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Symbol Name, Unit 

𝐙0 Endogenous transaction matrix, hybrid units 

𝐙N Endogenous transactions in monetary value between the non-
power generation sectors, USD 

𝐙E Endogenous transactions in physical units between the power 
generation sectors and themselves, TWh 

𝐙U Endogenous flow of products in monetary values from the 
common sectors to the power generation sectors, USD 

𝐙D Electrical energy supplied to the common sectors of the 
economy from electrical energy production plants, TWh 

𝐲0 Final demand vector, hybrid units 

𝐲N Final households demand on economic sectors other than 
power generation sectors, USD 

𝐲E Final households demand on power generation sectors. TWh 

𝐀0 Technical coefficients matrix, hybrid units 

NA  Technical coefficients matrix of the production sectors other 
than power generation sectors, USD/USD 

EA  Technical coefficients matrix of the energy sectors, TWh/TWh 

𝐟0 Households’ final demand vector, hybrid units 

Nf  Households’ final households demand on economic sectors 
other than power generation sectors, USD  

Ef  Households’ final households demand on power generation 
sectors. TWh 

𝐛0 Exogenous transactions coefficients matrix,  hybrid units 

Nb  Exogenous transactions coefficients matrix of non-electricity 
generation sector,  tonCO2/USD 

Eb  Exogenous transactions coefficients matrix of electricity 
generation sector,  tonCO2/USD 

𝐂U Upstream Cut-off matrix,  USD/TWh 
𝐂D Downstream Cut-off matrix, TWh/USD 

𝐑0 Exogenous transactions matrix, Physical units 

𝐱0 Total production vector, USD 

0x̂  Diagonalized Total production matrix, hybrid units 

I Identity matrix, - 
𝐶𝑟𝑒𝑛 Renewables installed capacity, GW  

EEprod Electrical energy production, TWh 
α, β Econometric production function coefficients 

ε renewable effectiveness 
𝑒𝑃𝐸 primary energy intensity, toe/MUSD 

𝑒𝐶𝑂2 emissions intensity, ton/MUSD 
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Subscripts 
 

n Number of production sectors in the country 
0 Baseline year 
N National economy 
E Energy sector 
i i-th year 

 

Acronyms, Abbreviations 
 

BAU Business As Usual 

BCM Billion Cubic Meters 

BMI Business Monitor International (A Fitch Group Company) 

CAAGR Compounded Average Annual Growth Rate 

CB Consumption-Based 

CGE General Equilibrium Models 

Coal Imports of Coal  

Coal.PP Ultra-Super Critical cycle 

COP21 21st Climate Change Conference in Paris 

CSP.PP Concentrated Solar Power 

CSPNG.PP Hybrid CSP plants 

D1-D3 Three hourly time intervals 

EEHC Egyptian Electricity Holding Company 

EJ Exajoules 

EI Energy Intensity 

EIA US Energy Information Administration 

EORA Eora database 

EORA 26 Full Eora 26 Multi-Regional Input Output 2015 Tables 

EU European Union 

GDP Growth Domestic Product 

GHG Green House Gases 

GLPK GNU Linear Programming Kit 

GW Gigawatt 

HVI High Voltage Import 

HYD Hydropower resources 

Hydro.PP Hydroelectric power plant 

IEA New Policies scenario developed by International Energy Agency 

INDC Intended Nationally Determined Contributions 
IOA Input-Output Analysis 

IRENA International Renewable Energy Agency 
LCA Life Cycle Assessment 

LCOE Levelized Cost of Energy 
MUSD Million US Dollar 

MW Megawatt 
MWh Megawatt hour 

http://unfccc.int/focus/indc_portal/items/8766.php
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NG Natural Gas 
NG.CCPP Natural Gas Combined cycle 
NG.CHP Natural Gas Combined heat and power 

NG.GCPP Natural Gas Simple gas cycle 
NG-Imports Natural Gas (imports) 
NG-Local Natural Gas (domestic production) 

NPV Net Present Value 
NG.SCPP Natural Gas Steam cycle 
Nucl.PP Nuclear plant 

NUC Res Nuclear power 
OSeMOSYS Open Source Energy Modelling System 

PB Production-based 
PE Primary Energy 
PJ Petajoules 
PV Photovoltaic 

PVL Photovoltaic large utility plant 
PV.roof Photovoltaic rooftop plant 

RAS A method applied to update the direct coefficients table of input-output 
tables 

RES Reference Energy System 
S1-S5 Five time period, on monthly basis, of the years 
SAM Social Accounting Matrices 
SDGs United Nations Sustainable Development Goals 

SOLCSP Solar power available for CSP 
SOLPV Solar power available for Photovoltaic 

TD electricity Transmission and Distribution sector 
TFC Total Final Consumptions 
toe Ton Oil Equivalent 

TWh Terawatt hour 
UN The United Nations 

UNFCCC United Nations framework Convention on Climate Change 
USC ultra-super critical 
WEM World Energy Model 

Wind.PP Wind plants 
WND Wind power resources 
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Abstract 

Traditional bottom-up energy models have been widely applied to date to assess the 

impact of the future energy technologies over a specific time horizon, quantifying the direct 

economic and environmental implications caused by the evolution of the energy sector. 

However, such approaches ignore the interactions that the energy sector has with other 

sectors in the economy, hence failing in quantifying the global impact associated with their 

technologies: this may produce an unfortunate bias in the definition of future energy and 

environmental policies. The present study assesses, on a nationwide economy scale, the 

economic and environmental impacts due to the optimal future power generation mix in 

Egypt, by soft-linking a bottom-up, technology-rich model (OSeMOSYS) with a top-down 

Input-Output Analysis model (IOA, based on the EORA 26 dataset).  

Based on the OSeMOSYS energy modeling framework, the OSeMOSYS-Egypt model is 

developed. The least cost power generation mix is determined for two different electricity 

demand forecasts, based on both the New Policies demand forecast scenario developed 

by International Energy Agency and the market research performed by Business Monitor 

International. The robustness of the obtained results is assessed through a sensitivity 

analysis on the main exogenous parameters, including costs, efficiency and production 

targets of energy technologies, capital discount rate, water and natural gas resources 

availability. The evolution of the Egyptian power sector in years 2018 to 2040 is analyzed: 

results of the bottom-up energy model are adopted as exogenous parameters to the top-

down multi-sector model, as a way of coupling the two aforementioned models.  

It is revealed that Combined Cycles, Wind, and Photovoltaic rooftop systems are viable 

technologies that should be considered in the future Egypt’s power generation mix. In 

particular, among Egypt’s abundant renewable energy resources, it is shown that wind 
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power technology comes first in achieving the proposed target on renewables penetration 

in the country’s generation mix, and it might be a feasible alternative to replace part of the 

natural gas share.  

To increase the accuracy of the analysis, the original OSeMOSYS framework has been 

enhanced by imposing the discount rate on capital investments for the energy 

technologies, as a time dependent exogenous variable; in developing countries in general 

and in Egypt in particular, discount rates have been known to fluctuate widely.  

The derived power generation mix, predicted by the bottom-up model, has been applied to 

the IOA model in the form of a change in energy technology mix and a change in final 

demand of electricity. To account for the growth in the national GDP during the temporal 

planning horizon, an econometric function that relates the growth in GDP to increase in the 

production of electricity is formulated. Besides the results of the energy model, this 

approach enables the decision maker to assess the expected primary energy 

requirements, GHG emissions and water use induced by the evolution of the energy mix in 

a broader perspective. 

It is worth to note that, the results of the bottom-up energy optimization model indicates 

that the anticipated increase in the penetration of renewables in the power generation mix, 

would decrease the primary non-renewable energy consumption and GHG emissions 

directly caused by the power generation sector over the considered temporal planning 

horizon (2018-2040). However, the application of the IOA model reveals that 

decarbonizing the power sector alone is not sufficient in achieving neither, the decoupling 

of the GDP growth and the total primary energy consumption, nor the GHG emissions 

within the Egyptian economy. 
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1. CHAPTER 1: Introduction 

1.1. Background  

Security and affordability of energy supplies are aspects of paramount relevance in 

shaping future energy policies and countries’ energy power mix. These aspects will 

become increasingly important in the future, since according to the International Energy 

Agency (IEA) the global demand for electricity is expected to increase with respect to the 

current consumption levels between 50% (Sustainable Development Scenario) and 70% 

(Current Policies scenario) by 2040 [1]. In addition, the IEA estimates that the final 

consumption of electricity in 2040 will account for 40% of the world Total Final 

Consumptions (TFC) [1]. Indeed, the main driver for the aforementioned significant 

increase in the world TFC is the prospective increase in the global population that will 

reach 10.9 billion in 2100 and the associated increase in the global production [2]. As, 

illustrated by Figure 1, the six folds increase in the world population between 1900 and 

2016 has been associated with a 24 folds increase in the total energy production during 

the same period [2]. In particular, considering the period between 1900 and 2016, the 

world population has increased from 1.2 to 7.2 billion and the total energy production has 

increased from 23 to 548 exajoules (EJ). Therefore, the total energy production is 

expected to increase considerably during the coming decades to satisfy the expected 

increase in the demand on energy supplies induced by the globally increasing population.  
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Figure 1. Global population and total energy production, data from [2]. 

 

According to various studies, there is a causal relationship between the GDP growth and 

the energy consumption. This could be justified by the fact that the availability and 

affordability of energy commodities has apparently become major pillars for the 

socioeconomic development and the welfare of nations [3,4]. Indeed, disruptions and the 

associated price shocks of energy supplies could negatively affect the production sectors, 

and consequently, the economic growth. For instance, the embargo imposed by the major 

oil producers during the 1970s energy crises has affected the multi-sector performance of 

the United States [5]. Similarly, Japan has faced unprecedented socioeconomic 

implications because of the exclusion of approximately 50 MW nuclear electricity 

generation facilities, after Fukushima accident in 2011 [6]. Prior to the Fukushima accident, 

Japan power generation mix was planned to be dominated by the nuclear technologies 

because of the scarcity of fossil fuels. In response to the accident, the Japanese 

government has increased the installed capacity of the fossil-fuel fired power plants. 

0

2

4

6

8

1

10

100

1000

Year 1900 Year 2016

P
o
p
u
la

ti
o
n
 [

b
ill

io
n
s]

E
n
e
rg

y
 P

ro
d
u
ct

io
n
 [

E
J]

Energy Production Population



16 

 

Hence, increasing the fossil-fuels imports leading to significant negative effects in the 

Japanese trade balance [6].  

Adding to the requirements of secure and affordable energy supply to assure a continual 

economic growth and welfare, the term sustainable has been added by the UN in its 

Sustainable Development Goals (SDGs) for 2030 [7]. In such perspective, the UN 

encourages deploying energy systems that contribute to the global efforts on climate 

change control (countries should contribute to keep the global rise in temperature less 

than 2⁰ C), according to the accord reached during the UN framework Convention on 

Climate Change (UNFCCC) conference of Paris 21st (COP21) [1]. Fortunately, starting 

2015 a decoupling between the global emissions and the growth in the GDP has been 

reached. That decoupling could be explained by the significant increase in the installed 

capacity of renewables, the introduction of electric vehicles, and the impact of efficiency 

programs on the various final energy sectors [1].  

Amalgamating the aforesaid characteristics of energy systems, raises a challenging task 

for policymakers, who are required to define adequate energy policies and take investment 

decisions over long planning horizons [8]. In this perspective, the definition of effective 

energy policies requires a holistic overview about the evolution of the power sector which 

is capable of including the direct, indirect and induced economic and environmental effects 

caused by the increase in the energy supply and the structural changes in the energy mix. 

In other words, policymakers must be informed about the global implications that 

accompany future energy plans defined by means of traditional energy planning 

approaches.  
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1.2. Major definitions of energy modeling and optimization models  

Energy modeling frameworks are widely recognized as useful approaches for planning 

future investments towards a viable and sustainable national power sector, one of the 

various energy sectors. They can be employed to identify the optimum future energy 

power mix that enables fulfilment of the demand for electricity at lowest cost, in compliance 

with technical, environmental and political constraints. Moreover, energy modeling 

frameworks enable policymakers to assess the effects of various uncertainty sources that 

might arise at both local and global levels, such as fossil fuels prices increase due to 

geopolitical instabilities [9]. In addition, a proper use of energy models may support the 

sustainable economic growth of national economies: while contributing in facing the 

current environmental challenges, an efficient power mix enables to reduce the cost of 

electricity, thus encouraging foreign investments in sectors different than the energy one, 

and hence resulting in positive spillover effects.  

So far, bottom-up energy optimization models have been applied to address the evolution 

of the power sector by adopting a Production-based perspective (PB). The bottom-up 

models define the least cost energy mix required to satisfy an exogenously defined energy 

demand [10–12], hence assessing the direct1 economic and environmental implications of 

future energy scenarios. On the other hand, top-down models enable the adoption of a 

consumption-based perspective (CB), allowing to understand the direct and indirect 

economic and environmental implications of policies and technological changes at a global 

scale [13]. The CB approaches are always based on Leontief’s Input-Output Analysis 

 
1 Direct economic and environmental implications are those related to the energy sector 
only; e.g. the costs of the power generation and CO2 emissions produced by a power 
plant.  
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(IOA), which in its basic form provides a representation of the interlinked monetary flows 

among segments of the economy [14]. However, while top-down models foreground a 

reliable analysis of the associated implications of new energy policies on a macro level 

scale, their high level of aggregation limits their capabilities in estimating the expected 

impacts due to future changes in the power generation mix. Due to their own features, the 

two aforementioned approaches may benefit from their integration: establishing a link 

between bottom-up and top-down models may provide more comprehensive and 

informative insights related to future energy scenarios at the nationwide economy scale 

[15]. In particular, bottom-up modeling may support a sustainable economic growth by 

defining the least cost feasible electricity production alternatives, assuming different 

scenarios that may occur on the future. Additionally, a top-down approach may enable 

energy analysts to assess economic and environmental feasibilities of implementing the   

solutions provided by the bottom-up models, considering the competitive use of natural 

resources by economic sector other than the power generation sectors.    

 

1.3. Emerging needs for energy models in developing countries 

The use of energy models to support policymaking and energy planning activities in 

developed countries is a well-established practice: the European Commission has 

financially supported several research projects to model sustainable scenarios related to 

the evolution of European energy sector. As an example, the PRIMES [16] model allows 

analysis of national energy sectors to forecast their future energy demand, prices, and 

supply, while considering the development of their related technologies. For similar 

purposes, the DICE [17] and MERGE [18] modeling frameworks have been proposed. 

While developed economies make extensive use of energy models calibrated with high 
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quality data, the same cannot be always said for developing countries, where the financial 

availability needed to support energy analysts with the state-of-the-art models and solvers 

packages, and the access to high-quality data are two major challenges. 

Developing countries are considered to be the major driver for the expected increase in 

the demand for energy in 2040, due to their expected socio-economic transformations 

resulting from a 65% increase in the population living in urban areas and a 135% increase 

in their per capita income, with respect to the levels of 2017 [1,19]. Fortunately, there is an 

increase in the application of energy models in developing countries. Among other 

modeling frameworks, Howells et al. [20] have developed the Open Source Energy 

Modeling System (OSeMOSYS), defined as a partial equilibrium long-term, energy 

planning supportive tool with a bottom-up representation of energy conversion 

technologies. Several recent application of OSeMOSYS can be found in literature: as an 

example, the recent assessment of the evolution of Sub-Saharan and Tunisian power 

sectors [21,22]. Due to its open-source nature, which ensures data transparency and 

results reproducibility, OSeMOSYS is defined as particularly suited to be applied to shape 

country’s energy mix in future energy scenarios [23]. 

 

1.4. Egypt’s power sector 

Among other developing countries, the economy of Egypt is expected to grow rapidly in 

the next decades [24]: between 2014 and 2015, its average population and GDP growth 

rates were respectively about 2.1% and 4.4%, resulting in an increase in the electricity 

peak load by 7.2% (28 GW), with a forecasted value of 85 GW in 2035 [25,26]. Egypt is 

characterized by a regulated energy market, of which the electricity sector is managed by 
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the state-owned Egyptian Electricity Holding Company (EEHC), which manages electricity 

production, transmission, and distribution sectors. In order to meet the annual increase in 

electricity demand between 2011 and 2015, the installed capacities have increased 

approximately by 30%, from 27 up to 35 GW. In 2015, the installed capacity generated 174 

TWh as gross energy. The average annual increases of installed capacity and gross 

energy generation from 2011 to 2015 are 6.8% and 4.5% respectively. According to 2015 

statistics provided by EEHC [26], the natural Gas (NG) fueled thermal power plant is the 

dominant technology in Egypt’s electricity generation mix with 90% share of the total 

installed capacity. As a result, the natural gas consumption by power plants has increased 

by approximately 10% from 2014 to 2015 to satisfy the production needs of the new 

additional capacities [26]. Hydropower (7%) is the second major resource used in 

electricity generation; however, its utilization is driven by the irrigation and residential 

demands. Finally, power generated from the other renewable sources is 2%. The 

electricity produced by the power generators is fed into the country’s national transmission 

grid and delivered to meet various sector demands through distribution networks that 

cover the majority of the territory [26]. Various alternatives are considered to meet the 

forecasted demand increase. In particular, additional 15 GW capacity of natural gas 

combined cycle technology is planned to be in service by 2018. Moreover, to promote the 

diversification of the power generation mix, the Egyptian government considers adding 7.1 

GW coal-fired capacity by 2022: however, this alternative is debatable, as Egypt does not 

have coal reserves. For that reason, the operating cost of such plants might be escalated 

due to the incurred coal transportation costs. Considering the increase in the share of the 

renewable technologies in the production mix, the target share of renewables is set to be 

22% by 2022, according to Egypt’s Intended Nationally Determined Contributions (INDC) 

http://unfccc.int/focus/indc_portal/items/8766.php
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presented in the United Nations conference on climate in Paris, 2015 [26,27]. Furthermore, 

investments are planned in the electricity trade infrastructure with neighbor countries. 

