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other than power generation sectors, USD

Households’ final households demand on power generation
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Total production vector, USD
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Electrical energy production, TWh
Econometric production function coefficients
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Production-based
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Abstract

Traditional bottom-up energy models have been widely applied to date to assess the
impact of the future energy technologies over a specific time horizon, quantifying the direct
economic and environmental implications caused by the evolution of the energy sector.
However, such approaches ignore the interactions that the energy sector has with other
sectors in the economy, hence failing in quantifying the global impact associated with their
technologies: this may produce an unfortunate bias in the definition of future energy and
environmental policies. The present study assesses, on a nationwide economy scale, the
economic and environmental impacts due to the optimal future power generation mix in
Egypt, by soft-linking a bottom-up, technology-rich model (OSeMOSYS) with a top-down

Input-Output Analysis model (IOA, based on the EORA 26 dataset).

Based on the OSeMOSYS energy modeling framework, the OSeMOSY S-Egypt model is
developed. The least cost power generation mix is determined for two different electricity
demand forecasts, based on both the New Policies demand forecast scenario developed
by International Energy Agency and the market research performed by Business Monitor
International. The robustness of the obtained results is assessed through a sensitivity
analysis on the main exogenous parameters, including costs, efficiency and production
targets of energy technologies, capital discount rate, water and natural gas resources
availability. The evolution of the Egyptian power sector in years 2018 to 2040 is analyzed:
results of the bottom-up energy model are adopted as exogenous parameters to the top-

down multi-sector model, as a way of coupling the two aforementioned models.

It is revealed that Combined Cycles, Wind, and Photovoltaic rooftop systems are viable
technologies that should be considered in the future Egypt’s power generation mix. In

particular, among Egypt’s abundant renewable energy resources, it is shown that wind



power technology comes first in achieving the proposed target on renewables penetration
in the country’s generation mix, and it might be a feasible alternative to replace part of the

natural gas share.

To increase the accuracy of the analysis, the original 0SeMOSY'S framework has been
enhanced by imposing the discount rate on capital investments for the energy
technologies, as a time dependent exogenous variable; in developing countries in general

and in Egypt in particular, discount rates have been known to fluctuate widely.

The derived power generation mix, predicted by the bottom-up model, has been applied to
the IOA model in the form of a change in energy technology mix and a change in final
demand of electricity. To account for the growth in the national GDP during the temporal
planning horizon, an econometric function that relates the growth in GDP to increase in the
production of electricity is formulated. Besides the results of the energy model, this
approach enables the decision maker to assess the expected primary energy
requirements, GHG emissions and water use induced by the evolution of the energy mix in

a broader perspective.

It is worth to note that, the results of the bottom-up energy optimization model indicates
that the anticipated increase in the penetration of renewables in the power generation mix,
would decrease the primary non-renewable energy consumption and GHG emissions
directly caused by the power generation sector over the considered temporal planning
horizon (2018-2040). However, the application of the IOA model reveals that
decarbonizing the power sector alone is not sufficient in achieving neither, the decoupling
of the GDP growth and the total primary energy consumption, nor the GHG emissions

within the Egyptian economy.
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1. CHAPTER 1: Introduction

1.1. Background

Security and affordability of energy supplies are aspects of paramount relevance in
shaping future energy policies and countries’ energy power mix. These aspects will
become increasingly important in the future, since according to the International Energy
Agency (IEA) the global demand for electricity is expected to increase with respect to the
current consumption levels between 50% (Sustainable Development Scenario) and 70%
(Current Policies scenario) by 2040 [1]. In addition, the IEA estimates that the final
consumption of electricity in 2040 will account for 40% of the world Total Final
Consumptions (TFC) [1]. Indeed, the main driver for the aforementioned significant
increase in the world TFC is the prospective increase in the global population that will
reach 10.9 billion in 2100 and the associated increase in the global production [2]. As,
illustrated by Figure 1, the six folds increase in the world population between 1900 and
2016 has been associated with a 24 folds increase in the total energy production during
the same period [2]. In particular, considering the period between 1900 and 2016, the
world population has increased from 1.2 to 7.2 billion and the total energy production has
increased from 23 to 548 exajoules (EJ). Therefore, the total energy production is
expected to increase considerably during the coming decades to satisfy the expected

increase in the demand on energy supplies induced by the globally increasing population.

14
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Figure 1. Global population and total energy production, data from [2].

According to various studies, there is a causal relationship between the GDP growth and
the energy consumption. This could be justified by the fact that the availability and
affordability of energy commaodities has apparently become major pillars for the
socioeconomic development and the welfare of nations [3,4]. Indeed, disruptions and the
associated price shocks of energy supplies could negatively affect the production sectors,
and consequently, the economic growth. For instance, the embargo imposed by the major
oil producers during the 1970s energy crises has affected the multi-sector performance of
the United States [5]. Similarly, Japan has faced unprecedented socioeconomic
implications because of the exclusion of approximately 50 MW nuclear electricity
generation facilities, after Fukushima accident in 2011 [6]. Prior to the Fukushima accident,
Japan power generation mix was planned to be dominated by the nuclear technologies
because of the scarcity of fossil fuels. In response to the accident, the Japanese

government has increased the installed capacity of the fossil-fuel fired power plants.
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Hence, increasing the fossil-fuels imports leading to significant negative effects in the

Japanese trade balance [6].

Adding to the requirements of secure and affordable energy supply to assure a continual
economic growth and welfare, the term sustainable has been added by the UN in its
Sustainable Development Goals (SDGs) for 2030 [7]. In such perspective, the UN
encourages deploying energy systems that contribute to the global efforts on climate
change control (countries should contribute to keep the global rise in temperature less
than 2° C), according to the accord reached during the UN framework Convention on
Climate Change (UNFCCC) conference of Paris 215t (COP21) [1]. Fortunately, starting
2015 a decoupling between the global emissions and the growth in the GDP has been
reached. That decoupling could be explained by the significant increase in the installed
capacity of renewables, the introduction of electric vehicles, and the impact of efficiency

programs on the various final energy sectors [1].

Amalgamating the aforesaid characteristics of energy systems, raises a challenging task
for policymakers, who are required to define adequate energy policies and take investment
decisions over long planning horizons [8]. In this perspective, the definition of effective
energy policies requires a holistic overview about the evolution of the power sector which
is capable of including the direct, indirect and induced economic and environmental effects
caused by the increase in the energy supply and the structural changes in the energy mix.
In other words, policymakers must be informed about the global implications that
accompany future energy plans defined by means of traditional energy planning

approaches.
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1.2. Major definitions of energy modeling and optimization models

Energy modeling frameworks are widely recognized as useful approaches for planning
future investments towards a viable and sustainable national power sector, one of the
various energy sectors. They can be employed to identify the optimum future energy
power mix that enables fulfilment of the demand for electricity at lowest cost, in compliance
with technical, environmental and political constraints. Moreover, energy modeling
frameworks enable policymakers to assess the effects of various uncertainty sources that
might arise at both local and global levels, such as fossil fuels prices increase due to
geopolitical instabilities [9]. In addition, a proper use of energy models may support the
sustainable economic growth of national economies: while contributing in facing the
current environmental challenges, an efficient power mix enables to reduce the cost of
electricity, thus encouraging foreign investments in sectors different than the energy one,

and hence resulting in positive spillover effects.

So far, bottom-up energy optimization models have been applied to address the evolution
of the power sector by adopting a Production-based perspective (PB). The bottom-up
models define the least cost energy mix required to satisfy an exogenously defined energy
demand [10-12], hence assessing the direct! economic and environmental implications of
future energy scenarios. On the other hand, top-down models enable the adoption of a
consumption-based perspective (CB), allowing to understand the direct and indirect
economic and environmental implications of policies and technological changes at a global

scale [13]. The CB approaches are always based on Leontief’s Input-Output Analysis

! Direct economic and environmental implications are those related to the energy sector
only; e.g. the costs of the power generation and CO2 emissions produced by a power
plant.
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(IOA), which in its basic form provides a representation of the interlinked monetary flows
among segments of the economy [14]. However, while top-down models foreground a
reliable analysis of the associated implications of new energy policies on a macro level
scale, their high level of aggregation limits their capabilities in estimating the expected
impacts due to future changes in the power generation mix. Due to their own features, the
two aforementioned approaches may benefit from their integration: establishing a link
between bottom-up and top-down models may provide more comprehensive and
informative insights related to future energy scenarios at the nationwide economy scale
[15]. In particular, bottom-up modeling may support a sustainable economic growth by
defining the least cost feasible electricity production alternatives, assuming different
scenarios that may occur on the future. Additionally, a top-down approach may enable
energy analysts to assess economic and environmental feasibilities of implementing the
solutions provided by the bottom-up models, considering the competitive use of natural

resources by economic sector other than the power generation sectors.

1.3. Emerging needs for energy models in developing countries

The use of energy models to support policymaking and energy planning activities in
developed countries is a well-established practice: the European Commission has
financially supported several research projects to model sustainable scenarios related to
the evolution of European energy sector. As an example, the PRIMES [16] model allows
analysis of national energy sectors to forecast their future energy demand, prices, and
supply, while considering the development of their related technologies. For similar
purposes, the DICE [17] and MERGE [18] modeling frameworks have been proposed.

While developed economies make extensive use of energy models calibrated with high
18



guality data, the same cannot be always said for developing countries, where the financial
availability needed to support energy analysts with the state-of-the-art models and solvers

packages, and the access to high-quality data are two major challenges.

Developing countries are considered to be the major driver for the expected increase in
the demand for energy in 2040, due to their expected socio-economic transformations
resulting from a 65% increase in the population living in urban areas and a 135% increase
in their per capita income, with respect to the levels of 2017 [1,19]. Fortunately, there is an
increase in the application of energy models in developing countries. Among other
modeling frameworks, Howells et al. [20] have developed the Open Source Energy
Modeling System (OSeMOSYS), defined as a partial equilibrium long-term, energy
planning supportive tool with a bottom-up representation of energy conversion
technologies. Several recent application of OSeMOSYS can be found in literature: as an
example, the recent assessment of the evolution of Sub-Saharan and Tunisian power
sectors [21,22]. Due to its open-source nature, which ensures data transparency and
results reproducibility, OSeMOSYS is defined as particularly suited to be applied to shape

country’s energy mix in future energy scenarios [23].

1.4. Egypt’s power sector

Among other developing countries, the economy of Egypt is expected to grow rapidly in
the next decades [24]: between 2014 and 2015, its average population and GDP growth
rates were respectively about 2.1% and 4.4%, resulting in an increase in the electricity

peak load by 7.2% (28 GW), with a forecasted value of 85 GW in 2035 [25,26]. Egypt is

characterized by a regulated energy market, of which the electricity sector is managed by

19



the state-owned Egyptian Electricity Holding Company (EEHC), which manages electricity
production, transmission, and distribution sectors. In order to meet the annual increase in
electricity demand between 2011 and 2015, the installed capacities have increased
approximately by 30%, from 27 up to 35 GW. In 2015, the installed capacity generated 174
TWh as gross energy. The average annual increases of installed capacity and gross
energy generation from 2011 to 2015 are 6.8% and 4.5% respectively. According to 2015
statistics provided by EEHC [26], the natural Gas (NG) fueled thermal power plant is the
dominant technology in Egypt’s electricity generation mix with 90% share of the total
installed capacity. As a result, the natural gas consumption by power plants has increased
by approximately 10% from 2014 to 2015 to satisfy the production needs of the new
additional capacities [26]. Hydropower (7%) is the second major resource used in
electricity generation; however, its utilization is driven by the irrigation and residential
demands. Finally, power generated from the other renewable sources is 2%. The
electricity produced by the power generators is fed into the country’s national transmission
grid and delivered to meet various sector demands through distribution networks that
cover the majority of the territory [26]. Various alternatives are considered to meet the
forecasted demand increase. In particular, additional 15 GW capacity of natural gas
combined cycle technology is planned to be in service by 2018. Moreover, to promote the
diversification of the power generation mix, the Egyptian government considers adding 7.1
GW coal-fired capacity by 2022: however, this alternative is debatable, as Egypt does not
have coal reserves. For that reason, the operating cost of such plants might be escalated
due to the incurred coal transportation costs. Considering the increase in the share of the
renewable technologies in the production mix, the target share of renewables is set to be

22% by 2022, according to Egypt’s Intended Nationally Determined Contributions (INDC)
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presented in the United Nations conference on climate in Paris, 2015 [26,27]. Furthermore,
investments are planned in the electricity trade infrastructure with neighbor countries.
Egypt’s transmission grid is currently connected to Libya, Sudan, Jordan, and Lebanon
[26]. A 3 GW trade connection is planned to link Egypt with Saudi Arabia, which has a

different peak load demand profile [26].

According to the data provided by the Egyptian Electricity Holding Company (EEHC), the
reliability and security of electricity supply of the current mix could be disrupted by eventual
shortages in supplies of natural gas. The strong dependence on fossil energy supplies is
mainly due to the strong subsidies on fossil energy utilities imposed by the Egyptian
government, and it makes Egypt’s power generation mix fragile and vulnerable to socio-
economic events that may affect the availability of natural gas supplies (like the 2011
turmoil) [28]. Also, the same disruptive effect on Egypt’s economic production sectors,
including the energy sector, may be caused by a shortage in water, which already
occurred in 2016, when Egypt suffered a shortage of 13.5 Billion cubic meter in the
available water supplies, which is likely to continuously increase in the future, as the

Ethiopian Renaissance dam starts its reservoir filling phase [29].

The demand for electricity and the related demand for primary resources, are strongly
related to the growth in economic productivity of all the national sectors. Certainly, the
consumption of natural resources by the energy sector is strongly dependent by both the
composition of its technology mix and the growth in the national economic productivity.
Moreover, since natural resources are also directly invoked by all the sectors of the
economy and by the households, it is of paramount importance to analyze the economic
system as a whole. Indeed, due to the forecasted significant increase in population and the

unsustainable energy market caused by governmental subsidies, managing the evolution
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of the power generation sector is a challenging task for the Egyptian policymakers, as it

may severely affect all the other production activities.

For such reasons, the development of Egypt’s power sector will be a challenging task, and
energy modeling could play a key role in assessing optimal future scenarios, hence
providing crucial information to policymakers. In this regard, the Egyptian government has
already started to consider the use of energy models to plan for a more reliable electric
supply [11]. Unfortunately, accurate technical and economic data required to setup reliable
energy models are not readily available; this is particularly true regarding references to the

costs, average efficiencies and availabilities of the various power generation plants.

1.5. Objective of the Study

The main objective of this research is to construct an Energy-Economy Interaction model
by linking a bottom-up model to a top-down model to provide a quantitative assessment of
the results of future development scenarios for the power generation sector in Egypt, as an
example of a typical developing country. In comparison with developed countries, the
developing countries usually suffer from scarcity of reliable data, unpredictable currency
exchange rates and discount rates, and unsustainable energy polices; all of which make
the proper energy modelling more challenging, yet more vital. The evolution of the
Egyptian power generation sector is here assessed within a time period between 2018 and

2040.

