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Abstract 

Thermoacoustic systems (engines or refrigerators) convert any source of heat energy, including 

solar energy and waste heat, into electricity or cooling effect. These systems are reliable and 

durable as they operate with few or no moving parts and they employ environmentally-friendly 

gases without gaseous emissions. However, thermoacoustic systems suffer from many non-

linearities that deteriorate the overall performance after a certain level such as streaming, 

turbulence generation, entrance effects and harmonic generation. This thesis focuses on first three 

of these non-linearities. 

Streaming is a second order steady flow that convects a certain amount of heat. The convected 

heat does not contribute to the thermoacoustic conversion process and hence it represents a loss. 

In this work, the effects of the natural convection flow on Rayleigh streaming have been 

investigated. The first objective of this work is to investigate the distribution of the axial mean 

velocity inside a simple standing-wave thermoacoustic engine using both Particle Image 

Velocimetry and Laser Doppler Velocimetry. The engine consists of a stack heated from one side 

whereas the other side is left uncontrolled. The velocity measurements cover the axial distance 

from the cold side of the stack to the termination of the resonator. Also, dynamic pressure and 

mean gas temperature measurements are conducted. Three different regions are observed and 

named the “cold streaming” region, the “hot-streaming region” and the “end-effects” region. In 

the cold streaming region, the measured mean velocity distribution agrees well with the theoretical 

expectation of Rayleigh streaming at low acoustic level. At high acoustic level, the measured 

quantities deviate from the theoretical expectations reported in the literature. Also, the size of the 

cold streaming region was found to decrease with the increase of the acoustic level. In the hot 

streaming region, where the measured wall temperature gradient is non-zero, the measured mean 

velocity distribution does not agree with the theoretical expectation for all acoustic levels. This 

discrepancy was found to be caused by the natural convection flow originated by the non-uniform 

temperature distribution of the resonator wall. In this work, the natural convection flow is 

decoupled from the acoustic streaming flow in order to measure the natural convection flow 

distribution inside the engine. The results reveal that there is a competition between acoustic 

streaming flow and the natural convection flow. This competition, at some acoustic levels, results 

in a zero mean axial velocity distribution. In the end-effects region, the mean flow velocity is 

disturbed by the vortex generation near to the stack. The size of each of these three regions is 

determined for different acoustic levels.  

As the flow inside the thermoacoustic systems has an oscillating nature, the study of the transition 

to turbulence in the oscillating flow is critical to understand the flow characteristics at high velocity 

amplitudes, which is the second objective of this work. In this work, the transition to turbulence in 

an oscillating flow has been studied at two different frequency ranges namely the sub-acoustic 

(low) frequency range (i.e. frequency ≪ 20 Hz) and the acoustic (high) frequency range (i.e. 

frequency ≥ 20 Hz). In the sub-acoustic frequency range, the transition to turbulence under the 
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oscillating flow conditions inside a square duct is investigated experimentally. For this purpose, 

the oscillating flow is generated by a mechanical system known as the Scotch-Yoke mechanism 

that is able to provide an oscillating flow with wide range of amplitudes at low frequencies. The 

axial velocity profile is measured using Particle Image Velocimetry and two dimensionless 

parameters are used to describe the oscillating flow namely the Reynolds number and the 

Womersley number. At low Reynolds numbers, the measured axial velocity profile in the duct 

agrees reasonably well with the theoretical laminar velocity profile over the complete cycle; 

whereas at higher Reynolds numbers, the results show that the agreement is limited to the 

acceleration phase. The transition to turbulence process is identified by measuring the turbulence 

intensities. The turbulence intensities based on both velocity components at both the center of the 

duct and near to the viscous penetration depth increase as the Reynolds number is increased. Also, 

the cycle-average Reynolds stress is estimated. Beyond a certain Reynolds number, the cycle-

average Reynolds stress experiences a sudden increase indicating transition to turbulence and 

hence the value of the critical Reynolds number can be determined. The estimated value of the 

critical Reynolds number, which equals to 500, complies with the literature. The work is then 

extended to the acoustic (high) frequency range. In the acoustic frequency range, the mechanical 

