, Else, then apply penalty. 

3.7.2 Formulation of the Area constraint on Grasshopper® 

In Grasshopper®, the area of the dynamic object is obtained using the Area component 

connected to the output node of the Surface component representing the dynamic object. The 

Larger component and the Smaller components combined with the And component in the 

arrangement shown in Figure 59 to model the “If-then function” described in step 3 of the 

algorithm. The resultant from the And component is a Boolean (0 for not satisfying the area 

conditions and 1 for satisfying the area condition). The output node of the And component is 

connected to the input node of the Stream Filter component for the application of penalty in the 

case of not satisfying the area conditions.  

3.7.3 Verification and Validation of the Area Constraint Algorithm 

In order for the algorithm to be verified, it was tested in the following two cases: case 1) 

dynamic object area between the lower and upper limits (satisfying the area condition), and case 

2) dynamic object area lower than the lower limit (not satisfying the area condition). Figure 59-A 

demonstrates the Grasshopper® formulation of the Area Constraint algorithm in case 1; thus no 
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penalty was applied. In the case 2, as shown in Figure 59=B the Grasshopper® formulation 

outputs a penalty due to the non-satisfaction of the area conditions. Since the formulation of the 

algorithm on Grasshopper® behaved as expected and ran without errors, the algorithm is verified 

and validated. 

 

 
Figure 59: Formulation of Area Constraint Algorithm (Case 2: object area less than lower limit) 

 

3.8 Proximity Relationships - Identification of Control Points of Objects for 

Distance Measurement 

3.8.1 Background about the used proximity relationships 

One important aspect in any site layout optimization model is the measurement of distance 

between facilities; because such distances are multiplied by the proximity weights to obtain the 

overall site layout score. In this research, 3 different proximity relationships between facilities 

are used: 1) Center-to-Center [CC], 2) Point-to-Point [PP], 3) Center-to-Point [CP], and 4) Side-

to-Side [SS]. 
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3.8.2 Center-to-Center [C-C] Proximity Relationship 

The most simple proximity measure to use on Grasshopper® is the Center-to-Center; where the 

distance is measured between the centroids of the selected facilities. Figure 60 provides a 

demonstration of a simple Center-to-Center proximity relationship. An Area component is 

connected to the Surface component corresponding to each of the two objects. One of the 

outputs of the Area component is the coordinates of the centroid, marked as (C) in the output end 

of the component. After obtaining the coordinates of the centroids, measuring the distance 

between them can be made by one of two distance measurement techniques that are described in 

details in Section 3.9. In the demonstration shown in Figure 60, the distance measurement 

technique is the Direct (Cartesian) one for simplicity. 

 
Figure 60: Formulation of the Center-to-Center proximity relationship 

Figure 61 shows the alignment of the two objects previously shown in Figure 60 if they were 

connected to an optimization engine with the objective function to minimize the distance 

between their centroids without collision. 

Center-to-Center proximity relationship is a fair abstraction of the 

proximity between site facilities, and can be used in models with no 

concerns in many of the cases; however, in some cases, measuring the 

distance between the centroids of facilities does not fully capture the 

real need of the site planner, in the sense that sometimes the 

significance of distance is abstracted between points that are not the 

centroids. As an example, the site planner might need the  door (not 

the centroid) of a certain facility to be close to the door of another. So, 

Measured distance 

Figure 61: Min. [CC] 
distance between two 

objects 

Min. distance 

Grasshopper® window Rhino® window 



Page 89 

the centroidal distance is not the important measure here but the rather the distance between the 

doors; or in other words the Point-to-Point distance; because a door of a facility is modeled as a 

point on its outer perimeter.  

3.8.3 Point-to-Point [P-P] Proximity Relationship 

As mentioned in Section 3.8.2, sometimes the centroidal distances are not the proper 

representations for the actual modeling required by the site planner. The first step in the Point-to-

Point proximity algorithm is to select the points on the objects’ external perimeter, which is 

referred to in Grasshopper® as point on curve. In order to achieve that, a Point on Curve 

parameter is connected to the output nodes of each of the Surface components representing the 

objects. The output of the Point on Curve parameter is simply a point on the external parameter 

of the connected shape. The Point on Curve parameter is a slider with values ranging from 0 to 

1, representing the whole perimeter of the object. So the user slides that slider until a point of 

satisfaction is reached, After obtaining the points that the distance is required to be measured 

from, the second step is to use either of the measuring distance techniques described in Section 

4.9 to measure the distance between the selected points. In the demonstration shown in Figure 

62, the distance measurement technique is the Direct (Cartesian) one for simplicity. 

 
Figure 62: Formulation of the Point-to-Point proximity relationship 

Figure 63 shows the alignment of the two objects previously shown in Figure 62 if they were 

connected to an optimization engine with the objective function to minimize the distance 

between their selected points [PP] without collision. 
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Figure 63: Min. [PP] distance between two objects 

3.8.4 Point-to-Center [PC] and Center-to-Point [CP] Proximity Relationship 

The PC and CP proximity relationship is where the distance is measured between the centroid of 

an object and the point on curve of the second object. The formulation does not differ from what 

is presented in Sections 3.8.2 and 3.2.3. The user uses the Area component to obtain the centroid 

coordinates of the first object and uses the Point on Curve parameter to obtain the point on the 

second object’s perimeter. This is just a combination of the formulations used in Sections 3.8.2 

and 3.2.3. 

3.8.5 Side-to-Side Proximity Relationship 

Sometimes, the planner does not only want to ensure a certain facility or object to be next to 

another object; he also might want to ensure that a certain side from object A (such as the 

entrance side of workshop) is close to a certain side from object B (such as an entrance side of a 

storage facility). For example in Figure 64, the centroids of objects A and B are close to each 

other. So if normal centroidal distance [CC proximity] was used, the model would probably not 

make any changes and consider this arrangement good enough. However, the site planner might 

want to specify that he/she wants the left side of object A to be close to the right side of object B; 

hence a model that understands this would make suitable changes in the alignment to satisfy the 

planner’s criteria as shown in Figure 65. In this type of proximity relationship, the used 

algorithm for formulation is the same as used in the Point-to-Point proximity relationship 

algorithm; except that here, the user specifies 3 points in each object. So, the Surface component 

representing object A has 3 Point on Curve parameters connected to it to generate 3 points on 
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the selected side of the object (Points PA1, PA2, and PA3). Same goes for object B, the three 

formed pints are PB1, PB2, and PB3. Three distances are then measured: 1) Distance between first 

point of object A and first point of object B [D1], 2) Distance between second point of object A 

and second point of object B [D2], and 3) Distance between third point of object A and third 

point of object B [D3]. The average of the 3 distances [AD1,2,3 = (D1+D2+D3)/3] is obtained using 

the Average component as shown in Figure 64. The number outputted from the average 

component is the number that is entered in the inter-facility-distance matrix (D) (See section 

4.10). 

 
Figure 64: Formulation of the Side-to-Side proximity relationship 

 
Figure 65: Min. [SS] distance between two objects 

Figure 65 shows the alignment of the two objects previously shown in Figure 64 if they were 

connected to an optimization engine with the objective function to minimize the distance 

between their selected sides [SS] without collision.  
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3.9 Distance Measurement Techniques 

3.9.1 Introduction to the Used Distance Measurement Techniques 

After the user specifies the “snipping” points, meaning the points that the distances are measured 

in between, it is essential that distance measurement technique to be specified. This research 

provides two possible distance measurement techniques: 1) Direct (Cartesian) distance , and 2) 

Shortest Walk distance. The Cartesian distance between two points is the shortest straight-line 

distance between any two points. The Shortest Walk distance is the distance between two points 

while taking into consideration a certain path that avoids colliding with obstacles.  

3.9.2 Direct (Cartesian) Distance 

The Cartesian distance is the mostly used distance measurement technique by many of the 

previous researchers. Its common spread comes from its simplicity. The Cartesian distance 

between any two points with known coordinates is calculated by this simple formula: 

 𝑑 = (∆𝑥)! + (∆𝑦)!+(∆𝑧)!  . . . . . . . . . . . . . . . . . . . . . [Eqn.  35] 

Where,    d: distance between the two points 
     Δx: difference between the x-coordinates of the two points 

Δy: difference between the y-coordinates of the two points 
Δz: difference between the z-coordinates of the two points 

  
On Grasshopper®, calculating the Cartesian distance between any two points is very simple by 

defining the points and using the Distance component connected to the two points as shown in 

Figure 66. So, after the user defines the points using either of the mentioned proximity 

relationships stated in Section 3.8, he connects between the defined points using the Distance 

component. 