Egypt’s transmission grid is currently connected to Libya, Sudan, Jordan, and Lebanon 

[26]. A 3 GW trade connection is planned to link Egypt with Saudi Arabia, which has a 

different peak load demand profile [26]. 

According to the data provided by the Egyptian Electricity Holding Company (EEHC), the 

reliability and security of electricity supply of the current mix could be disrupted by eventual 

shortages in supplies of natural gas. The strong dependence on fossil energy supplies is 

mainly due to the strong subsidies on fossil energy utilities imposed by the Egyptian 

government, and it makes Egypt’s power generation mix fragile and vulnerable to socio-

economic events that may affect the availability of natural gas supplies (like the 2011 

turmoil) [28]. Also, the same disruptive effect on Egypt’s economic production sectors, 

including the energy sector, may be caused by a shortage in water, which already 

occurred in 2016, when Egypt suffered a shortage of 13.5 Billion cubic meter in the 

available water supplies, which is likely to continuously increase in the future, as the 

Ethiopian Renaissance dam starts its reservoir filling phase [29].  

The demand for electricity and the related demand for primary resources, are strongly 

related to the growth in economic productivity of all the national sectors. Certainly, the 

consumption of natural resources by the energy sector is strongly dependent by both the 

composition of its technology mix and the growth in the national economic productivity. 

Moreover, since natural resources are also directly invoked by all the sectors of the 

economy and by the households, it is of paramount importance to analyze the economic 

system as a whole. Indeed, due to the forecasted significant increase in population and the 

unsustainable energy market caused by governmental subsidies, managing the evolution 
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of the power generation sector is a challenging task for the Egyptian policymakers, as it 

may severely affect all the other production activities. 

For such reasons, the development of Egypt’s power sector will be a challenging task, and 

energy modeling could play a key role in assessing optimal future scenarios, hence 

providing crucial information to policymakers. In this regard, the Egyptian government has 

already started to consider the use of energy models to plan for a more reliable electric 

supply [11]. Unfortunately, accurate technical and economic data required to setup reliable 

energy models are not readily available; this is particularly true regarding references to the 

costs, average efficiencies and availabilities of the various power generation plants.  

 

1.5. Objective of the Study 

The main objective of this research is to construct an Energy-Economy Interaction model 

by linking a bottom-up model to a top-down model to provide a quantitative assessment of 

the results of future development scenarios for the power generation sector in Egypt, as an 

example of a typical developing country. In comparison with developed countries, the 

developing countries usually suffer from scarcity of reliable data, unpredictable currency 

exchange rates and discount rates, and unsustainable energy polices; all of which make 

the proper energy modelling more challenging, yet more vital. The evolution of the 

Egyptian power generation sector is here assessed within a time period between 2018 and 

2040.  

Two main energy modelling challenges are addressed. The first of these is while traditional 

energy models allow deriving the optimal arrangement of the energy sector in future 

scenarios, only few of them are capable to consider the links and interrelations between 



23 

 

the energy sector and the other sectors of the economy: this may cause a bias in results, 

thus leading to misleading decisions; this shortcoming is equally relevant to both 

developed and developing countries. Secondly, the few energy models capable to have a 

holistic and integrated approach (e.g. TIMES-MACRO) are complex and difficult to be 

implemented in critical contexts, characterized by high level of uncertainty of input data, 

such as the case of the developing countries.  

1.6. Thesis Outline 

The rest of the thesis is organized as follows: Chapter 0 provides a general literature 

overview related to the topic of energy modeling; Chapter 3 presents the Reference 

Energy System (RES) for Egypt; it also describe the applied energy models, and the soft-

link approach adopted for the analysis. This chapter also presents and describes the 

adopted future scenarios. Chapter 4 reports and discusses the obtained results and their 

sensitivity analysis to test the uncertainties of the most relevant exogenous parameters as 

well as the quantitative effectiveness of investing in renewable technologies. Finally, the 

concluding remarks, and recommendations for future extension of the work are provided in 

Chapter 5.  
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2. CHAPTER 2: Literature Review  

2.1. Applications of energy optimization models to define the least cost energy 

mix 

2.1.1. Linear Programming Mathematical Models 

There are numerous optimization models that are available to determine the optimum 

contribution of various energy resources in the mix of power generation, among the others, 

linear programming mathematical models. Komiyama et. al. [30] developed a linear 

programming model to define the optimum mix of energy sources in Japan. The Japanese 

energy mix’s reliability is mainly affected by the imported fossil fuels from politically 

unstable regions [30]. In addition, there is a risk associated with the deployment of nuclear 

power plants after the accident of Fukushima in 2011 [30]. In that study, authors have 

considered deployment of the available renewable energy resources and energy storage 

systems to meet Japanese electricity demand by 2030. The developed model in that study 

aimed to achieve the least cost energy mix, considering costs and capacities of nine 

available electricity generation technologies, energy demand, the required minimum output 

of each energy conversion systems, and emissions constraints [30]. The results of that 

work showed that huge storage batteries were not mandatory in having such systems that 

rely on massive renewable energy sources [30]. 

Rentizelas et. al. [31] discussed the cost of externalities associated with various power 

generation technologies. Although, renewable technologies might be the most 

environmentally sustainable during their operating phase, the situation might be altered, if 

a Life Cycle Assessment (LCA) was applied [31]. Rentizelas et. al. [31] developed a linear 

programming model that included LCA inventory analysis and based on “Cradle to Gravel 
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Basis” [31]. The model included all of the processing, foundation, operation and 

decommissioning of each technology. In addition, an estimation of emissions to the 

atmosphere was considered. The model was applied for the case of Greece for the period 

of 2012-2050 to reach a decision that minimizes the cost of the power generation. The 

results of that work showed that external costs of various technologies have a large 

contribution at the total costs [31]. 

Muis et. al. [32] developed an optimization model for reducing carbon emission in 

Malaysia. During the past 50 years, the Malaysian economy has been transformed from an 

agriculture-based to be an industrial-based [32]. As a result, the amount of greenhouse 

gases emitted has increased. Unfortunately, Malaysia is ranked to be the most air polluting 

country in South Eastern Asia region [32]. In that study, the objective function of the 

developed model was to define the resources’ mix that reduces the electricity generation 

cost and GHG emissions to the atmosphere. In that study, objective function considered 

the costs of investments, operations and maintenance, of various electricity generation 

capacities. The constraints of the model considered issues related to the situation of 

Malaysian electricity market, at the time of performing that study [32]; in particular, the 

model was constrained to the aggregate demand on electricity, available reserves of 

primary fuels, GHG emissions limits, and the availability of  renewable energy. The results 

of Muis et. al [32] showed that the proposed model was effective in determining the 

optimum values of generating mix while meeting the emission limits.  

Ozcan et. al. [33] discussed optimization of energy resources considering various factors 

such as, social, economic, and environmental. The optimization model presented at that 

study aimed at defining the optimal resource mix for Turkey considering the major 

generating sources;  coal, fossils fuels, solar, wind, and nuclear. The temporal boundary of 
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that study was 11 years. The formulated model was a multi-objective mixed integer 

programming. Six weighted objective functions were developed that minimize electricity 

generating cost, carbon emissions, imported energy, and conversion of fossil fuels to 

electricity. Other objective functions of the model aimed at maximization of social 

acceptance of the proposed plan and maximization of employment rate. The constraints of 

the model were set to consider generating capacities and the forecasted demands. The 

results of that study showed that renewable energy is preferred to the traditional 

generating technologies [33]. 

 

2.1.2. Models based on Financial Portfolio Optimization Theory 

The concept of financial portfolio optimization is a tool that could be applied to select the 

optimum energy mix [34]. Portfolio analysis is well established concept that has been used 

at the field of the financial sector [35]. This concept of investment mix optimization has 

been first applied to investment in financial assets by Markowitz in 1950’s [35]. The 

Markowitz theory could be simply described as, maximizing the expected return and 

simultaneously reducing the associated risks [35]. Markowitz concluded that every asset 

assessment should be based on its expected return and variability; the latter is the risk that 

this asset will have on the whole portfolio of investments. The results obtained by 

Markowitz shows that diversification of investment usually results in maximizing the 

expected return and reducing the total risk of the investment value [35]. By definition, a 

portfolio of multiple assets is considered efficient “if there is no other portfolio available that 

gives the same return at lower variance of returns” [36] .Consequently, efficient frontier is 

defined as the set of efficient portfolios for a given problem, from which a one can be 

considered to be an efficient solution [35]. 
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Shimon Awerbuch and Martin Berger were among the early contributors to the field of 

energy policies planning, they have adopted Markowitz portfolio theory to the process of 

selecting portfolios of electricity generation technologies [34]. According to Awerbuch, the 

objective of defining the energy planning mix should not give excessive weight to the least 

cost between alternatives, because of the fluctuations in prices and development of 

technologies over the planning horizons. For instance, if thermal power plants were the 

most efficient and reliable energy source during the past 50 years, the same decision 

could not be the same for the next 10 years. Instead, it would be more acceptable to 

calculate the cost of the energy produced with the associated risks considering the whole 

generating portfolio, not the cost of the risk of each individual technology only [34]. Similar 

to the concept of diversification of the financial Markowitz portfolio theory, it was found that 

adding renewable resources, such as wind and Photovoltaic cells, to the generating mix 

results in portfolios with reduced costs and risks [34]. In those models, the cost was 

estimated in terms of the expected return of each technology; in other words, it is the 

amount of energy generated from investing a unit of money, kWh/$. Awerbuch has 

considered the European Union (EU) electricity planning problem and tested various 

scenarios to determine the effects by varying the share of power generation technologies 

that contributes to electricity generation [34]. A case with an only one type of fuel, oil, has 

resulted in a higher risk than that obtained from oil and coal mix. The results of the 

analysis developed in that work showed that existing and the future EU energy portfolio 

mixes were not optimum, as there are other portfolios that has a higher rate of return at 

lower risk; i.e. the latter could be achieved by increasing the percentage of the wind 

energy at the electricity generation mix [34]. Also, Awerbuch concluded that renewable 
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technologies have a significant positive effect on various portfolios and they should be 

included at each efficient mix [34]. 

Arnesano et. al. [37] have extended the work of Awerbuch with special application to Italy 

and considered additional factors. In that study, the life cycle cost of various technologies, 

regulations on carbon emissions, capacity factor, and a quantified analysis of renewables 

future development were added to the model. The authors of that study have integrated 

meteorological and geographical characteristics for a better model implementation at 

various locations. Carbon emission tax implemented by the EU was considered by the 

model; i.e. since 2013 each electric power generating facility pays for its carbon emission 

[37]. Assessing various scenarios, Arnesano et. al. [37] concluded that using more 

diversified portfolios usually results in a higher expected return associated with low risk. In 

addition, the hypothesis of associating renewable and nuclear technologies in the mix was 

tested. The results of that case showed that the latter alternative could result in efficient 

portfolios that has lower risk, high return, and controlled carbon emissions [37]. So, the 

dependency on conventional fossil fuel could be minimized by 66% [37]. Similarly, Delarue 

et. al. [38] have also discussed using of portfolio theory to generate a reduced cost and 

risk generation portfolio mix. Delarue’s model offers an important understanding of 

relationships’ between installed capacity, actual generated power, instantaneous power 

delivery, and ramp limits of conventional power plants. Also, that model has considered 

the variability of wind power that results from randomness of the wind energy. All of these 

factors were modeled and solved as a quadratic constrained problem to determine the 

amounts of installed and generated capacities of various technologies. The results of that 

work recommends that reduced cost and risk portfolios could be achieved by increasing 

the wind power and reducing fossil fuel percentages [38]. 
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2.2. Exergy Based Analysis of Energy Systems  

Since exergy is the thermodynamic characteristic that represents the available work that 

could be extracted from different energy resources, several researchers employed exergy 

based analysis to assess the efficiency of using various natural resources to satisfy energy 

demand. Bilgen et. al. [39] discussed the importance of exergy analysis to improve energy 

usage efficiency and alleviate some of the environmental problems, such as global 

warming, acid rains, and ozone layer depletion. Exergy is used to assess system’s 

departure of a state to a reference environment; it is the most suitable relationship 

between the second law of thermodynamic and effects on the environment. “Exergy 

results from the difference in free enthalpy (Gibbs energy) between energy carriers under 

consideration and the common reference substance in natural environment” [39]. Exergy 

analysis is considered a measure of imperfections of energy systems; hence, possible 

ways of improvements could be identified. In that study, exergy was linked to 

environmental and sustainability concepts [39]. In order to solve dominant environmental 

problems such as global warming, a quantitative performance measure for environmental 

problems is needed. Fortunately, exergy function can be used to model and optimize 

energy conversion systems [39]. Exergy also could be used to explain ecosystems. It 

could be used to describe an agriculture production system, where growth and survival 

could be evaluated in terms of thermodynamics [39]. Therefore, eco-exergy could be used 

as an effective tool to enhance ecological systems management. Industrial ecology is a 

concept that aims to achieve sustainable production systems [39]. It integrates production 

processes, operations, and disposal practices. Applying exergy analysis can result in 

some indicators that reflect characteristics of sustainable power production systems. 
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Therefore, policy makers should consider exergy analysis to identify the potential 

opportunities to achieve sustainability[39]. 

Exergy analysis could also be used in forecasting energy demand, which is one of the 

major planning factors of nationwide scale economies. Brockway et. al. [40] applied this 

approach to China. China is the world’s largest energy consumer; however, there are few 

studies that discuss exergy and useful work in Chinese energy management system [40]. 

The aim of Brockway’s study was to explore the causes for the change of China’s energy 

demand, determine the source of exergy efficiency change, and to forecast the future 

energy demand. Exergy analysis was applied, as it could be used to estimate the 

thermodynamic quality of the energy carriers, while considering the broader energy supply 

chain. A key assumption in that study was that “useful work is a better ‘energy parameter’ 

than primary energy on which to analyze end energy use and economic activity, since it is 

the last thermodynamic place where energy is measured before it is exchanged for energy 

services” [40]. Brockway’s study [40] included an exergy time series analysis that was 

applied to the period of 1971-2010. During this period, the useful work was shown to have 

increased by 10 folds, primary energy consumption has increased by 4 folds, while the 

aggregate exergy efficiency conversion has increased from 5% to 12.5% [40].  

Yan et. al. [41]  discussed the problem of reducing the total energy cost and the exergy 

losses of a whole energy system supply chain. In that study energy costs and exergy 

losses were considered from the generation points to the consumption points. The 

problem addressed by Yan et. al. [41] was modeled as a multi-objective non-linear mixed-

integer optimization model [41]. The formulation of that proposed model was based on the 

fact that “electricity exergy is 100% and the exergy of thermal energy is related to mass 

flow and the temperature of the energy carrier” [41]. This exergy based optimization model 
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aimed at reducing the total energy cost and reducing exergy losses at the energy 

conversion step [41]. Constraints of the model were also developed; at the generation 

level, constraints of capacity, ramping, and fuel consumption were presented [41]. 

Demand side constraints were also developed considering electricity supplied from the 

grid [41]. Single objective function that has a weighted sum of both functions was 

developed [41]. The analysis of that model showed that the major exergy loss occurs 

during the conversion process. The model was run for various cases, and results showed 

that when electricity is used to cover all types of the thermal demand, high exergy losses 

occur. Yan et. al. [41] justified that as the high quality energy carrier (electricity) was used 

to satisfy the low quality demand of thermal loads. 

Somma et. al. [42] applied a multi-objective optimization model that considers both 

economic costs and exergy assessments of distributed energy systems. Authors of that 

study [42] concluded that the application of exergy analysis principles in assessing 

distributed energy systems would improve the efficiency of exploiting primary energy 

resources. Similarly, Kerdan et. al. [43] highlighted that exergy oriented energy policies 

could improve the sustainability of the energy sector. Through the application of an exergy-

based model, energy analysts would be able to define the prospective changes in the 

thermodynamic efficiency of the energy conversion systems due to the future energy 

policies and regulations [43]. Most of the power generation utilities operate with reduced 

efficiencies over their useful lifetime due to various reasons, such as the part-load 

operation upon low demand or availability of natural resources in the case of renewable 

[44]. Colombo et. al. [44] defined a thermoeconomic approach to assess the economic and 

the environmental effects of energy systems considering the inefficiencies in the operation 

of power generation utilities. Therefore, it could be inferred that the integration of the 
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exergy based analysis with energy optimization models would be useful in deriving the 

least cost power generation mix that maximizes the thermodynamic efficiency of the whole 

energy conversion system.  