Two main energy modelling challenges are addressed. The first of these is while traditional
energy models allow deriving the optimal arrangement of the energy sector in future
scenarios, only few of them are capable to consider the links and interrelations between
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the energy sector and the other sectors of the economy: this may cause a bias in results,
thus leading to misleading decisions; this shortcoming is equally relevant to both
developed and developing countries. Secondly, the few energy models capable to have a
holistic and integrated approach (e.g. TIMES-MACRO) are complex and difficult to be
implemented in critical contexts, characterized by high level of uncertainty of input data,

such as the case of the developing countries.
1.6. Thesis Outline

The rest of the thesis is organized as follows: Chapter O provides a general literature
overview related to the topic of energy modeling; Chapter 3 presents the Reference
Energy System (RES) for Egypt; it also describe the applied energy models, and the soft-
link approach adopted for the analysis. This chapter also presents and describes the
adopted future scenarios. Chapter 4 reports and discusses the obtained results and their
sensitivity analysis to test the uncertainties of the most relevant exogenous parameters as
well as the quantitative effectiveness of investing in renewable technologies. Finally, the
concluding remarks, and recommendations for future extension of the work are provided in

Chapter 5.
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2. CHAPTER 2: Literature Review

2.1. Applications of energy optimization models to define the least cost energy
mix
2.1.1. Linear Programming Mathematical Models

There are numerous optimization models that are available to determine the optimum
contribution of various energy resources in the mix of power generation, among the others,
linear programming mathematical models. Komiyama et. al. [30] developed a linear
programming model to define the optimum mix of energy sources in Japan. The Japanese
energy mix’s reliability is mainly affected by the imported fossil fuels from politically
unstable regions [30]. In addition, there is a risk associated with the deployment of nuclear
power plants after the accident of Fukushima in 2011 [30]. In that study, authors have
considered deployment of the available renewable energy resources and energy storage
systems to meet Japanese electricity demand by 2030. The developed model in that study
aimed to achieve the least cost energy mix, considering costs and capacities of nine
available electricity generation technologies, energy demand, the required minimum output
of each energy conversion systems, and emissions constraints [30]. The results of that
work showed that huge storage batteries were not mandatory in having such systems that

rely on massive renewable energy sources [30].

Rentizelas et. al. [31] discussed the cost of externalities associated with various power
generation technologies. Although, renewable technologies might be the most
environmentally sustainable during their operating phase, the situation might be altered, if
a Life Cycle Assessment (LCA) was applied [31]. Rentizelas et. al. [31] developed a linear

programming model that included LCA inventory analysis and based on “Cradle to Gravel

24



Basis” [31]. The model included all of the processing, foundation, operation and
decommissioning of each technology. In addition, an estimation of emissions to the
atmosphere was considered. The model was applied for the case of Greece for the period
of 2012-2050 to reach a decision that minimizes the cost of the power generation. The
results of that work showed that external costs of various technologies have a large

contribution at the total costs [31].

Muis et. al. [32] developed an optimization model for reducing carbon emission in
Malaysia. During the past 50 years, the Malaysian economy has been transformed from an
agriculture-based to be an industrial-based [32]. As a result, the amount of greenhouse
gases emitted has increased. Unfortunately, Malaysia is ranked to be the most air polluting
country in South Eastern Asia region [32]. In that study, the objective function of the
developed model was to define the resources’ mix that reduces the electricity generation
cost and GHG emissions to the atmosphere. In that study, objective function considered
the costs of investments, operations and maintenance, of various electricity generation
capacities. The constraints of the model considered issues related to the situation of
Malaysian electricity market, at the time of performing that study [32]; in particular, the
model was constrained to the aggregate demand on electricity, available reserves of
primary fuels, GHG emissions limits, and the availability of renewable energy. The results
of Muis et. al [32] showed that the proposed model was effective in determining the

optimum values of generating mix while meeting the emission limits.

Ozcan et. al. [33] discussed optimization of energy resources considering various factors
such as, social, economic, and environmental. The optimization model presented at that
study aimed at defining the optimal resource mix for Turkey considering the major

generating sources; coal, fossils fuels, solar, wind, and nuclear. The temporal boundary of
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that study was 11 years. The formulated model was a multi-objective mixed integer
programming. Six weighted objective functions were developed that minimize electricity
generating cost, carbon emissions, imported energy, and conversion of fossil fuels to
electricity. Other objective functions of the model aimed at maximization of social
acceptance of the proposed plan and maximization of employment rate. The constraints of
the model were set to consider generating capacities and the forecasted demands. The
results of that study showed that renewable energy is preferred to the traditional

generating technologies [33].

2.1.2. Models based on Financial Portfolio Optimization Theory

The concept of financial portfolio optimization is a tool that could be applied to select the
optimum energy mix [34]. Portfolio analysis is well established concept that has been used
at the field of the financial sector [35]. This concept of investment mix optimization has
been first applied to investment in financial assets by Markowitz in 1950’s [35]. The
Markowitz theory could be simply described as, maximizing the expected return and
simultaneously reducing the associated risks [35]. Markowitz concluded that every asset
assessment should be based on its expected return and variability; the latter is the risk that
this asset will have on the whole portfolio of investments. The results obtained by
Markowitz shows that diversification of investment usually results in maximizing the
expected return and reducing the total risk of the investment value [35]. By definition, a
portfolio of multiple assets is considered efficient “if there is no other portfolio available that
gives the same return at lower variance of returns” [36] .Consequently, efficient frontier is
defined as the set of efficient portfolios for a given problem, from which a one can be

considered to be an efficient solution [35].
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Shimon Awerbuch and Martin Berger were among the early contributors to the field of
energy policies planning, they have adopted Markowitz portfolio theory to the process of
selecting portfolios of electricity generation technologies [34]. According to Awerbuch, the
objective of defining the energy planning mix should not give excessive weight to the least
cost between alternatives, because of the fluctuations in prices and development of
technologies over the planning horizons. For instance, if thermal power plants were the
most efficient and reliable energy source during the past 50 years, the same decision
could not be the same for the next 10 years. Instead, it would be more acceptable to
calculate the cost of the energy produced with the associated risks considering the whole
generating portfolio, not the cost of the risk of each individual technology only [34]. Similar
to the concept of diversification of the financial Markowitz portfolio theory, it was found that
adding renewable resources, such as wind and Photovoltaic cells, to the generating mix
results in portfolios with reduced costs and risks [34]. In those models, the cost was
estimated in terms of the expected return of each technology; in other words, it is the
amount of energy generated from investing a unit of money, kWh/$. Awerbuch has
considered the European Union (EU) electricity planning problem and tested various
scenarios to determine the effects by varying the share of power generation technologies
that contributes to electricity generation [34]. A case with an only one type of fuel, oil, has
resulted in a higher risk than that obtained from oil and coal mix. The results of the
analysis developed in that work showed that existing and the future EU energy portfolio
mixes were not optimum, as there are other portfolios that has a higher rate of return at
lower risk; i.e. the latter could be achieved by increasing the percentage of the wind

energy at the electricity generation mix [34]. Also, Awerbuch concluded that renewable
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technologies have a significant positive effect on various portfolios and they should be

included at each efficient mix [34].

Arnesano et. al. [37] have extended the work of Awerbuch with special application to Italy
and considered additional factors. In that study, the life cycle cost of various technologies,
regulations on carbon emissions, capacity factor, and a quantified analysis of renewables
future development were added to the model. The authors of that study have integrated
meteorological and geographical characteristics for a better model implementation at
various locations. Carbon emission tax implemented by the EU was considered by the
model; i.e. since 2013 each electric power generating facility pays for its carbon emission
[37]. Assessing various scenarios, Arnesano et. al. [37] concluded that using more
diversified portfolios usually results in a higher expected return associated with low risk. In
addition, the hypothesis of associating renewable and nuclear technologies in the mix was
tested. The results of that case showed that the latter alternative could result in efficient
portfolios that has lower risk, high return, and controlled carbon emissions [37]. So, the
dependency on conventional fossil fuel could be minimized by 66% [37]. Similarly, Delarue
et. al. [38] have also discussed using of portfolio theory to generate a reduced cost and
risk generation portfolio mix. Delarue’s model offers an important understanding of
relationships’ between installed capacity, actual generated power, instantaneous power
delivery, and ramp limits of conventional power plants. Also, that model has considered
the variability of wind power that results from randomness of the wind energy. All of these
factors were modeled and solved as a quadratic constrained problem to determine the
amounts of installed and generated capacities of various technologies. The results of that
work recommends that reduced cost and risk portfolios could be achieved by increasing
the wind power and reducing fossil fuel percentages [38].
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2.2. Exergy Based Analysis of Energy Systems

Since exergy is the thermodynamic characteristic that represents the available work that
could be extracted from different energy resources, several researchers employed exergy
based analysis to assess the efficiency of using various natural resources to satisfy energy
demand. Bilgen et. al. [39] discussed the importance of exergy analysis to improve energy
usage efficiency and alleviate some of the environmental problems, such as global
warming, acid rains, and ozone layer depletion. Exergy is used to assess system’s
departure of a state to a reference environment; it is the most suitable relationship
between the second law of thermodynamic and effects on the environment. “Exergy
results from the difference in free enthalpy (Gibbs energy) between energy carriers under
consideration and the common reference substance in natural environment” [39]. Exergy
analysis is considered a measure of imperfections of energy systems; hence, possible
ways of improvements could be identified. In that study, exergy was linked to
environmental and sustainability concepts [39]. In order to solve dominant environmental
problems such as global warming, a quantitative performance measure for environmental
problems is needed. Fortunately, exergy function can be used to model and optimize
energy conversion systems [39]. Exergy also could be used to explain ecosystems. It
could be used to describe an agriculture production system, where growth and survival
could be evaluated in terms of thermodynamics [39]. Therefore, eco-exergy could be used
as an effective tool to enhance ecological systems management. Industrial ecology is a
concept that aims to achieve sustainable production systems [39]. It integrates production
processes, operations, and disposal practices. Applying exergy analysis can result in

some indicators that reflect characteristics of sustainable power production systems.
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Therefore, policy makers should consider exergy analysis to identify the potential

opportunities to achieve sustainability[39].

Exergy analysis could also be used in forecasting energy demand, which is one of the
major planning factors of nationwide scale economies. Brockway et. al. [40] applied this
approach to China. China is the world’s largest energy consumer; however, there are few
studies that discuss exergy and useful work in Chinese energy management system [40].
The aim of Brockway’s study was to explore the causes for the change of China’s energy
demand, determine the source of exergy efficiency change, and to forecast the future
energy demand. Exergy analysis was applied, as it could be used to estimate the
thermodynamic quality of the energy carriers, while considering the broader energy supply
chain. A key assumption in that study was that “useful work is a better ‘energy parameter’
than primary energy on which to analyze end energy use and economic activity, since it is
the last thermodynamic place where energy is measured before it is exchanged for energy
services” [40]. Brockway’s study [40] included an exergy time series analysis that was
applied to the period of 1971-2010. During this period, the useful work was shown to have
increased by 10 folds, primary energy consumption has increased by 4 folds, while the

aggregate exergy efficiency conversion has increased from 5% to 12.5% [40].

Yan et. al. [41] discussed the problem of reducing the total energy cost and the exergy
losses of a whole energy system supply chain. In that study energy costs and exergy
losses were considered from the generation points to the consumption points. The
problem addressed by Yan et. al. [41] was modeled as a multi-objective non-linear mixed-
integer optimization model [41]. The formulation of that proposed model was based on the
fact that “electricity exergy is 100% and the exergy of thermal energy is related to mass

flow and the temperature of the energy carrier” [41]. This exergy based optimization model
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aimed at reducing the total energy cost and reducing exergy losses at the energy
conversion step [41]. Constraints of the model were also developed; at the generation
level, constraints of capacity, ramping, and fuel consumption were presented [41].
Demand side constraints were also developed considering electricity supplied from the
grid [41]. Single objective function that has a weighted sum of both functions was
developed [41]. The analysis of that model showed that the major exergy loss occurs
during the conversion process. The model was run for various cases, and results showed
that when electricity is used to cover all types of the thermal demand, high exergy losses
occur. Yan et. al. [41] justified that as the high quality energy carrier (electricity) was used

to satisfy the low quality demand of thermal loads.

Somma et. al. [42] applied a multi-objective optimization model that considers both
economic costs and exergy assessments of distributed energy systems. Authors of that
study [42] concluded that the application of exergy analysis principles in assessing
distributed energy systems would improve the efficiency of exploiting primary energy
resources. Similarly, Kerdan et. al. [43] highlighted that exergy oriented energy policies
could improve the sustainability of the energy sector. Through the application of an exergy-
based model, energy analysts would be able to define the prospective changes in the
thermodynamic efficiency of the energy conversion systems due to the future energy
policies and regulations [43]. Most of the power generation utilities operate with reduced
efficiencies over their useful lifetime due to various reasons, such as the part-load
operation upon low demand or availability of natural resources in the case of renewable
[44]. Colombo et. al. [44] defined a thermoeconomic approach to assess the economic and
the environmental effects of energy systems considering the inefficiencies in the operation
of power generation utilities. Therefore, it could be inferred that the integration of the
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exergy based analysis with energy optimization models would be useful in deriving the
least cost power generation mix that maximizes the thermodynamic efficiency of the whole

energy conversion system.

2.3. Bottom-up energy optimization models in Developing Countries

The relevance of energy modeling frameworks in interpreting emerging and future needs
of the energy sectors in developing countries, and in shaping their future optimal
expansion capacities has been addressed by several studies. Pandey et al. [45] have
highlighted the relevance of having efficient energy policies to avoid the socio-economic
problems caused by shortage of energy supplies to the production sectors. Bazmi et al.
[46] described the complexity of developing a valid energy policy, which has to consider
various technical features related to power generation technologies and other economic
factors. Recently, the use of bottom-up energy optimization models to shape energy sector
policies has emerged as a robust and systematic approach to investigate the future
changes in national energy sectors. Urban et al. [47] identified some of the limitations that
might hinder applying bottom-up models in developing countries, highlighting the major
factors that should be considered for successful application: for instance, consideration of
unofficial economy, poor performance of electricity generation sector, and accurate

representations of energy demand by other sectors of the economy.

Several research efforts were deployed to match the available bottom-up models to
developing countries energy sectors by considering the formerly stated aspects. For
instance, building on the available open sources data and geographical information

systems, the least cost electrification strategy has been defined for Sub-Saharan African
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countries [21]. TIMES modeling tool [48] was applied to define the optimal energy
generation capacity expansions in South Africa up to 2050 by considering five different
demand sectors, with the aim of calculating the overall primary fossil fuels requirements
and their related environmental impact. In the Asia-Pacific Economic Region, Malaysia and
other 15 countries set up various MARKAL [49] models that consider the specific features
of their energy sectors. Eshraghi and Ahadi [50] developed a MILP model to define the
optimal choices for the energy sector in Iran, comparing the obtained results with the ones
obtained by an OSeMOSYS modeling framework: both models suggested increase of
investments in similar technologies. The OSeMOSYS modeling framework was similarly
applied to define future energy policies in different regions, briefly described in the

following.

Considering South America’s available primary resources, Moura et al. [51] concluded that
installing mega hydropower capacities and connecting the continent’s transmission grids
would reduce power generation costs and pollutants emissions. Awopone and Zobaa [52]
applied the 0SeMOSYS modelling tool to define the Ghana’s optimum power generation
mix from 2010 up to 2040, concluding that implementing pollutant emissions constraints
would result in a more diversified electricity generation mix. Groissbdck and Pickl [53]
applied an OSeMOSYS model generator to address the evolution of Saudi Arabia’s power
sector assuming various scenarios for fuel prices, concluding that there is an indirect
relationship between the fossil fuel prices and the amount of emissions produced. Taliotis
et al. [54] support the significance of deploying energy models in countries where shifts in
energy policies are expected. In particular, they developed an OSeMOSYS model to plan
for replacement of oil-fired power plants by natural gas-fired power plants and renewables
technologies in Cyprus assuming various scenarios and environmental constraints.
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Welsch et al. [55] enhanced OSeMOSYS model generator by adding some short range
operational constraints in an attempt to address the operational side of the expected
energy policies. However, the results of such a model were different from the OSeMOSYS
model generator version of 2011, and the authors of that study noted the uncertainties
embedded in forecasting operational numerical data input for a long period ahead.
Dhakouni et al. [22] assessed the potential of increasing the penetration of renewable
energy resources in the Tunisian power generation mix. Based on OSeMOSYS model
framework, the authors of that work concluded that higher energy independence of the
country could be achieved with minor increases in the costs of the Tunisian electricity

system [22].