Skotch-Yoke system is replaced by two powerful loudspeakers operating at 180 deg out-of-phase 

to produce an oscillating flow with high velocity amplitudes at the resonance frequency of the 

system. The same methodology is used to investigate the transition to turbulence at high frequency 

range. The cycle-average Reynolds stress experiences a sudden increase near the wall at Reynolds 

number of 270. The vorticity fields are calculated from the measured 2-D velocity field. It is found 

that the vorticity value increases as the Reynolds number is increased. Also, the largest vorticity 

value is observed near the wall. As the Reynolds number increases the largest vorticity value shifts 

away from the wall during the deceleration phases in the acoustic cycle. The spatial energy density 

spectrum is calculated at different phases for different Reynolds numbers. Also, the cycle-average 

spatial energy density spectrum is calculated. The slope of the decay of the spatial energy at high 

wavenumbers was found to be nearly equals to the universal value of -5/3. 

As the thermoacoustic core of any thermoacoustic systems consists of a stack and heat exchangers, 

the study of the oscillating flow behavior in the vicinity of the stack is important, which constitutes 

the third objective of this work. The stack is usually modelled as a set of parallel plates. This work 

focuses on the effects of the plate-end shape on the oscillating flow morphology at high velocity 

amplitudes. Four different plate-end shapes namely rectangular, circular, 90O triangular and 30O 

triangular are placed inside an acoustic resonator. The temporal evolution of the vorticity field in 

the vicinity of the plates is investigated. The vortices originated at the beginning of the ejection 

stage (flow moves outwards the plates) and moves with the flow till they reach an axial distance 

nearly equals to one acoustic displacement amplitude. As the Reynolds number increases, the 

generated rounded-vortices around each plates transformed from two counter-rotating vortices 

attached to the plate into two elongated counter-rotating vortices.  Also, the non-periodicity (cycle-

to-cycle variations) of the oscillating flow in the vicinity of the plates is reported. As the Reynolds 

number increases, the non-periodicity of the flow does not change significantly. The 30O triangular 



III 
  

plate-end shape reduces the non-periodicity of the oscillating flow near the plates at different axial 

locations whereas the other plate-end shapes have nearly similar values of non-periodicity.  
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Chapter 1:  Introduction and Literature Review 

Thermoacoustic science is an interdisciplinary field which focuses on the interactions between 

acoustics and heat transfer. There are two types of thermoacoustic systems namely thermoacoustic 

engine, where heat is converted into sound wave, and thermoacoustic refrigerator, where the 

acoustic energy is converted into cooling effect. Based on the linear theory of Nikolaus Rott [1], 

the operation and design of thermoacoustic systems (i.e. engine and refrigerator) are mostly well 

understood but only for the low acoustic amplitudes (i.e. linear regime). At higher acoustic 

amplitudes, the actual performance indices deviate from the theoretical expectations. The deviation 

is due to many non-linearities such as acoustic streaming, turbulence generation, entrance effects 

and harmonic generation. Researchers attempted to investigate the effects of those non-linearities 

on the performance of different thermoacoustic systems. However, a lot of work is still needed to 

deeply understand these phenomena and their impacts on the thermoacoustic systems, in order to 

improve the overall conversion efficiency (or performance coefficient) as well as the power 

density. 

In the present work, light has been shed on three types of these non-linearities which are acoustic 

streaming, turbulence generation and entrance effects. In the following subsections, review of the 

previous work, for each of these non-linearities, is discussed and the objectives of the work are 

stated by the end of each subsection. 

1.1. Acoustic Streaming 

Acoustic streaming is a second-order DC flow superimposed on the first-order oscillating flow. 