 
Figure 66: Cartesian Distance measurement on Grasshopper® 
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3.9.3 Shortest Walk Distance 

The Shortest Walk distance in this research is defined as the minimum distance between two 

points; where it follows a certain path (walk) that does not collide with obstacles. This distance 

measure is more realistic since it mimics the behavior of man, material, and equipment 

movement on site. Providing an algorithm for measuring the Shortest Walk distance is not a 

simple task as the Cartesian distance. A 7-seps algorithm is provided in this research for 

measuring the Shortest Walk distance on Grasshopper®. The main 7 steps of the algorithm 

formulation are shown in Figure 67 (upper part of the figure shows the full formulation and 

components connections on Grasshopper® while lower part of the figure shows a visual 

demonstration of the 7 steps). 

Measurement of the Shortest Walk distance on Grasshopper® is made possible by the component 

plug-in named “Shortest Walk” developed and released by McNeelEurope in 2011 

(www.food4rhino.com). The “Shortest Walk” component measures the Shortest Walk distance 

between any two points by analyzing the available paths (walks) and selecting the one that has 

the shortest distance of walking. The plug-in only understands lines as paths (walks), and the 

walks (network of lines) have to be pre-specified. So the most convenient way of creating the 

walks is by using network grids. In a grid, there are many possibilities of connecting between 

any two points; the plug-in component counts all the possible paths (walks) and calculates their 

distances and specifies the walk with the shortest distance. To enable to the plug-in to avoid 

obstacles, which are all the objects in the site layout, the objects have to be off the grid; meaning 

that there are no possible walks that pass inside them. The developed algorithm for incorporating 

the “Shortest Walk” component plug-in to site layout problems is made of 7 steps that are 

necessary for the automation of the model and for making a generic one (meaning that it can 

work on any shapes of the objects and the site, and it can work while the solver is running by re-

setting the grids and performing all steps to recalculate the Shortest Walk distance in every run. 

The following paragraphs provide detailed explanation of the algorithm steps and closer 

screenshots from the Grasshopper® window showing the corresponding formulation of each 

step. 
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Figure 67:  Steps of formulated the Shortest Walk distance measurement algorithm on Grasshopper® 

Step 1 – Creating site objects and boundaries: This step is an integration of many steps that 

result in the creation of the shapes and sizes of both the site boundaries and the facilities 

(objects) discussed in Section 3.2. Since the this section is for the purpose of demonstrating the 

Shortest Walk algorithm and not the forming of the site objects, both the construction site 

boundaries and the shapes of the objects are formed on Rhino® and imported to Grasshopper® in 

a summarized form as shown in Figure 67. The site is treated as object in the sense that is has its 

own surface as all of the rest of the site objects.  
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Step 2 – Creating square grids: The square grids form the possible walks that will be used by 

the Shortest Walk component plug-in in its analysis. The Shortest Walk plug-in does not 

consider any paths outside of the grid lines since it only consider walks formed by connected 

lines or curves. There are several other grid types such as rectangular, circular, and pentagonal 

grids. The grids used in this research are square grids. But, the model is very generic and it is 

very simple to change the type of used grid. The square grids are formed using the Square Grid 

component on Grasshopper®. In this component, the user has the flexibility of setting the plane 

of the grid (preset as the XY plane), the size of the grid cell (set t 1x1m), number of grids in the 

x-direction (set as 25 in the figure), and the number of grids in the y-direction (set as 25 in the 

figure). The output node marked as “C” in the Square Grid component provides the grid cell 

outlines (gridlines) as one whole curve definition. When forming the grids, the grids should 

embrace the site boundaries; in other words, the borders of the gridlines should surround the site 

borders from all directions.  

Step 3 – Trimming the grids to the site boundaries: All grids outside the site boundaries are 

not needed, so they are trimmed using the Trim With Regions component that trims a curve 

definition (lines or curves) with one or more regions (surface definitions). The input node 

marked as “C” in the Trim With Regions component is where the curve-to-trim is connected; so 

it is connected to “C” output node of the Square Grid component. The input node marked as “R” 

in the Trim With Regions component is where the regions-to-trim-with are connected; so it’s 

connected to the output node of the Surface component representing the site. The output node 

“Ci” is the split curves inside the regions and the “Co” is the split curves outside the regions. 

Since the external part of the grid is the one that needs to be removed, the “Ci” node is connected 

to a Curve parameter, and the preview original grid along with the preview of the trimming tool 

are turned off, so only the grids inside the site boundaries are shown. 

Step 4 – Trimming the grids to the objects: After ensuring that the grids are inside the site 

boundaries (step 3), step 4 is concerned about ensuring that the grids are outside of the site 

facilities (objects). The resulting grid from step 3 is trimmed using the Trim With Regions 

component. This time the input node marked as “C” in the Trim With Regions component is 

connected to the Curve parameter representing the resultant gridlines of step 3, and the input 

node marked as “R” in the Trim With Regions component is connected to the output nodes of 
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the Surface components representing the site facilities (objects). This connection is shown in the 

upper part of Figure 67. This time the output node “Co” is the one that is connected to a Curve 

parameter and all of the other previous components representing grids are hidden (preview 

turned off) to preview only the grids between the objects and the site boundaries. 

Step 5 – “Exploding” the grids into separate lines and points: So far, the grids are treated as 

one whole curve definition. The Shortest Walk component plug-in takes separate connected lines 

as input, so the grid has to be “exploded”. The Explode component explodes the curve definition 

of the grid into smaller segments; the resultant is a series of lines and points.  

Step 6 – Delete the grid points and keep the lines: The lines and points resulting from the 

Explode component (step 5) can not be used as inputs to the Shortest Walk plug-in yet; the 

points have to be filtered out so that only the lines forming the grids are outputted. The Cull 

Pattern component is used for this purpose. The function of a Cull Pattern component is to cull 

(remove) elements in a list using a repeating bit mast that is defined as a list of Boolean vales. 

The bit mask is repeated until all elements in the data list are evaluated. For example, if an input 

list = {A, B, C, D, E, F, G, H, I} and the bit mask pattern = {True, True, False, False}, then the 

output list = {A, B, E, F, I}. Since the list outputted by the Explode component is arranged in the 

following order {line, line, point, point, line, line, point, point …}, the bit mask to remove the 

points is {True, True, False, False}. The culled list containing the grid “lines” is stored in the 

Curve parameter connected to the output node of the Cull Pattern component.  

Step 7 – Obtain the Shortest Walk distance: The Shortest Walk distance plug-in component 

takes 3 inputs; only 2 are used in the scope of this research. The inputs are “C” the curves group 

and “P” the line from the start to the end of the path. The curves group is the group of lines 

forming the grids; which is represented in the Curve component of step 6. For the “P” input, a 

line has to be formed between the two points that the distance is measured between. The line is 

formed using the Line (Ln) component. The formed line can be hidden so it does not disrupt the 

user’s view. The Shortest Walk component draws the path representing the Shortest Walk 

distance. 

The 7-stepped algorithm ensures both a generic and flexible stand-alone module that can be 

added to any site layout optimization problem on Grasshopper®. The algorithm adjust the grids 
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automatically in each run because it repeats all of the steps in each run. However, using this 

algorithm for distance measurement adds to the overall computing time if used in an extensive 

site layout optimization model. So it is recommended to use Cartesian distances unless it was 

required to use the Shortest Walk distances. 

3.9.3.1 Effect of grid size on the Shortest Walk distance 

As the grid size decreases, the better the accuracy of the obtained distance. Figure 68 shows the 

Shortest Walk between two points in three cases of grid sizes while maintaining all other 

variables constant. Larger grid size results in unnecessary distances in the walks. So as the 

number of size of grids decrease, the Shortest Walk distance decreases (becomes more efficient 

and accurate), and actually the path itself changes to a shorter path as shown in the figure. 

 
Figure 68: The effect of grid size on the Shortest Walk distance 

3.9.4 Comparison between Cartesian and Shortest Walk distances 

Figure 69 provides a comparison between the Cartesian distance and the Shortest Walk distance 

in various situations. As expected, the Cartesian distance is smaller than the Shortest Walk 

distance in all cases. It can also be noticed that the Shortest Walk distance algorithm can work in 

cases where the measurement points are inside the objects (such as centroids) and not on the 

grid. In such cases, the Shortest Walk path starts from the point on the grid that is nearest to the 

point of the measurement point such as in cases 3 and 4. In Figure 69, the white line resembles 

the Shortest Walk distance while the green line resembles the Cartesian distance. 