2.4. Energy-Economy Models (Linked Models)

Bergaman [56] addressed the early trials of assessing of prospective changes in the
energy supply sectors on the nationwide economy scale using Computed General
Equilibrium Models (CGE) 2. As presented in various studies, the majority of the top-down
models, lack the detailed representation of the energy sectors [14,57,58]. Therefore, the
significance of linking bottom-up and top-down models to assess the evolution of the
energy sector on a global economy scale was addressed by several researchers. Both of
the aforementioned models could be coupled via soft or hard links. In the hard-linked

models, the bottom-up and Computed General Equilibrium (CGE) models are solved

2 Computed General Equilibrium (CGE) Models [14,61]: are non-linear mathematical
models. They are based on social accounting matrices, which are derived from input-
output models. CGE models assume a perfect market equilibrium. The objective of CGEs
to maximize a utility function of an economy considering the capital inputs, labor, and
economic growth rate.
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simultaneously within a single code. Jacobsen [59] used a hard-linked model to assess the
effect of the financial and technical instruments to reduce GHG emission in Denmark. In
that study, authors applied a bottom-up model to assess variations in final consumption of
energy commodities driven by technological changes and defined the Danish energy mix
[59]. Additionally, a top-down model was used to study the relevant changes in economic
policies (e.g. energy taxes). On a similar way, Bauer et al. [60] proposed REMID-R, a
hard-linked model, to assess the effect of the timing of the introduction of renewables on
the public welfare. PRIMS energy model [16] was deployed in several studies to address
the transformation of European energy system in a detailed technological approach
considering the influences of market mechanisms, community, and environmental policies.
In a literature review study, Gargiulo and Gallachadir [15] presented detailed descriptions of
other linked models, such as MERGE and POLES, etc. specifying the capabilities and

limitations of each model generator.

In the category of soft-linked models, both of the bottom-up and top-down are solved
separately and the result of one of them is utilized as an input for the other. As an
illustration, Messener et al. [61] proposed a soft-link between MESSAGE (a bottom-up
model) and MACRO (a computed general equilibrium model) to study the impact of the
costs of energy supplies on the definition of the energy mix. Similarly, Kober et al. [62]
applied a soft-linked model to assess various carbon mitigation policies. In that study, the
substitution of technologies was analyzed via an energy optimization model, while a
macroeconomic model was deployed to address the implications of increasing carbon

taxes on decreasing consumers’ spending and diminishing GDP.

Several researchers have adopted Leontief’'s Input-Output Analysis (IOA) model as the

top-down models applied to derive various environmental implications induced by changes
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in the energy policy. Starting from a disaggregated environmentally extended 10 table of
UK, Daly et al. [63] calculated the direct and indirect emissions, of all production sectors,
associated with prospective changes in energy generation mix. On a similar way, Heinrich
et al. [64] assessed the socio-economic impacts associated with the removal of coal power
plants from Germany’s power generation mix. They soft-linked Germany’s energy
optimization and IOA models, concluding that proposed phasing out of coal technologies is
not sufficient for Germany to reach its target level on GHG emissions [64]. The GHG
emissions associated with the manufacturing and construction of renewable energy
systems and their infrastructures were highlighted among the issues related to
comprehensive assessment of energy policies. Such an issue was addressed by
Ususbiaga et al. and Mcdowall et al. [65,66] through defining a disaggregated 10 tables to
assess the nationwide GHG emissions related to increasing the installed capacity of

renewable energy systems.

It could be inferred from the review presented that soft-linked models enable a flexible and
a broader spectrum of energy policy analysis, as the mathematical formulation
inconsistencies between bottom-up and top-down models might hinder the integration

between models in a hard-linked architecture.

2.5. Previous applications of energy modeling tools to the case of Egypt

Similar to other developing countries, the evolution of the Egyptian energy sector was
addressed in both academic literature and funded consultation projects to define the
optimal future energy strategy. Taliotis et al. [67] have applied OSeMOSYS to assess the

evolution of the electricity generation sector in Egypt as well as 45 African countries up to
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2040, assessing the effects of connecting the electricity transmission network and allowing
the electricity trades with other countries. Based on the results obtained from such a
model, the total installed capacity in Egypt should exceed 200 GW on 2040 [67]. In a
similar way, Davidsson and Hagberg [68] applied OSeMOSYS model framework to 18
African countries, including only industrial, rural and urban electricity demand. The authors
of those two studies [67,68] assumed a high level of demand aggregation, and without
considering the exact demand load profile for Egypt. Moreover, in the study of Davidsson
and Hageberg, wind power technologies were not included in Egypt’s electricity production
mix, even though Egypt actually has existing wind farms, and plans for many more; indeed
Egypt’s wind resources are abundant [26,68]. The TIMES model generator was applied to
model Egyptian energy sector up to 2035 [69], and results have been obtained based on
various scenarios, such as assuming an increase in the price of the fossil fuels, a
decrease in the renewable costs, and an introduction of nuclear and coal fired power
plants within the current energy mix. Based on that study, the installed capacity should be
130 GW on 2035 to meet the electricity demand, and the expected electricity generation
mix would include shares of coal, wind, nuclear, and more than 40 GW of solar
technologies [11]. However, access to TIMES model of Egypt, its exogenous parameters,
and main assumptions is limited, because that study was performed as a private

consultancy to the Egyptian government [11] and the information is classified.

Considering Egypt’s nationwide economy scale, Khorshid [70] provided a representation of
Egypt's energy sectors in the framework of Social Accounting Matrices (SAM)3, with an

aggregate electricity generation sector that includes all the power generation technologies.

3 Social Accounting Matrices (SAM) are expanded input-output tables that cover the
distribution of the income in within the economy [86].
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Khorshid SAM model has focused on representing the cost, pricing, and flows of energy
supplies in both domestic and international markets [70]. In the available literature, there
computed general equilibrium (CGE) models applied in Egypt [71,72]; unfortunately, such
models lack the detailed representation of the power generation sectors, as they are

aggregated with other energy and/or other production sectors [71,72].

In the present study. The proposed model will consider a detailed description of the power
generation sector in Egypt, in order to overcome the limitations resulting from the previous
studies, mainly related to the high level of aggregation of power generation and energy
demand sectors. The majority of the available literature focuses on the developed
countries; however, they feature different socio-economic formations from those of the
developing countries (e.g. market mechanisms). To address this issue, a robust and
simple soft-link will be developed between two open sources bottom-up and top-down
models to define the total primary energy consumption and/or other environmental impacts
on a nationwide economy scale. The developed methodology is modular and generic, so it
is adaptable to different developing countries’ economies and it could be used to drive
various economic and environmental indicators to meet the scope of the researchers’

various interests.
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3. CHAPTER 3: Methods and Models

This chapter introduces the frameworks of: 0SeMOSYS, a bottom-up energy optimization
model and I0A, a linear top-down model, which will be used in this study. In addition, the
end of this chapter describes the detailed approach of soft-linking the bottom-up and top-

down models.

3.1. Bottom-Up Power Sector Modeling Using OSeMOSYS

In this study, the OSeMOSYS model generator [20,73] has been used to optimize the
evolution of the power sector during a defined planning horizon. 0SeMOSYS is an open-
source modular linear programming optimization mathematical model that aims at defining
the least cost energy generation mix while considering some techno-economic constraints.
Applying OSeMOSYS to satisfy an exogenously defined temporal demand, the minimum
requirements of installed capacity of each generation technology and its associated
production of electricity will be determined according to a cost minimization criterion.
Accordingly, the endogenous variables of direct primary energy consumption and direct
emissions production due to the defined power generation mix will be determined. The
functional constraints of OSeMOSYS assure that installations of new capacities will be
confined to the defined upper and lower limits on the parameters of the investments, the
environmental constraints, and the availability of natural resources. In this sub-section, the
0SeMOSYS modeling framework will be described, identifying the logic and the major

components of the model.
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The framework of 0SeMOSYS modeling tool

Similar to other linear programming models, OSeMOSYS modeling tool is composed of
exogenous and endogenous parameters, an objective function, and functional constraints.
The logic of 0OSeMOSYS is based on the integration of seven aspects affecting the
definition of the least cost energy mix, which are called blocks in the terminology of
0SeMOSYS. Specifically, those blocks are: (1) the objective of the model, (2) costs, (3)
storage, (4) capacity adequacy, (5) energy balance, (6) constraints, and (7) emissions.
Thanks to the modular nature of OSeMOSY'S, each of those blocks could be extended to
cover various energy sectors, i.e. the power sector and/or other energy sectors, such as
transportation sector, by adding the related information of the various sectors. Those

blocks could be explained as follows [20,73]:

1. the objective of the model: the basic version of 0SeMOSYS aims at defining the
least cost energy mix to be employed to satisfy a temporally and spatially defined
demand. In particular, the least sum of the net present value (NPV) [74] of the
annual costs associated with the various feasible solutions will be selected as the
global minimum value of the model.

2. the costs: this block represents the total cost incurred by each technology during
the whole planning period of the proposed study. Such costs will be discounted to
the first year of study based on a given discount rate. The total costs are
decomposed to three categories: the operating costs, the capital costs, and the
salvage value (generally a negative term in the equation of the cost). The operating
costs are variable and they are related to the output of each technology. The capital

costs, are the investments costs associated with installation of new capacities.
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The salvage value[74,75], refers to the monetary value of the installed capacity at
the end of its useful life. Calculating salvage value of an installed capacity of a
certain technology depends on: 1- the accounting principle at which the
depreciation rate is calculated; 2- the useful lifetime over which the technology is
operating [74]. Specifically, if the power plant has an operational life which is shorter
than the model temporal horizon, the salvage value of it will be zero by the end of
its useful lifetime until the last year of the analysis and will coincide its scrap value.
On the other hand, if the useful lifetime of another power plant is greater than the
model planning horizon, its salvage value will be determined based on a
depreciation rate, defined by the energy analyst. It is worth to note that in some
cases, the disposal of a certain asset might require additional expenses [74]. For
such cases, those expenses have to be deducted from the cash inflows (selling of
the asset) to obtain the net salvage value. For example, the net salvage value of a
nuclear power plant is a negative value, since the required expenses associated
with handling nuclear waste is higher than the scrap value of the assets of nuclear
power plants.

. the storage: this block represents the storage technologies with their different
capacities and operational characteristics. 0SeMOSYS allows energy analysts to
represent the various storage technologies, such as the pumped hydro-storage,
compressed air storage, and flywheel storage in details by specifying the time
periods and the rates at which energy will be stored or released. System storage
can have a marked effect on reducing installed capacity, by shaving off load peaks.
. the capacity adequacy: to assure the continuity of the electrical energy supply, the

installed capacity of the various energy conversion technologies should be able to
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generate the electrical energy needed to meet the instantaneous demand.
0OSeMOSYS accounts for the accumulation of the installed capacities over the
whole planning horizon as well as the derating factors, such as the availability and
capacity factors. The availability factor (a number less than 1), specifies the
percentage of a year, during which a power generation technology is expected to be
operating. In other words, the higher the availability factor, the less the total period
at which each of the studied technologies will not be operating, for example due to
scheduled and unscheduled maintenance, and breakdowns. Additionally, the
capacity factor is attributed to exogenously defined time-slices*, to account for time
intervals during which technologies might not be operating due to the unavailability
of the natural resources or operating below the rated capacity; e.g. solar and wind
energy resources which are highly variable and random.

. the energy adequacy: Energy adequacy considers the efficiency of the energy
conversion technologies under different modes of operations®. In addition, the
representation of the energy adequacy allows for estimating the total requirements
of primary energy resources (renewables and non-renewables) needed to be

converted to satisfy the forecasted demand.

. the constraints: OSeMOSYS includes various functional constraints that are

imposed exogenously. Among others, limitations on the availability of natural
resources, upper and lower bounds on investments in some technologies, and/or

targets for certain penetration of renewable technologies.

4 Time-slices: a set of time intervals to describe time fractions of a year. For example, a
time-slice could be defined in terms of seasons, months, and the time of the day.

5 Mode of operations: generation technologies could be working on different modes that
produce different energy commodities, such as the electrical energy and the heat
produced by combined cycle power plants.
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7. the emissions accounting: the emission accounting in OSeMOSYS allows the
energy analyst to estimate the direct emission of one or more pollutants from each
generation technology under different modes of operation. Also, it allows for
calculating the emission penalty according to a predefined penalty cost (monetary
unit per unit of weight of the pollutant released during the energy conversion
process). Furthermore, the block of emission accounting is formulated to estimate
and impose upper-bound constraints on the emissions released by the energy

system annually and during the whole planning horizon.

The main sets® of 0SeMOSYS are highlighted in Table 1. Table 2 displays the main
exogenous parameters, which are the inputs to the model; e.g. costs, upper and lower
limits on constraints, capacity factor, etc. Whereas, Table 3 displays the endogenous

parameters that will be defined by OSeMOSYS [20,73].

Table 1. Definition of the sets in OSeMOSYS model generator

Set Description
r Region considered in the model
t Technology: represents any element that produces energy. In OSeMOSYS

natural resources are also referred to as technology. In power generation,
transmission and distribution are also treated as technologies. Technologies
are represented as boxes in the Reference Energy System (RES), as shown
in Figure 2.

l Time-slices: represents the time fractions of the year. This is a traditional
approach in all energy model frameworks to allow temporal description of
the annual demands.

f Fuel: represents the energy carriers produced form each technology. Fuels
are represented by lines in RES.

6 Sets: are the indices to which the exogenous and endogenous parameters will attributed
too.
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m Mode of operation of technologies. It might happen that a specific
technology(s) has more than one mode of operation: e.g. the Combined
Heat and Power (CHP) plants could be operating on several modes.

e Emission streams considered in the model: e.g. carbon dioxide and Nitrogen
oxide.
y Year in the temporal horizon considered by the model.

Table 2. Main exogenous parameters in 0OSeMOSYS model generator

Exogenous Parameter Description

InputActivityRatio [y, t, f,m, 1] The required number of units of fuel to produce
one-unit production by the technology. It is
calculated as the inverse of the efficiency in
power generation technologies.

CapitalCost [y, t,r] The investment cost associated with installing
new capacities (monetary unit / power unit)

VaribaleCost [y, t, m,r] The operating costs of producing one unit of
energy by the considered technologies (
monetary unit / energy unit)

REMinimumProdcutionTarget [r,y] The required share of renewables penetration
at the annual power generation mix (%)

TotalAnnualMaxCapicity [y, t.r] The upper bound limit of installing new
capacities (power unit)

TotalAnnualMinCapicity [y, t.r] The minimum amount of capacity of each
technology that should be installed (power
unit)

EmissionActivityRatio [y,t,e,m,r] The amount of emissions produced during the
operation of the technology ( weight unit /
energy unit)

AnnualEmissionLimit [y,e, r] The upper limit on the level of emissions to be
produced by the considered technologies in
the model (weight units)

Table 3. Main endogenous parameters in OSeMOSYS

Endogenous Parameter Description

NewCapacity [r,t,y] The new installed capacity (power units) of
technology t in year y and in region r.
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RateOfActivity [r, 1, t,m,y] The energy output (energy units) produced by
technology t at mode m, year y, and time-slice
l.