 

2.3. Bottom-up energy optimization models in Developing Countries 

The relevance of energy modeling frameworks in interpreting emerging and future needs 

of the energy sectors in developing countries, and in shaping their future optimal 

expansion capacities has been addressed by several studies. Pandey et al. [45] have 

highlighted the relevance of having efficient energy policies to avoid the socio-economic 

problems caused by shortage of energy supplies to the production sectors. Bazmi et al. 

[46] described the complexity of developing a valid energy policy, which has to consider 

various technical features related to power generation technologies and other economic 

factors. Recently, the use of bottom-up energy optimization models to shape energy sector 

policies has emerged as a robust and systematic approach to investigate the future 

changes in national energy sectors. Urban et al. [47] identified some of the limitations that 

might hinder applying  bottom-up models in developing countries, highlighting the major 

factors that should be considered for successful application: for instance, consideration of 

unofficial economy, poor performance of electricity generation sector, and accurate 

representations of energy demand by other sectors of the economy.  

Several research efforts were deployed to match the available bottom-up models to 

developing countries energy sectors by considering the formerly stated aspects. For 

instance, building on the available open sources data and geographical information 

systems, the least cost electrification strategy has been defined for Sub-Saharan African 
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countries [21]. TIMES modeling tool [48] was applied to define the optimal energy 

generation capacity expansions in South Africa up to 2050 by considering five different 

demand sectors, with the aim of calculating the overall primary fossil fuels requirements 

and their related environmental impact. In the Asia-Pacific Economic Region, Malaysia and 

other 15 countries set up various MARKAL [49] models that consider the specific features 

of their energy sectors. Eshraghi and Ahadi [50] developed a MILP model to define the 

optimal choices for the energy sector in Iran, comparing the obtained results with the ones 

obtained by an OSeMOSYS modeling framework: both models suggested increase of 

investments in similar technologies. The OSeMOSYS modeling framework was similarly 

applied to define future energy policies in different regions, briefly described in the 

following.  

Considering South America’s available primary resources, Moura et al. [51] concluded that 

installing mega hydropower capacities and connecting the continent’s transmission grids 

would reduce power generation costs and pollutants emissions. Awopone and Zobaa [52] 

applied the OSeMOSYS modelling tool to define the Ghana’s optimum power generation 

mix from 2010 up to 2040, concluding that implementing pollutant emissions constraints 

would result in a more diversified electricity generation mix. Groissböck and Pickl [53] 

applied an OSeMOSYS model generator to address the evolution of Saudi Arabia’s power 

sector assuming various scenarios for fuel prices, concluding that there is an indirect 

relationship between the fossil fuel prices and the amount of emissions produced. Taliotis 

et al. [54] support the significance of deploying energy models in countries where shifts in 

energy policies are expected. In particular, they developed an OSeMOSYS model to plan 

for replacement of oil-fired power plants by natural gas-fired power plants and renewables 

technologies in Cyprus assuming various scenarios and environmental constraints. 
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Welsch et al. [55] enhanced OSeMOSYS model generator by adding some short range 

operational constraints in an attempt to address the operational side of the expected 

energy policies. However, the results of such a model were different from the OSeMOSYS 

model generator version of 2011, and the authors of that study noted the uncertainties 

embedded in forecasting operational numerical data input for a long period ahead. 

Dhakouni et al. [22] assessed the potential of increasing the penetration of renewable 

energy resources in the Tunisian power generation mix. Based on OSeMOSYS model 

framework, the authors of that work concluded that higher energy independence of the 

country could be achieved with minor increases in the costs of the Tunisian electricity 

system [22].  

 

2.4. Energy-Economy Models (Linked Models) 

Bergaman [56] addressed the early trials of assessing of prospective changes in the 

energy supply sectors on the nationwide economy scale using Computed General 

Equilibrium Models (CGE) 2.  As presented in various studies, the majority of the top-down 

models, lack the detailed representation of the energy sectors [14,57,58]. Therefore, the 

significance of linking bottom-up and top-down models to assess the evolution of the 

energy sector on a global economy scale was addressed by several researchers. Both of 

the aforementioned models could be coupled via soft or hard links. In the hard-linked 

models, the bottom-up and Computed General Equilibrium (CGE) models are solved 

 
2 Computed General Equilibrium (CGE) Models [14,61]: are non-linear mathematical 
models. They are based on social accounting matrices, which are derived from input-
output models. CGE models assume a perfect market equilibrium. The objective of CGEs 
to maximize a utility function of an economy considering the capital inputs, labor, and 
economic growth rate.   
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simultaneously within a single code. Jacobsen [59] used a hard-linked model to assess the 

effect of the financial and technical instruments to reduce GHG emission in Denmark. In 

that study, authors applied a bottom-up model to assess variations in final consumption of 

energy commodities driven by technological changes and defined the Danish energy mix 

[59]. Additionally, a top-down model was used to study the relevant changes in economic 

policies (e.g. energy taxes). On a similar way, Bauer et al. [60] proposed REMID-R, a 

hard-linked model, to assess the effect of the timing of the introduction of renewables on 

the public welfare. PRIMS energy model [16] was deployed in several studies to address 

the transformation of European energy system in a detailed technological approach 

considering the influences of market mechanisms, community, and environmental policies. 

In a literature review study, Gargiulo and Gallachóir [15] presented detailed descriptions of 

other linked models, such as MERGE and POLES, etc. specifying the capabilities and 

limitations of each model generator.   

In the category of soft-linked models, both of the bottom-up and top-down are solved 

separately and the result of one of them is utilized as an input for the other. As an 

illustration, Messener et al. [61] proposed a soft-link between MESSAGE (a bottom-up 

model) and MACRO (a computed general equilibrium model) to study the impact of the 

costs of energy supplies on the definition of the energy mix. Similarly, Kober et al. [62] 

applied a soft-linked model to assess various carbon mitigation policies. In that study, the 

substitution of technologies was analyzed via an energy optimization model, while a 

macroeconomic model was deployed to address the implications of increasing carbon 

taxes on decreasing consumers’ spending and diminishing GDP.  

Several researchers have adopted Leontief’s Input-Output Analysis (IOA) model as the 

top-down models applied to derive various environmental implications induced by changes 
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in the energy policy. Starting from a disaggregated environmentally extended IO table of 

UK, Daly et al. [63] calculated the direct and indirect emissions, of all production sectors, 

associated with prospective changes in energy generation mix. On a similar way, Heinrich 

et al. [64] assessed the socio-economic impacts associated with the removal of coal power 

plants from Germany’s power generation mix. They soft-linked Germany’s energy 

optimization and IOA models, concluding that proposed phasing out of coal technologies is 

not sufficient for Germany to reach its target level on GHG emissions [64]. The GHG 

emissions associated with the manufacturing and construction of renewable energy 

systems and their infrastructures were highlighted among the issues related to 

comprehensive assessment of energy policies. Such an issue was addressed by 

Ususbiaga et al. and Mcdowall et al. [65,66] through defining a disaggregated IO tables to 

assess the nationwide GHG emissions related to increasing the installed capacity of 

renewable energy systems. 

It could be inferred from the review presented that soft-linked models enable a flexible and 

a broader spectrum of energy policy analysis, as the mathematical formulation 

inconsistencies between bottom-up and top-down models might hinder the integration 

between models in a hard-linked architecture. 

 

2.5. Previous applications of energy modeling tools to the case of Egypt  

Similar to other developing countries, the evolution of the Egyptian energy sector was 

addressed in both academic literature and funded consultation projects to define the 

optimal future energy strategy. Taliotis et al. [67] have applied OSeMOSYS to assess the 

evolution of the electricity generation sector in Egypt as well as 45 African countries up to 
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2040, assessing the effects of connecting the electricity transmission network and allowing 

the electricity trades with other countries. Based on the results obtained from such a 

model, the total installed capacity in Egypt should exceed 200 GW on 2040 [67]. In a 

similar way, Davidsson and Hagberg [68] applied OSeMOSYS model framework to 18 

African countries, including only industrial, rural and urban electricity demand. The authors 

of those two studies [67,68] assumed a high level of demand aggregation, and without 

considering the exact demand load profile for Egypt. Moreover, in the study of Davidsson 

and Hageberg, wind power technologies were not included in Egypt’s electricity production 

mix, even though Egypt actually has existing wind farms, and plans for many more; indeed 

Egypt’s wind resources are abundant [26,68]. The TIMES model generator was applied to 

model Egyptian energy sector up to 2035 [69], and results have been obtained based on 

various scenarios, such as assuming an increase in the price of the fossil fuels, a 

decrease in the renewable costs, and an introduction of nuclear and coal fired power 

plants within the current energy mix. Based on that study, the installed capacity should be 

130 GW on 2035 to meet the electricity demand, and the expected electricity generation 

mix would include shares of coal, wind, nuclear, and more than 40 GW of solar 

technologies [11]. However, access to TIMES model of Egypt, its exogenous parameters, 

and main assumptions is limited, because that study was performed as a private 

consultancy to the Egyptian government [11] and the information is classified.  

Considering Egypt’s nationwide economy scale, Khorshid [70] provided a representation of 

Egypt’s energy sectors in the framework of Social Accounting Matrices (SAM)3, with an 

aggregate electricity generation sector that includes all the power generation technologies. 

 
3 Social Accounting Matrices (SAM) are expanded input-output tables that cover the 
distribution of the income in within the economy [86].  
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Khorshid SAM model has focused on representing the cost, pricing, and flows of energy 

supplies in both domestic and international markets [70]. In the available literature, there 

computed general equilibrium (CGE) models applied in Egypt [71,72]; unfortunately, such 

models lack the detailed representation of the power generation sectors, as they are 

aggregated with other energy and/or other production sectors [71,72].  

In the present study. The proposed model will consider a detailed description of the power 

generation sector in Egypt, in order to overcome the limitations resulting from the previous 

studies, mainly related to the high level of aggregation of power generation and energy 

demand sectors. The majority of the available literature focuses on the developed 

countries; however, they feature different socio-economic formations from those of the 

developing countries (e.g. market mechanisms). To address this issue, a robust and 

simple soft-link will be developed between two open sources bottom-up and top-down 

models to define the total primary energy consumption and/or other environmental impacts 

on a nationwide economy scale. The developed methodology is modular and generic, so it 

is adaptable to different developing countries’ economies and it could be used to drive 

various economic and environmental indicators to meet the scope of the researchers’ 

various interests.  
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3. CHAPTER 3: Methods and Models 

This chapter introduces the frameworks of: OSeMOSYS, a bottom-up energy optimization 

model and IOA, a linear top-down model, which will be used in this study. In addition, the 

end of this chapter describes the detailed approach of soft-linking the bottom-up and top-

down models. 

 

3.1. Bottom-Up Power Sector Modeling Using OSeMOSYS   

In this study, the OSeMOSYS model generator [20,73] has been used to optimize the 

evolution of the power sector during a defined planning horizon. OSeMOSYS is an open-

source modular linear programming optimization mathematical model that aims at defining 

the least cost energy generation mix while considering some techno-economic constraints. 

Applying OSeMOSYS to satisfy an exogenously defined temporal demand, the minimum 

requirements of installed capacity of each generation technology and its associated 

production of electricity will be determined according to a cost minimization criterion. 

Accordingly, the endogenous variables of direct primary energy consumption and direct 

emissions production due to the defined power generation mix will be determined. The 

functional constraints of OSeMOSYS assure that installations of new capacities will be 

confined to the defined upper and lower limits on the parameters of the investments, the 

environmental constraints, and the availability of natural resources. In this sub-section, the 

OSeMOSYS modeling framework will be described, identifying the logic and the major 

components of the model.  
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The framework of OSeMOSYS modeling tool  

Similar to other linear programming models, OSeMOSYS modeling tool is composed of 

exogenous and endogenous parameters, an objective function, and functional constraints. 

The logic of OSeMOSYS is based on the integration of seven aspects affecting the 

definition of the least cost energy mix, which are called blocks in the terminology of 

OSeMOSYS. Specifically, those blocks are: (1) the objective of the model, (2) costs, (3) 

storage, (4) capacity adequacy, (5) energy balance, (6) constraints, and (7) emissions. 

Thanks to the modular nature of OSeMOSYS, each of those blocks could be extended to 

cover various energy sectors, i.e. the power sector and/or other energy sectors, such as 

transportation sector, by adding the related information of the various sectors. Those 

blocks could be explained as follows [20,73]: 

1. the objective of the model: the basic version of OSeMOSYS aims at defining the 

least cost energy mix to be employed to satisfy a temporally and spatially defined 

demand. In particular, the least sum of the net present value (NPV) [74] of the 

annual costs associated with the various feasible solutions will be selected as the 

global minimum value of the model.  

2. the costs:  this block represents the total cost incurred by each technology during 

the whole planning period of the proposed study. Such costs will be discounted to 

the first year of study based on a given discount rate. The total costs are 

decomposed to three categories: the operating costs, the capital costs, and the 

salvage value (generally a negative term in the equation of the cost). The operating 

costs are variable and they are related to the output of each technology. The capital 

costs, are the investments costs associated with installation of new capacities.  
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The salvage value[74,75], refers to the monetary value of the installed capacity at 

the end of its useful life. Calculating salvage value of an installed capacity of a 

certain technology depends on: 1- the accounting principle at which the 

depreciation rate is calculated; 2- the useful lifetime over which the technology is 

operating [74]. Specifically, if the power plant has an operational life which is shorter 

than the model temporal horizon, the salvage value of it will be zero by the end of 

its useful lifetime until the last year of the analysis and will coincide its scrap value. 

On the other hand, if the useful lifetime of another power plant is greater than the 

model planning horizon, its salvage value will be determined based on a 

depreciation rate, defined by the energy analyst. It is worth to note that in some 

cases, the disposal of a certain asset might require additional expenses [74]. For 

such cases, those expenses have to be deducted from the cash inflows (selling of 

the asset) to obtain the net salvage value. For example, the net salvage value of a 

nuclear power plant is a negative value, since the required expenses associated 

with handling nuclear waste is higher than the scrap value of the assets of nuclear 

power plants.  

3. the storage: this block represents the storage technologies with their different 

capacities and operational characteristics. OSeMOSYS allows energy analysts to 

represent the various storage technologies, such as the pumped hydro-storage, 

compressed air storage, and flywheel storage in details by specifying the time 

periods and the rates at which energy will be stored or released. System storage 

can have a marked effect on reducing installed capacity, by shaving off load peaks.  

4. the capacity adequacy: to assure the continuity of the electrical energy supply, the 

installed capacity of the various energy conversion technologies should be able to 
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generate the electrical energy needed to meet the instantaneous demand. 

OSeMOSYS accounts for the accumulation of the installed capacities over the 

whole planning horizon as well as the derating factors, such as the availability and 

capacity factors. The availability factor (a number less than 1), specifies the 

percentage of a year, during which a power generation technology is expected to be 

operating. In other words, the higher the availability factor, the less the total period 

at which each of the studied technologies will not be operating, for example due to 

scheduled and unscheduled maintenance, and breakdowns. Additionally, the 

capacity factor is attributed to exogenously defined time-slices4, to account for time 

intervals during which technologies might not be operating due to the unavailability 

of the natural resources or operating below the rated capacity; e.g. solar and wind 

energy resources which are highly variable and random.  

5. the energy adequacy: Energy adequacy considers the efficiency of the energy 

conversion technologies under different modes of operations5. In addition, the 

representation of the energy adequacy allows for estimating the total requirements 

of primary energy resources (renewables and non-renewables) needed to be 

converted to satisfy the forecasted demand.  

6. the constraints: OSeMOSYS includes various functional constraints that are 

imposed exogenously. Among others, limitations on the availability of natural 

resources, upper and lower bounds on investments in some technologies, and/or 

targets for certain penetration of renewable technologies.  

 
4 Time-slices: a set of time intervals to describe time fractions of a year. For example, a 
time-slice could be defined in terms of seasons, months, and the time of the day.  
5 Mode of operations: generation technologies could be working on different modes that 
produce different energy commodities, such as the electrical energy and the heat 
produced by combined cycle power plants.  
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7. the emissions accounting: the emission accounting in OSeMOSYS allows the 

energy analyst to estimate the direct emission of one or more pollutants from each 

generation technology under different modes of operation. Also, it allows for 

calculating the emission penalty according to a predefined penalty cost (monetary 

unit per unit of weight of the pollutant released during the energy conversion 

process). Furthermore, the block of emission accounting is formulated to estimate 

and impose upper-bound constraints on the emissions released by the energy 

system annually and during the whole planning horizon.  

The main sets6 of OSeMOSYS are highlighted in Table 1. Table 2 displays the main 

exogenous parameters, which are the inputs to the model; e.g. costs, upper and lower 

limits on constraints, capacity factor, etc. Whereas, Table 3 displays the endogenous 

parameters that will be defined by OSeMOSYS [20,73].  

