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Abstract 

Peppermint oil (PO) and Green Tea oil (GTO) are two essential oils (EOs) were encapsulated 

in chitosan nanoparticles (CS NPs) via two-steps method (emulsification followed by ionic 

gelation). Encapsulation of GTO and PO in CS NPs were investigated through different 

characterization techniques such as; Fourier transform infrared (FT-IR) spectroscopy, powder 

X-ray diffraction (XRD). Both NPs (CS/PO NPs and CS/GTO NPs) showed a spherical shape 

with 20-90 nm size range as detected by Transmission electron microscopy (TEM). 

Thermogravimetric analysis (TGA) was used to study the thermal stability of both bulk and 

encapsulated EOs that showed an enhancement in the thermal stability of both encapsulated 

EOs by about 2.18 and 1.75 folds for PO and GTO, respectively. Through UV-vis 

spectroscopy, both encapsulation efficiency (EE%), loading capacity (LC%) and in-vitro 

release were estimated. EE% of CS/PO NPs and CS/GTO NPs were about 82-78% and 22-

81%, respectively, when the initial EO amount was 0.25–1 w/w CS. Whereas, the loading 

capacity (LC%) of CS/PO NPs and CS/GTO NPs were about 8-22% and 2.2-23%, 

respectively for the initial EO amount was 0.25–1 w/w CS. The in-vitro release studies of both 

EOs showed an initial rapid release profile followed by a slow release at two different pH 

conditions: acidic pH (acetate buffer) and neutral pH (phosphate buffer saline). Furthermore, 

the stability of the total phenolic contents (TPC) of both EOs in CS NPs was studied using 

Folin–Ciocalteu reagent. The antioxidant activity of both pure and encapsulated PO and GTO 

was evaluated by 2,2-diphenyl-1-picrylhydrazyl radical (DPPH). The antioxidant activities of 

CS/PO NPs and CS/GTO NPs were improved by about 2 and 2.4 folds, respectively. Finally, 

agar dilution and colony counting method were used to study the antibacterial activity of pure 

and encapsulated PO and GTO against Gram positive (Staphylococcus aureus) and Gram 
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negative (Escherichia coli) bacteria. In case of Gram positive bacteria, encapsulated PO 

showed an enhanced antibacterial activity by about 39.63%, while encapsulated GTO showed 

an improvement in antibacterial activity by about 57.5% on the other hand, against Gram 

negative bacteria, encapsulated PO showed an enhanced antibacterial activity by about 3%, 

while encapsulated GTO showed an improvement in antibacterial activity by about 1.8%. 
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Chapter 1: General Introduction & Literature review  
 

1.1.Bacterial Infectious diseases in the twentieth century 
 

Bacterial infectious diseases such as tuberculosis, pneumonia and diarrhea were the main reasons 

of mortality worldwide at the beginning of the twentieth century as represented in Figure (1). 

Bacterial infections represent about 30 percent of mortality percentage that led to reduction in 

life expectancy to 47 years with high mortality in infant and childhood . Pneumonia and diarrhea 

were enough to kill 10% of children between the age of 1 to 4 years old
1
.  

 

Figure 1:Main causes of deaths at the beginning of the twentieth century
1
. 

By the mid of the twentieth century, the rate of mortality due to bacterial infectious diseases 

declined after the introduction of antimicrobial agents
2
. About 50% reduction in childhood fever 

mortalities caused by Streptococcus pyogenes due to the introduction of sulfa antibiotics as 

Sulphadiazine. Between 1938 and 1952, the annual rate of deaths from bacterial infectious 

diseases, especially tuberculosis and pneumonia, was reduced by 8.2% with the beginning of the 

antibiotic era
3
. Despite of the success of antimicrobial agents to minimize the bacterial diseases 
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mortalities, the World Health Organization (WHO) estimated, in 1998, that bacterial infectious 

diseases such as pneumonia, diarrhea and tuberculosis cause about 25% of mortalities worldwide 

especially in children that represented in Figure (2). The reason behind that was due to the 

development of antimicrobial resistance that becomes a serious worldwide danger
4
. For instance, 

bacterial diseases mortalities in USA were increased at a rate of 4.8% between 1981 to 1995 due 

to drug-resistant infection. One of the main reasons behind developing antimicrobial resistance is 

owing to bacterial biofilm formation that provides a protection for bacterial community against 

antibacterial drugs
4
. 

 

Figure 2: Leading infectious disease Killer, 1998
5
 

Bacteria live in communities that are composed of different species interacting with each other 

and with the environment too. They grow in association with surfaces with a higher capabilities 

to adhere, persist and colonize, forming bacterial biofilm as shown in Figures (3)
6
. Bacterial 
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biofilm formation is based on three main stages; (i) first is the irreversible attachment of bacteria 

through their secretion of adhesion for binding protein. Then, (ii) bacteria are able to proliferate 

and colonize inside an envelope made of peptidoglycan and finally, (iii) the development of 

biofilm maturation. Matured biofilm provides not only a protection of bacteria from 

antimicrobial agents and immune system, but also a bacterial reservoir that ready to rupture for 

further bacterial dispersion to infect new surfaces
7
. About 80% of microbial infections is owing 

to bacterial biofilm resulting in higher potential of morbidity and mortality in addition to increase 

in medical expenses
8,9

.  

 

Figure 3: Bacterial Biofilm formation
8
. 

1.2.Traditional solutions for combating bacterial infections 
 

The most commonly used solution that revolutionized the treatment of bacterial infections 

worldwide was the use of antibiotic and antibacterial agents for more than 50 years for both 

human and animal health especially during antibiotic golden age
10

. They have several targets on 
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the bacteria including; cell wall and cell membranes, ribosomes, nucleic acids, cellular 

metabolism and enzymes as shown in Figure (4). The selective toxicity of antibiotics depends on 

the structural and metabolic differences between bacteria and mammalian cells
11

. Combating 

biofilm infections requires using antimicrobial agent with a higher penetration power to ensure 

delivery of a sufficient concentration of antimicrobial agent to kill bacteria. For instance, well 

known antimicrobial agents with efficient penetration power such as rifamycins, sulfonamides, 

quinolones, macrolides, lincosamides, tetracyclines, fusidic acid and oxazolidinones, are 

commonly used to combat bacterial biofilm than other antimicrobials with higher molecular 

weight and poor penetration power such as aminoglycosides, polymyxin and beta-lactam 

antibiotics (penicillins, cephalosporins and carbapenems)
12

. However, many parameters should 

be considered to fight microbial biofilm such as, tissue pH, therapy protocol and duration of 

treatment.  

 

Figure 4: Classes of antibiotics/antibacterial agents and their modes of action on bacteria
13

. 
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It is well known that tissue pH can control the efficiency of antibiotics towards biofilms. 

Inflammation the comes from bacterial infection results in a reduction in tissue oxygen level due 

to faster metabolism rate which in turns leads to activation of cellular glycolysis process that 

minimize the tissue pH (tissue acidosis). For instance, lower pH value to less than 5.2 can result 

in reduction in efficiency of  -lactam antibiotics while increasing efficiency rifamycin
14

. On the 

other hand, protocol therapy to eradicate bacterial biofilm could also affect the biofilm 

combating efficacy. For example, tobramycin-colistin combination therapy is significantly 

efficient than monotherapy against P. aeruginosa biofilm infection
15

. 

 

1.3.Mechanisms of antibiotic resistance  
 

Antibiotic resistance in bacterial infection has negative effects upon medicine and society. Drug 

resistance leads to usage of higher doses of antibiotics with a higher potential of toxicity as well 

as longer hospital stays and higher mortality rate. For example, Methicillin-resistant 

Staphylococcus aureus (MRSA) is associated with higher deaths percentage that added $20 

billion to the total health care costs in addition to $35 billion in costs to the American society
16

. 

Antibacterial drug resistance is based on two main mechanisms: (i) preventing the antibiotic 

from reaching their targets in bacterial cell and, (ii) modifying the bacterial targets that the 

antibiotic work on as represented in Figure (5)
17

.  

Bacteria can prevent the antibiotic from reaching its targets by different mechanisms. Pumping 

the antibiotic molecule out of bacterial cell through bacterial efflux pump is one of antibiotic 

resistance mechanism that lowers the antibiotic concentration inside the bacterial cell. 

Furethermore, bacteria can reduce the permeability of the membrane that surrounds the bacterial 

cell as it makes it more difficult to pass through. On the other hand, bacterial enzymes can 

inactivate the antibiotics. For instance, β-lactamase enzyme can  inactivate  the component β-



 

7 

 

lactam antibiotic such as penicillins. Finally, Bacteria can modify the chamical structure of the 

antibiotic that prevent the binding interaction between  antibiotic and bacterial cell
17

. 

Bacterial target modification is the second strategy for antibacterial drug resistance that depends 

on different mechanisms. Mutations in the bacterial DNA can iduce a change in the structure of 

the target in the bacteria inhibiting the interaction of antibiotic with the bacterial cell target. 

Furthermore, bacteria can express other proteins that replace the  inhibited ones by the antibiotic. 

For instance, S. aureus bacteria can express a new penicillin-binding protein that resists the β-

lactam antibiotics antibacterial action which is the basis in apperance of MRSA strains
17

. 

  

Figure 5:Resistance strategies in bacteria
18

. 
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1.4. Reactive oxygen species and oxidative stress 
 

Reactive Oxygen Species (ROS) are reactive molecules that come from molecular oxygen as 

shown in Figure (6). Mitochondrial aerobic respiration is one of the ROS source formation  as 

well as oxidoreductase enzymes. ROS can induce cellular apoptosis which in turn activates the 

cellular signaling cascades as they serve as both intra- and intercellular messengers. Furthermore, 

ROS can damage DNA, protein, lipids and carbohydrates and is related to pathogenesis of 

different diseases
19

. 

 

Figure 6:Reactive oxygen species
19

. 

Survival of the cell is based on detoxification of ROS. There is normal balance between 

production and removal of ROS as represented in Figure (7)
20

. Elevation of ROS levels results in 

a condition that is called “oxidative stress”. 
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Figure 7:Imbalance between antioxidant and free radicals levels
20

. 

 

As represented in Figure (8), oxidative stress has a key role in age-related diseases such as renal 

nephritis, atherosclerosis, retinal degenerations, cancer, arthritis, obesity, type 2 diabetes and 

Alzheimer’s disease (AD)
21

.   
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Figure 8:Oxidative stress complications
21

. 

Antioxidant enzymes such as superoxide dismutase (SOD) helps in conversion of superoxide 

into hydrogen peroxide (H2O2) (equation 1)
20

 that is converted into water molecule through the 

help of peroxisomes of eukaryotic cells (equation 2)
20

. On the other hand, Glutathione 

peroxidase is a group of enzymes support conversion of hydrogen peroxide into alcohols
20

. 

2 O2
-
 + 2H

+
  H2O2 + O2               (1) 

2 H2O2  2 H2O + O2                     (2)          

 

The challenges that face the conventional antibiotics in fighting bacterial infections and the 

search for antioxidants that prevent the diseases related oxidative stresses have made many 

scientists investigating  a natural alternative that provides antibacterial and antioxidant activities 

with minimal side effects. Aromatic plants and their EOs have been widely applied for a variety 

of purposes for thousands of years. Therefore, essential oils (EOs) were one of the natural 

compounds that have been investigated for their biomedical activites.  
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1.5. Essential oil  
 

According to the International Organization for Standardization (ISO), EOs are defined as:  

“colorless, highly volatile hydrophobic liquids containing complex mixtures of organic 

compounds”. EOs are secondary plant metabolites that are stored in plant secretory cells and 

cavities after synthesis in flowers, stems, seeds and leaves that are summarized in Table (1). 

They are characterized by their lower density (less than water), lower mass (less than 300 

molecular weight) in addition to their higher dissolution is organic solvents such as ethanol, 

hexane and chloroform
22

. 

Table 1:Parts of plant material containing essential oils
23

. 
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             1.5.A. Essential oil extraction  

EOs are extracted from vegetables by steam distillation as well as by supercritical fluid carbon 

dioxide
24

. Steam distillation is the most common technique used for EOs extraction. Basically, as 

shown in Figure (9), the required part of a plant is subjected to minimum amount of heated 

steam with enough temperature (without soaking the plant in boiling water) that cause plant cell 

rupture and EOs are released with steam and condensed through a cooling condenser and finally 

the EOs are separated by an oil separator. The extraction yield (93%) and the antioxidant activity 

of EOs extracted by steam distillation were found to be higher than EOs extracted by hydro 

distillation (soaking of plant cells in boiling water) which makes steam distillation the most 

favourable technique to be used for EOs extraction 
25,26

. Examples of some EOs that were 

extracted by steam distillation are listed below in Table (2). 

 

Figure 9:Steam distillation for EOs extraction
23

. 
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Table 2:Examples of EOs extracted by steam distillation and SFE. 

 

However, due to prolonged extraction time as well as degradation of unsaturated fatty 

compounds that are present in EOs, supercritical fluid extraction (SFE) using carbon dioxide 

(CO2) have been considered as an alternative medium for EOs extraction
27,28

. The most common 

super critical fluid (SCF) in extraction is CO2 due to its lower critical temperature (Tc) (which is 

the temperature needed to convert a material state into SCF state) that preserve thermal stability 

of EOs during extraction. Furthermore, SCF CO2 can be evaporated easily by subjecting it to 

atmospheric pressure which gives an advantage of removing any CO2 residue in EOs
27,29,30

. 

However, pure CO2 has low extraction rate (80% extraction after 90 min) therefore, methylene 

chloride is used as a modifier that enhances the extraction efficacy
29

. According to Figure (10), 

liquid CO2 is compressed through a compressor and heated up to achieve a critical pressure (Pc) 

as well as a critical temperature (Tc) that are required to achieve SCF state as shown in Figure 
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(10). Then, SCF CO2 starts to extract the EOs from plant cells that are placed in an extractor due 

to higher penetration, diffusion and solubilizing powers of SCF. The EOs are dissolved in SCF 

then pass through a separator that is adjusted with atmospheric pressure to evaporate CO2 and 

separate EOs
31

. Escaped CO2 is then condensed to liquified CO2 for the next run. Examples of 

some EOs that were extracted by SFE are listed in Table (2).     

 

Figure 10:Supercritical fluid extraction (SFE) for EOs extraction
31

. 

               1.5.B. Essential oil chemical composition.  