RateOfUseByTechnology [r, L, t, f,y] The amount of fuel f (energy units) that is
required by technology t, in region r, in year vy,
and in time-slice I.

AnnualEmission [y, e, r] The total amount of emission e ( weight units)
produced in year y, and in region r.

In this research OSeMOSYS-Egypt, was developed by defining parameters of
0OSeMOSYS modelling tool according to Egypt’s power sector, which are presented in the

following sub-section.

3.2. Definition of Egypt’s Reference Energy System

This section provides the definition and implementation of the Egyptian Reference Energy
System (RES) in the OSeMOSYS-Egypt model. Moreover, the main exogenous
parameters are presented here based on the analyzed energy scenario. They have been
deduced from some scientific publications [68,76,77] and from grey literature, including

reports by EEHC [26], World Bank [25] and IEA [1].

A Reference Energy System (RES) is the basic structure of all the energy modeling
framework. It consists of a graphic representation of the structure of the power generation
sector. It is generally composed of four tiers, comprising: 1- Primary energy supply, 2-
Power generation technologies, 3- Transmission and distribution infrastructures and 4-
Final demand sectors. The RES adopted for the OSeMOSYS-Egypt model is presented in

Figure 2 and is described in the following:

45



Primary Energy supply Power Generation

Electricity imports
high voltage (HVI)

Coal plants
(Coal.PP)

Coal

|

NG steam cycles

Hydro

(NG.SCPP)
Natural Gas
NG simple cycles
Nuclear (NG.GCPP)
NG combined cycles
(NG.GCPP)

NG combined heat &

ower (NG.CHP
Solar rad. b ( )

Nuclear plants
(Nucl.PP)

Wind farms
(Wind.PP)

Hydropower
(Hydro.PP)

Large photovoltaic
(PV-utility)

Transmission and distribution

Trade
connection

Industrial
distribution
(Dist.Ind)

Transmission X
Agricultural

distribution
(Agr.Ind)

Low voltage
distribution
(Dis.Gen)

Rooftop PV
(PV.roof)

Final demand

Figure 2. Egypt's Reference Energy System (RES).
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Primary energy supply. It represents energy resources that contribute to electricity

generation; that is, the maximum allowable resources capacities that could be exploited by

each technology. Some of them have been disaggregated according to their supply origin

(i.e. domestic vs imported), to enable the application of resources bounding constraints

like additional transport costs or availability limits. Similarly, renewable solar and wind

energy resources are categorized under different power generation technologies that

might be constrained by geographical locations, such as the land resources needed for

solar energy applications and suitable wind farm sits. Six different primary energy supplies
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are available in the Egyptian context (see Table 4): non-renewables (Coal, Natural Gas

and Nuclear resources) and Renewables (Wind, Hydro and Solar Radiation).

Although there is a limited utilization of the heavy diesel in some thermal power plants, the
heavy diesel is not considered among the energy resources in this study. This could be
justified by the Egyptian government’s short-term plan of replacing the heavy diesel with
natural gas in all power plants [26]; i.e. there is a constraint of not using heavy diesel in

thermal power plants in the future energy mix of Egypt.

Power generation technologies. The available power technologies convert primary
energy supplies into electricity. Thirteen types of power technologies are available in the
Egyptian RES (see Table 5), which are classified based on their input energy resources.
Hydroelectric plants include all the hydropower technologies currently available in Egypt,
which comprise the hydropower plants installed on the Nile stream; namely, the High dam
and Aswan dam. Their primary objective, however, is the regulation of irrigation water and
hence their control is not optimized for meeting energy demand. Other renewable
technologies includes photovoltaic (PV) plants (both centralized PV plants and localized
rooftop installations), and wind farms. Natural gas is simultaneously fed to five
technologies: steam cycles, simple gas cycles, combined cycles, combined heat and
power cycles and hybrid concentrated solar power plants. Other non-renewables include
ultra-super critical (USC) coal plants (traditional coal-fired technology are not available due
to the lack of domestic coal supply), and nuclear plants. Finally, due to the proposed
connection of the national electricity grid to neighboring countries’ grids, high voltage
electricity imports are considered as a fictitious power generation technology. The main
references employed in the present work for the estimation of fixed and variable costs of

power technologies are Davidsson et al. [78], US EIA [79] and IRENA [80].
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Transmission and distribution infrastructures. This tier defines technical features for

connecting power generation with end users. In particular, transmission infrastructures

receive high voltage electricity and deliver it to the distribution infrastructure at different

voltages. The latter is disaggregated into three categories to enable a separate allocation

of power distribution losses: distribution to industrial demand (Dist.Ind), distribution to

general demand (Dist.Gen) and distribution to agriculture demand (Dist.Agri).

Table 4. Main features of the energy resources available in the Egyptian RES.

Energy Resource Acronym
Hydropower resources HYD
Natural Gas (domestic NG-Local
production)
Natural Gas (imports) NG-
Imports
Solar power available for SOLPV
Photovoltaic
Solar power available for CSP SOLCSP
Wind power WND
Coal power (imports) Coal
Nuclear power NUC Res

Table 5. Main features of the power technologies available in the Egyptian RES [78-81].

) - 2 =
O 0B3> Q8=
Power technology name Acronym 02 xXox Eo=
coQ— T Ogxm g o=
w = = > &,
(]
Hydroelectric plant Hydro.PP - 395 0
Photovoltaic large utility =~ PVL - 2200 72
plant
Photovoltaic rooftop plant PV.roof - 2100 86
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Concentrated Solar CSP.PP - 3647 80

Power

Wind plants Wind.PP - 2600 52
Steam cycle NG.SCPP 35 900 59
Simple gas cycle NG.GCPP 33 730 72
Combined cycle NG.CCPP 45 1423 10
Combined heat and NG.CHP 85 1140 24
power

Hybrid CSP plant CSPNG.PP - 1687 59
Ultra Super Critical cycle  Coal.PP 37 3519 3
Nuclear plant Nucl.PP 33 10778 4
High Voltage Import HVI - - -

Final demand. Electrical energy demand is classified into seven categories: residential,
industrial, commercial, governmental, public lighting, agriculture and others (including

ancillary activities).

3.3. OSeMOSYS-Egypt: setup and application

The Egyptian RES defined in the previous section has been introduced in the 0OSeMOSYS
open-source energy modeling framework [20], together with other exogenous parameters
introduced here, and hence resulting in the OSeMOSY S-Egypt model. The model defines
the least-cost mix of power technologies that should be deployed and operated to satisfy a
temporal and spatial energy demand subjected to a set of technical and economic binding
constraints. Accuracy of exogenous parameters provided to the model, such as the cost of
technologies and the related efficiencies, is of paramount relevance to obtain reliable
results. 0SeMOSYS-Egypt considers a spatial scope of a single-region economy, in a time

horizon between 2008 and 2040. For the period between 2008 and 2015, the model has
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been calibrated by considering the data available from EEHC, while for future years until

2040 electricity demand has been derived from scenarios data.

3.3.1. Energy scenarios definition

The OSeMOSYS-Egypt model has here been adopted to analyze two different electricity

demand scenarios:

IEA New Policies Scenario. This scenario has been defined by the International
Energy Agency (IEA) in 2016 [1] considering the implementation of policies already
defined or at least announced by world countries, and the way that such policies
could be extended to consider the new intentions made by countries to reduce the
global emissions as announced at COP21.

This scenario is relevant in analyzing Egypt’s power sector, as the data revealed by
IEA is the most common source used for the projections and analysis of energy
markets [82], with a number of citations referring to this data exceeding 700. Also, it
is vital to address the evolution of Egypt’s power sector considering the
comprehensiveness of the methods applied to define the demand growth according
to this scenario. The projections of the demand on electrical energy given by IEA
New Policies Scenario have been generated by, with the aid of World Energy Model
(WEM) [1], a large-scale simulation tool developed by IEA. The WEM forecasts the
performance of energy markets over a long planning time period. WEM [1]
considers the effects of the improvements in current technologies, the growth of the
power sector, end-users prices, greenhouse-gases emissions, and the trends of

investments in energy sectors. The data required for the WEM [1] (e.g. energy
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demands, supplies, and prices) is acquired from IEA historical data, authorities in
IEA member and non-member countries, and other collaborating institutions, such
as IRENA.

Referring to the New Policies Scenario [1], Egypt is considered one of the Middle
Eastern countries in this study, where the Compounded Average Annual Growth

Rate (CAAGR) of electricity demand is 2.6% for the period between 2014 and 2040.

BMI Scenario. This scenario has been defined by Business Monitor International
(BMI), a Fitch Group Company [83] based on market researches related to the
growth in demand on energy commaodities in Egypt, specifically. Hence, it provides
more accurate estimates of annual growth in demand on electrical energy than
those provided by the IEA New Policies Scenario, in which a generalized forecast
for all Middle Eastern countries was applied. The BMI methodology is based on a
regression models; precisely, the “autoregressive moving average method” [83].
This regression model considers the historical consumption of electricity,
population, GDP, and industrial production. BMI incorporates data from different
institutions, such as the Egyptian government, the World Bank, and publicly and
privately owned companies [83].

According to the BMI forecasts [83], the aggregate increase in electricity demand is
defined until 2024, ranging between 3.8% and 5%, while after 2025 up to 2040 it is
assumed to be constant and equal to year 2024 (3.8%)’. Shares in energy

consumed by each national sector are kept constant and equal to the baseline year.

” Author’s own assumption due to the limitations of data availability
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Figure 3. Evolution of the Egyptian electricity demand for IEA (A), data from [1,26], and

BMI scenarios (B), data from [26,83].

Notice that the above introduced scenarios define several other features related to the
evolution of the energy sector at large, including the prospected change in energy
consumption modes of other sectors of the economy, like industry and transport. However,
only future increase in electricity demand is assumed as exogenous data for the

0SeMOSYS-Egypt model.
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The evolution of the Egyptian electricity demand based on the two selected scenarios is
represented in Figure 3: while under the BMI scenario, show in Figure 3 (subplot a) it
approximately reaches 350 TWh in 2040, under the IEA scenario it equals 234 TWh,
shown in of Figure 3 (subplot b). The discrepancy in Egypt’s electricity demand forecasted
by the two aforementioned scenarios could be explained by the fact that in IEA scenarios
Egypt’s electricity demand growth rates are given as aggregates of the Middle East
countries, so this value might be affected by the level of spatial demand aggregation. For
both scenarios, it can be inferred that residential and industrial demands are the major
drivers for the increased demand on electricity, as displayed in Figure 3 (subplots A and

B).

3.3.2. Definition of other exogenous parameters

Definition of the other fundamental exogenous inputs required to setup the OSeMOSYS-
Egypt model are here described. Regarding the temporal attribute of the electricity
demand, each year of the considered time horizon has been divided into a set of time-
slices, and for each slice the type of electricity users have been identified. The set of time-
slices has been derived by analyzing the monthly and hourly electricity load profiles
provided by the Egyptian Electricity Holding Company (EEHC) [26], represented in Figure

4 (respectively in plots a and b).

As shown in Figure 4 (a), each year of the planning horizon has been divided into 5
seasons: S1-S5. For instance, the season of S1 represents the low peak-load months from
January to April. Similarly, S3 represents the high peak-load months of June, July, and

August. Additionally, the electricity peak-load varies according to the hour of the day.
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Therefore, each day has been divided into three hourly time intervals: namely, D1-D3,
shown in Figure 4 (b), where the interval D3 extends from 7 p.m. to 4 a.m. next day. By
coupling the monthly and hourly analysis, each year of the planning horizon has been
divided into 15 times interval (S1D1, S1D2, S1D3, S2D1... S5D3). To illustrate, the time
interval S1D2 could be defined as the sum of the hours of D2 (from 4 a.m. to 12 p.m.)

during the months of S1.

A comprehensive and compact picture of temporal attribute of the electrical energy
demand for each time-slice is represented in Figure 5 for year 2015: the electricity demand
has been divided into a number of monthly intervals, subdivided in turn into different daily
intervals [26]. According to the representation revealed in Figure 4, the coupling of the
defined monthly and daily intervals results in 15 columns (time slices), covering the whole
year. The height of each column is proportional to the average energy demand in each of
the time-slices of the year, while its width is proportional to the fraction of time (%) per year
on which this energy is required. Therefore, the amount of electrical energy needed by
each user type over the typical year is proportional to the sum of area of the rectangle for
this user over the entire year. The demand of the residential sector occurs mainly during
night hours (D3), while the largest portion of the governmental electricity demand takes
place during the daytime hour intervals (D1, D2); hence the largest area for the residential
sector are displayed for the slices attributed to D3, whereas the largest ones for the

governmental electricity demand are displayed for the slices attributed to D1 and D2.
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Figure 4. Egypt's peak load profile in years 2014-2015; (a) monthly and (b) hourly yearly

averaged demand, data [26].
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Figure 5. Sectoral Demand profiles over year time-slices for years 2014-2015, data [26].

The total energy conversion efficiency, the availability and the capacity factors of each

generating technology and the related CO2 emissions have been derived from EEHC

reports [26] and from recent literature [84]. Economic cost of each technology is

represented in the model by two parameters: fixed and variable costs [68]. Discount rate

has been specified in the model at 22%, as it increased rapidly and significantly in Egypt

during recent years, according to the Egyptian Central Bank data®; however, a sensitivity

analysis of the effect of the discount rate on results was performed.

Other constraints imposed in the OSeMOSY S-Egypt model concern the upper and lower

bounds for endogenous variables (i.e. installed capacities): for hydropower technologies,

the maximum installed capacity is defined as 2.8 GW (corresponding to the current

installed capacity), due to the lack of available additional hydro resources.

8 Egyptian Central Bank:
http://www.cbe.org.eg/en/EconomicResearch/Statistics/Pages/MonthlylnterestRatesHistori

cal.aspx,

accessed in 05-10-2017.
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The developed bottom-up model, 0SeMOSY S-Egypt is solved using the open source
GNU Linear Programming Kit (GLPK) solver version 2012 [85], where the simplex
algorithm is applied to define the objective function of the model; i.e. the least cost power

generation mix.

3.4. Top-Down Multi-sector Modeling

Leontief’'s Input Output Comparative Static Analysis (IOA) has been selected and applied
as the top-down modeling approach. IOA, refers to the economic analytical framework
developed by Wassily Leontief in late 1930s; due to his remarkable contribution he was
awarded Nobel Prize in 1973 [86]. The primary objective of IOA is to analyze the
interdependence of production sectors within the boundaries of an economy. Leontief’s
IOA has been successfully applied for approximately 75 years as one of the most
commonly applied economic analysis methodologies. The basic form of IOA is a system of
linear equations that define the distribution of the output of each production sector

(industry) to the other production sectors and the final demand.

As illustrated in Table 6, IOA tables are usually formulated from the historical data of the
monetary transactions among the production sectors of the considered geographical area,
e.g. state, country, continent, etc. Denoted by the interindustry transactions, 10 tables give
the information about the transactions from each production sector to itself and the other
sectors. For example, part of the output of the agriculture sector is usually consumed by
the sector itself, and part of the remainder is consumed by the other economic sectors of
the economy, such as tourism, mining, power generation, etc. The final demand denotes

the part of the output that is consumed by the households, government purchases and the
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exports made outside the boundaries of the studied economy. The rows denoted by value
added, represent a stream of inputs (other than industrial) to the production of the

economy, such as the compensation paid to the employee and the government taxes.