Grid Size 
= 1m x 1m 

 

SW distance  
= 32.7m 

Grid Size 
= 1/2m x 1/2m 

 

SW distance  
= 28.7m 

Grid Size 
= 1/4m x 1/4m 

 

SW distance  
= 22.6m 
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Figure 69: Comparing the Cartesian distance to the SW distance 

There are no certain rules for preferring to use the Shortest Walk distance or the Cartesian 

distance in the model; both options are available in the developed model and the user is left to 

choose any of them. The model allows the user to choose a distance measurement technique for 

each single distance between the different facilities; which provides a great flexibility. Also, the 

user might prefer to generalize a distance measurement technique on all distances; the model 

allows for that too. 

3.10 Buffer Zones 
Some site facilities are allowed to be laid next to each other without a buffer space and others 

require some space around them. If a square-shaped facility with dimensions of 4m x 4m 

requires a buffer zone around it of 1m, and the required buffer zone is a must; meaning that it 

absolutely not allowed for any reason to be put next to it with spacing less than this 1m, then that 

facility shall be modeled as a 5m x 5m square and the collision prevention module shall ensure 

there is no collision. However, if the buffer zone is not a must; meaning that it is only preferred 

to leave a spacing of 1m (or any other dimension) unoccupied around the facility with putting a 

small penalty for any other facility that collides with this buffer zone, then the “Buffer Zones 

Module” is recommended to be used. 

The Buffer Zones module is an algorithm developed on Grasshopper® in this research to model 

buffer zones around facilities with user-defined thickness, while adding a soft constraint for 

colliding with these buffer zones. The soft constraint is part of the algorithm where a penalty is 

calculated base on the area of collision with the buffer zone. So, the optimization model might 
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allow for facilities overlapping with buffer zones of other facilities if it is for the better of good 

of the whole objective function.  

The Buffer Zones module is made of two sub-modules: 1) Creation of buffer zones, and 2) 

Setting the soft constraint penalty. The creation of buffer zones on Grasshopper® is based on 3 

steps demonstrated in Figure 70. The first step is to create the shape representing the facility 

using any of the algorithms stated in Section 3.2. The second step is forming an offset curve 

definition on the external end of the original shape using the Offset component. The user can 

determine the offset distance by writing it in a Panel parameter and connecting it to the “D” 

input node of the Offset component. The third step is forming a surface between the original 

shape boundaries and the offset curve using the Ruled Surface component that creates a surface 

between any two curves.  

 

 
Figure 70: Steps of creating buffer zones on Grasshopper®(Up) and  

the corresponding demonstration of the three steps on Rhino® window (Down) 

Setting the buffer zone soft constraint penalty on Grasshopper® is similar to setting the collision 

and overlapping constraint (method 2) described in Section 3.5.3 with two differences: 1) The 

unioned surfaces are the buffer zones, not the facilities, and 2) the penalty is not a static penalty, 

but rather a dynamic one depending on the area of overlapping using the following function:  

 𝐵𝑢𝑓𝑓𝑒𝑟  𝑍𝑜𝑛𝑒  𝑃𝑒𝑛𝑎𝑙𝑡𝑦   =   𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑  𝑎𝑟𝑒𝑎  ×  𝑈𝑛𝑖𝑡  𝑃𝑒𝑛𝑎𝑙𝑡𝑦  . . . . . [Eqn.  36] 

where the unit penalty is a user-defined penalty per 1m2 of overlapping with buffer zones. Figure 

71 demonstrates the Buffer Zone penalty algorithm on Grasshopper® using a unit penalty of 

500/m2. The user can modify the penalty depending on his preferences. 
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Figure 71: Formulation of the Buffer Zones Penalty algorithm on Grasshopper® 

     
Figure 72: Demonstrating the Buffer Zones soft constraint 

To demonstrate the dynamic nature of the buffer zone soft constraint, a sample layout of 3 

facilities with different shapes were modeled and shown in Figure 72. In part A of the figure the 

resulting penalty is 0 since there was not overlap between any of the buffer zones. In part B, the 

penalty was 3,400 added to the overall model score due to some overlapping. In part C, the 

overlapping was more severe, accordingly the penalty increased to 10,700. The penalty and the 

overall score do not have a specific unit. 

Based on tests, it shall be noted that using the Buffer Zones module almost doubles the 

processing time of the model. Accordingly it is not recommended to be used at this current stage, 

unless it is strongly required by the user, as it requires further development to minimize its 

processing time. It also shall be noted that this module works on any of the geometries stated in 

this research (Section 3.2).  
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3.11 Formulating the Objective Function 

3.11.1 Proximity Weights 

Effective placement of facilities within the site facilitates the movement of resources, or 

basically the interactions, among the facilities. Such interactions are referred to as the proximity 

relationships among the facilities (Hegazy and Elbeltagi, 1999). The proximity relationships 

represent the preference of the site planner in locating the facilities near or far from one another. 

There are quantitative and qualitative methods for specifying these proximities. The quantitative 

methods consider the actual transportation time and cost of personnel and materials between the 

facilities. The qualitative method considers subjective numerical proximity weight to represent 

the desired inter-facility proximity (close or far). The scope of this research is not focused on 

investigating the most suitable method. The developed model suits both methods as it is generic. 

The user has the flexibility to input the proximity weights that he desires. For demonstration 

purposes in this research, the qualitative method is used. The method used in this research is the 

qualitative method. If the two facilities are required to be close to each other, the proximity 

weight between them would have a high value. As stated in the literature review, several scales 

have been adopted to represent the proximity weights representing the qualitative importance of 

closeness of objects in numerical values. The proximity relationship weights used in this research 

are provided in Table 12. It is to be noted that there is no theoretical background for the exact 

numerical values given to each closeness level except that the used values are almost the same as 

the ones used in various previous research efforts. Since the objective function is to minimize the 

overall score (which is the multiplication of the proximity weight and the inter-facility 

distances), as the proximity weight increases, the model targets to decrease the distance to 

minimize the score. Accordingly, in this research, any two facilities with undesirable relationship 

would have a proximity weight of a negative value, so as the distance between those two 

facilities increases the smaller the score. Accordingly, the model would focus on both 

minimizing the distances between facilities with strong relationships and maximizing the 

distances between the facilities with undesirable relationships. 
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Table 12: Proximity Relationship Weights 

Desired relationships 
between facilities 

Proximity 
Weight 

(W) 
Absolutely necessary 81 
Especially important 37 
Important 9 
Ordinary closeness 3 
Unimportant 1 
Undesirable -9 

 

3.11.2 Objective Function 

The inter-facility distance is measured (explained in Sections 4.8 and 4.9) and organized in a 

matrix named the inter-facility distance matrix (D).  Matrix D is then multiplied by Matrix W in 

a scalar multiplication as shown in Figure 73, then all of the numbers in the resulting matrix are 

added to obtain the proximity score. 

 
Figure 73: Multiplication of W and D matrices 

The mathematical formulation of the proximity score is as follows: 

𝑃𝑟𝑜𝑥𝑖𝑚𝑖𝑡𝑦  𝑆𝑐𝑜𝑟𝑒 = 𝑇𝑜𝑡𝑎𝑙  𝑇𝑟𝑎𝑣𝑒𝑙  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝐷!"𝑊!"

!!!

!!!!!

!

!!!

 

Where, 
Dij = distance between facilities i and j. 
Wij = desired proximity weight value between facilities i and j. 

For static site layouts, the objective function is to minimize the summation of the proximity score 

and all the penalties corresponding to the constraints. Since the penalties are very large positive 

values and the model objective is to minimize the objective function, the model will produce 

. . . [Eqn.  37] 
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many runs to reach a near-optimum solution where all the penalties are zeros and at the same 

time the proximity score is minimized. A small proximity score means that the site facilities are 

laid in accordance to the preferences of the user (facilities that are required to be close to each 

other are actually close to each other and vice versa). In tight construction sites, the number of 

valid solutions (where all penalties are zeros) is relatively small, so the efforts of the 

optimization would be to find valid solutions rather than optimal solutions. In a way, valid 

solutions in a tight site are some kind of near-optimum solutions. However, if it is possible to 

start the solver with a valid solution, the solver would concentrate its efforts to find better 

solutions so there are better chances of reaching more optimum solutions. The objective function 

used for static site layouts is shown in Equation 38. 

 

𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒  𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐷!"𝑊!"

!!!

!!!!!

!

!!!

+ 𝑃! + 𝑃! + 𝑃! + 𝑃!" 