The chemical compositions of EOs are classified into two main categories; (i) oxygenated 

compounds and (ii) hydrocarbons. The former are organic compounds that contain oxygen atoms 

in their structures such as aldehydes, lactones, ethers, alcohols, esters, ketones and phenols while 

the later contains hydrogen and carbon atoms such as terpenes and sesquiterpenes
32

. In addition, 

phytochemicals can also be classified into; monoterpenoids, sesquiterpenoids, phenylpropanoids, 

short-chain aliphatic hydrocarbon derivatives, glucosinolates and isothiocyanate derivatives as 

shown in Figure (11)
33

.  
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Figure 11:EOs representative chemical structures
32

. 

The variation in the chemical composition of EOs is related to the difference in molecules’ types, 

quantity and stereochemical structures. Furthermore, other factors can affect the chemical 

compositions of EOs such as extraction methods, environmental conditions and plant organ
32

. 

Accordingly, European Pharmacopoeia (EP) and WHO Analytical monographs have been issued 
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to confirm the quality and quantity of EOs utilizing advanced analytical techniques such as Gas 

chromatography (GC) and Mass spectrometry (MS)
33

. Generally, about 20-100 single 

components are present in EOs in different concentrations. Nearly 2-3 components are 

considered as main constituents with relative high proportions (20–70%) that determine the 

biological activities of EOs while others are considered as trace constituents. For instance, in 

Origanum species EOs, both carvacrol (30%) and thymol (27%) are the main constituents
33

. 

 

              1.5.C. Essential oils as natural antimicrobial and antioxidant agents  

Aromatic plants and their EOs have been applied for many purposes for thousands of years. They 

were used by Ancient Egyptians in embalming to inhibit the growth of bacteria. Their lipophilic 

liquids, that are composed of a mixture of chemical components with a higher antibacterial 

property, therefore they were used as preservative for fooda, as well as in pharmaceutical
34

. 

Different EOs with their antibacterial activities are listed below in Table (3). 

Table 3: list of EOs against bacterial species. 
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                    1.5.D. Essential oil antibacterial mode of action 

EOs have complex chemical nature as they are composed of several components as mentioned 

earlier, therefore they have different antimicrobial mechanisms as shown in Figure (12). Phenolic 

components of EOs play a role in enhancing the penetration and disruption of bacterial 

membranes that cause inhibition effect on cell functional properties and eventually causing 

leakage of the internal contents of the bacterial cell. The reason behind that is owing to the 

presence of phenolic components that are found in thymol, carvacrol, eugenol, peppermint (PO) 

and green tea (GTO) can enrich the mount of saturated fatty acids (C16-C18) while decreasing the 

amount of unsaturated fatty acids (C18) in bacterial cell membrane
35

. Furthermore, EOs 

lipophilicity can detach the lipids of bacterial cell membrane making bacterial cell more 

permeable. On the other hand, oregano EO can interfere with cellular energy (ATP) generation 

system that reduce significantly S. aureus intracellular ATP levels. Moreover, EOs such as p-

cymene can disrupt the proton motive force of bacterial cell membrane that required for flagellar 

movement which result in cell death
36

.  

 

Figure 12:Mechanism of action and target sites of the essential oils on microbial cells
37

. 
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         1.5.E. Essential oil antioxidant mode of action 

EOs exhibit their antioxidant role due to their behaviour as physical barrier to stop ROS 

generation. Furthermore, they may act as chemical trap for electrons such as carotenoids, and 

anthocyanidins. They may also act as chain-breaker to destroy ROS such as tocopherols and 

flavonoids components
32

.  

Generally, antioxidant agent is classified into: (i) primary and (ii) secondary antioxidants. The 

former one act as a  hydrogen ion doner  to a radical to convert it into a new stable radical. 

Secondary antioxidants can reduce the oxygen level (scavenging of oxygen or chelating metal) to 

prevent initiation of ROS generation
38

.  

               1.5.F. EOs limits and challenges  

All EOs antibacterial mechanisms can induce growth inhibition of some gram-positive such as, 

S. aureus, Listeria monocytogenes and Bacillus cereus, less than gram-negative bacteria such as 

E. coli and Salmonella Enteritidis due to the direct interaction between EOs components and 

bacterial cell membrane. Hydrophilic nature of gram-positive bacterial cell wall explains the 

high resistance toward plant EOs
39

.  

Some EOs components have some degree of toxicity as shown in case of eugenol at a 

concentration of 0.1 Mm that can cause rat hepatocytes membrane lysis due to the reduction of 

the surface tension of the membrane. Furthermore, carvacrol can inhibit the proliferation of 

purified porcine lymphocytes
39

. 

Beside EOs’ higher volatility, the direct exposure of EOs to heat, light, moisture and oxygen can 

trigger chemical and/or enzymatic reactions such as dehydrogenation, oxidation, cyclization and 



 

19 

 

isomerization reactions that in turn lead to the decomposition of their chemical constituents and 

changing in their viscosity and organoleptic properties
40

. For instance, oxygenated terpenoids 

such as menthol and menthone that are present in PO were converted into ketones, acids, and 

aldehydes upon exposure to atmospheric conditions, and consequently, these new products result 

in skin hypersensitivity reaction and allergic dermatitis
41

. On the other hand, polyphenols such as 

epigallocatechin gallate that were found in GTO are exposed to epimerization and oxidation 

reactions leading to its degradation into catechin monomers and gallic acid
42

.  

The above drawbacks of using EOs in bulk form in different biomedical application have made 

many scientists looking for a magical solutions to overcome these limitations and improve EOs 

properties. Nanotechnology opended new avenues towards preparing novel materials at much 

smaller scale – nanoscale - than their bulk counterparts, and exhibit promising improvement in 

material properties.  

1.6. Nanotechnology  

Nanoscience is a multidisciplinary science that connect chemistry, physics, engineering, 

pharmacy medicine and other sciences together. Therefore, nanoscience is considered a real 

convergence among distant knowledge areas. Nanoscience impact is very strong on many fields 

connected to life and health. Nanotechnology (applied nanoscience) may provide new track for 

combating both microbial disease as well as oxidation stresses. Nanoscience is the study 

behavior of materials that has one dimension between 1 to 100 nm as represented in Figure 

(13)
43

.  

Nanomaterials are classified into four classes; (i) zero dimensional nanomaterials (all three 

dimensions are less than 100 nm) such as nanoparticles and quantum dots. (ii) one dimensional 
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nanomaterials have two dimensions less than 100 nm such as nanotubes (iii) two dimensional 

nanomaterials (with one dimension less than 100 nm) such as thin films. And (iv) finally, three 

dimensional nanomaterials which are composed of assembled nanomaterials such as 

nanocrystalline grains. Dealing with material in the nanoscale offers higher innovation potential 

in many fields, particulary in the fields of antibacterial and antioxidant agents
43

.  

 

Figure 13:Types of nanomaterials
44

. 

1.7. Nanoparticles mechanisms for combating microbial resistance  

              1.7.A. Nitric oxide-releasing nanoparticles (NO NPs) 

Nitric oxide-releasing nanoparticles (NO NPs) have a strong antibacterial activity due to the 

formation of reactive nitrogen oxide species (RNOS) as a result of NO-superoxide interaction 

inside bacterial cell especially when NO level exceeds 1nM as represented in Figure (14). 

Furthermore, NO has the ability to bind with bacterial membrane protein as well as its efficiency 

to break DNA strands. Moreover, NO enhances the generation of hydrogen peroxide that causes 

a damage of DNA as well as their ability to simulate human innate immunity response. For 

instance, NO NPs shows a good antibacterial activity against spores of Bacillus cereus
45

.  
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Figure 14:Nanoparticles multiple antibacterial mechanisms
16

. 
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            1.7.B. Chitosan nanoparticles  

Chitosan nanoparticles (CS NPs) can combat microbes with different mechanisms. CS is derived 

from chitin (polymer of N-acetyl-glucosamine residues) after deacetylation at random monomer 

residues as shown in Figure (15) with a pKa of 6.5. At a pH below 6.5 (as in bacterial biofilm), 

all CS amino groups become protonated and bind with bacterial cell walls and plasma 

membranes (which are negatively charged) that increases the permeability of the microbial cell 

wall. As represented in Figure (14), CS NPs are also able to bind to bacterial DNA and 

inhibiting both transcription and translation processes
46

. Furthermore, CS NPs can reduce the 

activity of metalloprotein through their chelation power with bacterial cytoplasmic metals. 

Encapsulation of CS into nanoparticles increase the surface area per volume that results in 

intense positive charges on CS NPs surface as well as enhancing their solubility in physiological 

environment. It was previously reported that CS NPs have strong antibacterial activity against S. 

aureus and E. coli than CS polymer. It was found that the molecular weight of CS could affect 

the antibacterial activity of CS NPs, so, NPs containing CS with lower molecular weight have 

higher bactericidal activity against gram negative bacteria while those containing higher 

molecular weight showed higher bactericidal activity towards gram positive bacteria
47

. 
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Figure 15:Chitin and chitosan chemical structures
47

. 

             1.7.C. Silver nanoparticles 

As represented in Figure (14), silver nanoparticles (Ag NPs) can reduce biofilm resistance 

through different mechanisms. Like CS, when silver is dissolved in water, it carries positive 

charge that interacts with cell wall protein containing sulfur and phosphorus groups and thus 

creating holes in bacterial cell membrane that allows the flow of cellular contents out of the cell 

and causes death of bacteria
48

. Efficiency of Ag NPs against gram negative bacteria was found to 

be higher than gram positive bacteria because of thinner gram negative bacterial cell wall. 

However, it has also been argued that silver penetration power through gram negative bacterial 

membrane is low due to interaction between the positive charge of silver and the negative charge 

of lipopolysaccharide of the outer bacterial membrane
49

. 

              1.7.D. Copper nanoparticles.  

The anitibacterial activity of Copper nanoparticles such as copper oxide nanoparticles (CuO 

NPs) and copper nanoparticle-loaded polymer rely on two mechanisms. First, copper ion has an 

ability to bind with the carboxyl and amine groups that are located on the microbial cell surface 

such as B. subtilis. ROS formation is the second mechanism
50

. Higher concentration of copper 

ion induces the formation of ROS that inhibits DNA replication as well as protein synthesis as 
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represented in Figure (14).  It has been reported that copper nanoparticles have strong 

antibacterial effect against E. coli, S. aureus, and Listeria monocytogenes that showed a dose 

dependent activity
50

. 

               1.7.E. Magnesium nanoparticles.  

Magnesium nanoparticles have bactericidal effect based on different mechanisms. Like copper 

nanoparticles, they induce formation of ROS resulting in lipid peroxidation and pore formation 

through bacterial cell membrane. Furthermore, they adsorb halogen molecules from bacterial 

cytoplasm on their surfaces as represented in Figure (14). It has been reported that magnesium 

nanoparticles could inhibit the growth and biofilm formation of E. coli and S. aureus
51

.  

 

1.8. EOs loaded in nanosystems 

Nanoencapsulation of EOs provides an efficient approach to enhance the stability, controlled 

release, reduced EOs volatility, improved patient compliance and minimized the interaction with 

external environment conditions (light, pH, oxygen and moisture). Furthermore, unique smaller 

size could enhance cellular penetration and uptake. Different polymeric and lipid based 

nanocarriers are structured with a characteristic biodegradability and biocompatibility as shown 

in Figure (16)
24

. 
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Figure 16:Nanosystem platforms for EOs
24

. 

          1.8.A. Polymer-Based Nanocarriers.  

Polymeric nanocarriers are divided into nanocapsules and nanoparticles (nanospheres). 

Nanocapsules are composed of outer polymeric membrane encapsulating material in inner core 

or to be adsorbed on the outer surface while nanoparticles (nanosphere) composed of matrix 

system. EOs might be incorporated within the polymeric membrane or encapsulated in the core 

that are illustrated in Figure (17)
52

. Different EOs were loaded into polymeric nanocarriers as 

listed below in Table (4) with their average size, zeta potential loading capacity and biological 

activities. In case of encapsulation of EOs in chitosan nanoparticles, two-steps method 

(emulsification followed by ionic gelation) are used. Table (5) lists previous published studies 
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specificlly for essential oils that encapsulated in chitosan with the surfactants used, organic 

solvent as well as their targeted biomedical application.  

 

Figure 17:Schematic Representation of nanoparticle and nanocapsules with adsorbed or 

encapsulated EOs
52

. 

 

 

 

Table 4:List of EOs loaded into polymeric nanocarriers. 

EO Polymer   Preparation 

method  

Size 

(nm)  

LC and 

EE%  

 Formula/benefits References 

Eugenol Chitosan Emulsification 

and ionic gelation 

< 100  LC= 

12% 

- nanoparticles  

- thermally stable  

- higher antioxidant 

activity 

[53] 

Oregano Chitosan Emulsification 

and ionic gelation 

40–80  LC =      

3 – 8% 

- nanoparticles  

- thermally sTable  

- higher antioxidant 

activity  

- higher 

antimicrobial 

activity 

[54] 

Lippia 

sidoides 

Alginate/ 

cashew 

spray-drying 223–

399 

LC=  

1.9 -4.4 

- nanoparticles  

- fungicide  

[55] 
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gum - bactericide 

activities 

Jasmine  gelatin/ 

arabic 

gum 

complex 

coacervation 

600 ----------

- 

- nanocapsules  

- heat-resistant 

flavour 

[56] 

Thymol Zein liquid–liquid 

dispersion method 

200  EE= 80 - nanoparticles  

- suppress Gram-

+ve bacterium 

[57] 

Eugenol  PLGA Emulsion 

evaporation 

method 

173 -

225 

EE = 98 - nanoparticles  

- inhibiting growth 

of Salmonella  

[58] 

Carvacrol PLGA solvent 

displacement 

process 

209.8 LC = 21 - nanocapsules  

- antimicrobial 

activity 

[59] 

Thymol  Methyl 

cellulose 

ethyl 

cellulose 

displacing the 

ethanol solvent 

with water 

420  EE= 

43.53% 

- nanocapsules 

- reduce E. coli  

[60] 

 

LC = loading capacity         EE = encapsulation efficiency        PLGA = polylactic glycolic acid 

 

 

Table 5:List of EOs loaded into CS NPs, and their biomedical application using two steps 

encapsulation method. 