Table 6. Example of the structure of Input-Output tables for a country [86]
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Capital allowances

In this research, the simple IOA model is applied using the open source Full Eora 26 Multi-
Regional Input Output 2015 Tables (Eora 26) [86,87]. Hopefully, this data set suits the
application of IOA in developing countries, for the following reasons: (1) it is an open-
source that covers 187 countries where the production sectors are arranged in 26 sectors;
(2) Eora 26 data set includes 35 environmental extensions, such as air pollution, resources

extraction, water consumption, etc.
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As a limitation, the original format of Eora 26 hinders its integration to the results of
bottom-up model because of the high level of aggregation of the electricity generation,
transmission, and distribution as well as gas and water consumption in one production
sector. Therefore, to achieve the required soft-link, the sector of electricity, gas and water
dataset provided by Eora 26 has been disaggregated to the level of power generation
technologies. The adopted disaggregation approach is based mainly on the method
developed by Lindner et al. to disaggregate the Chinse electricity generation sector [88]; it
will be described subsequently. Due to the fact that input-output tables are based on the
information provided by the national accounts, the data needed for applying
disaggregation has been acquired from the available official national reports [26]. This
approach is classified as a heuristic approach, as authors’ own assumptions were applied

when the required data for disaggregation were in sufficient.

The approach of the disaggregation starts with defining a balanced® national Eora 26 10

table for the country of study.

3.4.1. Disaggregation of 10 tables

Egypt’s balanced |10 table has been extracted from full Eora 26 dataset, using the RStudio
code [89], provided in Appendix A: The RStudio Code for Defining Egypt’s Balanced 10
table Using EORA 26 Dataset. The imports were treated as exogenous transactions in this
study. As shown in Table 7, in the original format of Egypt’s balanced 10 26 sectors, the

electricity, gas, and water sector is labeled as sector 13. For an easier handling of the 10

9 The 10 table of a national economy should be balanced; i.e. the total output of all of the
production sectors (sum of the sums of the columns in monetary value) should be equal to
the total outlays (the sum of sums of the rows in monetary value) [86].
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table, sector 13 (electricity, gas, and water) is moved to be sector 26, the last sector at

Egypt’s IO table, as presented in Table 11 of Appendix B: Egypt EORA 26 Tables. As

illustrated by Figure 6, the steps of disaggregation was applied at a hierarchical approach

as follows and the resulting table from each step is shown in the tables of Appendix B:

Egypt EORA 26 Tables;

Table 7. Rows and columns Order of production sectors of Egypt's EORA 26 10 table

ONOOULT A WN -

Agriculture
Fishing
Mining and Quarrying
Food & Beverages
Textiles and Wearing Apparel
Wood and Paper

Petroleum, Chemical and Non-Metallic Mineral Products

Metal Products
Electrical and Machinery
Transport Equipment
Other Manufacturing
Recycling
Electricity, Gas and Water
Construction
Maintenance and Repair
Wholesale Trade
Retail Trade
Hotels and Restaurants
Transport
Post and Telecommunications
Financial Intermediation and Business Activities
Public Administration
Education, Health and Other Services
Private Households
Others
Re-export & Re-import
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Figure 6. Presentation of the hierarchy of disaggregation approach

I.  Disaggregation of the target sector into main commodities:

The original aggregated sector (electricity, gas, and water) is disaggregated into two
sectors: a- gas and water sector; b- electricity sector, as presented in Table 12 of
Appendix B: Egypt EORA 26 Tables. As presented in the previous studies by Marriot [90]
and Lindner et. al [88] and due to the limitations of data availability, this step is performed
according to the ratio of the investment in the electricity sector to the total production of the
original aggregated sector (sector 26 of Table 11 (Appendix B)). In 2015, Egypt had
investments in the electricity sector approximately 70% [26,87] of the total investments
made in the sectors of electricity, gas and water. Hence, in Table 12 Appendix B, the new
rows, sector 26NeV (total production in monetary values the gas and water sector) and
sector 27 (total production in monetary values of the electricity sector), are defined by

multiplying each cell of the 26" row in Table 11 (Appendix B) by the weights of 30% and
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70%, respectively. Similarly, the new columns, sector 26Ne¥ (total consumption of the gas
and water sector from the other sectors) and sector 27 (total consumption of electricity
sector from the other sectors), are defined by multiplying each cell of the 26" column in

Table 11 (Appendix B) by the aforementioned weights, respectively.

Defining intra-cells, as the cells which represent the monetary transactions between the
disaggregated sectors and themselves; they are defined by multiplying the original 26%
sector in Table 11 (Appendix B) (electricity gas and water) aggregated value of its own

consumption by the defined weights of the disaggregated rows and columns.

II. disaggregation of the new sector of electricity:

The electricity sector, the 27" sector in Table 12 (Appendix B), is furtherly disaggregated
to the sectors of: a- the electricity Transmission and Distribution (TD) sector; b- the
electricity generation sector. Similar to the disaggregation principle presented in the
previous disaggregation step I, this disaggregation step is performed according to the
ratios of investments of the electricity TD (35%) and electricity generation (65%) [26,91] to
the total production of the aggregated electricity sector, the 27t sector in Table 12
(Appendix B). Therefore, as displayed Table 13 (Appendix B) 10 table will include the
sectors 27New (electricity transmission and distribution) and 28 (electricity generation). In
particular, the rows of the 27Ne¥ sector (total production in monetary values from the
electricity TD sector) and the 28" sector (total production in monetary values from the
electricity generation sector), are defined by multiplying each cell of the 27" row in Table

12 (Appendix B) by 35% and 65%, respectively. The new disaggregated columns of the
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27New sector (electricity TD) and 28™ sector (electricity generation) as well as the intra-cells

are defined by following the abovementioned procedures of the disaggregation step I.

lll.  disaggregation to the level of power generation technologies:

In this step the electricity generation sector, the 28" sector in Table 13 (Appendix B), is

disaggregated to the level of the power generation technologies to allow for the coupling
with the bottom-up energy optimization model. The disaggregated 10 table of this step is
displayed in Table 14 (Appendix B), and the procedure of the disaggregation of rows and
columns of the 10 table after the disaggregation step Il (shown in Table 13 (Appendix B))

is performed as follows:

e disaggregation of the 28" row in Table 13 (Appendix B) (total production of the

electricity generation sector):

It is assumed that the electricity production is delivered to the final demand sectors and the
production sectors via one transmission and distribution grid to which is also connected to
all of the production sectors. The disaggregated sector 28 in Table 13 (Appendix B) is
furtherly disaggregated to 28N¢W+m sectors, where m+1 is the number of generating
technologies, by considering the share of each technology in the total power generation
mix [26], as illustrated in section 1.4. For instance, as displayed in Table 14 (Appendix B),
the total electrical energy production from the hydro-power generation, the 28Ne" sector, is
defined by multiplying each cell of the 28 row in Table 13 (Appendix B) by 7.2%, which
represent the share of the hydro-power generation in Egypt’s 2015 power generation mix
[26]. The same is applied to the other power generation technologies represented in Table
14 (Appendix B).
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e disaggregation of the 28" column in Table 13 (Appendix B) (the consumption of the

electricity generation sector from the other sectors):

It is worth to note that the consumption of goods and services by power plants from the
various production sectors varies according to the type of the power generation plant. To
illustrate, the monetary transactions from the petrochemical industry sector to wind farms
is different from that is sent to fossil fuel power plants [88]. Furthermore, the data of
various goods and services consumption by power plants is hardly to be recovered in the
developing countries. Therefore, the author has applied the following assumptions in order
to disaggregate the 28" column in Table 13 (Appendix B) to the level of the power

generation technologies:

o It has been assumed that only the fossil-fuels based production sectors; namely,
sector 3, sector 7 and sector 26NeV at the disaggregated 10 Table 13 (Appendix
B), have transactions with fossil-fuel based power plants and, have zero
transactions, with renewable energy based power plants. Considering those
three fossil-fuel based sectors, the disaggregation of 28" column in Table 13
(Appendix B) is performed according to the share of the natural gas
consumption by each of the thermal power plants in the total consumption of
natural gas by all of the thermal power plants in Egypt; namely, 50.7% for the
steam cycle power plants, 14.7% for the simple gas cycle power plants, and
34.5% for the combined cycle power plants [26]. For example, the monetary
transactions from each of sector 3, sector 7 and sector 26NV at the
disaggregated IO Table 14 (Appendix B) to the sector 28NeW (hydro-power
generation) Table 14 (Appendix B) is zero, since hydro-power generation is

considered a renewable energy based power generation technology. On the
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other hand, the monetary transaction from each of the sectors sector 3, sector 7
and sector 26Ne" at the disaggregated 10 Table 14 (Appendix B) to the sector 29
(steam-cycle power plants) in Table 14 (Appendix B), is defined by multiplying

each cell of 28" column in Table 13, by 50.7%.

The production sectors, other than sector 3, sector 7 and sector 26NeW at the
disaggregated 10 Table 14 (Appendix B), are assumed to have monetary
transactions with all of the power generation technologies. The monetary
transactions from such production sectors to the disaggregated power
generation sectors, displayed in Table 14 (Appendix B), are defined by
calculating the share of each power generation technology in the total cost of
power generation in Egypt [26] based on the Levelized Cost of Energy*® (LCOE)
given by IEA [1]; namely, 0.2 % for hydro-power generation, 36.5% for the
steam-cycle power generation, 23.3% for the simple-gas cycle power plants,
38.7% for the combined-cycle power plants, 1.1% for the wind farms, and 0.2%
for the solar energy based power generation. For example, the column 28New
(hydro-power generation) in Table 14 (Appendix B) is defined by multiplying
each cell of the 28" column in Table 13 by 0.2%.

Considering the intra-cells, intersection between the power generation sectors

and themselves. As shown in Table 14 (Appendix B), these cells are

represented as a diagonal matrix, where each coefficient in the diagonal of the

10| evelized Cost of Energy (LCOE): as defined by IEA [1], is the average cost of the
electrical energy produced by a given power plant considering, the capital costs, debt
serving costs, operating and maintenance costs, fuel costs, and decommissioning costs.
LCOE could be also defined as the minimum average price of electrical energy produced
by a power plant to recover the all of associated costs over the lifetime of the project; i.e.,
the lifetime of the power plants.
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matrix is defined by multiplying the intra-cell of the electricity generation sector
(28! sector in Table 13 (Appendix B)) by the share of each power generation
technology in the electricity generation mix (represented in section 1.4) [26]. For
instance, the intra-cell of sector 28NeW (hydro-power generation) is defined by
multiplying the intra-cell of the electricity generation sector (28" sector in Table

13 (Appendix B)) by 7%.

e Disaggregation of the exogenous resources consumed and/or produced by the
aggregated 26" sector (electricity, gas, and water) in Table 11 (Appendix B) to the level

of electricity generation sectors, presented in Table 14 (Appendix B).

o CO2Emissions: it has been assumed that both the electricity TD and renewable
power generation technologies have zero CO2 emissions. Considering the fossil-
fuel based power generation technologies, the disaggregation of the CO2to the
level of power generation technologies, presented in Table 14 (Appendix B)
have been defined by multiplying the aggregated value of 26" sector (electricity,
gas, and water) in Table 11 (Appendix B) by the share of each power generation
in the total produced CO2 emissions; namely, 20.1% for the steam-gas cycle,
4.8% for the simple-gas cycle, and 18% for the combined-gas cycle [26,92]. The
disaggregated value for CO2 emissions produced by gas and water sector
(sector 26NeV in Table 14 (Appendix B)) is defined as the remainder of
subtracting the sum of CO2 emissions produced by fossil-fuel based power
plants from the aggregated value of CO2 emissions of sector 26™ (electricity, gas

, and water) in Table 11 (Appendix B).

o Water consumption: the aggregated value of the water consumption by the 26t

sector (electricity, gas, and water) in Table 11 (Appendix B) has been
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disaggregated to the level of the power generation sectors, presented in Table
14 (Appendix B). Similar to the abovementioned procedure applied to
disaggregate the CO2 emissions, it is assumed that both the electricity TD and
renewable power generation technologies have zero water consumption.
Considering the fossil-fuel based power generation technologies, the
disaggregation of the water consumption to the level of power generation
technologies, presented in Table 14 (Appendix B) have been defined by
multiplying the aggregated value of 26" sector (electricity, gas, and water) in
Table 11 (Appendix B) by the share of each power generation in the total water
consumption by power plants; namely, 45.6% for the steam-gas cycle, 5.4% for
the simple-gas cycle, and 14.6% for the combined-gas cycle [26,93]. The
disaggregated value for water consumed by gas and water sector (sector 26New
in Table 14 (Appendix B)) is defined as the remainder of subtracting the sum of
water consumption by fossil-fuel based power plants from the aggregated value
of water consumption of sector 26" (electricity, gas , and water) in Table 11

(Appendix B).

Primary energy consumption: the aggregated value of the primary energy
consumption of by the 26" sector (electricity, gas, and water) in Table 11
(Appendix B) has been disaggregated to the level of the power generation
sectors, presented in Table 14 (Appendix B). Firstly, the disaggregated value of
the gas and water sector (sector 26NV in Table 14 (Appendix B)) is defined by
multiplying the aggregated value of 26" sector (electricity, gas, and water) in
Table 11 (Appendix B) by the ratio of investment made in gas and water sector
(30%) [26,87]. Secondly, it is assumed that both the electricity TD and
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renewable power generation technologies have zero primary energy
consumption. Thirdly, considering, the disaggregation of the primary energy
consumption to the level of power generation technologies, presented in Table
14 (Appendix B) is defined by multiplying the aggregated value of 28" sector
(electricity generation) in Table 13 (Appendix B) by the share of each power
generation in the total primary energy consumption by power plants; namely,
50.7% for the steam-gas cycle, 14.7% for the simple-gas cycle, and 34.5% for

the combined-gas cycle [26].

3.4.2. Definition of Egypt’s EORA 26 10 table in Hybrid Units

The Input-output analysis provided an applicable framework that could be successfully
used to trace energy consumption on a nationwide economy scale. In this study, Hybrid
Units IO Tables were employed [86]. Hybrid Units IO Tables are formed by using different
units for the transaction of production between the various economic sectors; e.g.
expressing the output of the power generation sectors in energy units, while transactions
of the other sectors of the economy are represented in monetary value units [86]. In the
literature, various researchers have used hybrid units’ input-output tables to define the
total energy consumption and CO2 emissions of products [94]. Among others, Treloar [95]
has defined the total energy requirements by the Australian residential sector using an 10
table displaying hybrid units. Similarly, Machado et. al. [96] used a hybrid units IOA model
to assess the total energy and CO2 emissions associated in the international trade with

Brazil.

In this research, the disaggregated 10 table (in monetary values) is transformed to the

form of a hybrid units’ 10 table, in which the transactions of the power generation sector
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are represented in energy units (TWh), whereas monetary value units are employed for
the other sectors; this is due to the following two reasons: firstly, to obtain a consistency in
the units of both linked models; i.e. the results obtained from both the bottom-up and top-
down models are represented in energy units (TWh). Secondly, to overcome the
uncertainty associated with forecasting the prices of electrical energy supplied to various
demand sectors until the end of the planning horizon in 2040. Indeed, the prices of energy
commodities are expected to change considerably in developing countries, due to the

expected removal of subsidies on energy commaodities in the near future [97].