Where,    Dij = distance between facilities i and j. 
Wij = desired proximity weight value between facilities i and j. 
Pc: collision penalty  

  Ps: out-of-site Penalty 
Pz: area penalty 
Pbz: buffer zones penalty   

For dynamic site layouts, each phase is treated as a separate static optimization problem while 

taking into consideration the relocation cost in the objective function. The used approach for the 

dynamic layout optimization in the model is the Critical Phase approach; which is based on the 

prevalence of a phase that is identified a critical phase for its higher transportation costs or for 

any other logical reasons that might entail to the site planner. Dynamic optimization proceeds in 

backward chronological order for all phases preceding the critical phase and in forward 

chronological order for all phases succeeding the critical phase (Othman et al., 2003). In the 

critical phase, the objective function is to be calculated using Equation 38, while in all other 

phases the objective function is to be calculated using Equation 39, where the relocation is 

included and the layout of each preceding phase is considered. It shall be stated that other 

dynamic optimization approaches could be easily incorporated in the model. 

 

. . . . . . . . [Eqn.  38] 
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𝑂𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒  𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛  𝑜𝑓  𝑃ℎ𝑎𝑠𝑒  𝑎 = 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐷!"𝑊!"

!!!

!!!!!

!

!!!

+ 𝑃! + 𝑃! + 𝑃! + 𝑃!" + 𝑅𝐶!

!

!!!

 

Where,    Dij = distance between facilities i and j. 
Wij = desired proximity weight value between facilities i and j. 
Pc: collision penalty  

  Ps: out-of-site Penalty 
Pz: area penalty 
Pbz: buffer zones penalty 
RCi: relocation cost of facility i from phase a to phase a-1   

In dynamic site layouts, after calculating the score of each phase separately (using the objective 

functions in Equations 38 and 39), the weighted average score is calculated using Equation 40; 

where the average score is the representative score of the overall layout efficiency because it 

takes the phases’ duration into consideration. 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑  𝐴𝑣𝑒𝑟𝑎𝑔𝑒  𝑆𝑐𝑜𝑟𝑒 =
𝑆𝑖𝐷𝑖2

1

𝐷𝑖2
1

 

Where,    Si = site layout score of phase i. 
Di = duration of phase i. 
 

3.11.3 Formulation of the Objective Function on Grasshopper® 

Modeling the objective function on Grasshopper requires 5 sequential steps (modules):  

1. Module 1: Setting the Proximity Relationship and Distance Measurement Techniques 

2. Module 2: Proximity Weight Matrix (W) 

3. Module 3: Inter-facility Distance Matrix (D) 

4. Module 4: Proximity Score Calculation ∑W×D 

5. Module 5: Objective Function Calculation 

Each module of them depends on one or more of the preceding modules. Such dependence is 

through a connection between output nodes and input nodes of different components and 

parameters. Figure 74 provides an overall look of the 5 modules and how they’re connected in an 

example of a site with just 4 facilities for demonstration only. Details of forming each module 

are provided in the following paragraphs. In a full-scale site layout optimization problem with 

large number of temporary facilities, the 5 modules are formulated in the same arrangement and 

logic as described in this chapter.  

[Eqn.  39] 

[Eqn.  40] 
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Figure 74: Formulation of the five modules of the objective function on Grasshopper® 

3.11.3.1 Module 1: Setting the Proximity Relationship & Distance Measurement Techniques 

The function of this module is just for the user to identify the proximity relationships (Center-to-

Center, Point-to-Point, Center-to-Point, or Side-to-Side) and the distance measurement 

techniques (Cartesian or Shortest Walk) between the different facilities. There are no 

calculations made in this module. It just acts as an information module, because it will affect the 

way the distance is measured between the facilities. Formulating this module on Grasshopper® 

is nothing more but using a series of Panel parameters organized in the shape of a matrix. Each 

cell is a separate Panel parameter with the values written in it as shown in Figure 75 (note: the 

figure provides a demonstrative example for a site layout with only 4 facilities). 

Module 1:  
Setting the Proximity Relationship 

& Distance Measurement 
Techniques 

Module 2:  
 

Proximity Weights Matrix (W) 

Module 3:  
 

Inter-facility Distance Matrix (D) 

Module 4:  
 

Proximity Score Calculation 
∑W×D 

Module 5:  
 

Objective Function Calculation 
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Figure 75: Formulation of Module 1 of the Objective Function on Grasshopper® 

3.11.3.2 Module 2: Proximity Weights Matrix (W) 

The function of this module is for the user to input the values for the desired proximity weights 

between facilities and for the model to convert these values from the matrix view that is user-

friendly to a form that can be used in model operations. Because there is no direct matrix input 

tool in Grasshopper®, the user-friendly part of the proximity weights is formed using a set of 

Panel parameters; a separate Panel parameter for each cell in the matrix. The left side of Figure 

76 shows the matrix form of the proximity weight; which is the part that the user inputs the 

desired proximity weights. In order to form this into a matrix form that Grasshopper® 

understands, the numbers have to be put in a list (named All Cells (W)) and then converted into a 

matrix from this list. The arrangement of the numbers in the list is by row. So a separate list of 

each row is formed then they are combined to form the list representing the whole matrix. The 

list for each row is formed using the Panel parameter through a series of connections to the 

numbers in the user-friendly matrix on the left as shown in Figure 76. The connections between 

the rows list and the user-friendly matrix are dimmed out in the figure in order not to cause 

confusion; however the rest of the connections in the figure are not dimmed out because they are 

simple and do not cause confusion to readers. After forming the list with all the values of the 

proximity weights matrix organized by row, a matrix is formed using the Construct Matrix 

component. The Construct Matrix component requires 3 inputs: 1) R: number of rows, 2) C: 

number of columns, and 3) V: the value of the matrix. In the demonstration shown in Figure 76, 

the number or rows and columns is 4; and the value of the matrix is all the numbers in the list. To 

summarize  Figure 76, on the left is the user-friendly matrix where the user inputs values for the 

inter-facility proximity weights. On the right side is the matrix that the software understands and 

has the ability to perform mathematical operations on it. It has the same values as the user-
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friendly matrix. In the middle of the figure is the algorithm that converts the user-friendly matrix 

into a software-understandable matrix. 

 
Figure 76: Formulation of Module 2 of the Objective Function on Grasshopper® 

3.11.3.3 Module 3: Inter-facility Distance Matrix (D) 

The function of this module is to output the matrix showing the distances between the facilities 

that are used in the objective function calculation as explained in Section 3.10.2. The module 

starts by fetching the inter-facility distances from the distance measurement algorithm between 

each and every facility and presenting them in Panels forming the shape of a matrix as shown on 

the left side of Figure 77.  

 
Figure 77: Formulation of Module 3 of the Objective Function on Grasshopper® 

The values in the panels are no inputted by the user, but rather calculated by the model in each 

run. So in each run, the values in the Panels will be different due to the movement of the site 

facilities. Module 3 then translates these values into a matrix form that is understood by the 
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software by using the same steps followed in module 2. The connections between the rows list 

and the user-friendly matrix are dimmed out in the figure in order not to cause confusion; 

however the rest of the connections in the figure are not dimmed out because they are simple and 

do not cause confusion to readers. 

3.11.3.4 Module 4: Proximity Score Calculation ∑W×D 

The function of this module is to calculate the proximity score by multiplying the proximity 

weights matrix and the inter-facility distance matrix. To perform this mathematical operation, the 

Multiply component is used to multiply between two inputs. The first input is the list containing 

the values of the proximity weights matrix (The list named All Cells (W) in Figure 76). The 

second input is the list containing the values of the inter-facility distances matrix (The list named 

All Cells (D) in Figure 77). Since two lists are multiplied, the output of the Multiply component 

is also a list of the product of each two numbers from the list with the same order (first number 

from the first list multiplied by the first number of the second list and the second number of the 

first list multiplied by the second number of the second list and so on). The list showing the 

product is not needed to be shown. The numbers in that list need to be added together. Such 

operation is made using the Mass Addition component connected to the output node of the 

Multiply component. The output node of the mass addition is connected to the input node of a 

Panel parameter to view the proximity score. Formulation of module 4 is shown in Figure 78. 

 
Figure 78: Formulation of Module 4 of the Objective Function on Grasshopper® 
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3.11.3.5 Module 5: Objective Function Calculation 

The function of this function is to calculate the objective function; which is the proximity score 

in addition to the collision penalty (obtained from the collision prevention constraint algorithm 

discussed in Section 3.5), the out-of-site penalty (obtained from the In-site constraint algorithm 

discussed in Section 3.6), the area penalty (obtained from the area constraint algorithm discussed 

in Section 3.7), and the buffer zones penalty (Section 3.10) using the Mass Addition component. 