Essential oil Surfactant  Organic solvent  Application Reference 

Carum copticum  Tween 80 Dichloromethane Antioxidant [
61

] 

Carvacrol Tween 60 Ethanol Model system [
62

] 

Eugenol Tween 60 Ethanol  Antioxidant [
53

] 

Oregano Tween 80 Dichloromethane Antifungal  [
54

] 

Satureja hortensis Tween 80 Ethanol Antioxidant [
63

] 

Zataria multiflora without surfactant Ethanol  Antifungal [
64

] 
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              1.8.B. Lipid-Based Nanocarriers. 

Lipid-based nanocarriers are classified into: nanoemulsion, liposomes, solid lipid nanoparticles 

(SLN), and nanostructured lipid carriers (NLC). Liposomes are bilayer vesicle composed of 

association of phospholipids (amphiphilic nature) that can carry both hydrophobic (EOs) and 

hydrophilic drugs. SLN and NLC are solid particles with lipid core for encapsulation of EOs. 

They have a capacity of dissolution in aqueous media and maintain or enhance EOs biological 

activity. 

              1.8.B.1 Nanoemulsions 

Nanoemulsions are sTable homogenous system that composed of two immiscible liquids with a 

droplet size less than 500nm as shown in Figure (18). They are prepared with lower surfactant 

concentration, in contrast to microemulsion (droplet size more than 500 nm), therefore, irritation 

that comes from surfactant is not likely to happen. Nanoemulsions have a higher kinetic stability 

owing to their smaller size and stearic effect. The antimicrobial feature of EOs nanoemulsion is 

due their higher surface tension that enhance penetration power of EOs through bacterial cell 

membranes. Different EOs were loaded into nanoemulsion that are listed below in Table (6) 

with their average size, composition and biological activities
24

. 

 

Figure 18:Illustrative diagram of nanoemulsion
24

. 
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          1.8.B.2. Solid Lipid Nanoparticles.  

Solid lipid nanoparticles (SLN) are nanoparticles with a diameter ranging from 50 nm to 1 um 

and composed of different lipids such as triglycerides and waxes. EOs are immobilized in the 

core or in the outside part of SLN which provide a protection from external environment and 

provide a sustained release for EOs as shown in Figure (19)
24

. Different EOs were loaded into 

SLN that are listed below in Table (6), with their average size, composition and biological 

activities. 

 

Figure 19:Illustrative diagram of SLN
65

. 

          1.8.B.3. Liposomes  

Liposomes are type of colloidal delivery systems for both hydrophilic and lipophilic (EOs) 

drugs. They consist of phospholipids that are assembled in one or more layered vesicular form. 

They may be unilamellar vesicles (ULV) of one bilayer with diameter ranging from 25 nm 

(small ULV) to more than 100 nm (large ULV). Multilamellar vesicular vesicles (MLV) are 

other type of liposomes that composed of multilayers with a diameter exceeding 1 um that are 

represented in Figure (20). They provide a protection against environmental degradation of EOs 
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and enhance the aqueous solubility as well
24

. Different EOs were loaded into liposomes that are 

listed in Table (6), with their average size, composition and biological activities. 

 

 

Figure 20:Illustrative diagram of liposome
65

. 
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Table 6:List of EOs loaded into lipid-based nanocarriers 

EO Nano 

Carriers 

Composition Size 

(nm) 

LC & 

EE% 

Properties 

and activities 

References 

Melaleuca 

alternifolia 

Nano-

emulsion  

lecithin, Tween 

20 and glycerol 

monooleate  

74-

365 

--------

------ 

enhance 

antimicrobial 

activity 

[
66

] 

Zedoary 

turmeric  

Nano-

emulsion 

ethyl oleate, 

Tween 80 

Transcutol P 

68.3 LC = 

30% 

enhancement 

of both AUC 

and Cmax of 

turmeric oil 

[
67

] 

Artemisia 

arborescens 

SLN compritol 888 

ATO and 

Poloxamer 188 

223 EE = 

87% 

antiviral 

activity  

(HSV-1) 

[
68

] 

Nigella 

sativa 

SLN Palm oil Sofisan 

154, sorbitol, 

and water 

----- --------

-- 

-antimicrobial 

activities 

-antioxidant 

activities  

[
69

] 

Zataria 

multiflora 

SLN SDS, PEG and 

cetyl alcohol 

650 EE= 

38.66

% 

-antimicrobial 

activities 

[
70

] 

Santolina 

insularis 

Liposome hydrogenated 

soya PC and 

cholesterol 

----- --------

- 

-antiviral 

activity  

(HSV-1) 

[
71

] 

Artemisia 

arborescens 

Liposome 

(MLV) 

hydrogenated 

(P90H) and soy 

PC 

252-

408 

EE = 

60-

74% 

-antiviral 

activity  

(HSV-1) 

[
72

] 

Atractylode 

macrocepha 

Liposome PC and 

cholesterol 

173 LC = 

5.18% 

EE = 

82.18

% 

- enhanced EE 

-increase 

dissolutin rate  

[
73

] 

Origanum 

dictamnus 

Liposome  

(MLV) 

PC and 

cholesterol 

-------

- 

LC = 

4.16% 

Antioxidant 

activites and  

antimicrobial 

activites 

[
74

] 

 

PEG = polyethylene glycol     SDS = sodium dodecyl sulfate       PC = phosphatidyl choline 
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Thesis Scope and Objectives  

The scope of the study as shown in Scheme (1) was to encapsulate natural EOs such as “GTO” 

and “PO” in natural biodegradable polymeric nanocarrier as CS. The aim of the encapsulation is 

to enhance the thermal stability of the EOs, protect their phenolic contents, reach sustained 

release profile, improve their antioxidant activity and to improve their antibacterial activities.  

The novelty in this work relies on converting these EOs specifically into nanoform that are not 

found in previous published literature. The selection of PO and GTO was mainly based on the 

clear difference and variation in their chemical composition, phenolic contents, phytochemical 

components and their well-established biomedical activities. 

The preparation of encapsulated EOs NPs was followed by examination of these NPs via 

different characterization techniques. Furthermore, Different studies were used to estimate the 

EE%, LC% of the EOs, thermal stability, in-vitro release at different pH media, and finally the 

ability of CS NPs to preserve the phenolic contents. After optimization of the NP formulas, they 

had been investigated on their antioxidant activity and antibacterial activities against both Gram-

positive and Gram-negative bacteria. 
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Scheme 1: Study scope diagram. 
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Chapter 2: Materials & Methods   

 

2.1. Materials: 

Sodium tripolyphosphate (TPP), Tween 80, (2,2-DiPhenyl-1-Picryl Hydrazyl) (DPPH) and 

Dichloromethane were purchased from Sigma Aldrich Co. (USA). Chitosan of medium 

molecular weight (84,8 % degree of dealkylation) was purchased from (Primex ehf, Chitoclear, 

Iceland). Green tea as well as peppermint essential oils were obtained from Nefertari Natural 

Body Care Line (Cairo, Egypt). Folin–Ciocalteu reagents and Gallic acid were supplied by 

Merck Chemicals Co. (Germany). Glacial acetic acid and sodium carbonate were obtained from 

Adwek Co. (Egypt). All materials were consumed as received without further treatment. 

2.2. Compositional analysis of PO and GTO 
 

The Gas Chromatography (GC) coupled to Tandem Mass Spectrometry (GC/MS/MS) technique 

was used to assure the identity and to identify the components of both PO and GTO
75

. The 

analysis was carried out using a GC (Agilent Technologies 7890A) with capillary column (30 m 

× 0.25 mm i. d. and 0.25 μm film thickness to separate the component of EOs that were carried 

by helium gas (linear velocity of 1mL/min) to mass-selective detector (MSD, Agilent 7000)) 

where they are identified. The identification of components relying on the comparison of the 

chemical components mass spectra and retention time with standard compounds and by 

computer matching with NIST (National Institute of Standards and Technology) library
75

. 

2.3. Preparation of EOs loaded CS NPs  
[ 

Preparation of EOs loaded CS NPs was performed at two steps based on the method described by 

(Hosseini et al., 2013)
54

 and (Woranuch et at.,2013)
53

 with slight modifications. The process of 

EO encapsulation in CS NPs relied on two steps (as shown in Figure (21)); Step 1: a process 

http://www.sciencedirect.com.library.aucegypt.edu:2048/science/article/pii/S0268005X16303599#bib12
http://www.sciencedirect.com.library.aucegypt.edu:2048/science/article/pii/S0023643816301165#bib36
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involves oil in water (O/W) emulsification in which an aqueous phase, composed of CS and 

Tween 80 dissolved in acidic solution, was emulsified with an organic phase containing EO 

through rotor stator homogenizer with adjustable speed (rpm) and duration (min). As a result, 

O/W nanoemulsion was formed. Step 2 is a process known as ionic gelation that is commonly 

used in order to formulate composite nanoparticles, and involves a negatively-charged cross-

linker such as sodium tripolyphosphate (TPP) was added to the nanoemulsion obtained in step 1 

to interconnect the positively charged CS polymer chains as represented in Figure (22A) 
56,61,76

. 

 

 

Figure 21:Schematic illustrations of EO encapsulation two-step process. 

There were mainly two factors that thoroughly examined and were found to greatly affect the 

size of the formulated NPs, their polydispersity index (PDI) and zeta potential (ZP) during the 

preparation of CS/PO NPs and CS/GTO NPs; (i) the homogenization parameters (speed and 

time) and (ii) the concentrations of the components (such as TPP, and CS/EO ratio) as 

represented in Figure (22B). The CS concentration and tween 80/CS ratio were kept constant 

during all experiments.  
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Figure 22: (A) chemical structure of chitosan ionically crosslinked with TPP
76

, (B) Parameters 

that affect the size, PDI and ZP of formulated NPs. 

 

(A) 

(B) 
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          2.3.A. Oil in water (O/W) emulsion preparation  
 

In the preparation of O/W emulsion, the aqueous phase was prepared by dissolution of CS 

powder in 1% (v/v) glacial acetic acid to get a solution of 1% CS solution after overnight 

shaking. To 50 mL CS solution, tween 80 (CS: Tween 80 was 1:1.12 w/w) with HLB 

(hydrophilic lipophilic balance) of 15.9 was added and stirred for two hours at 45   to form an 

aqueous phase of the emulsion. On the other hand, the oily phase was prepared by dissolving PO 

(0.12, 0.24, 0.36 and 0.48 g) in 5mL dichloromethane to get concentrations of (CS: PO) of 

1:0.25, 1:0.5, 1:0.75 and 1:1.00 w/w). Then, the oily phase was added drop-wise into the aqueous 

phase during homogenization at 14000 rpm for 10 min under an ice bath condition to get an O/W 

emulsion. GTO was treated as PO. It should be pointed out that the homogenization speed and 

duration are chosen based on the preliminary studies that are illustrated in chapter 3 of the result 

and discussion.   

              2.3.B. Ionic gelation process and separation of the prepared NPs  
 

In order to finally form the NPs, 50 mL of 0.4% (w/v) aqueous TPP solution was gradually 

added to 50 mL emulsion under 400 rpm stirring via magnetic stirrer (Phoenix, RSM-01SH, 

Germany) for 40 min at a room temperature to allow the cross-linking of CS polymer and to 

facilitate the formation of NPs. The formed NPs were collected by 10000 rpm centrifugation for 

30 min at 4 , and followed by washing several times by deionized water. The formed wet 

pellets were dispersed in distilled water to get a homogeneous suspension via probe sonicator 

(Qsonica 500, Qsonica, LLC, USA), for 4 min. with a sequence of 2 seconds sonication and 1 

second rest in an ice bath. Finally, trehalose dihydrate which acts as a cryoprotectant was mixed 

via magnetic stirrer (Phoenix, RSM-01SH, Germany) with the nano-suspensions (NPs: Trehalose 

ratio of 1:1) and subsequently freeze dried at -65  for 72 hrs. It should be pointed out that the 
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TPP concentration is chosen based on the preliminary studies that are illustrated in chapter 3 of 

the result and discussion.  CS NPs were stored at the refrigerator until further analysis. CS: EOs 

weight ratios that were used for the present study are listed in Table (8). 

Table 7: List of CS NPs samples with their CS:EOs weight ratios. 

sample No Weight ratios (w/w) 

1  CS NP (1:0) 

2 CS/GTO (1:0.25) 

3 CS/GTO (1:0.50) 

4 CS/ GTO (1:0.75) 

5 CS/GTO (1:1.00) 

6 CS/PO (1:0.25) 

7 CS/PO (1:0.50) 

8 CS/PO (1:0.75) 

9 CS/PO (1:1.00) 

2.4. Characterization of the prepared NPs  
 

         2.4.A. Particle size and zeta potential of the prepared NPs  
 

To study the nanoparticle hydrodynamic size and zeta potential Malvern nano-series Zetasizer 

(UK), with a helium-neon laser operating at 90° scattering angle with a power of mW and 

wavelength of 633 nm at 25  , was used. Freshly prepared nano-suspension were diluted with 

distilled water to a concentration of (1 mg/mL), according to Zetasizer manual specification, 

before measurement. Triplicate samples were analyzed and mean value was reported. 
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          2.4.B. Morphology of the prepared NPs 
 

To study the morphology of the prepared NPs, Hitachi H-7650 (Japan) transmission electron 

microscopy (TEM) analysis was carried out using a voltage of 200 kV. Before lypholization 

process, 1mL of nano-suspension in the concentration (1mg/mL) was diluted with 50 mL 

deionized water and spread onto a copper grid and left to dry at a room temperature before TEM 

analysis.  

          2.4.C. Fourier transform InfraRed (FTIR) Spectroscopy analysis  
 

 

Fourier transform InfraRed (FTIR) Spectroscopy (Thermo Scientific Nicolet 8700, USA) was 

used to study the chemical characteristics of the NPs. Pure EOs, CS NPs, CS/PO NPs and 

CS/GTO NPs were analyzed via 16 scans at a resolution of 4 cm
-1

 at a range of 400–4000 cm
-1

. 

Lyophilized NPs were triturated with potassium bromide and compressed in form of pellets.  

         2.4.D. Thermogravimetric analysis (TGA) analysis 
 

To estimate the thermal stability of nanoparticles and EOs, Q50 TGA Thermogravimetric 

Analyzer (TGA) was performed. Each 4-10 mg of lyophilized powder were placed in the 

platinum pan and heated up by TGA furnace with heating rate of 10 °C/min under nitrogen 

atmosphere and from 25 to 600 °C.  