In particular, the monetary flows of the disaggregated power generation sectors have been
divided by the average selling price of electricity!? [98] ($/TWh) to produce the equivalent
output in energy units (TWh), as shown in Table 15 (Appendix B). Consequently, a
verification assessment has been applied to assure that the total electricity output derived
from the developed hybrid units IO table is equivalent to the total electricity output
announced by authoritative energy institutions (e.g. IEA); in particular, in 2015 the
calculated electricity production, after applying the disaggregation steps of the Egypt’s IO
EORA 26 table, equals to 160.4 TWh which is approximately equal to the value of 161

TWh announced by IEA [1].

3.4.3. Application of Leontief’s |10 model

In the context of mathematical representation, given a one economy composed of

n sectors, each with s types of exogenous transactions (say, primary energy, GHG

11 In this study, the average price of the electricity sold to the industrial, commercial, and
residential demand sector was calculated as .054 USD/kWh, data from [98].
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emissions, etc.), [ electricity technologies, and considering a time frame of one year, the

endogenous transaction matrix Zo(n X n) can be represented as,

ZN ZU

Z,=
Ly Zg

Where, Zy represents the endogenous transactions in monetary value (USD) between the

non-power generation sectors (defined as the common sectors) and themselves, Zg

represents the endogenous transactions in physical units (TWh) between the power
generation sectors and themselves. Zy represents the endogenous flow of products in
monetary values (USD) from the common sectors to the power generation sectors, and Zy
represents the electrical energy (in TWh) supplied to the common sectors of the economy
from electrical energy production plants. According to the Leontief's analysis framework
[86] , the total gross total production vector x,(n X 1) of all sectors is calculated as

presented by equation (3-1),

X, =(1-A, )_l Y, (3-1)

Where: 1 is the identity matrix and, A,(n x n) is hybrid technical coefficients'? matrix that

represents the links between all the national sectors, and is defined by,

12 Technical coefficients, also called the direct input coefficients [86], represent the input to
each of the production sectors from itself and the other economic sectors to sustain the
production. For example, running a thermal power plant requires inputs from the
transportation sector, trade sector, etc. as well as its production of electricity to sustain its
operation. Technical coefficients are calculated as follows [86]: Assuming the endogenous
transaction matrix Z= [z, ] is the endogenous transaction from sector m to sector [, and f,,
is the final demand on sector m production; total output of sector m, x,,, could be
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Co A

where, Ay is the technical coefficients matirx of the common sectors, Ag is the technical
coefficients matrix of the electricity generation sectos, the matrices Cy((n — 1) x 1) and
Cp(l x (n — 1)) are respectively the Upstream and Downstream Cutoffs technical
coefficients: for each energy technology, Cy relates the required production of each of the
common sectors for the production of the electrical energy generation sectors, while Cp
represents the amount of electricity delivered to all the common sectors for each unit of
production of the common sectors. y,(n x 1) is the hybrid final demand vector,
representing the sum of the final demand sectors on each of the production sectors,

shown in 10 Table 15, and is expressed by,

_yn
y j—
D Ye

where, yy, represents sum of the final demand sectors on each of the products of the
common sectors, in USD. yg represents the the sum of the final demand sectors on the

electrical energy in TWh.

The total exogenous transactions Ry(n x 1) are calculated as presented by equation (3-2),

represented as, X,- Yi_1 Zim + fm, @and X = Zi+f, in matrix form. The technical coefficient
matrix A is equal to A = ZX 1 .
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R, =Db, X, (3-2)

Where, b, (s X n) is the hybrid exogenous transactions coefficients matrix, representing

the direct resources consumptions or waste emissions of each sector per unit of product,

defined as,
b, =[b, b]

where, by, represents the direct resources consumptions or waste emissions by the
common sectors, in physical units, bg , represents the direct resourcs or waste emission
consumed and/or produced by the electricity generation sectors in physical units (e.g. TJ

tonCOg, etc.).
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3.5. Application of the soft-link in procedures

As formerly stated, the objective of this soft-linking bottom-up and top-down is to
guantitatively assess the impacts of changes in the structure of the power generation mix
on a nationwide economy scale. The procedures for this soft-linking are illustrated in
Figure 7. The bottom-up model will be provided by exogenously defined techno-economic
parameters (temporal demand, availability of renewable and non-renewable resources,
costs of power generation by various technologies, etc.). By running the model, the least

cost annual power generation mix will be defined over a given time planning horizon.

The future installed electricity production capacities and the related energy generation,
endogenously computed by the bottom-up model, are then used to characterize the
evolution of the energy sector in the top-down model, previously defined in section 3.4.3.
The soft-link is performed according to the “ceteris paribus” principle [99], that is, the only
variables introduced in the IOA model are related to (1) the electricity generation mix, (2)
the increased demand for electricity and (3) the related increase in GDP induced by the
electrical energy availability. Therefore, it is assumed that the technical coefficients of all
the other production sectors will remain unchanged in future years, and equal to the

baseline of 2015. The shock is implemented according to the following parallel steps:
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Figure 7. Block diagram of the soft-link between bottom-up and top-down models
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e Step 1. Change in the power generation mix.

RAS method [86] is a well structured methodology that could be implemented to update
the technical coefficients of the input-output tables. To successfully apply the RAS
procedure to derive the technical coefficients table at the future time period designated by
i, the following three information sets have to be known; namely, “(1) the total gross output
of all production sectors; (2) total interindustry sales by each sector; (3) total interindustry

purchases by each sector” [86] in future.

Due to the limited scope of this research, which is confined to addressing the effect of
structural changes in power generation sector on the nationwide economy scale, the
technical coefficients related to the rows of the electricity generation technologies (the
downstream cutoff (Cp — Cp) are only updated to reflect the least cost power generation
mix which is defined by the bottom-up model (OSeMOSYS-Egypt): the sum of the latter
coefficients for each economic sector is kept constant, while their relative shares change

according to the prospected changes occurring in the electricity production mix.

In addition, to the abovementioned update of the technical coefficient of the downstream
cutoff the power generation sectors, the disaggregated input-output table will be updated
according the Final Demand Method [100], where the final demand is used to define the

total gross output in the future year i.

e Step 2. Change in electricity households’ demand.

The households’ final demand (fO CY,) is expressed by,

fN

f =
0 fE
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where, f, C Y represents the households” final demand on each of the products of the

common sectors, in USD. f. C Y, represents the sum of the households’ final demand

on the electrical energy in TWh.

The future yearly amount of electricity produced by each technology and delivered to final
users is fed to the IOA model by changing households’ final demand of power generation
technologies (fz — fi) according to IEA New Policies Scenario [1] which was presented in

section 3.3.1.
e Step 3. Change in national economic productivity.

It is assumed that the increased demand for electricity by each national sector reflects the
effect of an increased economic national productivity (Gross Domestic Product, GDP), and
this is a reasonable assumption for developing countries according to the literature [101];
i.e. the households” final expenditure fy on the production of the common sectors will
increase. Indeed, the expected increase in population and rise in the living standards will
induce the consumption of all products produced with in the economy; i.e. increase in the
consumption of food supplies produced by the agriculture sector, increase in the demand
on the services provided by the transportation sector, etc. [4,101]. Therefore, an
econometric production function was used to forecast the future growth in GDP resulting

from an increased energy availability.

Equation (3-3) represents the typical logarithmic shape of the production function (fy), that

links the national electricity production (EE,,,q) With the GDP,
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fy (GDP,EE, o )=a-In(EE,, )-8 (3-3)

where, a and g are the coefficient and constant of the logarithmic function, given by (3-
3).In this case, a and B are statistically derived based on historical data from 2005-2015
[25,26], as displayed by Figure 8; and approximated to the values of 115.5 and 1039.2,
respectively. The whole GDP growth rate, presented in Table 8, of each year of the
planning that ends in 2040, is then divided among the national final demands of each

sector by considering fixed proportions among them equal to the baseline economy.

400
y = 115.51In(x) - 10

300

200

GDP [B. 2010 USD]
o
o

0 1 1 1
0 50 100 150 200

Electricity Production [TWh]

Figure 8. the derived logarithmic shape of the production function that links Egypt's
national electricity production to Egypt's GDP; data generated for the period between

2005-2015 and used for the future forecast [25,26]
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Table 8. Egypt's predicted GDP growth rates compared to the baseline economy in 2015

Year % Growth in GDP

2020 10%
2025 20%
2030 29%
2035 37%
2040 46%

These aforementioned three shocks characterize the IOA comparative static model for
each i future year of the planning horizon between 2015-2040, are defined according to
the following matrices,

A, C f
A=l ’ ; fi = tN ; boz[bN bE]
CD AE fE

where, Cp , fz and fy will be upated according to abovemetiond three steps. Finally,
Leontief production and impact models are applied to the shocked economy in the i"" year

based on equation (3-2).
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4. CHAPTER 4: Results and Discussion

This chapter presents and discusses the results obtained from applying the proposed soft-
link illustrated in the previous chapter to the case of Egypt. In particular, the evolution of
Egypt’s power generation sector will be defined according to two institutional demand
forecasts (IEA and BMI). In addition, the implications are derived for such an evolution on
a nationwide economy scale during the planning horizon starting in 2015 and ending in
2040, and investigated by using the results of the bottom-up models as exogenous
parameters to the top-down model. This chapter also explores the potential of increasing
the penetration of renewables in achieving some of Egypt’s environmental targets. The
end of this chapter highlights the discrepancies in forecasting Egypt’s total production of

electricity via OSeMOSYS model generator and the proposed soft-linked model.

4.1. Bottom-Up model: verification and validation

The developed bottom-up model has been verified by checking the energy balances of the
developed Egypt’'s RES. For example, considering the assumed losses in the transmission
and distribution networks, in 2008 the sum of the electric energy produced by the power
plants (394 PJ) is greater than the electric energy exiting from the transmission and

distribution networks (282 PJ) by the amount of the losses estimated.

In addition, the bottom-up model has been validated by comparing the total electrical
energy generated by various power generation technologies defined by OSeMOSYS-
Egypt to the actual data of the total electrical energy generated reported in the annual
reports of Egyptian Electricity Holding Company (EEHC) [26] for the period between 2009
and 2015. In particular, the annual percentage differences in the total electrical energy
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generated defined by OSeMOSYS-Egypt and the actual data reported by EEHC, over the
aforementioned period, were in the range between 0.95% in 2009 and 5% in 2011. The
latter could be justified by the shortage in the electrical energy supplies needed to satisfy
the demand, due to the Egypt’'s 2011 socio-economic turmoil [28]; indeed, OSeMOSY S-
Egypt endogenously defines the total electrical energy output to meet the exogenously

defined demand parameters.
4.2. Bottom-Up model Results

This section presents the results obtained from the OSeMOSYS-Egypt model for the
considered time window, and considering all the technologies enclosed in the RES:

electricity generation mix, installed capacity mix, CO2 emissions and economic cost.

Electricity generation and installed capacity mixes. The proposed electrical energy
generation by each technology is depicted in Figure 9 (subplots A and B). For both
scenarios, the optimal generation mix includes natural gas simple and combined cycles,
wind power, PV rooftop and hydroelectric power. In the IEA New Policy scenario, the
energy produced by natural gas power plants will decrease in 2022, due to the Egyptian
government objective of achieving the 22% of renewable sources in the electricity
generation mix, supporting the penetration of renewables which is expected to reach 32%
of the total production by 2040. However, even if the sudden increase in the share of
renewable in the power generation mix turns out to be the optimal alternative to satisfy
electricity demand, its implementation would probably meet practical constraints due to the
short available time for commissioning and installing a large operating capacity of
renewable energy power plants. Indeed, this highlights a major limitation in OSeMOSYS
model generator that should be enhanced to consider the practical implementation of the

proposed power generation mix. On the other hand, in the BMI scenario the increase in
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energy production by natural gas plants is actually constrained by the availability of natural
gas supplies, which are likely to decrease according to the current forecasts [102].
Therefore, wind technology and PV rooftop have to be introduced to meet the increase in
demand, leading to an increase in the share of renewable energy production from 14% up
to 65% in 2040. For both scenarios, the contribution of hydropower energy is constant over
the whole time window, due to the complete use of hydropower resources currently
available for power generation. Figure 9 (subplots C and D) displays the installed capacity
of each technology in the considered time window. In 2014, the total installed capacity
reached approximately 37 GW in both scenarios. Similar to the IEA scenario, in the BMI
scenario the power capacity requirements are strongly supported by the penetration of
renewable sources between 2018 and 2040, mostly due to wind and photovoltaic

technologies, because of the imposed constraints on the supplies of natural gas.
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Figure 9. Electricity generation mix ((a) and (b)) and the corresponding installed capacities

((c) and (d)).
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Economic cost. Figure 10 (subplot A) reports the yearly total discounted cost!® of the two
scenarios (bars, in MUSD2018/y) and the discounted cost of unit of electricity generated
(black diamonds, in USD2018/MWh), evaluated for the period between 2018 and 2040. In
general, the total discounted cost of BMI scenario is higher than the IEA one by 60%,
mainly due to the larger electrical energy demand forecast by BMI, while the discounted
cost per unit of energy produced is higher by approximately 20%. This is consistent with
the increase in the penetration of high cost power generation technologies (i.e. wind
energy and PV rooftop) in BMI scenario. For the two analyzed scenarios, the costs of
electricity generation are dominated by renewable technologies; in particular, wind energy
which contributes for about 43% (IEA) and 58% (BMI), and PV rooftop technology which is
higher at the BMI by about four folds. Investments in natural gas combined cycles
contribute with a share of 31% (IEA) and 21% (BMI) in the total economic costs. It is worth
to note that in the IEA the significant contribution of renewable technologies in the cost of
electricity generation could be explained by the defined constraint on the minimum
requirement of renewables penetration in the power generation mix. On the other hand, in
the BMI scenario the cost of electricity generation is dominated by renewable technologies

because of the assumed constraint on natural gas supplies.

CO:2 emissions. Figure 10 (subplot B) presents the overall CO2 emissions for the period
between 2018 and 2040 (bars, in Mton/y) and the emissions per unit of electricity

generated (black diamonds, in ton/MWh). The emissions related to the BMI scenario are

13 yearly total discounted cost: is the sum of the of the annual costs of electricity
generation discounted to 2018 and divided by the number of years of the planning horizon
starting in 2018 and ending in 2040.
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less than IEA scenario by about 10%, and are expected to be always below the IEA one

due to the strong and rapid penetration of renewables.
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Figure 10. Total technologies’ annual installed capacities, the associated total discounted
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4.2.1. Sensitivity analysis

A sensitivity analysis has been carried out in order to assess the robustness of the
0SeMOSYS-Egypt model and the influence on final results due to changes in some
crucial parameters, identified as follows (see Table 9): (1) investment costs of renewable
technologies, (2) renewables energy production targets, (3) efficiency of natural gas CCPP
technology, (4) price of natural gas that feeds thermal power plants, (5) availability of the
local natural gas supplies, (6) discount rate on capitals, (7) expected changes in
hydropower availability due to the Renaissance Dam in Ethiopia. The sensitivity analysis
has been conducted on the selected parameters according to the values denoted by A, B,
and C in Table 9 to analyze their separate effects on the BMI scenario results only.
Applying the sensitivity analysis to BMI scenario is motivated by the fact that, in the

opinion of the Author, this scenario better suits the future trends in energy demand by

Egypt.

Table 9. Selected exogenous parameters to perform sensitivity analysis. Where a specific

reference is missing, the Author has proposed reasonable values base on his own

experience.