 

Table 1. Definition of the sets in OSeMOSYS model generator 

Set Description 

𝒓 Region considered in the model 

𝒕 Technology: represents any element that produces energy. In OSeMOSYS 
natural resources are also referred to as technology. In power generation, 
transmission and distribution are also treated as technologies. Technologies 
are represented as boxes in the Reference Energy System (RES), as shown 
in Figure 2. 

𝒍 Time-slices: represents the time fractions of the year. This is a traditional 
approach in all energy model frameworks to allow temporal description of 
the annual demands. 

𝒇 Fuel: represents the energy carriers produced form each technology. Fuels 
are represented by lines in RES. 

 
6 Sets: are the indices to which the exogenous and endogenous parameters will attributed 
too. 
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𝒎 Mode of operation of technologies. It might happen that a specific 
technology(s) has more than one mode of operation: e.g. the Combined 
Heat and Power (CHP) plants could be operating on several modes. 

𝒆 Emission streams considered in the model: e.g. carbon dioxide and Nitrogen 
oxide. 

𝒚 Year in the temporal horizon considered by the model. 

 

Table 2. Main exogenous parameters in OSeMOSYS model generator 

Exogenous Parameter Description 

𝑰𝒏𝒑𝒖𝒕𝑨𝒄𝒕𝒊𝒗𝒊𝒕𝒚𝑹𝒂𝒕𝒊𝒐 [𝒚, 𝒕, 𝒇, 𝒎, 𝒓] The required number of units of fuel to produce 
one-unit production by the technology. It is 
calculated as the inverse of the efficiency in 
power generation technologies.  

𝑪𝒂𝒑𝒊𝒕𝒂𝒍𝑪𝒐𝒔𝒕 [ 𝒚, 𝒕, 𝒓] The investment cost associated with installing 
new capacities (monetary unit / power unit)  

𝑽𝒂𝒓𝒊𝒃𝒂𝒍𝒆𝑪𝒐𝒔𝒕 [𝒚, 𝒕, 𝒎, 𝒓] The operating costs of producing one unit of 
energy by the considered technologies ( 
monetary unit / energy unit) 

𝑹𝑬𝑴𝒊𝒏𝒊𝒎𝒖𝒎𝑷𝒓𝒐𝒅𝒄𝒖𝒕𝒊𝒐𝒏𝑻𝒂𝒓𝒈𝒆𝒕 [𝒓, 𝒚] The required share of renewables penetration 
at the annual power generation mix (%) 

𝑻𝒐𝒕𝒂𝒍𝑨𝒏𝒏𝒖𝒂𝒍𝑴𝒂𝒙𝑪𝒂𝒑𝒊𝒄𝒊𝒕𝒚 [𝒚, 𝒕. 𝒓] The upper bound limit of installing new 
capacities (power unit)  

𝑻𝒐𝒕𝒂𝒍𝑨𝒏𝒏𝒖𝒂𝒍𝑴𝒊𝒏𝑪𝒂𝒑𝒊𝒄𝒊𝒕𝒚 [𝒚, 𝒕. 𝒓] The minimum amount of capacity of each 
technology that should be installed (power 
unit)   

𝑬𝒎𝒊𝒔𝒔𝒊𝒐𝒏𝑨𝒄𝒕𝒊𝒗𝒊𝒕𝒚𝑹𝒂𝒕𝒊𝒐 [𝒚, 𝒕, 𝒆, 𝒎, 𝒓] The amount of emissions produced during the 
operation of the technology ( weight unit / 
energy unit) 

𝑨𝒏𝒏𝒖𝒂𝒍𝑬𝒎𝒊𝒔𝒔𝒊𝒐𝒏𝑳𝒊𝒎𝒊𝒕 [𝒚, 𝒆, 𝒓] The upper limit on the level of emissions to be 
produced by the considered technologies in 
the model (weight units) 

  

Table 3. Main endogenous parameters in OSeMOSYS 

Endogenous Parameter Description 

𝑵𝒆𝒘𝑪𝒂𝒑𝒂𝒄𝒊𝒕𝒚 [𝒓, 𝒕, 𝒚] The new installed capacity (power units) of 
technology t in year y and in region r.  
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𝑹𝒂𝒕𝒆𝑶𝒇𝑨𝒄𝒕𝒊𝒗𝒊𝒕𝒚 [𝒓, 𝒍, 𝒕, 𝒎, 𝒚] The energy output (energy units) produced by 
technology t at mode m, year y, and time-slice 
l.  

𝑹𝒂𝒕𝒆𝑶𝒇𝑼𝒔𝒆𝑩𝒚𝑻𝒆𝒄𝒉𝒏𝒐𝒍𝒐𝒈𝒚 [𝒓, 𝒍, 𝒕, 𝒇, 𝒚] The amount of fuel f (energy units) that is 
required by technology t, in region r, in year y, 
and in time-slice l.  

𝑨𝒏𝒏𝒖𝒂𝒍𝑬𝒎𝒊𝒔𝒔𝒊𝒐𝒏 [𝒚, 𝒆, 𝒓] The total amount of emission e ( weight units) 
produced in year y, and in region r.  

 

In this research OSeMOSYS-Egypt, was developed by defining parameters of 

OSeMOSYS modelling tool according to Egypt’s power sector, which are presented in the 

following sub-section. 

 

3.2. Definition of Egypt’s Reference Energy System 

This section provides the definition and implementation of the Egyptian Reference Energy 

System (RES) in the OSeMOSYS-Egypt model. Moreover, the main exogenous 

parameters are presented here based on the analyzed energy scenario. They have been 

deduced from some scientific publications [68,76,77] and from grey literature, including 

reports by EEHC [26], World Bank [25] and IEA [1].  

A Reference Energy System (RES) is the basic structure of all the energy modeling 

framework. It consists of a graphic representation of the structure of the power generation 

sector. It is generally composed of four tiers, comprising: 1- Primary energy supply, 2- 

Power generation technologies, 3- Transmission and distribution infrastructures and 4- 

Final demand sectors. The RES adopted for the OSeMOSYS-Egypt model is presented in 

Figure 2 and is described in the following: 
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Figure 2. Egypt's Reference Energy System (RES). 

 

Primary energy supply. It represents energy resources that contribute to electricity 

generation; that is, the maximum allowable resources capacities that could be exploited by 

each technology. Some of them have been disaggregated according to their supply origin 

(i.e. domestic vs imported), to enable the application of resources bounding constraints 

like additional transport costs or availability limits. Similarly, renewable solar and wind 

energy resources are categorized under different power generation technologies that 

might be constrained by geographical locations, such as the land resources needed for 

solar energy applications and suitable wind farm sits. Six different primary energy supplies 
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are available in the Egyptian context (see Table 4): non-renewables (Coal, Natural Gas 

and Nuclear resources) and Renewables (Wind, Hydro and Solar Radiation).  

Although there is a limited utilization of the heavy diesel in some thermal power plants, the 

heavy diesel is not considered among the energy resources in this study. This could be 

justified by the Egyptian government’s short-term plan of replacing the heavy diesel with 

natural gas in all power plants [26]; i.e. there is a constraint of not using heavy diesel in 

thermal power plants in the future energy mix of Egypt.   

Power generation technologies. The available power technologies convert primary 

energy supplies into electricity. Thirteen types of power technologies are available in the 

Egyptian RES (see Table 5), which are classified based on their input energy resources. 

Hydroelectric plants include all the hydropower technologies currently available in Egypt, 

which comprise the hydropower plants installed on the Nile stream; namely, the High dam 

and Aswan dam. Their primary objective, however, is the regulation of irrigation water and 

hence their control is not optimized for meeting energy demand. Other renewable 

technologies includes photovoltaic (PV) plants (both centralized PV plants and localized 

rooftop installations), and wind farms. Natural gas is simultaneously fed to five 

technologies: steam cycles, simple gas cycles, combined cycles, combined heat and 

power cycles and hybrid concentrated solar power plants. Other non-renewables include 

ultra-super critical (USC) coal plants (traditional coal-fired technology are not available due 

to the lack of domestic coal supply), and nuclear plants. Finally, due to the proposed 

connection of the national electricity grid to neighboring countries’ grids, high voltage 

electricity imports are considered as a fictitious power generation technology. The main 

references employed in the present work for the estimation of fixed and variable costs of 

power technologies are Davidsson et al. [78], US EIA [79] and IRENA [80]. 



48 

 

Transmission and distribution infrastructures. This tier defines technical features for 

connecting power generation with end users. In particular, transmission infrastructures 

receive high voltage electricity and deliver it to the distribution infrastructure at different 

voltages. The latter is disaggregated into three categories to enable a separate allocation 

of power distribution losses: distribution to industrial demand (Dist.Ind), distribution to 

general demand (Dist.Gen) and distribution to agriculture demand (Dist.Agri). 

 

Table 4. Main features of the energy resources available in the Egyptian RES. 

Energy Resource Acronym 

Hydropower resources HYD 

Natural Gas (domestic 

production) 

NG-Local 

Natural Gas (imports) NG-

Imports 

Solar power available for 

Photovoltaic 

SOLPV 

Solar power available for CSP SOLCSP 

Wind power  WND 

Coal power (imports) Coal  

Nuclear power NUC Res 

 

 

Table 5. Main features of the power technologies available in the Egyptian RES [78–81]. 

Power technology name Acronym 
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Hydroelectric plant Hydro.PP - 395 0 

Photovoltaic large utility 

plant 

PVL - 2200 72 

Photovoltaic rooftop plant PV.roof - 2100 86 
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Concentrated Solar 

Power  

CSP.PP - 3647 80 

Wind plants Wind.PP - 2600 52 

Steam cycle NG.SCPP 35 900 59 

Simple gas cycle NG.GCPP 33 730 72 

Combined cycle NG.CCPP 45 1423 10 

Combined heat and 

power 

NG.CHP 85 1140 24 

Hybrid CSP plant CSPNG.PP - 1687 59 

Ultra Super Critical cycle Coal.PP 37 3519     3 

Nuclear plant Nucl.PP 33 10778 4 

High Voltage Import HVI - - - 

  

Final demand. Electrical energy demand is classified into seven categories: residential, 

industrial, commercial, governmental, public lighting, agriculture and others (including 

ancillary activities).  

 

3.3. OSeMOSYS-Egypt: setup and application 

The Egyptian RES defined in the previous section has been introduced in the OSeMOSYS 

open-source energy modeling framework [20], together with other exogenous parameters  

introduced here, and hence resulting in the OSeMOSYS-Egypt model. The model defines 

the least-cost mix of power technologies that should be deployed and operated to satisfy a 

temporal and spatial energy demand subjected to a set of technical and economic binding 

constraints. Accuracy of exogenous parameters provided to the model, such as the cost of 

technologies and the related efficiencies, is of paramount relevance to obtain reliable 

results. OSeMOSYS-Egypt considers a spatial scope of a single-region economy, in a time 

horizon between 2008 and 2040. For the period between 2008 and 2015, the model has 



50 

 

been calibrated by considering the data available from EEHC, while for future years until 

2040 electricity demand has been derived from scenarios data.  

 

3.3.1. Energy scenarios definition 

The OSeMOSYS-Egypt model has here been adopted to analyze two different electricity 

demand scenarios: 

IEA New Policies Scenario.  This scenario has been defined by the International 

Energy Agency (IEA) in 2016 [1] considering the implementation of policies already 

defined or at least announced by world countries, and the way that such policies 

could be extended to consider the new intentions made by countries to reduce the 

global emissions as announced at COP21.  

This scenario is relevant in analyzing Egypt’s power sector, as the data revealed by 

IEA is the most common source used for the projections and analysis of energy 

markets [82], with a number of citations referring to this data exceeding 700. Also, it 

is vital to address the evolution of Egypt’s power sector considering the 

comprehensiveness of the methods applied to define the demand growth according 

to this scenario.  The projections of the demand on electrical energy given by IEA 

New Policies Scenario have been generated by, with the aid of World Energy Model 

(WEM) [1], a large-scale simulation tool developed by IEA. The WEM forecasts the 

performance of energy markets over a long planning time period. WEM [1] 

considers the effects of the improvements in current technologies, the growth of the 

power sector, end-users prices, greenhouse-gases emissions, and the trends of 

investments in energy sectors. The data required for the WEM [1] (e.g. energy 
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demands, supplies, and prices) is acquired from IEA historical data, authorities in 

IEA member and non-member countries, and other collaborating institutions, such 

as IRENA.   

Referring to the New Policies Scenario [1], Egypt is considered one of the Middle 

Eastern countries in this study, where the Compounded Average Annual Growth 

Rate (CAAGR) of electricity demand is 2.6% for the period between 2014 and 2040. 

 

BMI Scenario. This scenario has been defined by Business Monitor International 

(BMI), a Fitch Group Company [83] based on market researches related to the 

growth in demand on energy commodities in Egypt, specifically. Hence, it provides 

more accurate estimates of annual growth in demand on electrical energy than 

those provided by the IEA New Policies Scenario, in which a generalized forecast 

for all Middle Eastern countries was applied. The BMI methodology is based on a 

regression models; precisely, the “autoregressive moving average method” [83]. 

This regression model considers the historical consumption of electricity, 

population, GDP, and industrial production. BMI incorporates data from different 

institutions, such as the Egyptian government, the World Bank, and publicly and 

privately owned companies [83]. 

According to the BMI forecasts [83], the aggregate increase in electricity demand is 

defined until 2024, ranging between 3.8% and 5%, while after 2025 up to 2040 it is 

assumed to be constant and equal to year 2024 (3.8%)7. Shares in energy 

consumed by each national sector are kept constant and equal to the baseline year. 

 
7 Author’s own assumption due to the limitations of data availability  
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Figure 3. Evolution of the Egyptian electricity demand for IEA (A), data from [1,26], and 

BMI scenarios (B), data from [26,83]. 

 

Notice that the above introduced scenarios define several other features related to the 

evolution of the energy sector at large, including the prospected change in energy 

consumption modes of other sectors of the economy, like industry and transport. However, 

only future increase in electricity demand is assumed as exogenous data for the 

OSeMOSYS-Egypt model. 
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The evolution of the Egyptian electricity demand based on the two selected scenarios is 

represented in Figure 3: while under the BMI scenario, show in Figure 3 (subplot a) it 

approximately reaches 350 TWh in 2040, under the IEA scenario it equals 234 TWh, 

shown in of Figure 3 (subplot b). The discrepancy in Egypt’s electricity demand forecasted 

by the two aforementioned scenarios could be explained by the fact that in IEA scenarios 

Egypt’s electricity demand growth rates are given as aggregates of the Middle East 

countries, so this value might be affected by the level of spatial demand aggregation. For 

both scenarios, it can be inferred that residential and industrial demands are the major 

drivers for the increased demand on electricity, as displayed in Figure 3 (subplots A and 

B). 

 

3.3.2. Definition of other exogenous parameters 

Definition of the other fundamental exogenous inputs required to setup the OSeMOSYS-

Egypt model are here described. Regarding the temporal attribute of the electricity 

demand, each year of the considered time horizon has been divided into a set of time- 

slices, and for each slice the type of electricity users have been identified. The set of time- 

slices has been derived by analyzing the monthly and hourly electricity load profiles 

provided by the Egyptian Electricity Holding Company (EEHC) [26], represented in Figure 

4 (respectively in plots a and b).  

As shown in Figure 4 (a), each year of the planning horizon has been divided into 5 

seasons: S1-S5. For instance, the season of S1 represents the low peak-load months from 

January to April. Similarly, S3 represents the high peak-load months of June, July, and 

August. Additionally, the electricity peak-load varies according to the hour of the day. 
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Therefore, each day has been divided into three hourly time intervals: namely, D1-D3, 

shown in Figure 4 (b), where the interval D3 extends from 7 p.m. to 4 a.m. next day. By 

coupling the monthly and hourly analysis, each year of the planning horizon has been 

divided into 15 times interval (S1D1, S1D2, S1D3, S2D1… S5D3). To illustrate, the time 

interval S1D2 could be defined as the sum of the hours of D2 (from 4 a.m. to 12 p.m.) 

during the months of S1.  

A comprehensive and compact picture of temporal attribute of the electrical energy 

demand for each time-slice is represented in Figure 5 for year 2015: the electricity demand 

has been divided into a number of monthly intervals, subdivided in turn into different daily 

intervals [26]. According to the representation revealed in Figure 4, the coupling of the 

defined monthly and daily intervals results in 15 columns (time slices), covering the whole 

year. The height of each column is proportional to the average energy demand in each of 

the time-slices of the year, while its width is proportional to the fraction of time (%) per year 

on which this energy is required. Therefore, the amount of electrical energy needed by 

each user type over the typical year is proportional to the sum of area of the rectangle for 

this user over the entire year. The demand of the residential sector occurs mainly during 

night hours (D3), while the largest portion of the governmental electricity demand takes 

place during the daytime hour intervals (D1, D2); hence the largest area for the residential 

sector are displayed for the slices attributed to D3, whereas the largest ones for the 

governmental electricity demand are displayed for the slices attributed to D1 and D2. 
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Figure 4. Egypt's peak load profile in years 2014-2015; (a) monthly and (b) hourly yearly 

averaged demand, data [26]. 
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Figure 5. Sectoral Demand profiles over year time-slices for years 2014-2015, data [26]. 