         2.4.E. Powder X-ray diffraction (XRD) analysis  
 

To study the material packing characteristics and crystallinity, X-ray diffraction (XRD) via a 

(Bruker AXS D8, Germany) diffractometer was used in operation conditions of 40 mA current, a 

power of 40 kV and radiation with Cu Kα (λ = 1.5 Å). Lyophilized samples were scanned over a 

2θ range of 5° to 50° at a speed of 0.03° per second. 
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2.5. Determination of encapsulation efficiency (EE%) and loading capacity (LC%) 
 

EO amount that was encapsulated in CS NPs was determined by UV–Vis spectrophotometry
54,62

. 

Each of 30 mg of GTO loaded CS NPs and 80 mg of PO loaded CS NPs were dropped into 10 

mL dehydrated ethanol and centrifuged at 12000 rpm for 20 min at 25 °C as reported by (Deka et 

al., 2016)
77

. The EO content in the supernatant was analyzed using UV–Vis spectrophotometry at 

a wavelength of 274nm and 227nm for GTO and PO, respectively.  The amount of GTO and PO 

was calculated by suitable calibration curve of pure GTO as well as PO in ethanol with R
2
 of 

0.996 and 0.999, respectively. CS NPs was used as a blank, however it was treated likewise as 

CS/PO NPs and CS/GTO NPs. Triplicate samples for each batch were recorded.  

The loading capacity (LC) along with encapsulation efficiency (EE) were estimated from 

Equations (3) and (4) respectively
54

: 

        
                         

                                           
                                      

        
                         

                   
                                                                     

 

2.6. In-vitro release studies 
 

40 mg of dried NPs (samples 5 and 9 that are in Table (8)) were placed in a dialysis bag (12000-

14000 KDa), containing 2 mL of release media (40% ethanol and 60% phosphate buffer saline 

with a pH of 7.4) or (40% ethanol and 60% acetate buffer with a pH of 3), and incubated in 13 

mL of the same release media at room temperature under gentle shaking. The reason behind 

choosing acetate buffer and phosphate buffer saline, is to mimic the stomach and blood pH in the 

human body and to understand the release behavior if these formulas were taken via oral or 

parenteral routs. Specific volume of release media at specific sampling time intervals was taken 
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for analysis, with addition of an equal volume of fresh release media. Total cumulative amount 

of GTO and PO (g) in volume of the release medium (mL) that were encapsulated in NPs, was 

estimated through UV–vis spectrophotometer at 274 nm and 227 nm for GTO and PO 

respectively
54,56,61,63

. The percentage of cumulative EO released represented by the ratio of the 

cumulative amount of EO released at each time interval (Mt) to the initial amount of the EO 

encapsulated in the NPs (M0) are illustrated in equation (5)
54

. 

                                
  

  
      

 

   

                   

2.7. Estimation of Total phenolic contents (TPC)  
 

 

Folin–Ciocalteu method was used to estimate the contents of total phenolic contents of pure EOs 

as well as in their encapsulations
61

. Pre-determined amount of CS NPs, PO, GTO, CS/PO NPs 

and CS/GTO NPs were mixed with dehydrated ethanol to get a final concentration (3% w/v) and 

(8%
 
w/v) for GTO and PO, respectively. On 0.5 mL of each sample, 2.5 mL of (10% v/v) 

aqueous Folin–Ciocalteu reagent and left for 4 min. Then, 2 mL aqueous solution of 7.5% (w/v) 

sodium carbonate was dropped to the mixture and left in the dark for 6 hrs at room temperature. 

Finally, all the samples were centrifuged for 3 min at a speed of 10000 rpm and the supernatant 

was sucked out for measuring the absorbance at 765 nm using a spectrophotometer. To estimate 

the TPC, different concentrations of gallic acid (0.01 – 0.1 mg. mL
-1

) in ethanol were treated like 

the samples, and a standard calibration curve was built (R
2
= 0.99) and EOs TPC was expressed 

in mg gallic acid that is equivalent to 1 gram of each EO as represented in equation (6)
61

. 

mg GAE/ g oil = 
        

 
            (6) 
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where, (A) is the amount of gallic acid that gives the same absorbance as the sample (calculated 

from the calibration curve), and (B) the amount of sample that was used.  

2.8. Investigation of the antioxidant activities of NPs 
 

The antioxidant activity of EOs loaded CS NPs was examined using DPPH free radical 

scavenging assay as illustrated by (Chen et al., 2009)
78

 with slight modification. First, 

predetermined amounts of pure PO, pure GTO, CS/PO NPs and CS/GTO NPs (samples 5 and 9 

that are in Table (8)) were dispersed in 2 mL of (ethanolic DPPH solution (0.05 mM) and left for 

2 hours in the dark at ambient temperature. The samples containing encapsulated EO were 

centrifuged for 3 min to take the supernatant for analysis. Spectrophotometer at 517 nm was used 

to measure the absorbance of samples considering dehydrated ethanol as a blank. The percent 

inhibition of DPPH was calculated using equation (7)
61

: 

                     
                 

        
                                           

where Acontrol is the DPPH absorbance and Asample is the sample absorbance.  

 

2.9. Investigation of the antibacterial activities of the NPs 
 

Agar dilution and colony counting  methods were used to investigate the impact of encapsulation 

of PO and GTO on the antibacterial activity against both Staphylococcus aureus (S. aureus) and 

Escherichia coli (E.coli) as examples for Gram positive and Gram negative bacteria, 

respectively (Wei et al., 2009)
79

. E. coli and S. aureus were cultivated in Luria broth (LB) 

medium (10 g peptone, 5 g yeast extract, and 10 g sodium chloride per liter) aerobically for 24 

hours at 37 °C. Tubes turbidity was noted visually before and after incubation. All EOs and NPs 

were previously kept under UV light for 2 hours for sterilization. After overnight growth, 2.5 mL 

of the bacterial culture were taken in falcon tubes containing 5 mg of CS NPs, CS/PO NPs, 
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CS/GTO NPs, and the corresponding amounts of pure PO (1.11 mg) and pure GTO (1.15 mg) for 

an overnight incubation at 37 °C on shaking platform at 250 rpm. Serial dilutions were prepared 

from the falcon tubes by addition of sterile LB agar and the 7
th

 fold dilutions were spread on 

nutrient agar and cultured at 37 °C for 24 hrs then the colonies were quantified. Additionally, a 

positive control was prepared (LB broth with incubated bacteria) to check the growth of 

incubated bacteria, and a negative control shows the sterility of the LB agar medium, and a 

negative control was prepared (only LB broth) to check for sterility of the media used in the 

experiment. The antibacterial activity was estimated through the reduction in numbers of the 

bacterial colonies after introducing the sample compared to the positive control. Percent 

inhibition of bacterial growth was calculated using equation (8)
79

: 

                                    
    

 
                                           

C and A are the bacterial colonies of positive control and treated plated respectively.            

2.10. Theoretical background  
              

              2.10.A. Rotor-Stator homogenizer  
 

Rotor-stator homogenizer is a type of cutting blade mixers that belongs to mechanical 

homogenizers
80

.  The homogenization action relies on the movement of a rotor at a very high 

rpm that creates extremely powerful shear force occurring within the narrow gap between the 

rotor and the stator. In other word, the close proximity of the inner revolving rotor and outer 

fixed stator creates a circumferential force that expels material between the spaces of the rotor-

stator generating cavitation and extreme turbulence and converting a bulk sized material into 

nano-sized material in a very short period of time as illustrated in Figure (23). The main 

application of a rotor-stator generator type homogenizer is to make dispersions and emulsions in 
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a nano-sized form
81

. To optimize the rotor stator homogenizer, many variables should be 

controlled such as; design and size of the rotor-stator probe, tip speed, duration of 

homogenization, vessel shape and positioning of rotor-stator as well. On the other hand, sample 

condition affecting the homogenization efficiency for example are; the sample initial size, 

medium viscosity, sample volume and concentration
81

. 

 

Figure 23:Rotor-stator type homogenizer
80

. 

              2.10.B. Probe sonicator  
 

Probe sonication or ultrasonicator as represented in Figure (24a), is a device exerts its action by 

generating powerful ultrasonic waves in a liquid medium causing cavitation phenomenon. 

According to cavitation, ultrasonic waves have a pressure that causes liquid streaming that 

results in an immediate development of micro-sized bubbles which grow and merge until they 

reach their critical size. Subsequently, large sized bubbles vibrate aggressively, and finally 

collapse generating a shock wave with an enough power to disrupt covalent bonds in a dispersed 

material triggering deagglomeration as shown in Figure (24b). To optimize the efficiency of 

probe sonicator, many variables should be controlled such as tip amplitude and intensity, 

temperature, material concentration, vessel capacity and shape
81

. Regarding of specifications of 

probe sonicator, piezoelectric horn produces vibrations of 15- 25 kHz with a power vary from 10 
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to 375 Watts. It should be pointed out that the probe sonicator is considered a direct sonication 

technique where the probe is immersed directly into the suspension which is more powerful than 

the indirect sonication technique that relies on immersing the container in the liquid that is 

propagated by ultrasound waves.
81

.  

 

Figure 24:A typical probe sonicator (a), The phenomena of cavitation (b)
81

. 

 

         2.10.C. Lypholizer (freeze dryer)   
 

 

Freeze-drying or lypholization is an extensively used process for drying of colloidal carriers 

including liposomes, nanoemulsions and nanoparticles in order to enhance the stability of these 

carriers. A typical lypholizer is composed of a drying chamber including temperature-controlled 

shelves that are connected to a condenser chamber and vacuum pumps Figure (25a). Lyophilized 

product is characterized by intact characteristics of the product such as; nanoparticle size 

distribution, intact activity of encapsulated drug and long-term shelf life. Lypholization cycle is 

divided into three stages: (i) solidification, (ii) ice sublimation and (iii) desorption of unfrozen 

water that are represented in Figure (25b).  

First, in solidification phase pure water in colloidal suspension is converted into ice crystal 

resulting in an increase in the suspension concentration and viscosity that inhibits further 
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crystallization. Second, applying vacuum which leads to depression of the boiling point that in 

turn induces ice sublimation stage. At the end of the second stage, porous pellet is formed due to 

sublimation of ice crystals. Finally, desorption of unfrozen water stage is characterized by 

removal of water that did not come out during the first and second stages. However, 

lypholization may generate freezing and dehydration stresses as well as phase separation during 

freezing that could destabilize and induce irreversible fusion of nanoparticles in colloidal 

suspension. Therefore, cryoprotectant (excipient that protect nanoparticles during freezing phase 

through immobilization of nanoparticles within a glassy matrix) including; trehalose, sucrose, 

glucose and mannitol should be incorporated.  

 

 

Figure 25:A typical benchtop freeze dryer (a), the lypholization cycle (b) 
82

. 

        2.10.D. Dynamic light scattering (DLS, Zetasizer)   
 

Dynamic Light Scattering (DLS) is a system that shines suspended particles with a laser beam 

and investigating the intensity fluctuations in the scattered light. The DLS system consists of six 

components as shown in Figure (26a); (i) a laser light source for sample illumination, (ii) the 

sample that is placed in plastic cuvette, (iii) two avalanche photodiode detectors (positioned at 

certain angles) for detecting the scattered light that comes out from the sample, (iv) an attenuator 
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to reduce intensity of scattering if it is outside detector range, (v) a collector and finally (vi) 

display software. 

 DLS system measures particle size depending on the measurement of Brownian motion (random 

collision) between nanoparticles and solvent molecules that is based on Stokes-Einstein equation 

(9)
83

.  

     
   

    
               

According to Stokes-Einstein equation, d(H) is the hydrodynamic radius, k is Boltzmann’s 

constant, T is the absolute temperature,   is the medium viscosity and D is the velocity of 

Brownian Motion. Therefore, through measuring Brownian motion velocity, hydrodynamic size 

can be measured
83

. It should be noted that, the hydrodynamic size is related to a thin, electric 

dipole layer of liquid medium that adheres to the surface of nanoparticle, influencing the 

Brownian motion of the nanoparticle. Smaller particles size exhibits much easier random 

collision with solvent molecules than larger particles. Velocity of Brownian motion is measured 

by detecting the rate of scattered light fluctuation. Therefore, the smaller particle size, the more 

rapid fluctuation in scatter light occurs as represented in Figure (26b). DLS could be quite 

advantageous if compared to other techniques, as it is a non-invasive technique that requires 

minimal sample preparation and no calibration is required for it. In addition, DLS instruments 

are quite much more compact and affordable and they offer user friendly interfaces that allows 

users to perform comprehensive data analysis
84
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Figure 26:A typical Dynamic light scattering system (a) , DLS principle (b) 
83

. 

 

              2.12.E. Transmission electron microscopy (TEM) 
 

Transmission electron microscopy (TEM) is a microscopy technique that depends on the 

interaction of a sample deposited on the surface of cupper grid with a beam of electrons that is 

transmitted through it. A typical TEM, it composed of; (i) high voltage (100-400 kV), (ii) 

Electron source of 0.1-1µA (electron gun), (iii) condenser system of lenses and apertures that 

controls the illumination on specimen, (iv) objective lens for imaging, (v) projector lens that 

magnifies 

image as represented in Figure (27)
85

. The image that results from high-energy (>100 kV) 

electron interaction with the sample is magnified and focused onto a fluorescent screen. In the 

TEM image, the regions where electrons do not pass through the sample results in a dark image. 

Image resolution of the microscope relies on the wavelength of radiation according to Abbe's 

equation (10)
85

: 

   
      

     
        (10) 

https://en.wikipedia.org/wiki/Electron
https://en.wikipedia.org/wiki/Focus_%28optics%29
https://en.wikipedia.org/wiki/Fluorescent
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Where, (d) is the image resolution, (    wavelength of imaging radiation, (n) refraction index of 

medium between source and lens and ( ) is the half angle of the cone of light from specimen 

plane. Image resolution (d) is the shortest distance between two points that can be distinguished 

by the camera system. Based on Abbe's equation 7, TEM images are characterized with a 

significantly higher resolution (0.2 nm) due to small electron wavelength (de Broglie 

wavelength). TEM image contrast is due to the thickness and composition of the material as well 

as absorption of electrons in the material
85

.  

 

 

Figure 27:A typical TEM components
85

. 