#  Exogenous Values Reference
parameters

1 Decrease in the A. [80]; B. 50% on 2040 (2% linear [80], Own
investment costs of decrease starting from 2018) ; C. assumption
renewable 70% on 2040 ( 3% linear decrease
technologies (%) starting from 2018)

2  Energy production A. 2022-2035: +22%; 2036-2040: [11]
targets by renewables +35%;
(%) B. 2022-2035: +35%; 2036-2040:

+40%:
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3 Increase in the A.+5%:; B. +12% Own

efficiency of NG. assumption,
CCPP (%) based on
[103]
4  Year of increasing the A. 2018; B. 2027, Own
price of NG by 40% assumption,
based on
[104]
5 Availability in local Unconstrained

natural gas supplies

6a Change inthe A. 2% Own
discount rate on assumption
capitals (2%)

6b Time changing A. 18% in 2018 to 35% in 2040 (2% Own
Discount rate on linear increase); assumption
capitals (%) B. 11% in 2018 to 1% in 2040 (1%

linear decrease);

7 Reduction in A. -16% in 2018 compared to 2017, [105]
Hydropower B. -80% in 2018 compared to 2017,
resources availability
(%)

Sensitivity analysis of the first four parameters, displayed in Table 9, on results are
reported in Table 10. The reduction in the investment costs of renewable technologies and
increase of their penetration targets in the energy mix are likely to happen in future
decades. The sensitivity analysis has been here applied by considering alternative
possible reductions in the investment costs of renewable technologies: A- the forecasted
investment costs by IRENA [80]; B- 50% reduction in the investment cost in 2040
compared to 2017 with 2% annual decrease, and C- 70% reduction in the investment cost
in 2040 compared to 2017 with 3% annual decrease (see Table 9). As reported in Table
10, neither the reduction in renewable investment costs nor increasing their penetration
targets significantly affect the total cost of electricity: this could be explained by the fact

that the limited resources for natural gas are always the first to be exploited in the BMI
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scenario, because natural gas technologies are the lowest cost alternative. In addition, as
shown in Figure 9 (subplots B and D), the constrained natural gas supplies between 2018
and 2040 are not sufficient to deploy additional natural gas capacity. Therefore, wind and
PV rooftop technologies contributes to the energy mix with a share of 51%, regardless of
their costs and penetration targets. It can be concluded that in the BMI scenario the
economic cost of electricity production, the amount of the required natural gas supplies
and the share of the renewable technologies in the electricity generation mix are not
sensitive to the changes in the cost of renewable technologies and to their related

penetration targets.

By the end of 2018, three new natural gas combined cycle power plants of 4800 MW each
will be deployed [103]. Due to their high efficiency and the related large amount of
electricity production, the overall efficiency of Egypt’s natural gas combined cycles is
assumed to increase by: A-5% and B-12%. This assumed increase in efficiency of the
combined cycles would result in a decrease in the share of renewables in the production
mix over the whole planning horizon, respectively this will result in 41% and 46%,
compared to the proposed share of renewables in the electricity production mix at 51% in
the BMI baseline results. Despite this, the total costs of electricity production and the
consumption of natural gas have found to be non-sensitive to such change in efficiency,
and this could be explained by the higher portions of the total electricity demand that are
always covered by renewable technologies due to the assumed constraints on natural gas

supplies.

Egyptian economy currently applies subsidies on the exploitation of natural gas reserves
for power generation. However, since the annual natural gas consumption has reached its

forecasted production upper limit in 2018 [102], the contribution of renewable technologies
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is essential to meet the electricity demand, independently from natural gas price. For such
reason, results in Table 10 show that the change in cost of electricity production by
increasing the natural gas price does not significantly affect the overall CO2 emissions or

the penetration of renewables.

Table 10. Results of the sensitivity analysis on selected parameters 1-4 over the whole

planning horizon compared to BMI scenario baseline results

# Parameters Total discounted Natural gas RenEwabIe

cost consumption nergy

Penetration

0 BMI baseline results 101225 709 BCM 51 %
MUSD2008

1 Investment costs of -0.01% -0.01% 0%

renewable technologies

2 Energy production targets +0.01 % -0.01 % 0%
by renewables

3 Efficiency of NG CCPP -0.02 % -0.01 % -10 %; -5 %

4 Increase of NG prices +0.01 % +0.01 % 0%

For a comprehensive assessment of the role of natural gas in the Egyptian power sector,
the constraint on exploitation of natural gas local supplies has been relaxed, simulating an
increase in the availability of natural gas reserves available for power generation uses that
may result from the current discovery of new natural gas reserves (e.g. the Zohr olil field).
The future energy mix composition is strongly affected by the assumptions of constrained

or unconstrained local natural gas supplies, as can be inferred by comparing Figure 9

14 The sum of the annual electricity production costs discounted to 2008.
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(subplots B and D) and Figure 10 with Figure 11. This is likely to cause a postposition in
the penetration of renewable technologies after year 2022, when a minimum level of
renewables is exogenously imposed to the model to comply with the current political
intentions. As shown in Figure 11, the sudden rise of the renewables penetration in 2022,
highlights the limitation of the bottom-up model in considering some practical constraints;
in particular, the proposed very high and quick rise of renewables share in the electricity
generation mix is hard to be realized practically in one year. For the planning period 2018-
2040, the unconstrained natural gas supplies results in a decrease in the total discounted
costs with respect to the base case (about 18%): this could be explained by the decrease
in investments in wind energy from 58% to 39%, and the related increase in investments in
natural gas simple and combined cycles by 13% and 9%, as illustrated by Figure 11
(subplot C). As a result, the unit discounted costs of energy turns out to be lower by
approximately 95% compared to the baseline result. Moreover, due to the increased
investments in natural gas technologies, a strong increase in natural gas consumption of
about 42% is expected, causing an overall increase in CO2 emissions by approximately

50% (Figure 11, subplot D).
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In Egypt, values of discount rate on capitals has increased by 10% in the last 5 years,
reaching 19% in 2017 [106]. In the OSeMOSYS-Egypt model, the discount rate is
assumed to be fixed and equal to 22% over the whole planning period; and sensitivities
(on parameters 6a and 6b in Table 9) have been applied to test the effects of possible
changes in the values of discount rate on the proposed power generation mix. Since large
upfront capital investments turn out to be more profitable if discount rate values are low,
results obtained with discount rate of 2%, representing extremely favorable market
conditions, are reported in Figure 12. In particular, the weight of renewables in the total
discounted cost increases from about 58% in the BMI baseline scenario up to 70%.
Moreover, technologies characterized by relatively low initial investment cost, such as
natural gas steam cycles and simple cycles, are displaced from the optimal energy mix,
leaving only natural gas combined cycles. Despite these changes, running the model with
a low discount rate seems not to affect the natural gas consumption and the associated
CO2 emissions. Again, this could be explained by the fixed consumption rate of natural
gas, which always comes first at an amount equals to the assumed constraint on the
natural gas supplies, and independently from the type of the installed natural gas power

generation technology.

91



-;10000 100 &
3 - :
a =
1%} S~~~
g &)
c 1000 23.99 a
=) L4 <
N, 1432.9 0.0 I
) | S—)
(75}
S 100 10 B
5 35.4 9
£ 5
C
o
2 10 1.8 §
o 0
= o
| )
(gv] =
g 1 1 5

Discount Rate 2% Discount Rate 22%

® PV-ROOF ® Wind.PP NG.CCPP m NG.GCPP
= NG.SCPP mHydro.PP ¢ Cost

Figure 12. Electricity generation mix assuming changes in discount rate on capitals.

Based on this discussion, it is crucial for the decision makers to understand the effect of
the discount rate on investments in the power sector. Egypt’s Central Bank historical data
shows that the common discount rate is approximately 8% [106]. To better understand the
effects due to time-dependent discount rates, different values of annual discount rates
have been introduced in the model (sensitivity 6b in Table 9), starting from the value of
19% on 2017. In particular, two cases have been assumed: A- a pessimistic market
conditions where the discount rate is assumed to be 18% in 2018 with an annual increase
of 2% till it reaches 35%; B- an optimistic market conditions where the discounts is
assumed to be 11% in 2018 with an annual decrease of 1% till it reaches 1%. As
illustrated by Figure 13 (subplots A and B), the shares of the power generation

technologies in the total installed capacity vary according to the assumed discount rate
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values: PV rooftop installed capacity (high investment cost technology) increases as the
value of the discount rate decreases (assumption b, Table 9), and the yearly discounted
costs change accordingly Figure 13 (subplots C). The share of Wind energy and PV
rooftop technologies in yearly total costs has increased, respectively from 56% and 7%
(assumption a, Table 9) to 68% and 13% (assumption b, Table 9). It is worth to note the
total installed capacity of the proposed energy mix according to (assumption b, Table 9) is
higher than that of (assumption a, Table 9) by approximately 15%, as shown in Figure 13
(subplot A and B). This in increase in the total installed capacity could be explained by the
strong penetration of the renewable technologies that have lower energy conversion
efficiencies compared to thermal power plants; indeed, more installed capacities of
renewable technologies are needed to satisfy the assumed same amount of electricity
demand. In addition, the natural gas combined cycle technology has replaced the low
investment technologies of natural gas steam and simple cycles, which have been
displaced from proposed power generation mix, assuming the optimistic market conditions
of lower discount rate values. Furthermore, considering assumption 6B in Table 9, the
share of natural gas combined cycles in the total discounted costs has increased by 5% as
the contribution of the combined cycle in the electricity generation mix exceeds the sum of
the contributions of natural gas steam and simple cycles by 6.5% under the assumption 6A
of the same table, causing small differences in CO2 emissions (about 6%, Figure 13 -

subplot D).
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The reduction of the hydropower resource potential available for electricity generation is
likely to happen in the close future due to the construction of the Renaissance Ethiopian
dam, estimated to be within 16% and 80% [105], and this may strongly affect the shape of
Egyptian future energy mix. Assuming moderate reductions of hydropower potential, the
expected consequences in energy production shares by technology is minimal due to the
limited initial penetration of hydropower in Egypt’s total installed capacity (2.8 GW).
However, considering the worst-case scenario, a significant reduction of the hydropower-
produced electricity by 77%, which will be mainly compensated by an increase in the
electricity produced by wind technology (11%) and PV rooftop technology (11%); indeed,
this could be explained by the limitation of adding new capacities of natural gas power
plants (low investment cost technologies) due to the assumed constraint on natural gas
supplies. Hence, the total discounted costs of electricity production for the period 2018-
2040 will increase by 11% due to the increase in the share of renewables in the power
generation mix, and the amount of natural gas consumption and its associated CO2

emission will remain almost unchanged.

Results of applying the Bottom-Up energy optimization model are collected and shown in
Figure 14. As shown in this figure, there are significant structural changes in the energy
generation mix obtained according to the BMI scenario (Figure 14, subplot A) compared to
the Business As Usual®*® (BAU) scenario (Figure 14, subplot B). Specifically, in the BMI
scenario the share of the thermal power plants (natural-gas steam cycle, natural-gas open
cycle and natural-gas combined cycle) is approximately constant over the period between

2018 and 2040, due to the imposed constraints of natural gas supplies, according to the

15 Business As Usual (BAU) scenario assumes that the shares of various power
generation technologies in Egypt’s power generation mix will remain unchanged until
2040.
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BMI scenario data [102]. Hence, significant investments to increase the capacities of wind
and PV rooftop technologies are required to meet the forecasted increase in demand. As a
result, the share of the renewables in the power generation mix has increased from 8% in
2015 to approximately 70% in 2040. It is worth to note that such results will have major
economic and environmental implications that are different from those of the BAU scenario
(Figure 14, subplot B), where the natural gas supplies needed by thermal power plants in

2040 would exceed the levels of 2015 by three times.
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Figure 14. Electricity generation mix of the BMI scenario (a) and BAU scenario (b).

4.3. Soft-Linked Model Results

Based on the previously stated methodology of soft-linking bottom-up and top-down
models, the impacts induced by the prospective structural changes in Egypt’s power sector

could be assessed based on various indicators, such as the consumption of primary
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energy, land use, etc. In this sub-section, the main results of the soft-linked model will be
presented and discussed. For the sake of simplicity, in this study only the following three
indicators have been analyzed, specifically: primary energy consumption, emissions of

CO2 and water consumption.

4.3.1. Primary Energy Consumption

The implications of the prospective structural changes of power generation mix on Egypt’s
primary energy (PE) consumption by the various production sectors have been identified
by comparing the results of the soft-linked model of both the BMI and BAU scenarios, as
illustrated in Figure 15 (A and B). Considering the planning horizon starting in 2015 until
2040, a 26% reduction in the total PE consumption, between the BMI scenario (430 Mtoe)
and the BAU scenario (557 Mtoe), could be achieved by decarbonizing the power
generation mix. As presented by the violet category in Figure 15 (a), assuming the BMI
scenario, increasing the share of renewables in electricity generation by approximately
30% (results of the bottom-up model) during the first five years (2015-2020) of the
planning horizon, will result in a 31% reduction in the PE consumption by the power
generation sector during the same period (results of the soft-linked model). As expected, it
could be inferred from the same figure that there is an indirect relationship between the
share of the renewables in electricity generation mix and PE consumption of the power
sector. Unfortunately, the same indirect relationship is not valid, when the whole
production sectors of Egypt’'s economy are considered. As illustrated in Figure 15 (a),
considering Egypt’s nationwide economy scale for the planning horizon between 2020 and

2040, an 8% increase in the PE consumption is expected. This increase would be driven
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by the expected growths, induced by the assumed growth in GDP, of industrial and
transportation sectors. According to the data shown in Egypt’s input-out table (Table 15),
both the industrial and the transportation sectors use primary energy in significant
amounts; indeed, in Egypt the transportation sector is mainly based on gasoline, diesel,
etc. Similarly, the fossil fuels energy commaodities are used in the industrial sector to
satisfy its thermal demands; i.e. process heating and/or process cooling. Specifically, the
ratio of the sum of the PE consumption of the industrial and transportation sectors to the
Egypt’s total consumption would increase form 60% in 2015 to 75% in 2040, because no
efficiency plans were assumed to reduce the primary energy consumption of the industrial

and transportation sectors, due to the limited scope of this work.

With reference to Figure 15 (c), Egypt’s GDP is expected to double during the assumed
planning horizon between 2015 and 2040. Hopefully, adopting a policy for decarbonizing
the power sector would be effective in reducing Egypt’s Energy Intensity (El) by 32%
during the whole planning horizon. On contrary, referring to the BAU scenario between
2015 and 2040, illustrated by Figure 15 (d), a 3% increase in the El is expected due to
persistent increase of PE consumption by all production sectors, including the power
generation which will grow assuming the same generation mix and efficiencies of

technologies.
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4.3.2. CO2 Emissions

Referring to the BMI scenario, the share of renewables in the power generation mix will
increase significantly, reaching 70% in 2040. In particular, the wind technologies would be
dominating the electricity generation mix, replacing the natural-gas fired power plants in
the power generation mix of the BAU scenario. Hence, the CO2 emission of the power
generation sector would be decreasing by 40% over the entire planning horizon (2015-
2040), despite the continuous increase in electricity demand (see Figure 16 (a), violet

category).

Although, the significant increase in the share of renewables at the power mix of the BMI
scenario has maintained the consumption of primary energy in 2040 approximately equal
to the same level of 2015, it has failed to achieve such results for the CO2 emission
production on a nationwide economy scale. As shown in Figure 16 (a), while the high
share of renewables penetration is capable of decarbonizing only the power sector by
40%, the total CO2 emissions of all production sectors have increased by 17.5%. This
could be explained by the following: Firstly, the power generation sector has a limited
contribution (18%) at the total production of the total CO2 emission, in the baseline year of
2015. Secondly, the increased CO2 emission production from the industrial, services, and
transportation sectors overweigh the saving achieved by the power generation sector:
leading to an increase from 227 Mt CO2zin 2015 to 267 Mt COz2 in 2040. Comparing BMI
and BAU scenarios, shown in Figure 16 (b), the realized reduction in the total direct CO2
emission during the entire planning period could be increased by targeting the other 82%

resembled by sectors other than the power generation.