 

The total energy conversion efficiency, the availability and the capacity factors of each 

generating technology and the related CO2 emissions have been derived from EEHC 

reports [26] and from recent literature [84]. Economic cost of each technology is 

represented in the model by two parameters: fixed and variable costs [68]. Discount rate 

has been specified in the model at 22%, as it increased rapidly and significantly in Egypt 

during recent years, according to the Egyptian Central Bank data8; however, a sensitivity 

analysis of the effect of the discount rate on results was performed.   

Other constraints imposed in the OSeMOSYS-Egypt model concern the upper and lower 

bounds for endogenous variables (i.e. installed capacities): for hydropower technologies, 

the maximum installed capacity is defined as 2.8 GW (corresponding to the current 

installed capacity), due to the lack of available additional hydro resources. 

 
8
 Egyptian Central Bank: 

http://www.cbe.org.eg/en/EconomicResearch/Statistics/Pages/MonthlyInterestRatesHistori
cal.aspx, accessed in 05-10-2017.  
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The developed bottom-up model, OSeMOSYS-Egypt is solved using the open source 

GNU Linear Programming Kit (GLPK) solver version 2012 [85], where the simplex 

algorithm is applied to define the objective function of the model; i.e. the least cost power 

generation mix. 

 

3.4. Top-Down Multi-sector Modeling  

Leontief’s Input Output Comparative Static Analysis (IOA) has been selected and applied 

as the top-down modeling approach. IOA, refers to the economic analytical framework 

developed by Wassily Leontief in late 1930s; due to his remarkable contribution he was 

awarded Nobel Prize in 1973 [86]. The primary objective of IOA is to analyze the 

interdependence of production sectors within the boundaries of an economy. Leontief’s 

IOA has been successfully applied for approximately 75 years as one of the most 

commonly applied economic analysis methodologies. The basic form of IOA is a system of 

linear equations that define the distribution of the output of each production sector 

(industry) to the other production sectors and the final demand.  

As illustrated in Table 6, IOA tables are usually formulated from the historical data of the 

monetary transactions among the production sectors of the considered geographical area, 

e.g. state, country, continent, etc. Denoted by the interindustry transactions, IO tables give 

the information about the transactions from each production sector to itself and the other 

sectors. For example, part of the output of the agriculture sector is usually consumed by 

the sector itself, and part of the remainder is consumed by the other economic sectors of 

the economy, such as tourism, mining, power generation, etc. The final demand denotes 

the part of the output that is consumed by the households, government purchases and the 
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exports made outside the boundaries of the studied economy. The rows denoted by value 

added, represent a stream of inputs (other than industrial) to the production of the 

economy, such as the compensation paid to the employee and the government taxes.  

 

Table 6. Example of the structure of Input-Output tables for a country [86] 
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In this research, the simple IOA model is applied using the open source Full Eora 26 Multi-

Regional Input Output 2015 Tables (Eora 26) [86,87]. Hopefully, this data set suits the 

application of IOA in developing countries, for the following reasons: (1) it is an open-

source that covers 187 countries where the production sectors are arranged in 26 sectors; 

(2) Eora 26 data set includes 35 environmental extensions, such as air pollution, resources 

extraction, water consumption, etc.  
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As a limitation, the original format of Eora 26 hinders its integration to the results of 

bottom-up model because of the high level of aggregation of the electricity generation, 

transmission, and distribution as well as gas and water consumption in one production 

sector. Therefore, to achieve the required soft-link, the sector of electricity, gas and water 

dataset provided by Eora 26 has been disaggregated to the level of power generation 

technologies. The adopted disaggregation approach is based mainly on the method 

developed by Lindner et al. to disaggregate the Chinse electricity generation sector [88]; it 

will be described subsequently. Due to the fact that input-output tables are based on the 

information provided by the national accounts, the data needed for applying 

disaggregation has been acquired from the available official national reports [26]. This 

approach is classified as a heuristic approach, as authors’ own assumptions were applied 

when the required data for disaggregation were in sufficient.  

The approach of the disaggregation starts with defining a balanced9 national Eora 26 IO 

table for the country of study.     

 

3.4.1. Disaggregation of IO tables 

Egypt’s balanced IO table has been extracted from full Eora 26 dataset, using the RStudio 

code [89], provided in Appendix A: The RStudio Code for Defining Egypt’s Balanced IO 

table Using EORA 26 Dataset. The imports were treated as exogenous transactions in this 

study. As shown in Table 7, in the original format of Egypt’s balanced IO 26 sectors, the 

electricity, gas, and water sector is labeled as sector 13. For an easier handling of the IO 

 
9 The IO table of a national economy should be balanced; i.e. the total output of all of the 
production sectors (sum of the sums of the columns in monetary value) should be equal to 
the total outlays (the sum of sums of the rows in monetary value) [86]. 
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table, sector 13 (electricity, gas, and water) is moved to be sector 26, the last sector at 

Egypt’s IO table, as presented in Table 11 of Appendix B: Egypt EORA 26 Tables. As 

illustrated by Figure 6, the steps of disaggregation was applied at a hierarchical approach 

as follows and the resulting table from each step is shown in the tables of Appendix B: 

Egypt EORA 26 Tables;  

Table 7. Rows and columns Order of production sectors of Egypt's EORA 26 IO table 

1 Agriculture 

2 Fishing 

3 Mining and Quarrying 

4 Food & Beverages 

5 Textiles and Wearing Apparel 

6 Wood and Paper 

7 Petroleum, Chemical and Non-Metallic Mineral Products 

8 Metal Products 

9 Electrical and Machinery 

10 Transport Equipment 

11 Other Manufacturing 

12 Recycling 

13 Electricity, Gas and Water 

14 Construction 

15 Maintenance and Repair 

16 Wholesale Trade 

17 Retail Trade 

18 Hotels and Restaurants 

19 Transport 

20 Post and Telecommunications 

21 Financial Intermediation and Business Activities 

22 Public Administration 

23 Education, Health and Other Services 

24 Private Households 

25 Others 

26 Re-export & Re-import 
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Figure 6. Presentation of the hierarchy of disaggregation approach 

 

I. Disaggregation of the target sector into main commodities: 

The original aggregated sector (electricity, gas, and water) is disaggregated into two 

sectors: a- gas and water sector; b- electricity sector, as presented in Table 12  of 

Appendix B: Egypt EORA 26 Tables. As presented in the previous studies by Marriot [90] 

and Lindner et. al  [88] and due to the limitations of data availability, this step is performed 

according to the ratio of the investment in the electricity sector to the total production of the 

original aggregated sector (sector 26 of Table 11 (Appendix B)). In 2015, Egypt had 

investments in the electricity sector approximately 70% [26,87] of the total investments 

made in the sectors of electricity, gas and water. Hence, in Table 12 Appendix B, the new 

rows, sector 26New (total production in monetary values the gas and water sector) and 

sector 27 (total production in monetary values of the electricity sector), are defined by 

multiplying each cell of the 26th row in Table 11 (Appendix B) by the weights of 30% and 
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70%, respectively. Similarly, the new columns, sector 26New (total consumption of the gas 

and water sector from the other sectors) and sector 27 (total consumption of electricity 

sector from the other sectors), are defined by multiplying each cell of the 26th column in 

Table 11 (Appendix B) by the aforementioned weights, respectively.  

Defining intra-cells, as the cells which represent the monetary transactions between the 

disaggregated sectors and themselves; they are defined by multiplying the original 26th 

sector in Table 11 (Appendix B) (electricity gas and water) aggregated value of its own 

consumption by the defined weights of the disaggregated rows and columns.  

 

II. disaggregation of the new sector of electricity: 

The electricity sector, the 27th sector in Table 12 (Appendix B), is furtherly disaggregated 

to the sectors of: a- the electricity Transmission and Distribution (TD) sector; b- the 

electricity generation sector. Similar to the disaggregation principle presented in the 

previous disaggregation step I, this disaggregation step is performed according to the 

ratios of investments  of the electricity TD (35%) and electricity generation (65%) [26,91] to 

the total production of the aggregated electricity sector, the 27th sector in Table 12 

(Appendix B). Therefore, as displayed Table 13 (Appendix B) IO table will include the 

sectors 27New (electricity transmission and distribution) and 28 (electricity generation). In 

particular, the rows of the 27New sector (total production in monetary values from the 

electricity TD sector) and the 28th sector (total production in monetary values from the 

electricity generation sector), are defined by multiplying each cell of the 27th row in Table 

12 (Appendix B) by 35% and 65%, respectively. The new disaggregated columns of the 
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27New sector (electricity TD) and 28th sector (electricity generation) as well as the intra-cells 

are defined by following the abovementioned procedures of the disaggregation step I.  

 

III. disaggregation to the level of power generation technologies: 

In this step the electricity generation sector, the 28th sector in Table 13 (Appendix B), is 

disaggregated to the level of the power generation technologies to allow for the coupling 

with the bottom-up energy optimization model. The disaggregated IO table of this step is 

displayed in Table 14 (Appendix B), and the procedure of the disaggregation of rows and 

columns of the IO table after the disaggregation step II (shown in Table 13 (Appendix B)) 

is performed as follows: 

• disaggregation of the 28th row in Table 13 (Appendix B) (total production of the 

electricity generation sector): 

It is assumed that the electricity production is delivered to the final demand sectors and the 

production sectors via one transmission and distribution grid to which is also connected to 

all of the production sectors. The disaggregated sector 28 in Table 13 (Appendix B) is 

furtherly disaggregated to 28New+m sectors, where m+1 is the number of generating 

technologies, by considering the share of each technology in the total power generation 

mix [26], as illustrated in section 1.4. For instance, as displayed in Table 14 (Appendix B), 

the total electrical energy production from the hydro-power generation, the 28New sector, is 

defined by multiplying each cell of the 28th row in Table 13 (Appendix B) by 7.2%, which 

represent the share of the hydro-power generation in Egypt’s 2015 power generation mix 

[26]. The same is applied to the other power generation technologies represented in Table 

14 (Appendix B).        
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• disaggregation of the 28th column in Table 13 (Appendix B) (the consumption of the 

electricity generation sector from the other sectors): 

It is worth to note that the consumption of goods and services by power plants from the 

various production sectors varies according to the type of the power generation plant. To 

illustrate, the monetary transactions from the petrochemical industry sector to wind farms 

is different from that is sent to fossil fuel power plants [88]. Furthermore, the data of 

various goods and services consumption by power plants is hardly to be recovered in the 

developing countries. Therefore, the author has applied the following assumptions in order 

to disaggregate the 28th column in Table 13 (Appendix B) to the level of the power 

generation technologies:   

o It has been assumed that only the fossil-fuels based production sectors; namely, 

sector 3, sector 7 and sector 26New at the disaggregated IO Table 13 (Appendix 

B), have transactions with fossil-fuel based power plants and, have zero 

transactions, with renewable energy based power plants. Considering those 

three fossil-fuel based sectors, the disaggregation of 28th column in Table 13 

(Appendix B) is performed according to the share of the natural gas 

consumption by each of the thermal power plants in the total consumption of 

natural gas by all of the thermal power plants in Egypt; namely, 50.7% for the 

steam cycle power plants, 14.7% for the simple gas cycle power plants, and 

34.5% for the combined cycle power plants [26]. For example, the monetary 

transactions from each of sector 3, sector 7 and sector 26New at the 

disaggregated IO Table 14 (Appendix B) to the sector 28New (hydro-power 

generation) Table 14 (Appendix B) is zero, since hydro-power generation is 

considered a renewable energy based power generation technology. On the 
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other hand, the monetary transaction from each of the sectors sector 3, sector 7 

and sector 26New at the disaggregated IO Table 14 (Appendix B) to the sector 29 

(steam-cycle power plants) in Table 14 (Appendix B), is defined by multiplying 

each cell of 28th column in Table 13, by 50.7%.   

o The production sectors, other than sector 3, sector 7 and sector 26New at the 

disaggregated IO Table 14 (Appendix B), are assumed to have monetary 

transactions with all of the power generation technologies. The monetary 

transactions from such production sectors to the disaggregated power 

generation sectors, displayed in Table 14 (Appendix B), are defined by 

calculating the share of each power generation technology in the total cost of 

power generation in Egypt [26] based on the Levelized Cost of Energy10 (LCOE) 

given by IEA [1]; namely, 0.2 % for hydro-power generation, 36.5% for the 

steam-cycle power generation, 23.3% for the simple-gas cycle power plants, 

38.7% for the combined-cycle power plants, 1.1% for the wind farms, and 0.2% 

for the solar energy based power generation. For example, the column 28New 

(hydro-power generation) in Table 14 (Appendix B) is defined by multiplying 

each cell of the 28th column in Table 13 by 0.2%.      

o Considering the intra-cells, intersection between the power generation sectors 

and themselves. As shown in Table 14 (Appendix B), these cells are 

represented as a diagonal matrix, where each coefficient in the diagonal of the 

 
10 Levelized Cost of Energy (LCOE): as defined by IEA [1], is the average cost of the 
electrical energy produced by a given power plant considering, the capital costs, debt 
serving costs, operating and maintenance costs, fuel costs, and decommissioning costs. 
LCOE could be also defined as the minimum average price of electrical energy produced 
by a power plant to recover the all of associated costs over the lifetime of the project; i.e., 
the lifetime of the power plants.  
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matrix is defined by multiplying the intra-cell of the electricity generation sector 

(28th sector in Table 13 (Appendix B)) by the share of each power generation 

technology in the electricity generation mix (represented in section 1.4) [26]. For 

instance, the intra-cell of sector 28New (hydro-power generation) is defined by 

multiplying the intra-cell of the electricity generation sector (28th sector in Table 

13 (Appendix B)) by 7%.   

• Disaggregation of the exogenous resources consumed and/or produced by the 

aggregated 26th sector (electricity, gas, and water) in Table 11 (Appendix B) to the level 

of electricity generation sectors, presented in Table 14 (Appendix B).  

o CO2 Emissions: it has been assumed that both the electricity TD and renewable 

power generation technologies have zero CO2 emissions. Considering the fossil-

fuel based power generation technologies, the disaggregation of the CO2 to the 

level of power generation technologies, presented in Table 14 (Appendix B) 

have been defined by multiplying the aggregated value of 26th sector (electricity, 

gas, and water) in Table 11 (Appendix B) by the share of each power generation 

in the total produced CO2 emissions; namely, 20.1% for the steam-gas cycle, 

4.8% for the simple-gas cycle, and 18% for the combined-gas cycle [26,92]. The 

disaggregated value for CO2 emissions produced by gas and water sector 

(sector 26New in Table 14 (Appendix B)) is defined as the remainder of 

subtracting the sum of CO2 emissions produced by fossil-fuel based power 

plants from the aggregated value of CO2 emissions of sector 26th (electricity, gas 

, and water) in Table 11 (Appendix B). 

o Water consumption: the aggregated value of the water consumption by the 26th 

sector (electricity, gas, and water) in Table 11 (Appendix B) has been 
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disaggregated to the level of the power generation sectors, presented in Table 

14 (Appendix B). Similar to the abovementioned procedure applied to 

disaggregate the CO2 emissions, it is assumed that both the electricity TD and 

renewable power generation technologies have zero water consumption. 

Considering the fossil-fuel based power generation technologies, the 

disaggregation of the water consumption to the level of power generation 

technologies, presented in Table 14 (Appendix B) have been defined by 

multiplying the aggregated value of 26th sector (electricity, gas, and water) in 

Table 11 (Appendix B) by the share of each power generation in the total water 

consumption by power plants; namely, 45.6% for the steam-gas cycle, 5.4% for 

the simple-gas cycle, and 14.6% for the combined-gas cycle [26,93]. The 

disaggregated value for water consumed by gas and water sector (sector 26New 

in Table 14 (Appendix B)) is defined as the remainder of subtracting the sum of 

water consumption by fossil-fuel based power plants from the aggregated value 

of water consumption of sector 26th (electricity, gas , and water) in Table 11 

(Appendix B). 

o Primary energy consumption: the aggregated value of the primary energy 

consumption of by the 26th sector (electricity, gas, and water) in Table 11 

(Appendix B) has been disaggregated to the level of the power generation 

sectors, presented in Table 14 (Appendix B). Firstly, the disaggregated value of 

the gas and water sector (sector 26New in Table 14 (Appendix B)) is defined by 

multiplying the aggregated value of 26th sector (electricity, gas, and water) in 

Table 11 (Appendix B) by the ratio of investment made in gas and water sector 

(30%) [26,87]. Secondly, it is assumed that both the electricity TD and 
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renewable power generation technologies have zero primary energy 

consumption. Thirdly, considering, the disaggregation of the primary energy 

consumption to the level of power generation technologies, presented in Table 

14 (Appendix B) is defined by multiplying the aggregated value of 28th sector 

(electricity generation) in Table 13 (Appendix B) by the share of each power 

generation in the total primary energy consumption by power plants; namely, 

50.7% for the steam-gas cycle, 14.7% for the simple-gas cycle, and 34.5% for 

the combined-gas cycle [26]. 