This steady flow is generated by the interaction of the solid walls and the acoustic waves. Acoustic 

streaming is considered as a mechanism of carrying heat between the segments of a thermoacoustic 

device. There are many types of streaming flow in thermoacoustic systems. Most of these types 

are harmful to the performance of thermoacoustic systems because they, generally, convect a 

certain amount of heat that does not contribute to the thermoacoustic conversion process itself. As 

shown in Fig. 1.1, there are four types of harmful acoustic streaming, namely Gedeon streaming, 

Rayleigh streaming, jet-driven streaming and streaming within stack or regenerator. Gedeon 

streaming can exist in any looped-system and hence it is only related to traveling-wave 

thermoacoustic systems. Gedeon streaming creates a non-zero mass flow over the loop of 

thermoacoustic device however, it can be suppressed by using either a jet-pump [2] or an elastic 

diaphragm [3]. Rayleigh streaming is a convective flow within the tube. It was proven [4] that 

Rayleigh streaming can be eliminated by tapering the tube. Jet-driven streaming is a time-average 

flow generated due to large and sudden change in the cross-sectional area. Finally, the streaming 

within stack or regenerator can occur due to the interaction between the solid walls of the mesh 

and the acoustic wave. On the other hand, it was reported in [5] that there are some types of acoustic 

streaming (e.g. deliberate streaming) that can be beneficial to the performance of thermoacoustic 

system by enhancing the heat transfer processes. 
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Among these types of acoustic streaming, Rayleigh streaming is the focus of the current work 

because it is more common in all types of thermoacoustic systems (i.e. engine or refrigerator) 

either standing-wave or travelling-wave system. 

 

Figure 1.1: Graphical representation for the types of acoustic streaming that have a negative 

impact on the performance of thermoacoustic systems: (a) Gedeon streaming, (b) Rayleigh 

streaming, (c) Jet-driven streaming, and (d) Streaming within stack or regenerator. Adapted from 

[5]. 

 

Rayleigh streaming phenomenon in a standing-wave resonator was observed, long time ago, by 

Dvorak [6] through the observation of a gas pattern motion in Kundt’s tube. He observed that there 

is a steady flow motion inside the resonator. An explanation for this phenomenon was presented 

by Rayleigh [7]. He stated that the streaming is a second-order DC flow superimposed on the first 

order oscillating flow. Also, he described a mathematical model to quantify this phenomenon for 

the case of standing-wave in a large channel (e.g. two parallel plates). His findings are employed 

as a theoretical reference by many of the following researchers. Rayleigh streaming is encountered 

in many engineering applications including thermoacoustics. In thermoacoustic applications, it is 

important to consider the effects of both high acoustic amplitude and heat on the Rayleigh 

streaming patterns. Most of thermoacoustic devices (engines or refrigerators) operate at high 

amplitude to maximize the output. Above a certain limit, the “slow streaming” hypothesis of 

Rayleigh is not valid. Menguy and Gilbert [8] defined dimensionless parameter to determine the 

limit of “slow streaming” hypothesis. The dimensionless parameter is known as non-linear 

Reynolds number which is described mathematically as following: 



3 
 

                                                          𝑹𝒆𝑵𝑳 = (
𝑨

𝒄
)
𝟐

(
𝑹

𝜹𝒗
)
𝟐

      (1.1) 

where 𝐴 is the acoustic amplitude at the velocity antinode, 𝑐 is the speed of sound at the ambient 

conditions, 𝑅 is the radius of the pipe and 𝛿𝑣 is the viscous penetration depth (𝛿𝑣 = √𝜈
𝜋𝑓⁄  , where 

𝜈 is the kinematic viscosity and 𝑓 is the frequency of oscillation). 