 

 

 

https://en.wikipedia.org/wiki/Optical_resolution
https://en.wikipedia.org/wiki/De_Broglie_wavelength
https://en.wikipedia.org/wiki/De_Broglie_wavelength
https://en.wikipedia.org/wiki/Contrast_%28vision%29
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              2.12.F. Fourier transform infrared spectroscopy (FTIR) 
 

Fourier transform infrared spectroscopy (FTIR) is a spectroscopic technique that measures the 

vibrational oscillation of molecular bonds in forms of molecular stretching and bending of 

chemical bonds when they are subjected to a matched light wavelength (mid IR wavelength of 

2.5 μm and 25 μm), that generates absorption peaks in the IR spectrum. FTIR is a rapid a 

technique that estimate the chemical composition of the system (qualitative analysis) as well as 

identification of characteristic functional groups in the formula. FTIR depends on Michelson 

interferometer as represented in Figure (28). In Michelson interferometer, He-Ne laser beam are 

splitting into two halves, the first half of the light hits a fixed mirror while the second part hits 

the moving mirror. Then, the two halves are recombined with different traveling distances that 

generates interference pattern due to the difference in the path lengths. The resulted 

interferogram shows variable transmitted intensities versus time that are converted into a 

frequency spectrum using a Fourier transform mathematical function. Light with interference 

pattern passes through the sample and the detector can collect the interfering signals and 

generates a plot of the response
86

. 
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Figure 28:Schematic diagram of Michelson interferometer
87

. 

              

            2.12.G. X-ray diffraction analysis (XRD) 
 

X-Ray Diffraction (XRD) analysis provides a valuable information about material packing 

character as well as material crystallinity through interpretation of diffraction peaks (shape, 

intensity and position). XRD relies on Bragg’s law (equation 11) that studies the conditions 

needed for light diffraction. According to Bragg’s law,   is the wavelength, while d is the 

spacing between the planes and   is a diffraction angle. 

                               (11) 



 

54 

 
 

 

According to Figure (29 a, b), when a fixed wavelength of X-ray ( ) is applied with an incident 

angle ( ) on planes of atoms having a space (d), diffraction peak will simultaneously be 

generated at a specific angle ( ). The angle between incident beam and the detector angle is 

called diffracted angle (2 ). Therefore, according to the peak position (at a specific angle  ), the 

spacing between the planes (d) can be estimated. On the other hand, the types of atoms in 

diffracting plane can easily be determined by peak intensity
88

. 

 

Figure 29: Bragg’s hypothesis (a), Schematic diagram of a typical XRD system (b)
88

. 

 

              2.12.H. Thermal gravimetric analysis (TGA) 
 

Thermal gravimetric analysis (TGA) provides useful information about the behavior of a 

material during heating conditions. TGA can estimate the impact of temperature on the 

material’s weight change that helps in understanding the thermal properties of a material. The 

sample is heated in a controlled way in an oven with an environment of different gases. The 

weight difference is measured as a function of temperature. The plot that come out of TGA is 

called thermogram. A typical TGA consists of an oven with a platinum thermocouple and a 

microgram balance as represented in Figure (30). A thermocouple that is made of platinum is 

used to measure the temperature. The change in weight is recorded from the beam deflection. 
89

. 



 

55 

 
 

 

 

Figure 30:Schematic diagram of TGA
89

. 

              2.12.I. Folin–Ciocalteu (FC) method 
 

The Folin Ciocalteu method is a simple spectroscopic method for determination of phenolic 

contents in herbal extracts and EOs
61

. Folin Ciocalteu reagent is typically composed of 100 g of 

sodium tungstate (VI) dihydrate and 25g of sodium molybdate (VI) dihydrate dissolved in 

700mL distilled water. Then, the formed solution is added to 100mL concentrated hydrochloric 

acid and 50mL of 85% phosphoric acid added to it 150g of lithium sulphate hydrate
90

. The net 

results of the previous addition is the formation of phosphomolybdic and phosphotungstic acids 

(oxidation states of molybdenum and tungsten are 6+). The mechanism of FC reagent in 

determining the amount of phenolic contents depends on the chemical reaction between FC 

reagent with a reductant such as phenolic compound that forms molybdenum blue and tungsten 

blue that are measured through UV-Vis spectroscopy at a wavelength of 765 nm. The reaction is 

accelerated by increasing the pH of the medium by the addition of sodium carbonate
91

. The F-C 

method was found to be beneficial in in estimating the total phenolic content (TPC) rather than 
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High Performance Liquid Chromatography(HPLC), owing to its equivalent response to different 

phenolic substances
92

.  For instance, HPLC estimated only 10% of the TPC in Eucalyptus leaf 

that is estimated by FC reagent
93

. However, the F-C method has an ability to react with non-

phenolic compounds such as with tertiary aliphatic amines, sugars and inorganic reducing 

agents
94

.  

              2.12.J. Ultraviolet/Visible spectroscopy (UV-Vis spectroscopy)  
 

UV-Vis spectroscopy is a technique that is used mainly for quantitative as well as qualitative 

analysis. It depends on the absorbance of a molecule to UV and Visible radiations that are part of 

the electromagnetic spectrum. These radiations have energy that ranges from 36 to 143 kcal/mol 

which are enough for electrons transition from the ground state to an excite state. The energy of 

the UV and visible electromagnetic radiations can be calculated using equation (12)
95

:  

E= h. ν. (12) 

Where, (E) is the radiation energy, (h) is Plank’s constant and (v) is the radiation frequency.   

The wavelength at which maximum absorbance occurred which is called λmax is characteristic for 

different chemical species that makes UV-Vis spectroscopy a reliable qualitative method of 

analysis. Furthermore, UV/Vis spectroscopy can be used for quantitative analysis based on Beer 

Lambert law shown in equation (13)
95

: 

A = εbc  (13) 

Where, (A) is the absorbance, (ε) is the absorptivity coefficient which is characteristic for each 

substance, (b) is the path length of radiation that passes through a cuvette containing the sample 
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and finally (c) is the sample concentration. Accordingly, through instrumental measurement of 

the sample absorbance, sample concentration can be estimated
95

. 

A typical UV/Vis spectrophotometer as represented in Figure (31) consists of; (i) a radiation 

source either a deuterium lamp (for UV radiation wavelength that ranges between 200-400 nm) 

or a tungsten-halogen lamp (for Vis radiation wavelength that ranges between 400-800 nm), (ii) 

monochromator either grating or a prism to select only part of the electromagnetic radiation to 

reach the sample, (iii) a sample holder either plastic cuvettes (for Visible radiation range) or 

quartz cuvettes (for UV and Visible radiation range) and finally (iv) a detector either 

photomultiplier tube detector or photodiode are used to convert the transmitted light beam into 

an electrical signal
95

.  

 

Figure 31:UV-Vis spectrophotometer
95
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           2.12.K. Antibacterial Assessment by Agar dilution and colony counting method  
 

The agar dilution method is one of the methods that uses an antibiotic sensitivity test. In brief, an 

antimicrobial agent is incorporated into a molten agar medium that contains the incubated 

bacteria. The mixture is incubated while shacking under specific conditions of temperature, 

speed and duration. Serial dilutions are prepared from the incubated mixture and the desired 

dilution is spread on nutrient agar. Agar plate is cultured and the colonies are quantified as 

represented in Figure (32). This method is commonly used for antibacterial testing against both 

Gram-positive and Gram-negative bacteria
96

.  The agar dilution method is considered a gold 

standard technique of antimicrobial susceptibility testing that is characterized by its accuracy in 

determination of the minimum inhibitory concentrations (MICs), and the ability to extend the 

antimicrobial concentration as far as required. On the other hand, agar dilution method is an 

expensive method as it requires large amount of manual handling that needs extensive training of 

personnel
97

. 
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Figure 32:Agar dilution and colony count method
96

 

 

 

            2.12.L. DPPH test 

DPPH is a stable radical and has a violet color with a maximum absorbance at a wavelength of 

517 nm in ethanolic solution. When DPPH comes in contact with another radical (an antioxidant) 

it gets reduced. The reduced form of DPPH loses its properties as a free radical and accordingly 

changes its color to yellow as represented in Figure (33). DPPH assay is easy and rapid way for 

investigating the antioxidant properties. However, DPPH is not a peroxyl-radicals (physiological 

radical), therefore Light, O2, and pH can influence the DPPH absorbance. Furthermore, 

compounds as carotenoids with absorption wavelength of 517 nm can interfere with the 

absorption maximum of DPPH.  
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Figure 33:DPPH assay principle
98

 

 

 

 

 

 

Chapter 3 

 

Results and Discussion: 
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Chapter 3: Results and Discussion– Chitosan/ (Peppermint and Green Tea Oil) 

Nanoparticle Formulations, Characterization and in-vitro Release. 

 

3.1. Compositional Analysis of PO and GTO by GC/MS/MS. 
      

PO is a pale-yellow liquid obtained by steam distillation of leaves that comes from Labiatae 

herbs family such as Mentha piperita L. and M. arvensis var. piperascens
99

. GTO on the other 

hand is a yellow liquid obtained by steam distillation of leaves that comes from Theaceae herbs 

family such as Camellia sinensis
100

. Both liquids are freely soluble in ethanol.  
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The Gas Chromatography coupled to Tandem Mass Spectrometry (GC/MS/MS) technique was 

used to assure the identity and to identify the components of both PO and GTO
75

. GC/MS/MS 

chromatogram obtained from PO is illustrated in appendix I. Based on the results of GC/MS/MS 

chromatogram, Citronellol is the most abundant compound in PO which is characteristic 

oxygenated monoterpene phytochemical in Labiatae herbs family
101

. Furthermore, other 

oxygenated monoterpenes were identified such as menthone, tetrahydrocarvone, menthol, 

levomenthol, α-terpineol and pulegone which are characteristic for peppermint herbs
102

. Based 

on the results revealed by GC/MS/MS chromatogram of PO, it was found that about 70.32% of 

PO components are non-phenolic oxygenated monoterpenes phytochemicals as shown in Figure 

(34).These results are agreed to (Gharib et al., 2013)
103

 findings who found about 62.2% of PO 

composition was non-phenolic oxygenated monoterpenes phytochemicals.  

 

Figure 34:Chemical structures of PO and GTO phytochemicals
32

. 

         On the other hand, according to the results of GC/MS/MS chromatogram of GTO which 

are represented in appendix II, 4-chromanol is the most abundant compound (54.8%) in GTO 

which is composed of a characteristic ring in the structure of phenolic flavonoids in Theaceae 
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herbs family specially green tea as represented in Figure (34)
104

. Furthermore, fatty alcohol such 

as oleic alcohol were identified in the MS chart of GTO that is characteristic in green tea 

herbs
105

. These  

findings were found to be similar to the findings of (Packer, 2001)
104

 who reported that the 4-

chromanol ring is a fundamental component of tea flavonoids such as Quercetin and Epicatechin.  

In this regard, the results of GC/MS/MS chromatogram for both EOs agree to a large extent with 

previously published reports and confirm the identity and characteristic components for both PO 

and GTO and shed light on the clear difference in the origin and composition of the both EOs. 

 

 

 

 

 

 

 

         3.3.A. Impact of homogenization parameters on the average size and zeta potential of 

CS/PO NPs. 
 

As reported previously, homogenization parameters such as speed and duration had crucial role 

in reducing the average size of different NPs by increasing the rotor stator homogenizer speed 

and duration 
106,107

. CS/PO NPs were prepared by using a ratio of CS to PO (1:1) with fixed TPP 

concentration at 0.5%w/v. Different homogenization speeds (12000, 13000 and 14000 rpm) at 

different homogenization times (5, 10 and 15 min) were used.  

As shown in Figure(35a), homogenization speed had a significant impact on particle size 

diameter. Increasing the homogenization speed was identified to significantly reduce the NPs 

diameter. For instance, at 10 min homogenization, the average diameter of the NPs at 12000, 

13000 and 14000 rpm were 549.9  11.08, 420.1  9.77 and 404.8  5.45 nm, respectively. On 

the other hand, homogenization time also had an impact on the NPs diameter. So, 

homogenization for 10 min showed significant lower NPs average diameter at all 
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homogenization speeds. It should be noted that, at 5 min homogenization, incomplete 

homogenization was noticed specifically at 12000 rpm. Based on the previous results, 

homogenization at 14000 rpm that represent the higher speed with duration of 10 min showed 

the lowest NPs diameter. 

 

 

 

(a) 

(b) 
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Figure 35:Impact of homogenization parameters on (a) the average NPs diameter and (b) size 

distribution of CS/PO NPs. 

As shown in Figure (35b), homogenization speed had a significant impact on the NPs size 

distribution. The highest NPs size mono-dispersity (lowest PDI) was identified at 

homogenization speed of 14000 rpm at all homogenization times while homogenization speed of 

13000 rpm showed the lowest NPs size mono-dispersity (highest PDI) at all homogenization 

times as well. For instance, at 10 min homogenization, the PDI value at 12000, 13000 and 14000 

rpm were 0.34  0.01, 0.37  0.01 and 0.22  0.02, respectively. On the other hand, 

homogenization time also had an impact on the NPs diameter. So, homogenization for 5 min 

showed the highest PDI value at all homogenization speeds, while, homogenization for 10 min at 

14000 rpm showed the lowest PDI value. Based on both average NPs size and PDI results, 

homogenization at 14000 rpm for 10 min showed the ideal homogenization parameters. 

Surprisingly, previous reports agree with our findings and recommended a 10min 

homogenization at 14000 rpm as an optimum homogenization condition in encapsulation of 

Oregano, Carum copticum and Carvacrol in CS-TPP system
61,76,108

. It should be pointed out that 

any further increase in homogenization speed was not favorable, because of the high energy 

provided to the medium which led to volatilization of EO, particle aggregation and enlargement 

rather than particle size reduction
106

. 

               3.3.B. Impact of TPP concentration on the average size and zeta potential of 

CS/PO NPs 
 

Based on the homogenization parameters studies, new batches were prepared using 

homogenization speed of 1400 rpm in a duration of 10 min to study the impact of TPP 

concentrations on the NPs size, size distribution and zeta potential. Different TPP concentrations 
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were used ranging from 0.3-1% w/v. According to Figure (36a), the NPs size first gradually 

decreased from 300  7.52 nm to 238.9  9.56 nm at TPP concentration of 0.4 %w/v and then 

increased dramatically to 720.3  13.8 nm at TPP concentration of 1% w/v. Based on these 

results, the TPP concentration of 0.4%w/v showed the lowest NPs size.  

 

(a) 
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Figure 36: Impact of TPP concentrations on (a) the NPs size and size distribution (b) the zeta 

potential of CS/PO NPs. 

According to NPs mono-dispersity, as shown in Figure (36a), increasing the concentration of 

TPP showed a statistically no change in PDI value reaching 0.29   0.003 nm at TPP 

concentration of 0.4% w/v, then a significant increase in PDI value reaching 0.339  0.01 nm 

that appeared at TPP concentration of 1%w/v. Based on these results, the TPP concentration of 

0.3 to 0.4%w/v showed statistically no change in mono-dispersity of the NP size. 