 

3.4.2. Definition of Egypt’s EORA 26 IO table in Hybrid Units 

The Input-output analysis provided an applicable framework that could be successfully 

used to trace energy consumption on a nationwide economy scale. In this study, Hybrid 

Units IO Tables were employed [86].  Hybrid Units IO Tables are formed by using different 

units for the transaction of production between the various economic sectors; e.g. 

expressing the output of the power generation sectors in energy units, while transactions 

of the other sectors of the economy are represented in monetary value units [86]. In the 

literature, various researchers have used hybrid units’ input-output tables to define the 

total energy consumption and CO2 emissions of products [94].  Among others, Treloar [95] 

has defined the total energy requirements by the Australian residential sector using an IO 

table displaying hybrid units. Similarly, Machado et. al. [96] used a hybrid units IOA model 

to  assess the total energy and CO2 emissions associated in the international trade with 

Brazil.  

In this research, the disaggregated IO table (in monetary values) is transformed to the 

form of a hybrid units’ IO table, in which the transactions of the power generation sector 
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are represented in energy units (TWh), whereas monetary value units are employed for 

the other sectors; this is due to the following two reasons: firstly, to obtain a consistency in 

the units of both linked models; i.e. the results obtained from both the bottom-up and top-

down models are represented in energy units (TWh). Secondly, to overcome the 

uncertainty associated with forecasting the prices of electrical energy supplied to various 

demand sectors until the end of the planning horizon in 2040. Indeed, the prices of energy 

commodities are expected to change considerably in developing countries, due to the 

expected removal of subsidies on energy commodities in the near future [97]. 

In particular, the monetary flows of the disaggregated power generation sectors have been 

divided by the average selling price of electricity11 [98] ($/TWh) to produce the equivalent 

output in energy units (TWh), as shown in Table 15 (Appendix B). Consequently, a 

verification assessment has been applied to assure that the total electricity output derived 

from the developed hybrid units IO table is equivalent to the total electricity output 

announced by authoritative energy institutions (e.g. IEA); in particular, in 2015 the 

calculated electricity production, after applying the disaggregation steps of the Egypt’s IO 

EORA 26 table, equals to 160.4 TWh which is approximately equal to the value of 161 

TWh announced by IEA [1].  

 

3.4.3. Application of Leontief’s IO model  

In the context of mathematical representation,  given a one economy composed of 

𝑛 sectors, each with 𝑠 types of exogenous transactions (say, primary energy, GHG 

 
11 In this study, the average price of the electricity sold to the industrial, commercial, and 
residential demand sector was calculated as .054 USD/kWh, data from [98].  
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emissions, etc.), 𝑙 electricity technologies, and considering a time frame of one year, the 

endogenous transaction matrix 𝐙𝟎(𝑛 × 𝑛) can be represented as,  

N U

0

D E

=
Z Z

Z
Z Z

 
 
  

 

Where, 𝐙𝐍 represents the endogenous transactions in monetary value (USD) between the 

non-power generation sectors (defined as the common sectors) and themselves, 𝐙𝐄 

represents the endogenous transactions in physical units (TWh) between the power 

generation sectors and themselves. 𝐙𝐔 represents the endogenous flow of products in 

monetary values (USD) from the common sectors to the power generation sectors, and 𝐙𝐃 

represents the electrical energy (in TWh) supplied to the common sectors of the economy 

from electrical energy production plants. According to the Leontief’s analysis framework 

[86] , the total gross total production vector 𝐱0(𝑛 × 1) of all sectors is calculated as 

presented by equation (3-1), 

( )
1

0 0 0y=
−
−x I A  

  

Where: 𝐈 is the identity matrix and, 𝐀0(𝑛 × 𝑛) is hybrid technical coefficients12 matrix that 

represents the links between all the national sectors, and is defined by, 

 
12 Technical coefficients, also called the direct input coefficients [86], represent the input to 
each of the production sectors from itself and the other economic sectors to sustain the 
production. For example, running a thermal power plant requires inputs from the 
transportation sector, trade sector, etc. as well as its production of electricity to sustain its 
operation. Technical coefficients are calculated as follows [86]: Assuming the endogenous 
transaction matrix 𝑍= [𝑧𝑙𝑚] is the endogenous transaction from sector 𝑚 to sector 𝑙, and 𝑓𝑚 
is the final demand on sector 𝑚 production; total output of sector 𝑚, 𝑥𝑚, could be 

(3-1) 
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where, 𝐀𝐍 is the technical coefficients matirx of the common sectors, 𝐀𝐄 is the technical 

coefficients matrix of the electricity generation sectos, the matrices 𝐂U((𝑛 − 𝑙) × 𝑙) and 

𝐂D(𝑙 × (𝑛 − 𝑙)) are respectively the Upstream and Downstream Cutoffs technical 

coefficients: for each energy technology, 𝐂U relates the required production of each of the 

common sectors for the production of the electrical energy generation sectors, while 𝐂D 

represents the amount of electricity delivered to all the common sectors for each unit of 

production of the common sectors. 𝐲0(𝑛 × 1) is the hybrid final demand vector, 

representing the sum of the final demand sectors on each of the production sectors, 

shown in IO Table 15,  and is expressed by, 

N

0

E

y
y

y
=
 
 
   

 

where, 𝐲N, represents sum of the final demand sectors on each of the products of the 

common sectors, in USD.  𝐲E  represents the the sum of the final demand sectors on the 

electrical energy in TWh. 

The total exogenous transactions 𝐑0(𝑛 × 1) are calculated as presented by equation (3-2),  

 

represented as, 𝑥𝑚= ∑ 𝑧𝑖𝑚 + 𝑓𝑚
𝐼
𝑖=1 , and X = Zi+f, in matrix form. The technical coefficient 

matrix A is equal to A = ZX̂−1 . 



72 

 

        

 

Where, 𝐛0(𝑠 × 𝑛) is the hybrid exogenous transactions coefficients matrix, representing 

the direct resources consumptions or waste emissions of each sector per unit of product, 

defined as,  

0 N E=   b b b  

where, 𝐛N, represents the direct resources consumptions or waste emissions by the 

common sectors, in physical units, 𝐛E , represents the direct resourcs or waste emission 

consumed and/or produced by the electricity generation sectors in physical units (e.g. TJ, 

tonCO2, etc.). 

  

0 0 0
ˆ= R b x (3-2) 
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3.5. Application of the soft-link in procedures  

As formerly stated, the objective of this soft-linking bottom-up and top-down is to 

quantitatively assess the impacts of changes in the structure of the power generation mix 

on a nationwide economy scale. The procedures for this soft-linking are illustrated in 

Figure 7. The bottom-up model will be provided by exogenously defined techno-economic 

parameters (temporal demand, availability of renewable and non-renewable resources, 

costs of power generation by various technologies, etc.). By running the model, the least 

cost annual power generation mix will be defined over a given time planning horizon. 

The future installed electricity production capacities and the related energy generation, 

endogenously computed by the bottom-up model, are then used to characterize the 

evolution of the energy sector in the top-down model, previously defined in section 3.4.3. 

The soft-link is performed according to the “ceteris paribus” principle [99], that is, the only 

variables introduced in the IOA model are related to (1) the electricity generation mix, (2) 

the increased demand for electricity and (3) the related increase in GDP induced by the 

electrical energy availability. Therefore, it is assumed that the technical coefficients of all 

the other production sectors will remain unchanged in future years, and equal to the 

baseline of 2015. The shock is implemented according to the following parallel steps: 
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Figure 7. Block diagram of the soft-link between bottom-up and top-down models 
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• Step 1. Change in the power generation mix.  

RAS method [86] is a well structured methodology that could be implemented to update 

the technical coefficients of the input-output tables. To successfully apply the RAS 

procedure to derive the technical coefficients table at the future time period designated by 

𝑖, the following three information sets have to be known; namely, “(1) the total gross output 

of all production sectors; (2) total interindustry sales by each sector; (3) total interindustry 

purchases by each sector” [86] in future.  

Due to the limited scope of this research, which is confined to addressing the effect of 

structural changes in power generation sector on the nationwide economy scale, the 

technical coefficients related to the rows of the electricity generation technologies (the 

downstream cutoff (𝐂D → 𝐂̃D) are only updated to reflect the least cost power generation 

mix which is defined by the bottom-up model (OSeMOSYS-Egypt): the sum of the latter 

coefficients for each economic sector is kept constant, while their relative shares change 

according to the prospected changes occurring in the electricity production mix. 

In addition, to the abovementioned update of the technical coefficient of the downstream 

cutoff the power generation sectors, the disaggregated input-output table will be updated 

according the Final Demand Method [100], where the final demand is used to define the 

total gross output in the future year 𝑖.   

• Step 2. Change in electricity households’ demand.  

The households’ final demand ( 0 0f y ) is expressed by,  

N

0

E

f
f

f
=
 
 
   
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where, N Nf y  represents the households’’ final demand on each of the products of the 

common sectors, in USD.  E Ef y , represents the sum of the households’ final demand 

on the electrical energy in TWh. 

The future yearly amount of electricity produced by each technology and delivered to final 

users is fed to the IOA model by changing households’ final demand of power generation 

technologies (𝐟E → 𝐟E) according to IEA New Policies Scenario [1] which was presented in 

section 3.3.1.  

• Step 3. Change in national economic productivity.  

It is assumed that the increased demand for electricity by each national sector reflects the 

effect of an increased economic national productivity (Gross Domestic Product, GDP), and 

this is a reasonable assumption for developing countries according to the literature [101]; 

i.e. the households’’ final expenditure 𝐟N on the production of the common sectors will 

increase. Indeed, the expected increase in population and rise in the living standards will 

induce the consumption of all products produced with in the economy; i.e. increase in the 

consumption of food supplies produced by the agriculture sector, increase in the demand 

on the services provided by the transportation sector, etc. [4,101]. Therefore, an 

econometric production function was used to forecast the future growth in GDP resulting 

from an increased energy availability.  

Equation (3-3) represents the typical logarithmic shape of the production function (𝐟N), that 

links the national electricity production (𝐸𝐸𝑝𝑟𝑜𝑑) with the GDP, 
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( ) ( )N , lnprod prodGDP EE EE =  −f  

 

 where,  𝛼 and 𝛽 are the coefficient and constant of the logarithmic function, given by (3-

3).In this case,  𝛼 and 𝛽 are statistically derived based on historical data from 2005-2015 

[25,26], as displayed by Figure 8; and approximated to the values of 115.5 and 1039.2, 

respectively. The whole GDP growth rate, presented in Table 8, of each year of the 

planning that ends in 2040, is then divided among the national final demands of each 

sector by considering fixed proportions among them equal to the baseline economy.  

 

 

Figure 8. the derived logarithmic shape of the production function that links Egypt's 

national electricity production to Egypt’s GDP; data generated for the period between 

2005-2015 and used for the future forecast [25,26] 
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Table 8. Egypt's predicted GDP growth rates compared to the baseline economy in 2015 

Year  % Growth in GDP   

2020 10% 

2025 20% 

2030 29% 

2035 37% 

2040 46% 

 

These aforementioned three shocks characterize the IOA comparative static model for 

each ith future year of the planning horizon between 2015-2040, are defined according to 

the following matrices,  

N U N

0 N

ED E

; ;= = =i i E

  
     
  

   

A C f
A f b b b

AC f
              

where, 𝐂̃D , 𝐟E 𝑎𝑛𝑑 𝐟N will be upated according to abovemetiond three steps. Finally, 

Leontief production and impact models are applied to the shocked economy in the ith year 

based on equation (3-2). 
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4. CHAPTER 4: Results and Discussion  

This chapter presents and discusses the results obtained from applying the proposed soft-

link illustrated in the previous chapter to the case of Egypt. In particular, the evolution of 

Egypt’s power generation sector will be defined according to two institutional demand 

forecasts (IEA and BMI). In addition, the implications are derived for such an evolution on 

a nationwide economy scale during the planning horizon starting in 2015 and ending in 

2040, and investigated by using the results of the bottom-up models as exogenous 

parameters to the top-down model. This chapter also explores the potential of increasing 

the penetration of renewables in achieving some of Egypt’s environmental targets. The 

end of this chapter highlights the discrepancies in forecasting Egypt’s total production of 

electricity via OSeMOSYS model generator and the proposed soft-linked model. 

 

4.1. Bottom-Up model: verification and validation 

The developed bottom-up model has been verified by checking the energy balances of the 

developed Egypt’s RES. For example, considering the assumed losses in the transmission 

and distribution networks, in 2008 the sum of the electric energy produced by the power 

plants (394 PJ) is greater than the electric energy exiting from the transmission and 

distribution networks (282 PJ) by the amount of the losses estimated. 

 In addition, the bottom-up model has been validated by comparing the total electrical 

energy generated by various power generation technologies defined by OSeMOSYS-

Egypt to the actual data of the total electrical energy generated reported in the annual 

reports of Egyptian Electricity Holding Company (EEHC) [26] for the period between 2009 

and 2015. In particular, the annual percentage differences in the total electrical energy 
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generated defined by OSeMOSYS-Egypt and the actual data reported by EEHC, over the 

aforementioned period, were in the range between 0.95% in 2009 and 5% in 2011. The 

latter could be justified by the shortage in the electrical energy supplies needed to satisfy 

the demand, due to the Egypt’s 2011 socio-economic turmoil [28]; indeed, OSeMOSYS-

Egypt endogenously defines the total electrical energy output to meet the exogenously 

defined demand parameters.   

4.2. Bottom-Up model Results 

This section presents the results obtained from the OSeMOSYS-Egypt model for the 

considered time window, and considering all the technologies enclosed in the RES: 

electricity generation mix, installed capacity mix, CO2 emissions and economic cost. 

Electricity generation and installed capacity mixes. The proposed electrical energy 

generation by each technology is depicted in Figure 9 (subplots A and B). For both 

scenarios, the optimal generation mix includes natural gas simple and combined cycles, 

wind power, PV rooftop and hydroelectric power. In the IEA New Policy scenario, the 

energy produced by natural gas power plants will decrease in 2022, due to the Egyptian 

government objective of achieving the 22% of renewable sources in the electricity 

generation mix, supporting the penetration of renewables which is expected to reach 32% 

of the total production by 2040. However, even if the sudden increase in the share of 

renewable in the power generation mix turns out to be the optimal alternative to satisfy 

electricity demand, its implementation would probably meet practical constraints due to the 

short available time for commissioning and installing a large operating capacity of 

renewable energy power plants. Indeed, this highlights a major limitation in OSeMOSYS 

model generator that should be enhanced to consider the practical implementation of the 

proposed power generation mix. On the other hand, in the BMI scenario the increase in 
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energy production by natural gas plants is actually constrained by the availability of natural 

gas supplies, which are likely to decrease according to the current forecasts [102]. 

Therefore, wind technology and PV rooftop have to be introduced to meet the increase in 

demand, leading to an increase in the share of renewable energy production from 14% up 

to 65% in 2040. For both scenarios, the contribution of hydropower energy is constant over 

the whole time window, due to the complete use of hydropower resources currently 

available for power generation. Figure 9 (subplots C and D) displays the installed capacity 

of each technology in the considered time window. In 2014, the total installed capacity 

reached approximately 37 GW in both scenarios. Similar to the IEA scenario, in the BMI 

scenario the power capacity requirements are strongly supported by the penetration of 

renewable sources between 2018 and 2040, mostly due to wind and photovoltaic 

technologies, because of the imposed constraints on the supplies of natural gas. 
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Figure 9. Electricity generation mix ((a) and (b)) and the corresponding installed capacities 

((c) and (d)). 
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Economic cost. Figure 10 (subplot A) reports the yearly total discounted cost13 of the two 

scenarios (bars, in MUSD2018/y) and the discounted cost of unit of electricity generated 

(black diamonds, in USD2018/MWh), evaluated for the period between 2018 and 2040. In 

general, the total discounted cost of BMI scenario is higher than the IEA one by 60%, 

mainly due to the larger electrical energy demand forecast by BMI, while the discounted 

cost per unit of energy produced is higher by approximately 20%. This is consistent with 

the increase in the penetration of high cost power generation technologies (i.e. wind 

energy and PV rooftop) in BMI scenario. For the two analyzed scenarios, the costs of 

electricity generation are dominated by renewable technologies; in particular, wind energy 

which contributes for about 43% (IEA) and 58% (BMI), and PV rooftop technology which is 

higher at the BMI by about four folds. Investments in natural gas combined cycles 

contribute with a share of 31% (IEA) and 21% (BMI) in the total economic costs. It is worth 

to note that in the IEA the significant contribution of renewable technologies in the cost of 

electricity generation could be explained by the defined constraint on the minimum 

requirement of renewables penetration in the power generation mix. On the other hand, in 

the BMI scenario the cost of electricity generation is dominated by renewable technologies 

because of the assumed constraint on natural gas supplies.   