For 𝑅𝑒𝑁𝐿 less than unity the “slow streaming” hypothesis of Rayleigh is valid. Rayleigh streaming 

pattern at low 𝑅𝑒𝑁𝐿  in a half wave resonator is shown in Fig. 1.2. The pattern of Rayleigh 

streaming is repeated each quarter wave length. Each pattern is axisymmetric and consists of two 

vortices namely outer and inner streaming vortex. The inner streaming vortex is located near to 

the wall and its direction of rotation is opposite to the direction of rotation of the outer streaming 

vortex. The axial streaming velocity distribution in the radial direction shows that the maximum 

velocity is achieved at the center of the duct and the negative maximum velocities are achieved 

near to the wall. Also, the cross sectional average velocity should be zero.  

 

Figure 1.2: Rayleigh streaming flow pattern in a half wave resonator at low 𝑅𝑒𝑁𝐿: (a) Axial 

acoustic velocity distribution, (b) Rayleigh streaming velocity distribution, (c) Axial streaming 

velocity distribution in the radial direction (d) Axial streaming velocity distribution in the axial 

direction. Adapted from [9]. 

For 𝑅𝑒𝑁𝐿  larger than unity, the “fast streaming” effects should be considered. Reyt et al. [9] 

studied the effects of high 𝑅𝑒𝑁𝐿 on Rayleigh streaming pattern. As shown in Fig. 1.3, the measured 

axial streaming velocity agrees well with the theoretical expectations at 𝑅𝑒𝑁𝐿 = 1 whereas the 
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discrepancy between the measurements and the theoretical expectations increases as the 𝑅𝑒𝑁𝐿 is 

increased. At high  𝑅𝑒𝑁𝐿 , the maximum axial streaming velocity shifts toward the streaming 

velocity node. The reason for this discrepancy has been investigated in many studies [10], [11], 

[12] and [13]. 

The effects of temperature on the Rayleigh streaming pattern has been theoretically investigated 

(i.e., [14], [15] and [16] ). In addition, Thompson et al. [11] experimentally studied the temperature 

effects on Rayleigh streaming pattern. As shown in Fig. 1.4a, the effects of wall temperature 

conditions are not significant at low  𝑅𝑒𝑁𝐿 . Whereas, the wall temperature effects are more 

significant at high 𝑅𝑒𝑁𝐿. As shown in Fig. 1.4b, the measured axial streaming velocity distribution 

agrees with the theoretical expectations in the isothermal case whereas the discrepancy increases 

whenever there is a temperature gradient (i.e. insulated and uncontrolled). 

 

Figure 1.3: The axial distribution of the normalized axial streaming velocity at different 𝑅𝑒𝑁𝐿. 

Adapted from [9]. 
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Figure 1.4: The axial distribution of the axial streaming velocity at different wall temperature 

conditions at two different  𝑅𝑒𝑁𝐿. Adapted from [11]. 

All the work cited above investigated the effects of different parameters on the Rayleigh streaming 

in simplified configurations (e.g. empty channels). However, thermoacoustic devices are more 

complicated than those simplified configurations.  

In the course to approach the thermoacoustic devices, Moreau et al. [17] experimentally 

investigated the effect of placing a stack inside an empty resonator where the acoustic wave was 

generated by loudspeakers but there are no thermoacoustic process (i.e. no temperature gradient 

across the stack). As shown in Fig. 1.5, the stack always creates disturbances in the axial streaming 

velocity distribution. It was found that the disturbance is limited to a certain zone on both sides of 

the stack. They found that the disturbance is due to the jet-driven streaming generated at both ends 

of the stack. The results of this work is used in the current work to define the disturbance zone (i.e. 

the distance over which the jet-driven streaming affect the Rayleigh streaming distribution). 

Debesse et al. [18] measured the mean velocity in a standing-wave thermoacoustic engine but the 

measurements were performed at one axial location and far from the thermoacoustic core (i.e. 

stack and heat exchangers). Their measurements indicated that there is a mean flow inside the 

resonator but is totally different from the theoretical expectations of Rayleigh streaming.  
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Figure 1.5: The axial distribution of the axial streaming velocity at the center of the duct with 

different locations for the stack inside the duct. Adapted from [17]. 