As shown in Figure (36b), increasing the concentration of TPP showed a significant increase in 

zeta potential (ZP) value reaching 23.15  1.05 mV at TPP (0.4% w/v). The reason behind this 

elevation in ZP value at the concentration of TPP below (0.4 % w/v) might be due to the 

formation of more tightly compacted NPs. TPP is a cross-linker with negative charge that 

minimizes the electrostatic repulsion between CS molecules and thus enhances the aggregation 

(b) 
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and NP formation
76

. As the NP forms, additional incorporation of TPP is suggested to increase 

the internal cross-linking between CS chains within the NP, leading to the formation of more 

tightly bound CS chains that increase the surface area per unit volume of the particle thus 

increasing the exposed charges on NPs surface. On the other hand, increasing the concentration 

of TPP more than 0.4% w/v results in dramatical decrease in ZP value to 11.29   1.21 mV that 

appeared at TPP concentration of 1%w/v. The reason behind that is might be due to the 

neutralization of the majority of the CS protonated amino groups by TPP anions that enhance 

hydrogen bonding interactions between the formed NPs and that might be a reason for the 

dramatic size enlargement of the NPs
109,110

.
111

. Based on these results, the TPP concentration of 

0.4%w/v showed the most significant stable NPs. 

Based on the previous experiments, the ideal conditions for the preparation of the CS/PO NPs 

were homogenization speed of 1400 rpm for 10 min with TPP concentration of 0.4%. After 

establishing the optimum preparation conditions, different ratios of CS to PO and GTO were 

used (1:0.25, 1:0.50, 1:0.75 and 1:1.00 w/w) followed by NPs characterization, encapsulation 

efficiency determination, in-vitro release and stability of phenolic contents in the NPs as will be 

described in the following sections. 

3.4. Characterization of nanoparticles formulations of EOs.         
       

     3.4.A.  Nanoparticles hydrodynamic size 
 

Nanoparticles hydrodynamic size were studied using dynamic light scattering (DLS) technique 

(Zetasizer). As represented in Figure (37), chitosan nanoparticles (CS NPs) possessed an 

average diameter of 217.2   6.42 nm. On the other hand, CS/PO NPs with CS to PO ratio of 

(1:0.25, 1:0.50, 1:0.75 and 1:1.00 w/w) showed an average diameter of 231.4  12.72, 249.7 
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 2.78, 252.6  3.48 and 238.9   9.56 nm, respectively. Results revealed that the mean particle 

size increased significantly as initial PO content increased until 252.6  3.48 nm at CS/PO ratio 

of 1:0.75 w/w. Finally, the size tended to decrease at CS/PO ratio of (1:1.00 w/w) samples to 

238.9  9.56 nm.  

GTO-loaded CS NPs (CS/GTO NPs) with CS to GTO ratio of (1:0.25, 1:0.50, 1:0.75 and 1:1.00 

w/w) showed an average diameter of (226.3  4.9, 240.9  7.33, 249.7   28.75 and 237.5 

 15.69 nm, respectively as represented in Figure (37). In contrast to PO, the mean particle size 

showed statistically no change with increased initial GTO content until 249.7   28.75 nm at 

CS/GTO ratio of (1:0.75 w/w).  

Both EOs showed a maximum NPs size at a ratio of CS/EO (1:0.75 w/w). The previous results 

showed statistically no change in sizes between the two EOs with different concentrations 

revealing the independency of CS NP hydrodynamic diameter on the type of EO. 

 

These results are agreed with the (Hosseini et al., 2013)
108

 findings who found that the average 

diameter of the NPs increased form 281 nm to 402 nm after encapsulation of Oregano in CS-TPP 

system. Furthermore, (Yoksan et al., 2011)
76

 revealed the size increase of NPs from  518 nm to 

716 nm after encapsulation of Carvacrol in CS-TPP system. However, these findings contradict 

the results of (Feyzioglu et al., 2016)
63

 who found a reduction in the NPs size from 237 nm to 

140 nm after encapsulation of summer savory in CS-TPP system. So, in our work, a possible 

reason behind the size increase of the NPs diameters in both EOs might be due to the swelling 

and aggregation of CS polymer while dispersed in water
76

.  
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According to the size distribution of both CS/PO NPs and CS/GTO NPs with their different 

concentrations, The PDI values ranged from 0.22 – 0.25 and from 0.24 – 0.25 in CS/PO NPs and 

CS/GTO NPs, respectively. Increasing the PO and GTO content had a non-significant impact on 

the PDI value. Furthermore, the previous results showed statistically no change in PDI between 

both PO and GTO revealing the independency of CS NP size distribution on the type of EO. The 

above data are represented in appendix III. 

 

Figure 37:Z-average diameter of nanoparticles as a function of initial PO and GTO content. 

        3.4.B. Zeta potential of nanoparticles. 
 

Zeta potential (ZP) studies were performed to show the impact of EOs loading on the surface 

charge and stability of the prepared NPs. As represented in Figure (38), CS NPs gave a ZP value 

of +24.9  0.95 mV. On the other hand, CS/PO NPs showed ZP values of (20.95  0.66, 

20.9 0.23, 21.2  0.98 and 23.15  1.05 mV for CS/PO ratio of (1:0.25, 1:0.50, 1:0.75 and 

1:1.00 w/w) respectively. Results indicated that increasing the PO content reduced significantly 

the value of ZP. The higher ZP value of PO loaded CS NP that showed the highest stability 

occurred with CS/PO ratio (1:1.00 w/w).  
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On the other hand, CS/GTO NPs showed ZP values of (24.2  0.3, 21.3  0.4, 24.5  1.64 and 

17.8  0.4 mV) for CS/GTO ratio of (1:0.25, 1:0.50, 1:0.75 and 1:1.00 w/w) respectively, as 

represented in Figure (38). Results indicated that increasing the GTO content reduced 

significantly the value of ZP. CS/GTO ratio (1:0.75 w/w) showed the highest stability. Based on 

previous results, statistically no change in ZP between the two EOs with different concentrations 

revealing the independency of CS NPs surface charge on the type of EO. 

These results were found to be in agreement with the findings of (Haider et al., 2017)
56

 in the 

encapsulation of krill oil in CS-TPP system who found a reduction of ZP from +35 mV to +24 

mV. Moreover, the encapsulation of eugenol in CS-TPP system (Woranuch et al., 2013)
53

 

showed a decrease in ZP value from +37 mV to +16 mV. So, in our case, a possible reason 

behind the reduction in ZP in both EOs might be due to a shielding effect and the coating of 

protonated NH2 group by PO and GTO on the CS NPs
76

. The decrease in ZP value enhances the 

attractions between the formed NPs that might be a possible reason behind the increase in the 

average diameter in comparison with the CS NPs with increasing PO
63

.  
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Figure 38:Zeta potential of CS NPs as a function of initial PO and GTO content. 

        3.4.C. Morphology of nanoparticles. 
 

The size and morphology of the NPs was examined by transmission electron microscope (TEM). 

CS NPs, CS/PO NPs (1:1 w/w) and CS/GTO NPs (1:1 w/w) appeared as spherical shapes as 

shown in Figure (39). The difference in shape between the nanoparticles were insignificant 

revealing the independency of CS NPs shape and morphology on the type of EO. This was found 

to be in agreement with the findings of (Yoksan et al., 2011)
76

 in the encapsulation of carvacrol. 

 

 



 

73 

 
 

 

 

Figure 39: TEM of spherical nanoparticle, CS NP (a), CS/PO NP (1:1) (b) and                                   

CS/GTO NP (1:1) (c). 

As represented in the size distribution histograms (Figure 40), the size range of CS NPs, CS/PO 

NPs and CS/GTO NPs were between 10-90 nm, 20-90 nm and 10-70nm, respectively. 

Furthermore, the estimated average size for CS NPs, CS/PO NPs and CS/GTO NPs were   36.1 

nm, 43.5 nm, and 30.7 nm, respectively. The encapsulation of PO increased significantly the size 

of the CS/PO NPs compared with CS NPs while the encapsulation of GTO reduces significantly 

the size of the CS/GTO NPs compared with CS NPs. 

 

Figure 40: Size distribution histograms of the prepared nanoparticles, CS NP (a), CS/PO NP 

(1:1) (b) and CS/GTO NP (1:1) (c). 
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However, most of our NPs (CS NPs, CS/PO NPs and CS/GTO NPs)  were aggregated as shown 

in Figure (41) that might be due to be a fusion and combination of the CS/PO NPs and CS/GTO 

NPs with each other as well as PO and GTO content on the surface of the particle similar to what 

was previously reported by (Yoksan et al., 2010)
112

  as represented in Figure (42) after 

encapsulation of carvacrol in CS NPs .  

 

Figure 41:TEM of aggregated nanoparticle, CS NP (a), CS/PO NP (1:1) (b) and                                   

CS/GTO NP (1:1) (c). 

 

Figure 42:TEM of aggregated CS/ Carvacrol nanoparticle
76

. 
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It should be figure out that the mean average size of all nanoparticles that estimated by zetasizer 

was greater than that detected by TEM. This is mainly because the  size that is determined by 

zetasizer is a hydrodynamic size where the NPs are suspended in solutions that enhances the 

aggregation of the NPs as mentioned before
76

. 

         3.4.D. Fourier transform infra-red (FT-IR) spectroscopy analysis of CS, EOs and NPs 
 

Fourier transform infra-red (FTIR) spectroscopy analysis was used to study the chemical 

characteristics of pure PO, CS NPs and CS/PO NPs (with ratios of 1:0.25, 1:0.5, 1:0.75 and 

1:1.00 w/w). FTIR spectra of CS NP (Figure 43a) showed characteristic peaks at 3433 cm
-1

 due 

to hydroxyl group and primary amine stretching. Sp
3
 C-H stretching appeared at 2933 cm

-1
 while 

amide stretching peaks appeared at 1642 and 1550 cm
-1

. In addition, pure PO spectra (Figure 

43b) showed sharp characteristic peaks at 2929 cm
-1

 due to Sp
3
 C-H stretching and at 1710 cm

-1
 

due to carbonyl stretching. All the characteristic peaks of both CS NP and pure PO were 

appeared in the spectra of CS/PO NPs (Figure 43c, d, e and f) with carbonyl stretching peak that 

increased with increasing PO content and all peaks were shifted from 1710 cm
-1

 to 1731 cm
-1

. 

The results of FTIR identify the incorporation of PO in the CS-TPP system.  
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Figure 43: FT-IR of CS NP(a), pure PO (b) and CS/PO NP (c-f) with different ratios of CS: PO  

1:0.25 (c), 1:0.50 (d), 1:0.75 (e) and 1:1.00 w/w (f).  

In the case of CS NPs loaded with GTO, pure GTO spectra (Figure 44b) showed sharp 

characteristic peaks at 2929 cm
-1

 due to Sp
3
 C-H stretching and at 1731 cm

-1
 due to carbonyl 

stretching. All the characteristic peaks of both CS NP and pure PO were appeared in the spectra 

of CS/GTO NPs (Figure 44c, d, e and f) with carbonyl stretching peak that increased with 

increasing GTO content at the same wave number. The results of FT-IR identify the 

encapsulation of GTO in the CS-TPP system.  
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Figure 44:FT-IR of CS NP(a), pure GTO (b) and CS/GTO NP (c-f) with different ratios of                  

CS: GTO: 1:0.25 (c), 1:0.50 (d), 1:0.75 (e) and 1:1.00 w/w (f).  

           3.4.E. Thermal gravimetric analysis (TGA) of CS, EOs and NPs 
 

TGA analysis was performed as represented by Figure (45) to study the thermal stability of both 

essential oil and nanoparticles.  
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Figure 45:TGA thermogram of CS/PO NP (A) and CS/GTO NP (B): pure EO (a), CS NP (b) 

and CS/EO NP (c-f) with different ratios of CS: EO 1:0.25 (c), 1:0.50 (d), 1:0.75 (e)  

and 1:1.00 w/w (f).  

The temperature at which material subjected to a highest rate of weight loss is called degradation 

temperatures (Td) that is identified from estimating the first derivative of the TGA curve at the 

higher significant weight change which is called derivative thermogravimetry (DTG) 

thermogram Figure (46).  
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Figure 46:DTG thermogram of CS/PO NP (A) and CS/GTO NP (B): pure EO (a), CS NP (b) 

and CS/EO NP (c-f) with different ratios of CS: EO 1:0.25 (c), 1:0.50 (d), 1:0.75 (e)  

and 1:1.00 w/w (f).  

TGA thermogram of pure PO and GTO showed one mass loss step started at 50 °C (Figure 45A-

a and 45 B-a) respectively. The degradation temperatures (Td) of pure PO and pure GTO were 

160 °C and 200 °C as shown in Figure (46 A-a) and Figure (46 B-a). The previous results 

indicate the lower thermal stability of both EO. 

On the other hand, CS NPs exhibited two-step mass loss (Figure 45 A-b) at 90 °C due to the 

evaporation of moisture and at 250 °C (Figure 46A – b) assigned to dehydration and 

decomposition of the CS
56,108,113

.  

CS/GTO NPs exhibited a new step mass from 90-180 °C (Td of 140 °C) due to decomposition of 

free GTO that might be adsorbed on the surface of NPs, which was found to be in agreement 
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with the finding of (Yoksan et al., 2011)
76

 who found that the free carvacrol that adsorb on the 

surface of CS NPs had a Td of 185 62
. 

Surprisingly, both CS/PO NPs and CS/GTO NPs with different concentrations exhibited new 

step mass loss from 280 to 380 °C (Figure 45 A and B (c-f)) with a degradation temperature 

(Td) of (340-350 °C) for both NPs as represented in Figure (46 A and B (c-f)). The new step 

mass loss may reflect the encapsulated PO and GTO which degraded at higher temperature. 

These results are in a good agreement with the findings of (Hosseini et al., 2013)
108

, (Yoksan 

et al., 2011)
62

 and (Wu et al., 2005)
114

. All these previous reports showed a degradation 

temperature ranged between 320 to 340 °C after encapsulation of oregano and ammonium 

glycyrrhizinate in CS-TPP nanoparticles.   