Figure 79 shows the formulation of module 5. After the objective function is calculated, it has to 

be connected to a Number parameter since Galapagos (the evolutionary optimization solver) 

only takes a Number parameter as an input for the objective function.  

 
Figure 79: Formulation of Module 5 of the Objective Function on Grasshopper® 

All of the 5 modules of the objective function formulation are for the purpose of reach the 

Number parameter at the end of module 5. This Number parameter is the element that is going 

to be connected to Galapagos as the objective function for the optimization process. 

3.12 Optimization Using Galapagos: 
After building the model (setting the site boundaries, facilities fata and variables, constraints, and 

objective function), Galapagos is used to run GA to find the near-optimum solution for the 

problem. Galapagos is used in Grasshopper® as a component or a parameter, with two input 

nodes: 1) Variables node, and 2) Objective Function node.  Unlike other GA tools such as 

Evolver in Microsoft Excel®, there are no hard constraints in Galapagos. To overcome this 

limitation, the objective function includes very high values for penalties that would be modeled 

as hard constraints in other GA tools. 



Page 110 

The variables node (also named as the Genomes node) is connected to all the Number Slider 

parameters representing the different variables in the model (facility movements, rotation, 

dynamic shapes, and selective zones). It shall be noted that the variables input node does not take 

inputs from any parameters or components except for Number Slider parameters. That is why it 

very important to formulate the variables in Number Slider parameters (with upper and lower 

limits in each variable). The objective function node (also named as the Fitness node) is 

connected to the Number parameter representing the objective function. The objective function 

node does not take inputs from any components or parameters except from Number parameters. 

It shall also be noted that Galapagos is a single-objective optimizer. So, its objective function 

node is connected only to one Number parameter representing only one objective function. 

If the Galapagos element is clicked twice, a window is opened showing three tabs: Options, 

Solvers, and Record. The “options” tab provides the user with the controls for the evolutionary 

solver such as population number, mutation and crossover rates, and stopping criteria. The 

“solvers” tab provides some kind of a visual representation of the optimization process and the 

convergence of results. It saves organizes the best valid results from the fittest to the less fit so 

the user can reinstate any of them. This is a very good feature, because sometimes the user might 

decide to choose a “less fit” solution rather than taking the “most fit” solution for reasons beyond 

the modeling criteria. Figure 80 shows a screenshot of the “options” tab and the “solvers” tab of 

Galapagos. 

   
Figure 80: Galapagos control window 
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4 Chapter 4: Model Validation and Application 

In order to validate the developed algorithms and their ability to be integrated into one model 

depending on the problem, a case study was made where data was gathered for a construction 

project and a model was developed to model and optimize the allocation of site facilities using 

the different algorithms developed in this research. This chapter describes the project data, the 

followed steps in modeling and optimization, and the results. 

4.1 Project Information 
The selected project for the case study is a mixed-use project located in New Cairo, Egypt; 

where the land boundaries are not linear and the shapes of the buildings are irregular. The project 

consists of 2 main buildings (A and B) constituting around 60% of the land area, and green 

landscape constituting the majority of the rest of the land area. Building A is for administrative 

purposes and building B is for a showcase and a food court. The project has 3 entrance gates and 

the garage is in the basement floors of the buildings. The general layout of the project is shown 

in Figure 81. 

 
Figure 81: Case study project general layout 
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According to the owner, the area to the south and east of building A (marked in Xs in Figure 82) 

not accessible for the contractor during the construction stage of the civil works. Such area is 

going to be used as a temporary parking spot and as an information center for the project. Works 

in Building A will mark the beginning of the project, and the works in Building B will be 

initiated after 8 months from the start date of the construction. Accordingly, the project will 

assume a dynamic site layout in two phases: 

Phase 1 - From month 0 to month 8: In this phase, the obstacles will be Building A, the west 

access road, and the area between Building A and the south and east site boundaries. The rest of 

the site is accessible; where the temporary facilities can be laid anywhere except in the obstacles 

area. The site conditions in Phase 1 are shown in part A of Figure 82. 

Phase 2 - from month 9 to month 20: In this phase, Building B is in the construction process 

and the central and north-western access roads are in place and considered obstacles in the way 

of temporary facilities. The site conditions in Phase 2 are shown in part B of Figure 82. In phase 

2, the site layout is very strict and the available areas for laying temporary facilities is much 

complex in shape.  

 
Figure 82: Site conditions during construction 

4.2 Identifying and Modeling Site Facilities 
After identifying the project needs, the following are the main 9 temporary facilities that were 

used in the model: 

Phase 1: 
Month 0 to 8 

Phase 2: 
Month 9 to 20 
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Table 13: Site facilities of the case study 

Object 
No. Temporary Facilities (Objects) Modeling Technique 

1 Offices (1) (for Owner, Project 
Manager, & Supervision Consultant) Offsetted Planar Curves 

2 Parking Offsetted Planar Curves 
3 Materials & excavation piles Dynamic Freeforms 
4 Wood yard Dynamic Rectangles 

5 Steel yard Dynamic Rectangles 

6 Electrical control Static Rectangle 

7 Testing labs Static Rectangle 

8 Offices (2) (for contractor & sub-
contractor) Offsetted Planar Curves 

9 Labor restrooms Static Rectangle 

 

Assumptions: With regards to the offices (objects 1 and 8), these offices are made of caravans 

of standard sizes laid next to each other that include meeting rooms, restrooms, printing stations, 

and personnel offices. With regards to the pile (object 3), at the initial stages of the project, this 

pile is to be used for temporarily storing excavated soil before disposal, and storing the 

backfilling sand before backfilling. At later stages it is to be used for storing other materials such 

as finishing materials. The wood yard (object 4) includes cutting and joining yards and storage of 

raw and finished pieces. The steel yard (object 5) includes aligning and bending yards and 

storage of raw and finished pieces. The electrical control (object 6) includes the generator, the 

solar tank, and the control board. The testing labs (object 7) include restrooms for lab personnel. 

The labor restrooms (object 9) include their own sewage disposal unit. The used concrete for 

civil works is ready-mix, so there is no need for a batching plant or gravel and cement storage 

inside the site since all the concrete is coming ready from an external source. 

When it comes to formulating this site layout optimization problem on Grasshopper®, it is 

important to model the site conditions and obstacles before modeling the site facilities. 

Accordingly, the following steps shall be followed: 

1. Model the site boundaries 

2. Model the site obstacles (in this case study, the obstacles are the two buildings that are 

planned to be constructed and the access roads, and the temporary site facilities) 

3. Model the site facilities 



Page 115 

4.2.1 Modeling the site boundaries and obstacles: 

There are two main methods for modeling the site boundaries and obstacles. The first method is 

obtaining the geometric parameters of the 2D shapes forming the boundaries and obstacles an 

using the obtained parameters to form corresponding points and curves on Grasshopper®. The 

second method is by importing the lines from AutoCAD directly to Rhino® and setting the 

imported shapes as the boundaries and obstacles on Grasshopper® afterwards. The following 

paragraphs provide a brief description of the to methods. It shall be noted that the 2 buildings are 

not inputted in the model as is, but rather their boundaries are offsetted outside for a distance of 2 

meters, and the offsetted geometry is the one that is used in the model. Such offset took into 

consideration the excavation method and excavation depth for the foundations.  

Method 1 – Modeling by using parameters: The advantage of this method is that enables the 

users to benefit from the parametric capabilities of Grasshopper® by dividing the geometries into 

points, lines, an curves with known parameters and drawing them on Grasshopper® using these 

parameters, so when any of the parameters changes, the geometry is easily modified without 

revising the whole model. The disadvantage of this method is that it takes a lot of time initially 

since the user has to divide the geometry into points, lines, and curves, then input each of them 

on Grasshopper® using the different components and parameters.  

Figure 83 demonstrates the modeling of site boundaries and obstacles on Grasshopper using 

method 1. The first step is to obtain the following from the AutoCAD drawing of the site: 

• For lines: coordinates of the starting and ending points. 

• For arcs: coordinates of the starting and ending points, and any point in the middle. 