 

Heat has another effects on the Rayleigh streaming in a thermoacoustic systems. This effect is due 

to the natural convection flow generated by the non-uniformity of the temperature field [19]. 

Although the effects of natural convection flow on Rayleigh streaming seem to be crucial, very 

few studies can be found on that regards. Babaei and Siddiqui [20] measured the mean velocity at 

both sides of the stack of a thermoacoustic refrigerator. As shown in Fig. 1.6, the values of the 

mean velocities at both sides of the stack are not the same and the discrepancy increases with the 

drive ratio increase. They described the reason for this difference is as the natural convection flow 

created by the temperature gradient.  
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Figure 1.6: The axial mean velocity at both sides of the stack of a refrigerator at different drive 

ratios. Adapted from [20]. 

Some studies investigated the effects of the convection motion on acoustic velocities not mean 

velocities. Pan et al. [21] studied the effects of a temperature gradient on the acoustic velocity 

distribution inside an empty resonator in which the wave is generated by loudspeaker and the 

temperature gradient is imposed through two heat exchangers. As shown in Fig. 1.7, the measured 

acoustic velocity pattern at all phases is different from the expected velocity pattern. This 

difference is due to the natural convection flow created by the temperature gradient.  

Moreover, Saint Ellier et al. [22] measured the effect of an imposed temperature gradient on the 

axial mean velocity distribution in the radial direction. As shown in Fig. 1.8, their results do not 

agree with any theoretical expectations. On the other hand, the enhancement of convective motion 

by acoustic streaming has been the subject of several studies, the case of differentially heated 

horizontal walls being generally considered (e.g., [23] and [24]). All these studies reveal a strong 

and complex interaction between acoustics, acoustic streaming and convective motions. 
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Figure 1.7: The acoustic velocity vector map at different phases over the acoustic cycle. Adapted 

from [21] 
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Figure 1.8: Axial streaming velocity distribution in the radial direction at different drive ratios 

with (●) and without (▬) temperature gradient. Adapted from [22]. 

The current study aims to bridge further the gap between academic configurations for which 

Rayleigh streaming has been studied and real thermoacoustic devices while still considering a very 

simple system to be able to benefit from the results of previous studies (especially, [9] and [17]) 

as references. Measurements of axial mean velocity are reported in a standing-wave guide in which 

a stack is set. The stack is heated at one end to generate a sound wave, yielding a thermoacoustic 

device. Measurements are performed in the heated system with and without the sound wave (that 

is in a thermoacoustic engine or just in a heated tube) and reveal that the mean flow in the engine 

results from a competition between Rayleigh streaming, jet-driven streaming and also natural 

convection. 

Chapter 2 discusses the experimental setup, measurement techniques and signal processing tools 

used to study Rayleigh streaming in a real thermoacoustic device. Also, the results are discussed 

and conclusions are drawn by the end of the chapter. 

 

1.2. Transition to turbulence in oscillating flow 

Most of the design tools of thermoacoustic devices are mainly dependent on the linear theory of 

Rott [1]. Generation of turbulent flow inside some segments (e.g. inertance, resonator … etc.) of 

thermoacoustic devices is one type of the non-linearities that has negative effects on the overall 

performance, however they are not taken into consideration while designing thermoacoustic 
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devices due to the lack of data on this regards. Turbulence generation represents an energy loss 

because part of the kinetic energy of the main oscillating flow is dissipated into turbulent kinetic 

energy which is finally dumped as heat.  