Encapsulated PO and GTO decomposed at 350 °C than free PO and GTO that were decomposed 

at 160 °C and 200 °C, respectively reflecting the significant improvement of the thermal stability  

          3.4.F.  Powder X-ray Diffraction (XRD) analysis of CS, and NPs  
 

The crystallographic structure of CS powder, CS NPS, CS/PO NPs and CS/GTO NPs were 

determined by XRD as shown in Figure (47). CS powder exhibits two characteristic peaks: first 

peak at 2  of 10
o
 and second peak at 20

o
 indicating a higher degree of crystallinity which is 

similar to what was previously reported by (Yoksan et al., 2011)
62

 and (Hosseini et al., 2013)
108

. 

However, no peak is found in case of CS NPs after TPP cross linking indicating destruction of 

native crystalline packing structure of CS powder after preparation of CS NPs which was found 

to be similar to what was previously reported by (Yoksan et al., 2010)
113

, (Jingou et al., 2010)
115

 

and (Hosseini et al., 2013)
108

. Diffraction pattern of CS/PO NPs and CS/GTO NPs (1:1.00) 

shows an observed broad peak at 2  ranged between 15
o
-24

o
 more than that in CS NPs  

http://www.sciencedirect.com.library.aucegypt.edu:2048/science/article/pii/S0268005X16303599#bib12
http://www.sciencedirect.com.library.aucegypt.edu:2048/science/article/pii/S0268005X16303599#bib12
http://www.sciencedirect.com.library.aucegypt.edu:2048/science/article/pii/S0268005X16303599#bib12
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confirming encapsulation of PO in CS NPs which is agreed to the findings of (Hosseini et al., 

2013)
108

. 

  

Figure 47: XRD pattern of CS powder (a), CS NPs (b), CS/GTO NPs (1:1 w/w) (c) and                                  

CS/PO NPs (1:1 w/w) (d). 

3.5. Determination of the Encapsulation Efficiency (EE%) and loading capacity (LC%) of 

NPs. 
 

For estimating the amount of both GTO and PO that encapsulated in NPs, UV–Vis 

spectrophotometry were used. The amount of encapsulated PO was estimated from measuring of 

the absorbance PO at the wavelength of (227 nm) according to (Deka et al., 2016)
77

 as 

represented in Figure (48 A).  

http://www.sciencedirect.com.library.aucegypt.edu:2048/science/article/pii/S0268005X16303599#bib12
http://www.sciencedirect.com.library.aucegypt.edu:2048/science/article/pii/S0268005X16303599#bib12
http://www.sciencedirect.com.library.aucegypt.edu:2048/science/article/pii/S0268005X16303599#bib12
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Figure 48:UV–Vis spectra of CS/PO NP (A) and CS/GTO NP (B): CS NPs (a) and CS/EO NPs 

(b-e) with different ratios of CS: EO 1:0.25 (c), 1:0.50 (d), 1:0.75 (e)  

and 1:1.00 w/w (f).  

Standard calibration curve of PO in concentration between (0.1 to 0.7 mg/mL) in ethanol was 

prepared and a regression line with R
2
 of 0.999 was achieved as shown in Figure (49 A).  

 

Figure 49:Calibration curve of (A) PO in ethanol and (B) GTO in ethanol. 

Encapsulation efficiency (EE%), which is the ratio of encapsulated PO to total PO
108

, in CS/PO 

NPs with PO concentration of 0.25, 0.50, 0.75 and 1.00 (w/w CS) showed an EE% of (82.1   
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7.55, 79.4  4.1, 76.7  1.3 and 78.4  1.95 %). The EE% results (Figure 50A) showed that 

statistically no change in EE% with increasing the PO content .On the other hand, the loading 

capacity (LC%), which is the ratio of encapsulated PO to the total weight of NPs
108

, in CS/PO 

NPs with PO concentration of 0.25, 0.50, 0.75 and 1.00 (w/w CS) showed an LC% of 

(8.15 0.75, 13.1 0.74, 17.6 0.5 and 22.2  0.55 %) as represented in Figure (50A). The 

results indicated that LC% enhanced with increasing the initial PO content. Maximum EE% 

identified at CS/PO ratio of 1:0.25 w/w while maximum LC% appeared at ratio of 1:1 w/w. 

 

Figure 50: EE% and LC% of (A) CS/PO as a function of initial PO content and (B) CS/GTO as 

a function of initial GTO content 

The amount of encapsulated  GTO was estimated from the absorbance at the wavelength of (274 

nm) according to (Pan et al., 2016)
116

 as represented in Figure (48 B). Standard calibration curve 

of GTO in concentration between (30- 200  g/mL) in ethanol was prepared and a regression line 

with R
2
 of 0.996 was achieved as shown in Figure (49 B). The EE% in CS/GTO NPs with GTO 

concentration of 0.25, 0.50, 0.75 and 1.00 (w/w CS) showed an EE% of (22.13  7.36, 58.72   

3.32, 59.12  2.96 and 81.46   5.76). The EE% results showed that increasing the GTO content 

http://www.sciencedirect.com.library.aucegypt.edu:2048/science/article/pii/S0268005X16303599#bib12
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up to the ratio of (1:1 w/w) led to an increase in EE% as shown in Figure (50B). On the other 

hand, the LC% in CS/GTO NPs with GTO concentration of 0.25, 0.50, 0.75 and 1.00 (w/w CS) 

showed an LC% of (2.2  0.72, 10.6  0.6, 13.08  0.75 and 23.14  1.63 %) as represented in 

Figure (50B). The results indicated that LC% increased with increasing in GTO content. 

Maximum EE% and LC% identified at CS/GTO ratio of 1:1. 

EE% results showed that increasing the PO content up to the ratio of (1:0.75 w/w) led to a 

decrease in the EE% that might be as a result of the encapsulation limitation of PO in CS-TPP 

system, which was found to be in agreement with the findings reported on the encapsulation of 

ascorbyl palmitate (Yoksan et al., 2010)
113

 and Oregano (Hosseini et al., 2013)
108

. On the other 

hand, EE% results showed that increasing the GTO content up (1:1.00 w/w) led to an increase in 

EE% .Furthermore, the LC% of both GTO and GTO enhanced with increasing the initial PO and 

GTO content, respectively which is in agreement with the findings reported on the encapsulation 

of ascorbyl palmitate by (Yoksan et al., 2010)
113

 and Oregano (Hosseini et al., 2013)
108

. 

3.6. In-vitro release studies of NPs 
 

The in-vitro release study of PO from CS/PO NPs (1:1.00 w/w) NPs was carried out for 96 hours 

in different pH media (3 and 7.4) to confirm the successful encapsulation of PO, and to 

determine the rate of PO releasing from the NPs. Based on the release rate, the release profile of 

PO showed three different release stages, as represented in Figure (51). The initial burst release 

was observed for the first 6 hours, PO was released up to 34.8  1.63 % and 40.7   0.73 % in 

acetate buffer of (pH 3), and phosphate buffer saline (PBS) of (pH 7.4), respectively. A 

significantly decreased in release rate was observed in the second stage (from 6 hours to 72 

hours), PO was released up to 50.7  0.24 % and 61.3  4.93 % in acetate buffer and PBS, 

respectively. The final stage (from 72 hours to 96 hours) showed the release of PO reaching 

http://www.sciencedirect.com.library.aucegypt.edu:2048/science/article/pii/S0268005X16303599#bib12
http://www.sciencedirect.com.library.aucegypt.edu:2048/science/article/pii/S0268005X16303599#bib12
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plateau at this stage and PO was released up to 52.7  0.24% and 63.3   3.9 % in acetate buffer 

and PBS, respectively. The amount of PO released was affected by the pH of the media. At 

acidic media (pH 3), PO was released from CS NPs rapidly than at higher pH media (pH 7.4). 

 

Figure 51:In-vitro release profiles of PO from CS/PO NPs (1:1) in different pH media:               

pH 3 and pH 7.4. 

The in-vitro release study of GTO from CS/GTO NPs (1:1.00 w/w) NPs was carried out for 72 

hours in different pH media (3 and 7.4). Based on the release rate, the release profile of GTO 

showed three different release stages, as represented in Figure (52). The initial release was 

detected for the first 6 hours, GTO was released up to 66.7  11.28 % and 53.8  8.89 % in 

acetate buffer and PBS, respectively. The release rate significantly decreased for the second 

stage (from 6 to 12 hours), GTO was released up to 74.5   12.75 and 62.97 9.17 % in acetate 

buffer and PBS, respectively. The final stage (from 12 hours to 72 hours) showed the release of 
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GTO reaching plateau at this stage and GTO was released up to 74.9   10 and 63.1  8.83 % in 

acetate buffer and PBS, respectively. Similar to PO release profile, the amount of GTO released 

was affected by the pH of the media. At acidic media (pH 3), GTO was released from CS NPs 

rapidly higher pH media (pH 7.4). 

 

Figure 52: In-vitro release profiles of GTO from CS/GTO NPs (1:1.00) in different pH media: 

pH 3 and pH 7.4. 

At represented in the previous results, the amount of PO and GTO released was affected by the 

pH of the media. At acidic media (pH 3), both PO and GTO  were released from CS NPs very 

quickly, and the released PO and GTO contents were significantly higher than that occurs at 

higher pH media (pH 7.4) which is most probably due to the swelling and partial dissolution of 

the NPs that are shown in Figure (53)
62

.  
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Figure 53:Impact of pH of the release media on CS-TPP system
76

. 

It should be pointed out that the released PO and GTO were not completely released from NPs 

because complete release needs complete degradations of CS NPs. The release results agreed to 

the findings reported on the release of carvacrol from CS-TPP system (Yoksan et al., 2011)
62

. 
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3.7. Stability of phenolic contents in CS NPs 
 

To investigate antioxidant activity of both PO and GTO, electron-transfer reaction including the 

total phenolic assay using Folin–Ciocalteu reagent was used
61

.  

In the case of PO, each gram was equivalent to 1.15  0.01 mg GAE, while, on the other hand, 

each gram of GTO was equivalent to 7.15  0.29 mg GAE, which is about 6.21 folds increase in 

TPC, as shown in Figure (54). This significantly higher TPC in GTO over PO is basically due to 

the difference in the origin and composition of both EOs which was also confirmed by the 

GC/MS/MS findings of both EOs.    

To study the ability of CS NPs to maintain the stability of phenolic contents of both PO and 

GTO; the CS NPs, CS/PO NPs and CS/GTO NPs were assayed for their TPC using Folin–

Ciocalteu reagent for 6 hours. As shown in Figure (54). CS NPs, CS/PO NPs and CS/GTO NPs 

has TPC of 0.06   0.01, 1.08  0.01 and 7.39  0.29 mg gallic acid, respectively.  

TP content that arise for CS NPs might be explained by chromogenes that formed after the 

reaction between CS and Folin–Ciocalteu reagent as previously reported by (Esmaeili et al., 

2015)
117

, (Moradi et al., 2012)
118

 and (Ruiz-Navajas et al., 2013)
119

. 

Both CS/PO NPs and CS/GTO NPs have significantly higher TPC than CS NPs. On the other 

hand, the TPC that identified for encapsulated PO is significantly lower than free PO that might 

be due to slow release profile of PO as mentioned in the in vitro analysis section which agree 

with the findings of (Esmaeili et al., 2015)
117

. On the other hand, for encapsulated GTO showed 

statistically no change in the TPC than free GTO. Based on these results, CS NPs can maintain 

the stability of TPC. 
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Figure 54:TPC of CS NPs, PO, GTO, CS/GTO NPs and CS/PO NPs                                      

expressed in (mg GAE/g oil). 

 

 

 

 

 

 

 

 

 

 

 



 

90 

 
 

 

Chapter 4 

 

Antioxidant and antibacterial 

activities of Chitosan/ 

(Peppermint and Green Tea Oil) 

Nanoparticles  
 

 

 

 

 

 

 

 

 

 

Figure5.5: Microscopic images  
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Chapter 4: Antioxidant and antibacterial activities of Chitosan/ (Peppermint and Green 

Tea Oil) Nanoparticle 

4.1.  Evaluation of antioxidant activity of EOs NPs  
 

DPPH assay was one of the suitable methods to determine the antioxidant activity of the EO and 

their CS NPs counterparts in an in-vitro condition. DPPH molecule (Figure 55) has the 

capability to oxidize molecules by acting as hydrogen ion acceptor. Thus, this assay was used to 

estimate the antioxidant activity of many EOs formulations
117,120

.  

 

Figure 55: Mechanism of DPPH oxidation
120

. 

According to Figure (56), DPPH radical scavenging ability was identified for predetermined 

CS/PO NPs and corresponding PO and CS NPs amounts. CS NPs have antioxidant activity that 

ranges between 9.3 to 21.13% for concentration ranges between 6 to 48 mg/mL respectively. On 

the other hand, both CS/PO NPs and corresponding amounts of pure PO (range between 0.4 – 

3.5 mg/mL) show a concentration-dependent antioxidant activity (Figure 56) and were in the 

range of 24.4 - 71.4 and 13 to 52.3%, respectively.  
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Figure 56: DPPH inhibition (%) of pure PO, CS NPs and CS/PO NPs. 

Furthermore, DPPH radical scavenging ability was identified for predetermined CS/GTO NPs 

and corresponding GTO and CS NPs amounts. CS NPs have antioxidant activity that ranges 

between 5 to 18 % for concentration ranges between 2.5 to 20.1 mg/mL respectively that shows a 

limited antioxidant activity as mentioned above. It should be pointed out that the difference in 

CS NPs % DPPH inhibition between CS/PO system and CS/GTO system is due to using 

different concentration range of CS NPs due to the difference in % DPPH inhibition of pure PO 

and GTO.  On the other hand, both CS/GTO NPs and corresponding amounts of pure GTO 

(range between 0.19 – 1.58 mg/mL) show a concentration-dependent antioxidant activity 

(Figure 57) and were in the range of 45.9 – 94.2 and 26.9 to 73.1%, respectively.  



 

93 

 
 

 

 

Figure 57:DPPH inhibition (%) of pure GTO, CS NPs and CS/GTO NPs. 

Based on the previous results, the IC50 (concentration required to scavenge DPPH radicals by 

50%) was calculated for PO, GTO, CS, CS/PO NPs and CS/GTO NPs as shown in Table (9). 

Table 8: IC50 of antioxidant activities of PO, GTO, CS NPs, CS/PO NPs and CS/GTO NPs. 