• For freeforms: coordinates of three or more points depending on the degree and the 

number of control points. 
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Figure 83: modeling of site boundaries and obstacles on Grasshopper using method 1 

The obtained parameters of the site boundaries and obstacles of the case study from the 

AutoCAD drawing are shown in Table 14 and Table 15. Afterwards, in Grasshopper®, the 

Construct Point component is used to create the points in the model. Then a combination of 

Line, Arc, Interpolate, and other components are used to connect the points to form lines and 

curves. Then, the Boundary Surfaces component is used to create the surface definitions that are 

enclosed by the lines and curves materializing the boundary edge curves, thus forming the site 

boundaries and obstacles. 
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Table 14: Parameters of site boundaries of the case study obtained from AutoCAD (units in m) 

Points Coordinates  Point 
connections 

First 
Point 

Second 
Point 

Third 
Point 

Point 1 (25,0,0)  Line 1 Point 1 Point 2 -- 
Point 2 (98,0,0)  Line 2 Point 8 Point 7 -- 
Point 3 (155,58,0)  Line 3 Point 7 Point 6 -- 
Point 4 (155,30,0)  Line 4 Point 6 Point 5 -- 
Point 5 (65,130,0)  Line 5 Point 5 Point 4 -- 
Point 6 (65,85,0)  Line 6 Point 4 Point 3 -- 
Point 7 (50,70,0)  Arc 2 Point 2 Point 10 Point 3 
Point 8 (25,70,0)  Arc 2 Point 1 Point 9 Point 8 
Point 9 (0,35.5,0)      

Point 10 (138,18,0)      
 

Table 15: Parameters of site obstacles of the case study obtained from AutoCAD (units in m) 

Points Coordinates  Points Coordinates  Points Coordinates 
Point 1 (43,8,0)  Point 13 (57,77,0)  Point 25 (142.5, 106.5, 0) 
Point 2 (98,8,0)  Point 14 (60,80,0)  Point 26 (139.5,104,0) 
Point 3 (147,62,0)  Point 15 (73,72,0)  Point 27 (152.4,104,0) 
Point 4 (96,62,0)  Point 16 (67,71.5,0)  Point 28 (142.4,80,0) 
Point 5 (88,62,0)  Point 17 (84,80,0)  Point 29 (142,80,0) 
Point 6 (43,62,0)  Point 18 (88,80,0)  Point 30 (125,90,0) 
Point 7 (19,37,0)  Point 19 (96.5,80,0)  Point 31 (129,93,0) 
Point 8 (19,37,0)  Point 20 (102.5,80,0)  Point 32 (117,98,0) 
Point 9 (19,33,0)  Point 21 (84,104,0)  Point 33 (102.5,91,0) 

Point 10 (1,33,0)  Point 22 (90,104,0)  Point 34 (98,115,0) 
Point 11 (67,67.5,0)  Point 23 (116,114,0)  Point 35 (112,95,0) 
Point 12 (71.5,68.5,0)  Point 24 (125,123.5)    

 

Method 2 – Directly importing from AutoCAD to Rhino®: The advantage of this method is 

that it is very time-saving and it does not involve a lot of parameter and components such as the 

ones used in method 1 where there has to be a component for each and every point and curve. 

The user imports the geometries from AutoCAD to Rhino® then selects the lines and curves and 

sets them as Curve definitions on Grasshopper® using the Curve component – It does not require 

that each single line and curve to have its own “curve” definition, but rather the user may select 

multiple lines and curves and put them under one “curve” definition on Grasshopper®. Finally, 

the Surface parameter is used to create a “surface” definition of the boundaries and obstacles. 

Figure 84 shows a demonstration of the importing and modeling process on Rhino®. 
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Figure 84: The importing and modeling process of site boundaries and obstacles of the case study on Rhino® 

4.3 Selective Zoning 
In order to minimize the number of possible solutions and increase the model efficiency to 

reduce the computing time, the selective zoning module was utilized as discussed in Section 3.3. 

The accessible area of the site is divided into 12 similar zones in Phase 1 that are turned into 11 

zones in Phase 2.  Each zone is 20 meters in width and 25 meters in length. The zones shown in 

Figure 85 represent the allowed movement of the centroids of the site facilities. Accordingly, the 

actual borders of the facilities may reach outside of the zones, which is acceptable, and which 

also is the reason for placing some zones not strictly right next to each other, but rather with 

keeping some distance between them. The reference point of each zone is the bottom left vertex. 

Coordinates of reference points of the different zones are shown in Table 16.  

Table 16: Reference point coordinates for selective zoning 

Zones 
Reference point coordinates  

Zones 
Reference point coordinates 

Phase 1 Phase 2  Phase 1 Phase 2 
Zone 1 (20, -3,0) (20,-3,0)  Zone 7 (89,99,0) (86,109,0) 
Zone 2 (0,7,0) (0,7,0)  Zone 8 (109,99,0) (107,112,0) 
Zone 3 (0,38,0) (0,38,0)  Zone 9 (129,99,0) (120,104,0) 
Zone 4 (64, 75.5,0) (64, 75.5.0)  Zone 10 (129,68,0) (124,64,0) 
Zone 5 (69,68,0) (64,75.5,0)  Zone 11 (109,68,0) (100,64,0) 
Zone 6 (69,99,0) (65,103,0)  Zone 12 (89,68,0) N/A 
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The site zones in both phases for the selective zoning algorithm are shown in Figure 85. 

 
Figure 85: Division of site area into zones 

4.4 Modeling the site facilities 
The needed site facilities and their modeling techniques are provided in Table 13. Steps of the 

algorithms for the different modeling techniques of the static and dynamic site facilities are 

described in Section 3.2. The following conditions are inputted according to the assumptions and 

needs of the project: 

• Width of the offsetted planar curve modeling the offices (objects 1 and 8) is 5 m. 

• Width of the offsetted planar curve modeling the parking (Object 2) is 12 m. 

• For the offsetted planar curve modeling the offices (a) (object 1), the minimum area is 

150 m2 and the maximum allowed area is 200 m2. 

• For the offsetted planar curve modeling the parking (object 2), the minimum area is 300 

m2 and the maximum allowed area is 400 m2. 

• For the dynamic freeforms modeling the materials and excavation piles (object 3), the 

minimum area is 350 m2 and the maximum allowed area is 400 m2. 

• Dimensions of the rectangle modeling electrical control (object 6) are 6 m and 10 m. 

• Dimensions of the rectangle modeling testing lab (object 7) are 10 m and 18 m. 

• For the offsetted planar curve modeling the offices (b) (object 8), the minimum area is 

130 m2 and the maximum allowed area is 180 m2. 

• Dimensions of the rectangle modeling the labor restrooms (object 9) are 6 m and 10 m. 
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• In the collision detection constraint, the following are considered as obstacles: 1) the 

areas of the two buildings (A and B) under construction, 2) the three access roads, and 3) 

the site facilities (9 objects). Any collision or overlapping between any of the mentioned 

objects results in a penalty that is added to the objective function. 

4.5 Proximity and Distance Measurement Inputs 
In the distance measurement module, only the buildings and the facilities are considered 

obstacles. The access roads are not considered obstacles in distance measurement techniques 

because labor, equipment, and material can move across them. Regarding the Shortest Walk 

distances, the used grid size is 1.5 meters. The used inter-facility distance measurement 

techniques in the case study are shown in Table 17. Symbols in Table 18 show the proximity 

relationship matrix between the temporary facilities. The used proximity weights between the 

temporary facilities are shown in Table 20. Data in these tables were compiled in accordance to 

the preference of the site planner of the case study. For example, the site planner requires that the 

noise-producing facilities to be far from the offices. Accordingly, a negative value for the 

proximity weight was put between the wood and steel yards and the offices. Also there is a 

negative proximity weight between the electrical control facility and the rest of the site facilities 

since it is a noise-producing facility and for safety reasons, it needs to be put far from the rest of 

the facilities. One way of validating the model is by analyzing the logic of the resulting near-

optimum solution with reference to the logic behind the proximity weights. The relocation costs 

for the temporary facilities are shown in Table 19. The relocation costs are qualitative numbers 

that proportional to the time, cost, and manpower required for facility relocation. For example, 

the offices (objects 1 and 8) have the highest relocation costs because, in addition to the required 

equipment for their relocation, these offices have organized paper work that would make the 

relocation very difficult for the fact that many important documents get lost from the offices 

while relocating. The used relocation costs in the case study are close to those used by Osman et 

al. (2003) due to the similarities in the qualitative nature of proximity weights and in the used 

objective function.  



Page 121 

 

 

 

 

                    

 

4.6 Buffer Zones 
Buffer zones were created around the wood yard and steel yard with a space of 2 meters all 

around because of the heavy material circulation that requires some allowance in the space for 

maneuvering. Moreover, a buffer zone of 1 meter all around the labor restrooms is created to 

enhance the safety of the labor since due to the heavy circulation around it. A buffer zone was 

also created around the material pile to allow for labor and equipment to maneuver the materials 

while reducing the probabilities of collision incidents with other facilities. 