The study of oscillating flow at low frequencies (i.e. sub-acoustic range) in a pipe has been studied 

long time ago. For instance, Richardson and Tyler [25] used a hot wire anemometer to measure 

the velocity gradient near to the end of an oscillating pipe flow with different cross sectional shapes 

(square and oval). They noticed that the maximum velocity is achieved near to the wall rather than 

the center of the pipe and this phenomenon is known as annular effect, and the core flow almost 

has a flat profile. The annular effect was found to vanish gradually as the distance from the pipe 

end increases. Also, they noticed that the boundary layer thickness can be scaled with the square 

root of the oscillation frequency. The velocity profiles of a turbulent steady flow were captured, 

as well. These measurements were in agreement with the Prandtl law (1/7th law). 

Afterwards, the issue of quantifying the transition to turbulence in an oscillating pipe flow was 

raised. Hence, many studies have been implemented to determine the critical Reynolds number at 

which the turbulent bursts start to appear during the cycle of oscillations. In the following 

paragraphs, a summary for the implemented work regarding this issue is presented. 

Collins [26] studied the transition to turbulence in the boundary layer of periodic gravity waves at 

a smooth horizontal bed.  Based on quasi-steady approximation, he found that the velocity at the 

edge of the boundary layer has a direct proportionality with the wave height in the laminar flow. 

So, he claimed that the onset of turbulence occurs when this proportionality is broken. 

Accordingly, the critical Reynolds number (𝑅𝑒𝛿)was found to be 160. The Reynolds number  

 (𝑅𝑒𝛿) is defined as follows: 

 𝑅𝑒𝛿 = 𝑈𝑜𝛿/𝜐      (1.2) 

where 𝑈𝑜 is the velocity amplitude at the center line of the duct, 𝛿 is the viscous penetration depth 

and 𝜐 is the kinematic viscosity. Also, based on the instability theory, he claimed that the first 

instability point in the laminar boundary layer occurs during the acceleration phase which 

contradicts the observations of other experiments. 

However, the results of Collins [26] were not in agreement with experimental observations. For 

example, Sergeev [27] derived an expression for determining the value of the critical Reynolds 

number for oscillating flows and the expression was validated by experiments. Aluminum powder 

particles were added to the flow for visualization purpose and the disturbance of the flow was 

visually observed. He stated the value of the critical Reynolds number is a function of the 

Womersley number (𝛼) which is defined as follows: 

𝛼 =
𝐷/2

√𝜐/𝜋𝑓
      (1.3) 



11 
 

where 𝐷 is the hydraulic diameter of the duct and 𝑓 is the oscillating frequency. For (𝛼 < 5.6), 

the value of the critical Reynolds number equals to  (𝑅𝑒𝐷 = 𝑈𝑜𝐷/𝜐 = 2500 + 13.88 ∗ 𝛼4) . 

While, for (𝛼 > 5.6), the value of the critical Reynolds number equals to (𝑅𝑒𝐷 = 990 ∗ 𝛼). Also, 

the friction factor of the oscillating flow was measured at different Reynolds and Womersley 

numbers in the turbulent flow regime and it was found to be a function of Reynolds number and it 

can be obtained directly from Blasius law. 

Also, Ohmi and Iguchi [28] investigated experimentally the critical Reynolds number for 

oscillatory flow. The critical Reynolds number is defined as the value of oscillating Reynolds 

number (𝑅𝑒𝐷) at which the generation region is fully built up. They came up with an evaluation 

method for the critical Reynolds number based on the assumption that the turbulence generation 

region in steady flow is the same as in the oscillating flow. This evaluation method concludes that 

the critical Reynolds number is a function of (𝛼), where (𝑅𝑒𝐷 = 1247 ∗ 𝛼) for (𝛼 > 4.9). This 

result is in agreement with the experimental data of other investigators. In addition, they mentioned 

that the value of the critical Reynolds number will be same as steady flow  (𝑅𝑒𝐷 = 2450) 

when (𝛼 < 0.707). Also, the turbulence during the cycle is investigated. They concluded that the 

turbulence bursts appear during the acceleration phase. However, this conclusion was disproved 

by experiments where the turbulent bursts are observed only during the deceleration phase. 