Sample IC50 (mg/mL) 

PO 3.25  

GTO 0.81  

CS NPs 116.07  

CS/PO NPs 22.20 (1.61 mg/mL for corresponding PO) 

CS/GTO NPs 4.40 (0.34 mg/mL for corresponding GTO) 
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As represented in (Table 8), CS/NPs showed a limited antioxidant activity (IC50) of 116.07 

mg/mL that agrees to the findings of (Chen et al., 2009)
78

 and (Esmaeili et al., 2015)
117

. The 

reason behind that might be related to the CS, TPP crosslinking which masks the CS amino 

groups responsible for the reaction with DPPH molecules as was mentioned by (Xie et al., 

2001)
121

, (Chen et al., 2009)
78

, (Barzegar et al.,2016)
122

  and (Esmaeili et al., 2015)
139

. On the 

other hand, bulk PO and GTO showed antioxidant activities (IC50) of 3.25 mg/mL and 0.81 

mg/mL. It should be noted that the antioxidant activity of pure GTO was significantly higher 

than PO by about 4 folds. The reason behind that might be due to the impact of phenolic contents 

that are found in higher amount in GTO than PO as mentioned in chapter 4. To enhance the 

antioxidant activity of both bulk EOs, nano-encapsulated EOs were tested against DPPH. 

Surprisingly, the antioxidant activity of encapsulated PO was significantly higher than free PO 

by 2 folds. However, the antioxidant activity of PO was not significantly higher than CS NPs. 

Similarly, the antioxidant activity of encapsulated GTO was improved significantly than free 

GTO and by ~2.4 folds. The antioxidant activity findings of both EOs agree with the findings of 

(Barzegar et al.,2016)
122

 in enhancement of the antioxidant activity of encapsulated thyme oil in 

CS NPs by 24.45%, and (Woranuch et al., 2013)
53

 in the improvement of scavenging activity of 

loaded eugenol in CS NPs by 2.7 fold, in addition to (Lee et al., 2011) in an increase of DPPH 

inhibition of astaxanthin in calcium alginate gel beads. The reason behind this improvements in 

case of PO and GTO NPs might be due to the protective effect of encapsulation that decreases 

evaporation rate via controlled release of PO and GTO during the assay that was identified by 

(Barzegar et al.,2016)
122

 in the encapsulation of thyme oil in CS NPs. 
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Based on these results, encapsulation of GTO and PO in CS NPs enhanced the antioxidant 

activity of free GTO and PO, respectively. Furthermore, CS/GTO NPs showed a significant 

higher antioxidant activity than CS/PO NPs by about 4.7 folds.  

5.2. Evaluation of the antibacterial activity of EOs NPs 
 

Agar dilution and colony counting  methods were used to investigate the impact of encapsulation 

of PO and GTO on the antibacterial activity against both Staphylococcus aureus (S. aureus) and 

Escherichia coli (E.coli) as examples for Gram positive and Gram negative bacteria, 

respectively in LB agar media (Wei et al., 2009)
79

. The antibacterial activity was estimated 

through the reduction in numbers of the bacterial colonies after introducing the sample compared 

to the positive control (LB media with bacteria only).  

5.2.1. Evaluation of antibacterial activity of EOs NPs against S. aureus 

As represented in Figure (58A, B), positive control shows a large number of colonies indicating 

a good growth of S. aureus while the negative control shows no colonies representing the 

sterility of the agar medium
79

. Bulk PO and GTO showed antibacterial activities of 60.2  6.12 % 

and 40.54   2.36, respectively. Bulk PO and GTO antibacterial activities rely on the penetration 

of phytochemical components through the phospholipid of cell membrane and the damage of 

proteins and lipids
39,123,124

. It should be noted that the antibacterial activity of bulk PO was 

significantly higher than GTO by about 19.7% which agrees with the findings of (OSAWA et al., 

1999)
125

. The reason behind that might be due to the presence of proteins in LB agar media that 

might hinder the antibacterial activity of GTO as its polyphenols bactericidal potential relies on 

the destruction of cell membranes proteins 
125

. However, both bulk EOs still showed lower 
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antimicrobial activity. As a trial to enhance the bactericidal activity of both bulk EOs, nano-

encapsulated EOs were tested against S. aureus.  

Surprisingly, encapsulated PO showed a significant enhancement of bactericidal activity by 

about 39.63% over bulk PO. In the same way, a significant enhancement of the antibacterial 

activity was revealed for encapsulated GTO against S. aureus by about 57.5%. It should be noted 

that the maximum antibacterial activity was found in CS/PO NPs (99.9   0.1%). Therefore, the 

nano-encapsulation of both bulk EOs was a magical solution for enhancing the antimicrobial 

potential.  

These results agree with the findings of (Esmaeili et al., 2015)
117

 that showed an enhancement of 

the antibacterial activity of encapsulated Carum copticum essential oil (CEO) over pure CEO by 

1.16 folds. On the other hand, (Yoksan et al., 2011)
62

 showed an antibacterial activity of 

encapsulated carvacrol in CS NPs that was very close to free carvacrol. The reason behind the 

enhancement of bactericidal activity of encapsulated oils might be related to the antibacterial 

activity of CS NPs themselves that showed bactericidal activity against S. aureus by about 99.1 

  0.23%.  CS NPs antimicrobial activity might be due to ionic interaction between the positive 

charge on CS and the anionic surface of bacteria.  

It should be noted that CS NPs, CS/PO NPS and CS/GTO NPs showed statistically no change in 

antibacterial activities. Based on these results, encapsulated PO showed a maximum antibacterial 

activity against S. aureus. Nevertheless, both CS/PO NPs and CS/GTO NPs could be used as an 

antimicrobial agent against S. aureus. 
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Figure 58:(A) % Inhibition of S. aureus and, (B) representative photographs of the bactericidal 

activity toward S. aureus by PO, GTO, CS NPs, CS/PO NPs, CS/GTO NPs, negative and 

positive control. 

(A) 

(B) 
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5.2.2. Evaluation of antibacterial activity of EOs NPs against E.coli 

As represented in Figure (59A, B), positive control shows a good growth of E.coli while the 

negative control shows the sterility of the LB agar medium as shown with S.aureus
79

. Bulk PO 

and GTO showed antibacterial activities of 94.53   0.53% and 97.3   0.34%, respectively. Bulk 

PO and GTO antibacterial activities rely on the interaction of lipophilic oil and the phospholipid 

membrane that induce passive permeability
126

. It should be noted that the antibacterial activity of 

pure GTO was significantly higher than PO by about 2.77 %. The reason behind that might due 

to the higher GTO polyphenols and their hydrophobicity which enhances their penetration ability 

through cell phospholipid membranes
127

. In spite of the higher antibacterial activities of both 

bulk EOs, a further enhancement of the bactericidal activity via nano-encapsulation was tested 

against E.coli.  

Similar to the antibacterial results observed with S. aureus, the encapsulated PO showed a 

statistical significant enhancement of bactericidal activity by about 3.01% over bulk PO. 

Similarly, a significant enhancement of the antibacterial activity was revealed for the 

encapsulated GTO against E.coli by about 1.88%. Both encapsulated GTO and PO showed 

antibacterial activities against E.coli that are very close to their bulk EOs. The reason behind that 

might be related to the controlled release of oils as well as the antibacterial activity of CS NPs 

themselves that showed bactericidal activity against E.coli by about 99.2   0.68% due to ionic 

reaction between the positive charge on CS and the anionic surface of bacteria. These results 

agree with the findings of (Esmaeili et al., 2015)
117

 that showed an 1.28 folds enhancement of the 

antibacterial activity of encapsulated CEO over pure CEO.  
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Figure 59: (A) % Inhibition of E.coli and, (B) representative photographs of the bactericidal 

activity toward E.coli by PO, GTO, CS NPs, CS/PO NPs, CS/GTO NPs, negative and positive 

control. 
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It should be noted that CS NPs, CS/PO NPS and CS/GTO NPs showed statistically no change in 

antibacterial activities. Based on these results, both CS/PO NPs and CS/GTO NPs could be used 

as an antibacterial agent against E.coli. Furthermore, the improvement of antibacterial activity 

after encapsulation of both PO and GTO in CS NPs against S. aureus is significantly higher than 

that against E.coli. In other words, encapsulation of PO enhanced the antimicrobial activity 

against S. aureus more than E.coli by 13.1 folds. Whereas, the encapsulation of GTO enhanced 

the antibacterial activity against S. aureus more than E.coli by 30.6 folds. The reason behind that 

might be due to the limited penetration of these hydrophobic EOs through hydrophilic 

peptidoglycan of bacterial cell wall that is normally found in Gram positive bacteria
62,117,128

. 
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Figure5.5: Microscopic images  
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Chapter 5: Conclusion and Future perspectives 

In this study, two EOs namely; PO and GTO were encapsulated in CS NPs. Two-steps method 

was used for the encapsulation of EOs in CS NPs which is oil-in-water emulsification followed 

by cross-linking of CS polymer with sodium tripolyphosphate (TPP) in a process called ionic 

gelation. To characterize the encapsulated EOs, different characterization techniques were used 

such as; Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD), 

thermogravimetric analysis (TGA) and UV–vis spectrophotometry. Both NPs formulations 

(CS/PO NPs and CS/GTO NPs) showed a spherical shape with size range of 20-90 nm as 

detected by Transmission electron microscopy (TEM). As determined by UV–vis 

spectrophotometry, the EE% of CS/PO NPs and CS/GTO NPs were about 82-78% and 22-81%, 

respectively, when the initial EO amount was 0.25–1 w/w CS. whereas, the LC% of CS/PO NPs 

and CS/GTO NPs were about 8-22% and 2.2-23%, respectively for the initial EO amount was 

0.25–1 w/w. Furthermore, in-vitro release studies of both EOs showed an initial burst effect and 

followed by a slow release at two different pH conditions: acidic pH (acetate buffer) and neutral 

pH (phosphate buffer saline). Release rate of both PO and GTO from CS NPs was higher in 

acetate buffer than phosphate buffer saline. PO was released over 92 hrs reaching of 63% in 

acetate buffer and 62% in case of phosphate buffer saline. Both PO and GTO showed a thermal 

stability after encapsulation in CS NPs that reach 350 . The antioxidant activity of both pure 

and encapsulated PO and GTO was evaluated by 2,2-diphenyl-1-picrylhydrazyl radical (DPPH). 

The antioxidant activities of CS/PO NPs and CS/GTO NPs were improved by about 2 and 2.4 

folds, respectively. Moreover, to study the stability of total phenolic contents (TPC), Folin–

Ciocalteu was used and the results showed the ability of CS-TPP system to preserve the TPC. 

Finally, agar dilution and colony counting method used to study the antibacterial activity of pure 
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and encapsulated PO and GTO against Gram positive (S. aureus) and Gram negative (E.coli) 

bacteria. Against (S. aureus), encapsulated PO showed an enhanced antibacterial activity by 

about 39.63%, while encapsulated GTO showed an improvement in antibacterial activity by 

about 57.5% on the other hand, against Gram negative bacteria, encapsulated PO showed an 

enhanced antibacterial activity by about 3%, while encapsulated GTO showed an improvement 

in antibacterial activity by about 1.8%. 

The study showed that the encapsulation of PO and GTO in CS NPs could protect phenolic 

contents of PO and GTO, enhance the thermal stability of EOs, improve the antioxidant activity, 

and improve the antimicrobial activity. Based on these results, the encapsulating of PO and GTO 

in CS NPs are promising candidates to be used in nutraceutical, cosmetic and pharmaceutical 

applications.  

Further research might be necessary to determine the stability of the EOs properties after 

encapsulation process with CS NPs under different conditions. For examples, other EOs could be 

used following the same protocols. In addition, different strains of bacteria could also be 

investigated. Moreover, different forms of EOs such as nanofibers instead of NPs forms could be 

fabricated to investigate the influence of the nanostructures on the final antioxidant and 

antibacterial activities. 
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Figure5.5: Microscopic images  
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Chapter 6: Appendices 

       Appendix I: GC/MS/MS analysis of PO. 
 

 

Figure 60: GC/MS/MS chromatogram of PO. 

Table 9: Chemical composition of PO. 

Peak number Retention time Chemical constituent Relative concentration (%) 

1 8.02 Glycerol trimethyl ether 14.62 

2 8.289 Hexylene glycol 14.96 

3 9.877 l-Menthone 14.55 

4 10.012 Tetrahydrocarvone 6.55 

5 10.142 Menthol 6.61 

6 10.268 Citronellol 36.21 

7 10.549 α-Terpineol 1.82 

8 11.14 Pulegone 1.87 

9 11.914 Levomenthol 2.8 
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       Appendix II: GC/MS/MS analysis of GTO. 

 

Figure 61: GC/MS/MS chromatogram of GTO. 

 

 

Table 10:Chemical composition of GTO. 

Peak number Retention time Chemical constituent Relative concentration (%) 

1 8.285 D-Limonene 2.9 

2 9.637 Camphene 1.99 

3 11.499 Linalyl acetate 2.91 

4 14.122 Caryophyllene 0.89 

5 14.415 Vitamin A aldehyde 0.77 

6 14.631 α-Vetivol 3.57 

7 15.421 4-Chromanol 54.89 

8 16.089 Oleic alcohol 25.08 

9 16.472 Curcumenol 2.02 

10 16.819 β-Irone 1.1 

11 18.472 Galaxolide 1 3.9 
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      Appendix III: Polydispersity of nanoparticles  
 

To study the size distribution of NPs, the PDI was studied using DLS technique (zetasizer). As 

shown in Figure (62), CS NP showed PDI of 0.24. Upon introducing PO to CS-TPP system in 

different concentrations (0.25, 0.50, 0.75 and 1.00 (w/w CS)), results showed PDI values of 

(0.23, 0.24, 0.22, 0.23 and 0.25) respectively, indicating that increasing the PO content had a 

non-significant impact on the PDI value. The lowest PDI was that showing a higher 

monodispersity in dispersion which occurred with CS/PO (1:0.75 w/w). On the other hand, 

addition of GTO to CS-TPP system resulted in PDI values of (0.24, 0.24, 0.25, 0.24 and 0.25) in 

concentrations of (0.25, 0.50, 0.75 and 1.00 (w/w CS) respectively. Similarly, incorporation of 

GTO to CS NPs had a non-significant impact on the PDI value. The lowest PDI was that 

showing a higher monodispersity in dispersion that occurred with CS/GTO (1:0.0.50 w/w). The 

difference in PDI between both EOs with different concentrations were insignificant revealing 

the independency of CS NP size distribution on the type of EO. 

 

Figure 62:PDI values of nanoparticles as a function of initial PO and GTO content. 
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