4.7 Final Model 
Figure 86 shows a broad view of the final formulation of the Grasshopper® model prior to 

running and searching for the optimum solution. It includes a mix of components and parameters 

forming algorithms that are described in Section 3 relevant to the case study. The model is fully 

parametric; meaning that it was not imported directly from AutoCAD®, but rather the geometries 

and the full optimization model were drawn and programmed using the graphical algorithm 

editor Grasshopper®. 

 

 

Table 17: Distance measurement technique matrix for 
case study Table 18: Proximity relationship matrix for the case study 

Table 20: Proximity weights matrix for case study Table 19: Relocation cost of temporary facilities 
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Figure 86: Grasshopper® model of the case study 
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4.8 Optimization Results and Model Validation 
The site layout in the case study is the dynamic type, so a run was made for each phase. The used 

approach for the dynamic layout optimization in this case study is the Critical Phase approach; 

which is based on the prevalence of a phase that is identified a critical phase for its higher 

transportation costs or for any other logical reasons that might entail to the site planner. Dynamic 

optimization proceeds in backward chronological order for all phases preceding the critical phase 

and in forward chronological order for all phases succeeding the critical phase (Othman et al., 

2003). The critical phase in the case study is Phase 2 because in this phase, the site is very strict, 

thus not giving much room for maneuvering or proposing many possible layouts. On the other 

hand, in Phase 1 the site is close to an open site with abundant area for maneuvering and flexible  

possibilities for temporary facilities. Accordingly, it is more logical to make the layout of Phase 

1 dependent on the layout of Phase 2. It shall be stated that other dynamic optimization 

approaches could be easily incorporated in the model. RUN 1 was made for Phase 2; where the 

objective function was calculated using Equation 38. In RUN 1 (Phase 2), the obstacles were 

Building A, the western access road, and the area between Building A and the eastern and 

southern site boundaries. RUN 1 was fully formulated using the visual programming capabilities 

of Grasshopper® and was run using the evolutionary solver add-in, Galapagos. The mutation rate 

was set to 45% with population size of 50 offsprings. The model was programmed to stop when 

it reaches 500 stagnant successive generations without progress in the score. The model 

produced a near-optimum solution with a score of 3,511.8.  

For Phase 1, RUN 2 was made taking into consideration the relocation cost as shown in Equation 

39; thus solving the whole problem as a dynamic layout problem. In RUN 2 (Phase 1), the 

obstacles were Building A, Building B, the western access road, the central and northwestern 

access roads, and the area between Building A and the eastern and southern site boundaries. 

RUN 2 was fully formulated using the visual programming capabilities of Grasshopper® and 

were run using the evolutionary solver add-in, Galapagos. The mutation rate was set to 45% with 

population size of 50 offsprings. The model was programmed to stop when it reaches 500 

stagnant successive generations without progress in the score. The model produced a near-

optimum solution with a score of 2,539.9.  
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Figure 87: Near-optimum solution obtained by the developed model 

 
Figure 88: Corresponding AutoCAD® drawing of the selected near-optimum site layout plan 

The near-optimum solutions for Phase 1 and Phase 2 are shown in Figure 87. According to the 

figure, the produced site layout plan is very logical; in phase 2, which is the critical phase in the 

dynamic optimization, the caravans are laid next to each other and the parking is laid next to 

them; which was highlighted in the proximity relationships in the proximity relationship matrix 

set by the project manager. Moreover, the excavation and material pile is put close to both of the 

two buildings; which facilitates the material movement between the buildings and the excavation 

and material pile. The electrical control facility is laid very far from the other facilities to 

minimize the noise in accordance to the proximity relationship matrix. Furthermore, the wood 

yard and steel yards are laid next to each other due to the strong proximity relationship that they 
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have. They both were laid in different arrangements according to the available area on site; 

which made use of the Dynamic Rectangles algorithm. The buffer zones around the wood yard 

and steel yard were considered by the model and there were no overlapping in any of the buffer 

zones accordingly. Although the forming curves of the caravans (objects 1 and 8) were modeled 

using third degree polynomial interpolation, the real-life interpretation is just the normal 

rectangular caravans laid next to each other trying as much as possible to mimic the modeled 

shapes as shown in Figure 88, which shows the AutoCAD drawing of the selected site layout 

plan during construction. Table 21 shows the corresponding values of the different variables for 

the temporary facilities. In RUN 2, for phase 1, the model moved only 2 facilities; the wood yard 

and the labor restrooms, and left the rest of the temporary facilities in their locations set from 

RUN 1. Although the site in RUN 2 is an open site with very large area for maneuvering 

temporary facilities and finding better near-optimum solutions, the model chose to keep most of 

the temporary facilities in their original location set from RUN 1 because the added relocation 

costs would have added to the objective function more than the better proximity measures would 

have deducted. Some would consider this as a limitation to the Critical Phase approach in the 

dynamic layout optimization, however, the overall resulting dynamic layout plans from the 

Critical Phase approach are logic and do not have significant shortcomings. Other methods in 

dynamic optimization can be used in the developed model, but investigating the performance of 

the model in the various dynamic optimization approaches is not the main scope of this research. 

As discussed in this section, the resulting site layout plans from RUN 1 and RUN 2 are logical 

and conformant with the inputted proximity weights matrix. Such logical results provide 

validation of the model and its capability of outputting good solutions.  

Another validation is made by solving the same case study problem with past optimization 

models and comparing their results to the results of the developed model. Such comparison and 

validation is provided in Section 4.9. 
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Table 21: Values of variables of the temporary facilities corresponding to the best-reached near-optimum solution 

 

4.9 Validation by comparison with other past optimization models 
The same case study was attempted once using with the circular modeling method - used by 

Andayesh & Sadeghpour (2013), and once using the orthogonal square grids modeling method – 

used by Hegazy & Elbeltagi (1999) and Osman et al. (2003).  

In the first attempt, by using the circular modeling method, the site boundaries, buildings, and 

obstacles are modeled using a series of connected straight lines; which is a good abstraction for 

them that does not result in significant inefficiencies. The temporary facilities, on the other hand, 

are represented by their minimum bounding circles as shown in Figure 89, which poses large 

area inefficiencies. Although this method is very fast in running due to the small number of 

variables, the inefficiency in modeling the facilities is very significant. In Figure 89 the left and 

middle parts of the figure show the representation of the site boundaries, buildings and obstacles 

in Phase 1 and Phase 2; and the right side of the figure shows the representation of the temporary 

facilities that need to be organized in the available area of the site. Since the site is strict and 

complex in shape, modeling the temporary facilities using enclosing circles is highly inefficient. 
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Site layout optimization was attempted in both Phase 1 and Phase 2 but, as expected, the 

optimization model using the circular method failed to generate valid solutions in both phases. 

Accordingly, by comparing the developed model to the circular modeling method, it is clear that 

just providing a valid solution for the problem provides a good validation for the developed 

model’s capabilities in performing in strict sites. 

 
Figure 89: Modeling the case study problem using the circular modeling method. Facilities: 1) Offices (a), 2) parking, 3) 

material pile, 4) wood yard, 5) steel yard, 6) electrical control, 7) testing labs, 8) offices (b), 9) labor restrooms 

In the second attempt, by using the orthogonal square grids modeling method, the site 

boundaries, buildings, obstacles, and temporary facilities were modeled using two-dimensional 

square grids that add up the corresponding areas. The model ran using a combination of the 

algorithms provided by Hegazy & Elbeltagi (1999) and Osman et al. (2003). Phase 2 was taken 

as the critical phase and its run was made first (RUN 1). RUN 1 obtained a near-optimum score 

of 8,584.8; which is double the score reached by the developed model. The model could not 

reach any better scores due to the inefficiencies in the geometrical modeling using the orthogonal 

grids and using static geometrical representations in general; especially that the construction site 

in Phase 2 is very strict and does not give the luxury to models with static geometrical 

representations of finding many valid solutions. In RUN 2 (phase 1), the orthogonal grid model 

produced a near-optimum solution with a score of 2,117.7 by moving 4 facilities; parking, wood 

yard, steel yard, and labor restrooms. Since the score from RUN 1 was very high, the model 

chose to move many temporary facilities from their original location set from RUN 1 because the 

corresponding deductions in the objective function from the better proximity measures are more 

than the added relocation costs. The near-optimum solutions of the orthogonal square grids 

modeling method for Phase 1 and Phase 2 are shown in Figure 90. 

Phase 1 Phase 2 
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Figure 90: Modeling the case study problem using the orthogonal square grids method. Facilities: 1) Offices (a), 2) parking, 3) 

material pile, 4) wood yard, 5) steel yard, 6) electrical control, 7) testing labs, 8) offices (b), 9) labor restrooms 

 

A quantitative comparison between the developed model and the other used models is provided 

in Table 22. The overall layout score is the addition of the score of Phase 1 and Phase 2.  
 