CO2 emissions. Figure 10 (subplot B) presents the overall CO2 emissions for the period 

between 2018 and 2040 (bars, in Mton/y) and the emissions per unit of electricity 

generated (black diamonds, in ton/MWh). The emissions related to the BMI scenario are 

 
13 yearly total discounted cost: is the sum of the of the annual costs of electricity 
generation discounted to 2018 and divided by the number of years of the planning horizon 
starting in 2018 and ending in 2040. 
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less than IEA scenario by about 10%, and are expected to be always below the IEA one 

due to the strong and rapid penetration of renewables. 

 

 

Figure 10. Total technologies’ annual installed capacities, the associated total discounted 

costs (A) and CO2 emissions (B). 
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4.2.1. Sensitivity analysis 

A sensitivity analysis has been carried out in order to assess the robustness of the 

OSeMOSYS-Egypt model and the influence on final results due to changes in some 

crucial parameters, identified as follows (see Table 9): (1) investment costs of renewable 

technologies, (2) renewables energy production targets, (3) efficiency of natural gas CCPP 

technology, (4) price of natural gas that feeds thermal power plants, (5) availability of the 

local natural gas supplies, (6) discount rate on capitals, (7) expected changes in 

hydropower availability due to the Renaissance Dam in Ethiopia. The sensitivity analysis 

has been conducted on the selected parameters according to the values denoted by A, B, 

and C in Table 9 to analyze their separate effects on the BMI scenario results only. 

Applying the sensitivity analysis to BMI scenario is motivated by the fact that, in the 

opinion of the Author, this scenario better suits the future trends in energy demand by 

Egypt.  

 

Table 9. Selected exogenous parameters to perform sensitivity analysis. Where a specific 

reference is missing, the Author has proposed reasonable values base on his own 

experience. 

# Exogenous 
parameters 

Values Reference 

1 Decrease in the 
investment costs of 
renewable 
technologies (%) 
 

A. [80]; B. 50% on 2040 (2% linear 
decrease starting from 2018) ; C. 
70% on 2040 ( 3% linear decrease 
starting from 2018) 

[80], Own 
assumption 

2 Energy production 
targets by renewables 
(%) 

A. 2022-2035: +22%; 2036-2040: 
+35%;                 
B. 2022-2035: +35%; 2036-2040: 
+40%; 
 

[11] 
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3 Increase in the 
efficiency of NG. 
CCPP (%) 
 

A. + 5%;  B. +12% Own 
assumption, 
based on 
[103] 

4 Year of increasing the 
price of NG by 40% 
 

A. 2018;  B. 2027; Own 
assumption, 
based on 
[104]   

5 Availability in local 
natural gas supplies 
 

Unconstrained  

6a Change in the 
discount rate on 
capitals (2%) 
 

A. 2%  
 

Own 
assumption  

6b Time changing 
Discount rate on 
capitals (%) 
 

A. 18% in 2018 to 35% in 2040 (2% 
linear increase); 
B. 11% in 2018 to 1% in 2040 (1% 
linear decrease); 

Own 
assumption  

7 Reduction in 
Hydropower 
resources availability 
(%) 

A. -16% in 2018 compared to 2017; 
B. -80% in 2018 compared to 2017; 

[105] 

 

Sensitivity analysis of the first four parameters, displayed in Table 9, on results are 

reported in Table 10. The reduction in the investment costs of renewable technologies and 

increase of their penetration targets in the energy mix are likely to happen in future 

decades. The sensitivity analysis  has been here applied by considering alternative 

possible reductions in the investment costs of renewable technologies: A- the forecasted 

investment costs by IRENA [80]; B- 50% reduction in the investment cost in 2040 

compared to 2017 with 2% annual decrease, and C- 70% reduction in the investment cost 

in 2040 compared to 2017 with 3% annual decrease (see Table 9). As reported in Table 

10, neither the reduction in renewable investment costs nor increasing their penetration 

targets significantly affect the total cost of electricity: this could be explained by the fact 

that the limited resources for natural gas are always the first to be exploited in the BMI 
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scenario, because natural gas technologies are the lowest cost alternative. In addition, as 

shown in Figure 9 (subplots B and D), the constrained natural gas supplies between 2018 

and 2040 are not sufficient to deploy additional natural gas capacity. Therefore, wind and 

PV rooftop technologies contributes to the energy mix with a share of 51%, regardless of 

their costs and penetration targets. It can be concluded that in the BMI scenario the 

economic cost of electricity production, the amount of the required natural gas supplies 

and the share of the renewable technologies in the electricity generation mix are not 

sensitive to the changes in the cost of renewable technologies and to their related 

penetration targets. 

By the end of 2018, three new natural gas combined cycle power plants of 4800 MW each 

will be deployed [103]. Due to their high efficiency and the related large amount of 

electricity production, the overall efficiency of Egypt’s natural gas combined cycles is 

assumed to increase by: A-5% and B-12%. This assumed increase in efficiency of the 

combined cycles would result in a decrease in the share of renewables in the production 

mix over the whole planning horizon, respectively this will result in 41% and 46%, 

compared to the proposed share of renewables in the electricity production mix at 51% in 

the BMI baseline results. Despite this, the total costs of electricity production and the 

consumption of natural gas have found to be non-sensitive to such change in efficiency, 

and this could be explained by the higher portions of the total electricity demand that are 

always covered by renewable technologies due to the assumed constraints on natural gas 

supplies. 

Egyptian economy currently applies subsidies on the exploitation of natural gas reserves 

for power generation. However, since the annual natural gas consumption has reached its 

forecasted production upper limit in 2018 [102], the contribution of renewable technologies 
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is essential to meet the electricity demand, independently from natural gas price. For such 

reason, results in Table 10 show that the change in cost of electricity production by 

increasing the natural gas price does not significantly affect the overall CO2 emissions or 

the penetration of renewables.  

 

Table 10. Results of the sensitivity analysis on selected parameters 1-4 over the whole 

planning horizon compared to BMI scenario baseline results 

# Parameters   
Total discounted 

cost 
Natural gas 

consumption 

Renewable 
Energy 

Penetration 

0 BMI baseline results 
 
 

101225 
MUSD200814  

709 BCM 51 % 

1 Investment costs of 
renewable technologies 
 

- 0.01 % - 0.01 % 0 % 

2 Energy production targets 
by renewables 
 

+ 0.01 % - 0.01 % 0 % 

3 Efficiency of NG CCPP - 0.02 % - 0.01 % -10 %;  -5 % 

4 Increase of NG prices +0.01 % + 0.01 % 0 % 

 

For a comprehensive assessment of the role of natural gas in the Egyptian power sector, 

the constraint on exploitation of natural gas local supplies has been relaxed, simulating an 

increase in the availability of natural gas reserves available for power generation uses that 

may result from the current discovery of new natural gas reserves (e.g. the Zohr oil field). 

The future energy mix composition is strongly affected by the assumptions of constrained 

or unconstrained local natural gas supplies, as can be inferred by comparing Figure 9 

 
14 The sum of the annual electricity production costs discounted to 2008. 
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(subplots B and D) and Figure 10 with Figure 11. This is likely to cause a postposition in 

the penetration of renewable technologies after year 2022, when a minimum level of 

renewables is exogenously imposed to the model to comply with the current political 

intentions. As shown in Figure 11, the sudden rise of the renewables penetration in 2022, 

highlights the limitation of the bottom-up model in considering some practical constraints; 

in particular, the proposed very high and quick rise of renewables share in the electricity 

generation mix is hard to be realized practically in one year. For the planning period 2018-

2040, the unconstrained natural gas supplies results in a decrease in the total discounted 

costs with respect to the base case (about 18%): this could be explained by the decrease 

in investments in wind energy from 58% to 39%, and the related increase in investments in 

natural gas simple and combined cycles by 13% and 9%, as illustrated by Figure 11 

(subplot C). As a result, the unit discounted costs of energy turns out to be lower by 

approximately 95% compared to the baseline result. Moreover, due to the increased 

investments in natural gas technologies, a strong increase in natural gas consumption of 

about 42% is expected, causing an overall increase in CO2 emissions by approximately 

50% (Figure 11, subplot D).  
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Figure 11. BMI scenario Electricity generation mix assuming unconstrained natural gas 

supplies. 
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In Egypt, values of discount rate on capitals has increased by 10% in the last 5 years, 

reaching 19% in 2017 [106]. In the OSeMOSYS-Egypt model, the discount rate is 

assumed to be fixed and equal to 22% over the whole planning period; and sensitivities 

(on parameters 6a and 6b in Table 9) have been applied to test the effects of possible 

changes in the values of discount rate on the proposed power generation mix. Since large 

upfront capital investments turn out to be more profitable if discount rate values are low, 

results obtained with discount rate of 2%, representing extremely favorable market 

conditions, are reported in Figure 12. In particular, the weight of renewables in the total 

discounted cost increases from about 58% in the BMI baseline scenario up to 70%. 

Moreover, technologies characterized by relatively low initial investment cost, such as 

natural gas steam cycles and simple cycles, are displaced from the optimal energy mix, 

leaving only natural gas combined cycles. Despite these changes, running the model with 

a low discount rate seems not to affect the natural gas consumption and the associated 

CO2 emissions. Again, this could be explained by the fixed consumption rate of natural 

gas, which always comes first at an amount equals to the assumed constraint on the 

natural gas supplies, and independently from the type of the installed natural gas power 

generation technology.    
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Figure 12. Electricity generation mix assuming changes in discount rate on capitals. 
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values: PV rooftop installed capacity (high investment cost technology) increases as the 

value of the discount rate decreases (assumption b, Table 9), and the yearly discounted 

costs change accordingly Figure 13 (subplots C). The share of Wind energy and PV 

rooftop technologies in yearly total costs has increased, respectively from 56% and 7% 

(assumption a, Table 9) to 68% and 13% (assumption b, Table 9). It is worth to note the 

total installed capacity of the proposed energy mix according to (assumption b, Table 9) is 

higher than that of (assumption a, Table 9) by approximately 15%, as shown in Figure 13 

(subplot A and B). This in increase in the total installed capacity could be explained by the 

strong penetration of the renewable technologies that have lower energy conversion 

efficiencies compared to thermal power plants; indeed, more installed capacities of 

renewable technologies are needed to satisfy the assumed same amount of electricity 

demand. In addition, the natural gas combined cycle technology has replaced the low 

investment technologies of natural gas steam and simple cycles, which have been 

displaced from proposed power generation mix, assuming the optimistic market conditions 

of lower discount rate values. Furthermore, considering assumption 6B in Table 9, the 

share of natural gas combined cycles in the total discounted costs has increased by 5% as 

the contribution of the combined cycle in the electricity generation mix exceeds the sum of 

the contributions of natural gas steam and simple cycles by 6.5% under the assumption 6A 

of the same table, causing small differences in CO2 emissions (about 6%, Figure 13 - 

subplot D). 
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Figure 13. Share of power generating technologies in total installed capacities (a) and (b) 

and the rated discounted costs (c) and CO2 emission (d), according to yearly changing 

discount rates. 
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The  reduction of the hydropower resource potential available for electricity generation is 

likely to happen in the close future due to the construction of the Renaissance Ethiopian 

dam, estimated to be within 16% and 80% [105], and this may strongly affect the shape of 

Egyptian future energy mix. Assuming moderate reductions of hydropower potential, the 

expected consequences in energy production shares by technology is minimal due to the 

limited initial penetration of hydropower in Egypt’s total installed capacity (2.8 GW). 

However, considering the worst-case scenario, a significant reduction of the hydropower-

produced electricity by 77%, which will be mainly compensated by an increase in the 

electricity produced by wind technology (11%) and PV rooftop technology (11%); indeed, 

this could be explained by the limitation of adding new capacities of natural gas power 

plants (low investment cost technologies) due to the assumed constraint on natural gas 

supplies. Hence, the total discounted costs of electricity production for the period 2018-

2040 will increase by 11% due to the increase in the share of renewables in the power 

generation mix, and the amount of natural gas consumption and its associated CO2 

emission will remain almost unchanged. 

Results of applying the Bottom-Up energy optimization model are collected and shown in 

Figure 14. As shown in this figure, there are significant structural changes in the energy 

generation mix obtained according to the BMI scenario (Figure 14, subplot A) compared to 

the Business As Usual15 (BAU) scenario (Figure 14, subplot B). Specifically, in the BMI 

scenario the share of the thermal power plants (natural-gas steam cycle, natural-gas open 

cycle and natural-gas combined cycle)  is approximately constant over the period between 

2018 and 2040, due to the imposed constraints of natural gas supplies, according to the 

 
15 Business As Usual (BAU) scenario assumes that the shares of various power 
generation technologies in Egypt’s power generation mix will remain unchanged until 
2040.  
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BMI scenario data [102]. Hence, significant investments to increase the capacities of wind 

and PV rooftop technologies are required to meet the forecasted increase in demand. As a 

result, the share of the renewables in the power generation mix has increased from 8% in 

2015 to approximately 70% in 2040. It is worth to note that such results will have major 

economic and environmental implications that are different from those of the BAU scenario 

(Figure 14, subplot B), where the natural gas supplies needed by thermal power plants in 

2040 would exceed the levels of 2015 by three times. 
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Figure 14. Electricity generation mix of the BMI scenario (a) and BAU scenario (b). 
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energy, land use, etc. In this sub-section, the main results of the soft-linked model will be 

presented and discussed. For the sake of simplicity, in this study only the following three 

indicators have been analyzed, specifically: primary energy consumption, emissions of 

CO2 and water consumption.  

 

4.3.1. Primary Energy Consumption  

The implications of the prospective structural changes of power generation mix on Egypt’s 

primary energy (PE) consumption by the various production sectors have been identified 

by comparing the results of the soft-linked model of both the BMI and BAU scenarios, as 

illustrated in Figure 15 (A and B). Considering the planning horizon starting in 2015 until 

2040, a 26% reduction in the total PE consumption, between the BMI scenario (430 Mtoe) 

and the BAU scenario (557 Mtoe), could be achieved by decarbonizing the power 

generation mix. As presented by the violet category in Figure 15 (a), assuming the BMI 

scenario, increasing the share of renewables in electricity generation by approximately 

30% (results of the bottom-up model) during the first five years (2015-2020) of the 

planning horizon, will result in a 31% reduction in the PE consumption by the power 

generation sector during the same period (results of the soft-linked model). As expected, it 

could be inferred from the same figure that there is an indirect relationship between the 

share of the renewables in electricity generation mix and PE consumption of the power 

sector. Unfortunately, the same indirect relationship is not valid, when the whole 

production sectors of Egypt’s economy are considered. As illustrated in Figure 15 (a), 

considering Egypt’s nationwide economy scale for the planning horizon between 2020 and 

2040, an 8% increase in the PE consumption is expected. This increase would be driven 
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by the expected growths, induced by the assumed growth in GDP, of industrial and 

transportation sectors. According to the data shown in Egypt’s input-out table (Table 15), 

both the industrial and the transportation sectors use primary energy in significant 

amounts; indeed, in Egypt the transportation sector is mainly based on gasoline, diesel, 

etc. Similarly, the fossil fuels energy commodities are used in the industrial sector to 

satisfy its thermal demands; i.e. process heating and/or process cooling. Specifically, the 

ratio of the sum of the PE consumption of the industrial and transportation sectors to the 

Egypt’s total consumption would increase form 60% in 2015 to 75% in 2040, because no 

efficiency plans were assumed to reduce the primary energy consumption of the industrial 

and transportation sectors, due to the limited scope of this work. 

With reference to Figure 15 (c), Egypt’s GDP is expected to double during the assumed 

planning horizon between 2015 and 2040. Hopefully, adopting a policy for decarbonizing 

the power sector would be effective in reducing Egypt’s Energy Intensity (EI) by 32% 

during the whole planning horizon. On contrary, referring to the BAU scenario between 

2015 and 2040, illustrated by Figure 15 (d), a 3% increase in the EI is expected due to 

persistent increase of PE consumption by all production sectors, including the power 

generation which will grow assuming the same generation mix and efficiencies of 

technologies.  
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Figure 15. Egypt’s primary energy consumption ((a) and (b)) and energy intensity ((c) and 

(d)) according to BMI and BAU scenarios 
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4.3.2. CO2 Emissions 

Referring to the BMI scenario, the share of renewables in the power generation mix will 

increase significantly, reaching 70% in 2040. In particular, the wind technologies would be 

dominating the electricity generation mix, replacing the natural-gas fired power plants in 

the power generation mix of the BAU scenario. Hence, the CO2 emission of the power 

generation sector would be decreasing by 40% over the entire planning horizon (2015-

2040), despite the continuous increase in electricity demand (see Figure 16 (a), violet 

category).   

Although, the significant increase in the share of renewables at the power mix of the BMI 

scenario has maintained the consumption of primary energy in 2040 approximately equal 

to the same level of 2015, it has failed to achieve such results for the CO2 emission 

production on a nationwide economy scale. As shown in Figure 16 (a), while the high 

share of renewables penetration is capable of decarbonizing only the power sector by 

40%, the total CO2 emissions of all production sectors have increased by 17.5%. This 

could be explained by the following: Firstly, the power generation sector has a limited 

contribution (18%) at the total production of the total CO2 emission, in the baseline year of 

2015. Secondly, the increased CO2 emission production from the industrial, services, and 

transportation sectors overweigh the saving achieved by the power generation sector: 

leading to an increase from 227 Mt CO2 in 2015 to 267 Mt CO2 in 2040. Comparing BMI 

and BAU scenarios, shown in Figure 16 (b), the realized reduction in the total direct CO2 

emission during the entire planning period could be increased by targeting the other 82% 

resembled by sectors other than the power generation.  