Considering the fast growing GDP in Egypt, intensity of emissions is a good environmental

performance measure to assess the prospective changes in energy policy. As shown in
101



Figure 16 (c), decarbonizing the electricity production mix, could result in a reduction in the
emission intensity by 20% between 2015 and 2020. On the contrary, as shown in Figure
16 (d) increasing the production of electricity based on a dominated fossil-fuel power
generation mix, will result in a constant intensity of emissions over the whole planning
horizon, due to the assumed constant technical coefficients of non-power generations

production sectors.
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Figure 16 Egypt’s production of CO2 emissions ((a) and (b)) and CO2 emissions intensity

((c) and (D)) according to BMI and BAU scenarios
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4.3.3. Water Consumption

The 10A of Egypt’s economic production sectors has been extended to assess the
nationwide consumption of water resources, whose availability might be reduced by 80%
due to the construction of the Renaissance Dam in Ethiopia [105]. As displayed in the
disaggregated Egypt’s 10 table (Table 15 (Appendix B) and according to the assumptions
presented in section 3.4.1, the fossil-fuel based power plants consume water to sustain
their production. Thanks to the significant investments in renewable technologies, the
decarbonized electricity generation mix of the BMI scenario would consume a 1.6 Billion
Cubic Meters (BCM) of water less than the BAU scenario for the period between 2015 and
2040. With reference to Figure 17, the contribution of the power sectors in Egypt’s total
water consumption represents minor shares of 0.5% and 0.1% in 2015 and 2040,
respectively. Hence, the continuous increase in water consumption by the non-power
sectors, due to the expected GDP growth, will surpass the realized savings achieved by
the strong penetration of renewable technologies in the proposed power generation mix.
Hence, Egypt’s total water consumption will increase by 28% over the whole planning

horizon (2015-2040).

104



c m Other

O

H -

g— m Services

2

S ® Transportaion
U -

5 ® Industries
)

(L]

= m Power

© Generation
o}

i

)

2015 2020 2025 2030 2035 2040

Figure 17 Egypt’s total water consumption by production sectors

105



4.4. Assessing the Effectiveness of Investing in Renewable Technologies

Referring to the previously stated results, shown in Figure 15 (A) and Figure 16 (A),
despite the effectiveness of the persistent increase in the installed capacity of renewables
in reducing the primary energy consumption and the CO2 emissions of the electricity
generation sector, the same effectiveness cannot be realized on Egypt’s nationwide
economy scale, where all of Egypt’s production sectors are considered. This could be
explained by the persistent consumption of primary energy fuels by the industrial and
transportation sectors to sustain their production. Therefore, it would be useful to support
policymakers with indicators that quantify the effectiveness of investing renewable power
generation technologies in achieving the intended economic and environmental targets;
namely, reducing the primary energy consumption and CO2 emissions of all Egyptian

production sectors.

In this study, two indicators are developed to assess the potential for decreasing Egypt’'s
primary energy consumption and CO2 emissions for each unit of renewables installed
capacity. The first indicator, epf .., , defines the effectiveness of renewables in reducing
primary energy consumption: it is presented with units of (toe/MUSD)/GW . As shown in
equation (4-1), this indicator is evaluated as the ratio between the change in primary
energy intensity epp[toe/MUSD] and the change in renewables installed capacity C,,[GW]
during the time interval between years i and i+1. Secondly,eco, ren, defines the
effectiveness of renewables in reducing CO2 emissions: it has the units of
(tongo,/MUSD)/GW . Again, this indicator is calculated as the ratio between changes in
emissions intensity ey, [ton/MUSD] and the change in renewables installed capacity
Cren[GW] during the time interval between year i and i+1 (in this case the time interval is

defined as 5 years), as shown in equation (4-2).
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The quantified effectiveness of investing in renewables throughout the entire planning
horizon are presented in Figure 18. Considering the energy intensity during the first five
years of the planning horizon (2015-2025), investing in renewables would be 5-6 times
more effective compared to the period between 2035 and 2040, as presented in Figure 18
(A). Accordingly, during the first five years of the planning horizon, investing in renewable
will have a 3-4 times higher potential for reducing CO2 emission intensity with respect to
the last five years of the planning horizon, as illustrated in Figure 18 (B). This could be
justified by the significant reduction realized by the power sector during the first five years
of the planning horizon. Considering the consequences of the prospective increase in the
national economic production (GDP), renewables effectiveness would fade out over the
planning horizon due to the growth of the other sectors: in particular, industrial and
transportation sectors. The increased primary energy consumption and CO2 emissions
from those sectors will overweigh the savings realized by decarbonizing the power sector.
Therefore, the deduced information from such indicators may be beneficial in supporting
policymakers to define reasonable environmental targets and appropriate alternatives to
achieve them: e. g, electrification of the transportation sector and gradual phasing out of

high energy intensity industries, such as cement and steel industries, could be more
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economical alternatives for the Egyptian policymaker during the last 10 years of the

planning horizon.
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Figure 18 Potentials for reductions in energy intensity (a) per unit of renewables installed

capacity and CO2 emissions (b) per unit of renewables installed capacity.
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4.5. Consistency of Bottom-up and Top-down Models

It is worth to note that due to the essentially different forecasts of electricity demand
between the bottom-up and top-down models, there is a variation of 17% in 2020 and 36%
in 2040 in the total production of the power generation sector obtained by the two models,
as shown by Figure 19. Considering the bottom-up model, the sectoral electricity demands
(residential, services, etc.) are exogenous parameters forecasted by the BMI data. On the
other hand, in top-down model, the electrical energy required to support the whole

economy production sectors is defined endogenously by applying the Leontief’s input-out

model and driven by the households’ final demand. In addition, the latter approach
assumes a causal relationship between the production of electricity and the relative
increase in GDP, as discussed in section 3.5; this assumption is an accepted argument in

the available literature [107].
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Figure 19 Percentage difference in annual electricity production between bottom-up model

and top-down models
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5. CHAPTER 5: Conclusions, Policy Implications, and Future Work

This research develops a decision-making supporting tool to assist in defining coherent
energy policies that consider interactions between the entire production sectors of an
economy. Specifically, a one-way straightforward soft-link between an open-source
bottom-up energy optimization model (OSeMOSYS) and a top-down linear multi-sector
model (I0A), has been formulated. Capitalizing on the capabilities of the aforementioned
models, the proposed integration of them has resulted in alleviating some of their
limitations. It has been shown that the proposed soft-link is useful in defining several
economic and environmental implications induced by the evolution of the power sector on
a nationwide economy scale. Thanks to the simplicity and generic nature of this approach,
it could be extended to cover numerous indicators that might be of interest to future

researches.

The developed approach has been applied to the case of Egypt, where a significant
increase in demand for electricity is forecasted. Considering the planning horizon between
2015 and 2040, the OSeMOSY S-Egypt model has been developed to determine the least
cost future Egyptian electricity production mix required to satisfy two different future
electricity demand scenarios; namely, IEA New policies scenario and BMI scenario.
Moreover, a sensitivity analysis has been conducted in order to assess the relevance of
some crucial parameters in modifying the results of the model, and to test its robustness.
This research adds to and extends the current literature on energy planning in developing
countries by defining an Egyptian Reference Energy System (RES) based on the data
published by the Egyptian Electricity Holding Company; in addition, the current and
prospected primary energy supplies, power generation technologies, and the various

demand categories obtained from various other references. Furthermore, the developed
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RES is generic in nature, so it could be easily extended and implemented to various

energy planning models.

For both the assumed scenarios, it is found that the lowest cost electricity generation mix
always includes hydropower, natural gas-fired steam cycles, simple and combined cycles,
wind power and PV rooftop technologies. This result mainly depends on the low economic
cost of such technologies compared to the others, as well as due to the assumed
constraints on the environmental impacts and polices on minimum use of renewable
energy resources. Indeed, since Egypt’s electricity peak load demand occurs at night
hours, investing in large solar power generation utilities does not produce an economically

feasible alternative.

Based on the sensitivity analysis applied to the BMI scenario, it is found that investment
costs of renewables, availability of low prices natural gas and changes in prospected
renewable penetration targets seem to have negligible effects on the shape of the future
generation mix. Conversely, increasing the efficiency of natural gas combined cycles
technology from 5% up to 12% with respect to the assumed efficiency in 2015 would
impact the shape of the electricity generation mix, reducing the penetration of renewables
by about 5% up to 10% over the whole planning period. Moreover, assuming
unconstrained natural gas supplies results in reduction of the specific discounted costs per
unit of energy produced by 95%, accompanied by 42% increase in natural gas
consumption and 50% increase in the yearly total CO2 emissions. Results of the model are
also sensitive to changes in the values of discount rate on capitals: indeed, low values of
discount rate cause lower capital costs technologies to be displaced from the electricity
generation mix, resulting in more investments in higher capital cost technologies (i.e.

natural-gas fired combined cycle, wind and PV rooftop technologies). However, despite
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this change in the electricity generation mix, the impact on the values of the yearly total
CO2 emissions is moderate (about 6%); this is attributed to the fixed consumption on
natural gas at an amount equals to the assumed constraint on the natural gas supplies.
Finally, sensitivity analysis has also been applied to quantify the effects caused by the
construction of the Ethiopian Grand Renaissance Dam: despite the minimum penetration
of the hydropower source in the generation mix (7%), the absolute effect caused by the
dam may not be negligible. Indeed, assuming the worst-case scenario, a 77% in reduction
of hydropower produced electricity would be compensated by 22% increase in the
electricity production of wind and PV rooftop technologies; indeed, adding new capacities
of natural gas power plants is not viable due to the assumed constraint on natural gas
supplies. As a result, the total CO2 emissions level would remain almost unchanged, while
the total discounted cost of electricity would be increasing by 11% between 2018 and

2040.

The results of the soft-linked model included key findings that could be beneficial in
shaping Egypt’s energy policies. Although, the major increase in renewables penetration
has allowed for major savings in the primary energy (PE) consumption, CO2 emissions
and the water consumption required by the power sector, it is not sufficient to achieve such
savings when considering all of the non-power generation sectors. The non-power
production sectors will be responsible for the prospective increase in PE consumption,
CO:2 emissions and water consumption on the economy-wide scale, as no plans are
assumed to reduce common sectors consumptions of primary resources and emissions of
CO2. Unfortunately, such increases in the PE consumption, CO2 emissions, and water

consumption by the common sectors, overweigh savings realized by decarbonizing the
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power sector, raising the question of the viability of increasing renewables penetration in

the power generation mix to meet country’s environmental targets.

Therefore, quantifiable performance indicators that assess the effectiveness of increasing
the installed capacities of renewable technologies have been defined in this study. It is
worth to note that the potential reductions in PE, CO2 emissions, water consumption
intensities fade out with time, despite the persistent increase in the installed capacities of
renewable technologies. Hence, policymakers should define the optimum time plan to
direct investment to increase the energy efficiencies of industrial, service, and
transportation sector and/or increase the installed capacity of renewables; the latter may
require associated investments in the infrastructure of electricity transmission and

distribution.
Recommendations for Future Work:

The current version of the 0SeMOSY S-Egypt model is able to provide a comprehensive
description of the Egyptian power sector. However, the model is characterized by the
following main drawbacks that could be considered as possible directions for future

improvements:

I.  Regarding the Bottom-Up model

e First of all, electricity demand has been exogenously assumed based on the literature.
It is worth to note that a collaboration with local institutions is advocated by the Author
in order to increase the quality and reliability of the results. In addition to this, the
developed model assumes the electricity demand as perfectly rigid, hence it is not able

to capture the behavior of the final users in response to a change in electricity price.
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Secondly, the technical representation of the renewable technologies in the bottom-up
model should be improved to match the stochastic nature of the availability of the
renewable resources. In particular, “the energy adequacy constraints” of 0SeMOSYS
should be enhanced to allow for an accurate representation of the capacity factors of
the wind and the solar power generation utilities, which might be operating with a
reduced output during specific time intervals. Similarly, it is recommended to enhance
the “capacity adequacy constraints” by adding spatial constraints that specifies the land
requirements for different power generation utilities; e.g. wind farms are only attractive
at highly windy sites, which are somewhat limited.

Thirdly, it is encouraged to extend the current study by considering the exergy based
analysis principles in order to define the least cost power generation mix that
maximizes the thermodynamic efficiency of Egypt’s power generation sector. Hence,
the sustainability of the defined energy policy would be further enhanced.

Fourthly, Egypt's RES as well as 0SeMOSYS-Egypt should be extended to consider
the vast biomass resources available in Egypt. Utilizing biomass in power generation
might significantly affect the cost and the environmental effects of the power generation
mix in Egypt. These were not considered in the current analysis because the EEHC
report did not include them, which the author believes is a deficiency.

Fifthly, sensitivity analysis has been performed by varying each one of the considered
parameters at a time: however, more interesting insights may be obtained by varying
them together by applying a parametric sensitivity analysis, since some cross-effects
may arise. Regarding capital discount rate, the same value of capital discount rate has
been applied to all the considered energy technologies: this might not be applicable to

Egypt and it may affect the quality of results and the shares of different technologies in
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the power generation mix; e.g. a favorable discount rate for renewable energy
technologies could have a marked influence on their share in the proposed power
generation mix.

Sixthly, the scope of the model is limited to the electrical power sector only, while great
attention is currently devoted to extend the scope of energy models by including
multiple energy carriers (electricity, heating, cooling, others) and multiple national
sectors with more details, hence analyzing the full energy metabolism of the
considered economy [108,109] by defining the sectoral demand on each of the energy
carriers. For instance, the Egypt-OSeMOSY'S should be extended to consider
satisfying the combined industrial electrical and thermal demand by installing CHP

utilities.
The Top-Down Model

Regarding the top-down model, various important economic indicators are not covered
in this study. For instance, it is expected that Egypt’s economic value added and the
employment rate would be changed according to the potential structural changes in the
power generation mix. Therefore, the proposed top-down model should be extended to
cover such important economic issues related to the definition of Egypt’s energy policy.
Furthermore, accurate estimates of the technical coefficients of input-output tables in
each future year could be achieved by applying the RAS method.

Lastly, Egypt’s government recently made a decision to diversify the power generation
mix by installing new capacities of nuclear and coal power plants. Therefore, it is
advised to update the top-down model by considering these two power generation
technologies, despite them not contributing to the least cost power generation mix

proposed in this study. Indeed, considering adding capacities of both coal and nuclear
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power plants might affect the implications associated with evolution of the power

generation mix on a nation-wide economy scale.
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Appendices

Appendix A: The RStudio Code for Defining Egypt’s Balanced 10 table Using EORA

26 Dataset

#Egypt input-out Analysis

library(readxl)

A<-list()

Z<-list(0)

tfull<-read_excel(file.choose(),col_names = FALSE)

Al<-tfull[1:26,1:26]

A2<-tfull[27:52,1:26]

Aegy<-tfull[1405:1430,1:26]

for(j in 2:189){
A[[[11<-tfull[(1+(*26)):((+1)*26),1:26]
Z9[[j]1<-as.matrix(A[[j]])

}

tot<-Reduce("+", Z)

write.csv(Im, file="Zm.csv")

16 7: the endogenous industrial matrix.
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Appendix B: Egypt EORA 26 Tables

Will Appear in the Next Page
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