Table 22: Comparison of scores corresponding from different dynamic site layout optimization models 

 Developed 
Model 

Orthogonal 
Grids 

Circular 
Representations 

Phase 1 Score 2,539.9 2,117.7 N/A 

Phase 2 Score 3,511.8 8,584.8 N/A 
Overall Score 6,051.7 10,702.5 N/A 
Weighted Average Score 3,123.0 5,998.0 N/A 

 

In Phase 2, where the site in the case was strict, the developed model obtained a near-optimum 

solution that has a score less than half of the score obtained by the orthogonal grid modeling 

method, which provides a measure of the efficiency and flexibility of the developed model. 

Comparing between the models in each phase separately does not grasp the dynamic efficiency 

of the modeling; a better comparison is achieved by comparing between the overall scores 

because they take all phases into consideration. An even better comparison is achieved by 

comparing between the weighted average scores because they take into consideration the phases 

and their durations. The developed model utilizing dynamic geometrical representations 

achieved a lower overall score and weighted average score of 43% and 48% respectively from 

those achieved by the orthogonal grids model; which is a significant enhancement. It could be 
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deduced that no matter how accurately a model can geometrically represent site layout elements, 

a static geometrical representation will always pose restrictions and inefficiencies leading to 

unnecessary high proximity scores, especially in strict construction sites. A dynamic geometrical 

representation of temporary site facilities eliminates many geometrical restrictions and 

minimizes the inefficiencies by continually shaping the temporary facilities to fit them into the 

near-optimum locations that would not have been found fitting in models with static geometrical 

representation; especially in strict sites.   
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5 Chapter 5: Conclusion and Recommendations 

5.1 Summary and Conclusion 
An accurate representation of the construction site is important for site layout modeling, as it 

enables the development of more realistic and efficient layouts. Previous research efforts used 

grids, circles, and rectangles to model site facilities; which simplifies the search procedure but 

jeopardizes the modeling efficiency resulting in loss of modeled site area leading to difficulties 

in finding valid solutions in strict sites. In reality, the construction site and facilities acquire 

complex and flexible shapes. After investigating the current progress in the site layout modeling 

research, concluding the current gaps, and clearly defining the problem statement, the following 

is a summary of what was performed in this research:  

• New algorithms for modeling regularly and irregularly shaped static and dynamic 

geometrical representations of site facilities: This research presented a new and more 

realistic approach of modeling site facilities. It presented the algorithms of modeling 

different “static” geometries such as rectangles, triangles, circles, irregular polygons, 

ellipses, and freeforms, and “dynamic” geometries such as offsetted planar curves, dynamic 

freeforms, and dynamic rectangles. Dynamic geometries are where a facility is assumed to 

acquire a certain shape and in every iteration, it changes its shape given certain constraints 

until it reaches a shape that fits in the unoccupied land on site.  

• Proximity relationships and distance measurement techniques: The developed model 

provides different proximity measures and distance measurement techniques rather than the 

normal centroidal Cartesian distances used in most models. The new proximity measures 

take into consideration actual movement between the facilities including any passageways or 

access roads on the site. Four proximity relationships are utilized; center-to-center, point-to-

point, center-to-point, and site-to-side. Two distance measurement techniques are also used; 

Cartesian distance, which is the direct straight-line distance between any two fatalities, and 

shortest walk distance, which is the distance of the path between any two facilities that does 

not interfere with obstacles. Soft constraints for buffer zones around the site facilities are 

developed as well.  
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• Selective zoning concept: The research also introduces the concept of selective zoning; 

where instead of setting the variables to move in one big movement zone with many invalid 

solutions, many small similar zones are pre-specified and the variables are set to move only 

in these selective zones. The concept of selective zoning causes a major decrease of the 

number of possible solutions, thus significantly reducing the running time. Not only this, but 

also the percentage of valid solutions relative to the total number of possible solutions is 

high. 

• Formulation of a full site layout optimization model: All of the developed algorithms 

were integrated into one site layout optimization model and formulated on a commercial 

parametric modeling tool, Grasshopper®, as the platform got modeling for its capabilities in 

graphical algorithm programming. The optimization was performed through genetic 

algorithms. After each of the algorithms has been verified and validated, a case study of a 

dynamic site layout planning problem was made to validate the comprehensive model 

combining all of the modules together. Different proximity measures and distance 

measurement techniques were considered, along with different static and dynamic 

geometrical shapes for the temporary facilities. The dynamic technique in dynamic 

optimization for the case study was the critical phase approach. The model produced valid 

near-optimum solutions that are in conformance with the given inputted conditions, then the 

same case study problem was attempted using two previous models: once with the circular 

modeling method and once with the orthogonal square grids modeling method. The square 

modeling method failed to produce any valid solutions for the case study due to the large 

geometrical inefficiencies in the modeling. The orthogonal square grids modeling method 

produced a near-optimum solution that has a score double of the score produced by the 

developed model. Accordingly, the developed model has proven its modeling capabilities 

and advantages in strict site layouts. It shall also be stated that the developed model can suit 

dynamic optimization approaches other than the critical phase approach by simple 

modifications in the variables and constraints.  

It was concluded that no matter how accurately a model can geometrically represent site layout 

elements, a static geometrical representation will always pose restrictions and inefficiencies 

leading to unnecessary high proximity scores, especially in strict construction sites. A dynamic 
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geometrical representation of temporary site facilities eliminates many geometrical restrictions 

and minimizes the inefficiencies by continually shaping the temporary facilities to fit them into 

the near-optimum locations that would not have been found fitting in models with static 

geometrical representation. 

5.2 Research Outcomes and Contributions  
The following points summarize the contribution of this research to the ongoing research of site 

layout modeling and optimization: 

• Exploring new automated modeling capabilities through the use of the visual 

programming capabilities of the parametric modeling software (Grasshopper®). 

• Enhancing the ability to model complex geometrical shapes to increase efficiency and 

decrease area waste due to poor geometrical representation of the site facilities. 

• Introducing 3 different algorithms for dynamic shapes for modeling site facilities, which 

is a more realistic and flexible representation that fits in strict sites: 

o Offsetted planar curves 

o Dynamic freeforms 

o Dynamic rectangles 

• Introducing the modeling concept of selective zoning and providing an algorithm for it. 

The concept significantly enhances the model efficiency by minimizing the number of 

solutions through selection of pre-determined movement zones inside the site. 

• Utilizing different proximity measures that are more flexible than the ones used in 

previous research efforts. 

• Providing an algorithm for the shortest walk distance measurement technique; which 

finds the shortest uninterrupted path between facilities. 

• Simplifying the application of buffer zones around facilities acting as soft constraints for 

better space utilization. 

5.3 Limitations and Recommendations 
A limitation of the developed model is the relatively slow processing time due to the immense 

number of variables resulting in a very large pool of probable solutions. The processing time is 

even slower in the case of utilization of the buffer zones. Moreover, in the selective zoning 



Page 134 

algorithm, the predetermined zones have to be equal in size, which might pose some modeling 

inefficiencies. Furthermore, to be able to use the algorithms introduced in this research, one has 

to have prior knowledge of Grasshopper®, a software that is rarely used by construction 

engineers. The different dynamic optimization approaches were not heavily investigated in this 

research because it was more oriented towards developing new and better algorithmic 

geometrical representations for the site layout facilities. It shall be noted that the site safety was 

not heavily studied in the developed model in this research, as its main focus was concentrated 

on finding better ways of modeling the site facilities. Another limitation of this study is that it did 

not investigate the effect of other parameters, such as the probability of crossover and the 

probability of mutation on the convergence. 

With regards to the recommendations, the model is recommended to undergo further 

developments to have the ability to incorporate more dynamic site layout optimization 

algorithms. Also, it is recommended to find new ways to model site facilities that reduce the 

variables and lessen the computing time; especially in the buffer-zones algorithm. A suggestion 

would be to combine heuristic methods with the mathematical modeling methods to provide 

much faster results with better convergence rates. Another recommendation also is to develop the 

model into a more user-friendly interface by summarizing each of the modules into one 

component of Grasshopper® without getting the user involved in the details of the visual 

programming and the internal calculations. It is also recommended to add further developments 

to the evolutionary optimizer Galapagos by adding a module for hard constraints. Researchers 

are also encouraged to explore the model’s performance and capabilities in various dynamic and 

hybrid optimization approaches. Moreover, it is also recommended in future research to 

investigate the site safety and find ways to incorporate different safety factors in the objective 

function calculation. 
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