Considering the fast growing GDP in Egypt, intensity of emissions is a good environmental 

performance measure to assess the prospective changes in energy policy. As shown in 
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Figure 16 (c), decarbonizing the electricity production mix, could result in a reduction in the 

emission intensity by 20% between 2015 and 2020. On the contrary, as shown in Figure 

16 (d) increasing the production of electricity based on a dominated fossil-fuel power 

generation mix, will result in a constant intensity of emissions over the whole planning 

horizon, due to the assumed constant technical coefficients of non-power generations 

production sectors.   
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Figure 16 Egypt’s production of CO2 emissions ((a) and (b)) and CO2 emissions intensity 

((c) and (D)) according to BMI and BAU scenarios  
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4.3.3. Water Consumption  

The IOA of Egypt’s economic production sectors has been extended to assess the 

nationwide consumption of water resources, whose availability might be reduced by 80% 

due to the construction of the Renaissance Dam in Ethiopia [105]. As displayed in the 

disaggregated Egypt’s IO table (Table 15 (Appendix B) and according to the assumptions 

presented in section 3.4.1, the fossil-fuel based power plants consume water to sustain 

their production. Thanks to the significant investments in renewable technologies, the 

decarbonized electricity generation mix of the BMI scenario would consume a 1.6 Billion 

Cubic Meters (BCM) of water less than the BAU scenario for the period between 2015 and 

2040. With reference to Figure 17, the contribution of the power sectors in Egypt’s total 

water consumption represents minor shares of 0.5% and 0.1% in 2015 and 2040, 

respectively. Hence, the continuous increase in water consumption by the non-power 

sectors, due to the expected GDP growth, will surpass the realized savings achieved by 

the strong penetration of renewable technologies in the proposed power generation mix. 

Hence, Egypt’s total water consumption will increase by 28% over the whole planning 

horizon (2015-2040).  
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Figure 17 Egypt’s total water consumption by production sectors 
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4.4. Assessing the Effectiveness of Investing in Renewable Technologies 

Referring to the previously stated results, shown in Figure 15 (A) and Figure 16 (A), 

despite the effectiveness of the persistent increase in the installed capacity of renewables  

in reducing the primary energy consumption and the CO2 emissions of the electricity 

generation sector, the same effectiveness cannot be realized on Egypt’s nationwide 

economy scale, where all of Egypt’s production sectors are considered. This could be 

explained by the persistent consumption of primary energy fuels by the industrial and 

transportation sectors to sustain their production. Therefore, it would be useful to support 

policymakers with indicators that quantify the effectiveness of investing renewable power 

generation technologies in achieving the intended economic and environmental targets; 

namely, reducing the primary energy consumption and CO2 emissions of all Egyptian 

production sectors.  

In this study, two indicators are developed to assess the potential for decreasing Egypt’s 

primary energy consumption and CO2 emissions for each unit of renewables installed 

capacity. The first indicator, 𝜀𝑃𝐸,𝑟𝑒𝑛 , defines the effectiveness of renewables in reducing 

primary energy consumption: it is presented with units of (𝑡𝑜𝑒 𝑀𝑈𝑆𝐷⁄ ) 𝐺𝑊⁄ . As shown in 

equation (4-1), this indicator is evaluated as the ratio between the change in primary 

energy intensity 𝑒𝑃𝐸[𝑡𝑜𝑒 𝑀𝑈𝑆𝐷⁄ ] and the change in renewables installed capacity 𝐶𝑟𝑒𝑛[𝐺𝑊] 

during the time interval between years i and i+1. Secondly,𝜀𝐶𝑂2,𝑟𝑒𝑛, defines the 

effectiveness of renewables in reducing CO2 emissions: it has the units of 

(𝑡𝑜𝑛𝐶𝑂2 𝑀𝑈𝑆𝐷⁄ ) 𝐺𝑊⁄ . Again, this indicator is calculated as the ratio between changes in 

emissions intensity 𝑒𝐶𝑂2[𝑡𝑜𝑛 𝑀𝑈𝑆𝐷⁄ ] and the change in renewables installed capacity 

𝐶𝑟𝑒𝑛[𝐺𝑊] during the time interval between year i and i+1 (in this case the time interval is 

defined as 5 years), as shown in equation (4-2). 
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The quantified effectiveness of investing in renewables throughout the entire planning 

horizon are presented in Figure 18. Considering the energy intensity during the first five 

years of the planning horizon (2015-2025), investing in renewables would be 5-6 times 

more effective compared to the period between 2035 and 2040, as presented in Figure 18 

(A). Accordingly, during the first five years of the planning horizon, investing in renewable 

will have a 3-4 times higher potential for reducing CO2 emission intensity with respect to 

the last five years of the planning horizon, as illustrated in Figure 18 (B). This could be 

justified by the significant reduction realized by the power sector during the first five years 

of the planning horizon. Considering the consequences of the prospective increase in the 

national economic production (GDP), renewables effectiveness would fade out over the 

planning horizon due to the growth of the other sectors: in particular, industrial and 

transportation sectors. The increased primary energy consumption and CO2 emissions 

from those sectors will overweigh the savings realized by decarbonizing the power sector. 

Therefore, the deduced information from such indicators may be beneficial in supporting 

policymakers to define reasonable environmental targets and appropriate alternatives to 

achieve them: e. g, electrification of the transportation sector and gradual phasing out of 

high energy intensity industries, such as cement and steel industries, could be more 
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economical alternatives for the Egyptian policymaker during the last 10 years of the 

planning horizon.  

 

Figure 18 Potentials for reductions in energy intensity (a) per unit of renewables installed 

capacity and CO2 emissions (b) per unit of renewables installed capacity.  
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4.5. Consistency of Bottom-up and Top-down Models 

It is worth to note that due to the essentially different forecasts of electricity demand 

between the bottom-up and top-down models, there is a variation of 17% in 2020 and 36% 

in 2040 in the total production of the power generation sector obtained by the two models, 

as shown by Figure 19. Considering the bottom-up model, the sectoral electricity demands 

(residential, services, etc.) are exogenous parameters forecasted by the BMI data. On the 

other hand, in top-down model, the electrical energy required to support the whole 

economy production sectors is defined endogenously by applying the Leontief’s input-out 

model and driven by the households’ final demand. In addition, the latter approach 

assumes a causal relationship between the production of electricity and the relative 

increase in GDP, as discussed in section 3.5; this assumption is an accepted argument in 

the available literature [107].  

 

 

 

Figure 19 Percentage difference in annual electricity production between bottom-up model 

and top-down models 
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5. CHAPTER 5:  Conclusions, Policy Implications, and Future Work 

This research develops a decision-making supporting tool to assist in defining coherent 

energy policies that consider interactions between the entire production sectors of an 

economy. Specifically, a one-way straightforward soft-link between an open-source 

bottom-up energy optimization model (OSeMOSYS) and a top-down linear multi-sector  

model (IOA), has been formulated. Capitalizing on the capabilities of the aforementioned 

models, the proposed integration of them has resulted in alleviating some of their 

limitations. It has been shown that the proposed soft-link is useful in defining several 

economic and environmental implications induced by the evolution of the power sector on 

a nationwide economy scale. Thanks to the simplicity and generic nature of this approach, 

it could be extended to cover numerous indicators that might be of interest to future 

researches.  

The developed approach has been applied to the case of Egypt, where a significant 

increase in demand for electricity is forecasted. Considering the planning horizon between 

2015 and 2040, the OSeMOSYS-Egypt model has been developed to determine the least 

cost future Egyptian electricity production mix required to satisfy two different future 

electricity demand scenarios; namely, IEA New policies scenario and BMI scenario. 

Moreover, a sensitivity analysis has been conducted in order to assess the relevance of 

some crucial parameters in modifying the results of the model, and to test its robustness. 

This research adds to and extends the current literature on energy planning in developing 

countries by defining an Egyptian Reference Energy System (RES) based on the data 

published by the Egyptian Electricity Holding Company; in addition, the current and 

prospected primary energy supplies, power generation technologies, and the various 

demand categories obtained from various other references. Furthermore, the developed 
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RES is generic in nature, so it could be easily extended and implemented to various 

energy planning models.  

For both the assumed scenarios, it is found that the lowest cost electricity generation mix 

always includes hydropower, natural gas-fired steam cycles, simple and combined cycles, 

wind power and PV rooftop technologies. This result mainly depends on the low economic 

cost of such technologies compared to the others, as well as due to the assumed 

constraints on the environmental impacts and polices on minimum use of renewable 

energy resources. Indeed, since Egypt’s electricity peak load demand occurs at night 

hours, investing in large solar power generation utilities does not produce an economically 

feasible alternative.  

Based on the sensitivity analysis applied to the BMI scenario, it is found that investment 

costs of renewables, availability of low prices natural gas and changes in prospected 

renewable penetration targets seem to have negligible effects on the shape of the future 

generation mix. Conversely, increasing the efficiency of natural gas combined cycles 

technology from 5% up to 12% with respect to the assumed efficiency in 2015 would 

impact the shape of the electricity generation mix, reducing the penetration of renewables 

by about 5% up to 10% over the whole planning period. Moreover, assuming 

unconstrained natural gas supplies results in reduction of the specific discounted costs per 

unit of energy produced by 95%, accompanied by 42% increase in natural gas 

consumption and 50% increase in the yearly total CO2 emissions. Results of the model are 

also sensitive to changes in the values of discount rate on capitals: indeed, low values of 

discount rate cause lower capital costs technologies to be displaced from the electricity 

generation mix, resulting in more investments in higher capital cost technologies (i.e. 

natural-gas fired combined cycle, wind and PV rooftop technologies). However, despite 
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this change in the electricity generation mix, the impact on the values of the yearly total 

CO2 emissions is moderate (about 6%); this is attributed to the fixed consumption on 

natural gas at an amount equals to the assumed constraint on the natural gas supplies. 

Finally, sensitivity analysis has also been applied to quantify the effects caused by the 

construction of the Ethiopian Grand Renaissance Dam: despite the minimum penetration 

of the hydropower source in the generation mix (7%), the absolute effect caused by the 

dam may not be negligible. Indeed, assuming the worst-case scenario, a 77% in reduction 

of hydropower produced electricity would be compensated by 22% increase in the 

electricity production of wind and PV rooftop technologies; indeed, adding new capacities 

of natural gas power plants is not viable due to the assumed constraint on natural gas 

supplies. As a result, the total CO2 emissions level would remain almost unchanged, while 

the total discounted cost of electricity would be increasing by 11% between 2018 and 

2040. 

The results of the soft-linked model included key findings that could be beneficial in 

shaping Egypt’s energy policies. Although, the major increase in renewables penetration 

has allowed for major savings in the primary energy (PE) consumption, CO2 emissions 

and the water consumption required by the power sector, it is not sufficient to achieve such 

savings when considering all of the non-power generation sectors. The non-power 

production sectors will be responsible for the prospective increase in PE consumption, 

CO2 emissions and water consumption on the economy-wide scale, as no plans are 

assumed to reduce common sectors consumptions of primary resources and emissions of 

CO2. Unfortunately, such increases in the PE consumption, CO2 emissions, and water 

consumption by the common sectors, overweigh savings realized by decarbonizing the 
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power sector, raising the question of the viability of increasing renewables penetration in 

the power generation mix to meet country’s environmental targets.  

Therefore, quantifiable performance indicators that assess the effectiveness of increasing 

the installed capacities of renewable technologies have been defined in this study. It is 

worth to note that the potential reductions in PE, CO2 emissions, water consumption 

intensities fade out with time, despite the persistent increase in the installed capacities of 

renewable technologies. Hence, policymakers should define the optimum time plan to 

direct investment to increase the energy efficiencies of industrial, service, and 

transportation sector and/or increase the installed capacity of renewables; the latter may 

require associated investments in the infrastructure of electricity transmission and 

distribution. 

Recommendations for Future Work:  

The current version of the OSeMOSYS-Egypt model is able to provide a comprehensive 

description of the Egyptian power sector. However, the model is characterized by the 

following main drawbacks that could be considered as possible directions for future 

improvements: 

I. Regarding the Bottom-Up model 

• First of all, electricity demand has been exogenously assumed based on the literature. 

It is worth to note that a collaboration with local institutions is advocated by the Author 

in order to increase the quality and reliability of the results. In addition to this, the 

developed model assumes the electricity demand as perfectly rigid, hence it is not able 

to capture the behavior of the final users in response to a change in electricity price.  
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• Secondly, the technical representation of the renewable technologies in the bottom-up 

model should be improved to match the stochastic nature of the availability of the 

renewable resources. In particular, “the energy adequacy constraints” of OSeMOSYS 

should be enhanced to allow for an accurate representation of the capacity factors of 

the wind and the solar power generation utilities, which might be operating with a 

reduced output during specific time intervals. Similarly, it is recommended to enhance 

the “capacity adequacy constraints” by adding spatial constraints that specifies the land 

requirements for different power generation utilities; e.g. wind farms are only attractive 

at highly windy sites, which are somewhat limited.    

• Thirdly, it is encouraged to extend the current study by considering the exergy based 

analysis principles in order to define the least cost power generation mix that 

maximizes the thermodynamic efficiency of Egypt’s power generation sector. Hence, 

the sustainability of the defined energy policy would be further enhanced.   

•  Fourthly, Egypt’s RES as well as OSeMOSYS-Egypt should be extended to consider 

the vast biomass resources available in Egypt. Utilizing biomass in power generation 

might significantly affect the cost and the environmental effects of the power generation 

mix in Egypt. These were not considered in the current analysis because the EEHC 

report did not include them, which the author believes is a deficiency.  

• Fifthly, sensitivity analysis has been performed by varying each one of the considered 

parameters at a time: however, more interesting insights may be obtained by varying 

them together by applying a parametric sensitivity analysis, since some cross-effects 

may arise. Regarding capital discount rate, the same value of capital discount rate has 

been applied to all the considered energy technologies: this might not be applicable to 

Egypt and it may affect the quality of results and the shares of different technologies in 
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the power generation mix; e.g. a favorable discount rate for renewable energy 

technologies could have a marked influence on their share in the proposed power 

generation mix. 

• Sixthly, the scope of the model is limited to the electrical power sector only, while great 

attention is currently devoted to extend the scope of energy models by including 

multiple energy carriers (electricity, heating, cooling, others) and multiple national 

sectors with more details, hence analyzing the full energy metabolism of the 

considered economy [108,109] by defining the sectoral demand on each of the energy 

carriers. For instance, the Egypt-OSeMOSYS should be extended to consider 

satisfying the combined industrial electrical and thermal demand by installing CHP 

utilities.  

II. The Top-Down Model 

• Regarding the top-down model, various important economic indicators are not covered 

in this study. For instance, it is expected that Egypt’s economic value added and the 

employment rate would be changed according to the potential structural changes in the 

power generation mix. Therefore, the proposed top-down model should be extended to 

cover such important economic issues related to the definition of Egypt’s energy policy. 

Furthermore, accurate estimates of the technical coefficients of input-output tables in 

each future year could be achieved by applying the RAS method. 

• Lastly, Egypt’s government recently made a decision to diversify the power generation 

mix by installing new capacities of nuclear and coal power plants. Therefore, it is 

advised to update the top-down model by considering these two power generation 

technologies, despite them not contributing to the least cost power generation mix 

proposed in this study. Indeed, considering adding capacities of both coal and nuclear 
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power plants might affect the implications associated with evolution of the power 

generation mix on a nation-wide economy scale.  
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Appendices 

Appendix A: The RStudio Code for Defining Egypt’s Balanced IO table Using EORA 

26 Dataset  

 

#Egypt input-out Analysis  

library(readxl) 

A<-list() 

Z<-list(0) 

tfull<-read_excel(file.choose(),col_names = FALSE) 

A1<-tfull[1:26,1:26] 

A2<-tfull[27:52,1:26] 

Aegy<-tfull[1405:1430,1:26] 

for(j in 2:189){ 

  A[[j]]<-tfull[(1+(j*26)):((j+1)*26),1:26] 

  Z16[[j]]<-as.matrix(A[[j]]) 

} 

tot<-Reduce("+", Z) 

write.csv(Im, file="Zm.csv")  

 
16 Z: the endogenous industrial matrix.  
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Appendix B: Egypt EORA 26 Tables  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Will Appear in the Next Page 
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Table 11. Egypt Balanced IO table 000'USD: with the 26th sector (electricity, gas, and 

water) located as the last production sector 
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Table 12. Egypt's IO table 000'USD: disaggregation step I 
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Table 13. Egypt's IO table 000'USD: disaggregation step II 
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Table 14. Egypt's IO table 000' disaggregation step III 
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Table 15. Egypt's Hybrid IO table in USD and the electricity generation sectors in physical 

units (TWh) 
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