Moreover, Zhao and Cheng [29] studied the transition of oscillatory flow from laminar to turbulent 

by utilizing a hot-wire anemometer to record the velocity variations inside oscillatory pipe flow. 

Also, correlations for frictional losses are derived for both laminar and turbulent oscillating flows. 

The experimental data we obtained in ranges of  (332 < 𝑅𝑒𝛿 < 1193) and  (1.7 < 𝛼 < 8.2) . 

They proved that the critical Reynolds number is 𝑅𝑒𝛿 = 538. In addition, they found that the 

turbulence occurs during the deceleration phase due to change from favorable pressure gradient to 

an adverse pressure gradient. 

All of the previous studies proved the critical Reynolds number is expected to be around 500. Also, 

it is noted that these experiments were done at low frequencies (sub-acoustic frequency range). 

Hence, Merkli and Thomann [30] studied the transition to turbulence in oscillating flow using hot-

wire anemometer and flow visualization. Scotch Yoke mechanism was used to generate sine wave 

inside a closed tube filled with air. The measurements were conducted at high frequency range up 

to 130 Hz. Also, the frequencies near to resonance were excluded from the study in order to avoid 

travelling shocks and grantee sinusoidal variation of properties with time. They proved that the 

transition of flow from laminar to turbulent conditions is dependent only on the Reynolds number 

and the reported value of the critical Reynolds number is (𝑅𝑒𝛿 = 𝑈𝑜𝛿/𝜐 = 283). In addition, they 

concluded that the hot-wire measurements in the boundary layer at high frequencies are misleading 

because the size of boundary layer at high frequency becomes too small and hence the disturbance 

of the hot-wire probe becomes large enough to affect the collected data. 

After quantifying the critical Reynolds number, it was important to define different patterns and 

structures of oscillating flow. Hence, Ohmi and Iguchi [31] described the flow patterns in an 
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oscillating pipe flow at different oscillating Reynolds number (8550 < 𝑅𝑒𝐷 =
𝑈𝑜𝐷

𝜐
< 67700) and 

Womersley number  (3 < 𝛼 < 16.5). Three characteristic parameters are used to describe the 

different flow patterns. These are the cross-sectional mean velocity, pressure gradient, and wall 

shear stress. The relationship between these parameters can be expressed in the unsteady 

momentum equation given as follows: 

 𝜌𝑜
𝑑𝑈

𝑑𝑡
+

4

𝐷
𝜏𝑤 −

∆𝑝

𝑙
= 0    (1.4) 

where the former two terms are the inertia and the viscous terms respectively whereas the latter 

term is the pressure gradient. They classified the flow patterns into three categories which are 

quasi-steady region, intermediate region, and inertia dominant region. When the latter two terms 

in the previous equation are balanced, the flow is classified as quasi-steady, while the flow 

becomes in an intermediate region when the three terms are nearly balanced and finally when the 

former two terms are balanced the flow is in inertia dominant region. Also, the comparison 

between the measurements and turbulent quasi-steady state relations showed a favorable 

agreement in the whole cycle, except early stage of acceleration phase and latest stage in 

deceleration phase, when the flow is fully turbulent (𝑅𝑒𝐷 > 3960𝛼). While, this agreement is 

limited to a portion of the cycle, mainly the deceleration phase, when the flow is conditionally 

turbulent (1131𝛼 < 𝑅𝑒𝐷 < 3960𝛼). 

Also, Hino et al. [32] investigated the oscillating flow characteristics at different Reynolds 

number  (19 < 𝑅𝑒𝛿 < 1530)  and Womersley number  (1.35 < 𝛼 < 6.18) . They divided the 

oscillating flow into three categories which are laminar or distorted laminar flow, weakly turbulent 

flow, and conditionally turbulent flow. The laminar flow is described as a smooth flow with no 

oscillations. The weakly turbulent flow is described as a flow with small fluctuations during the 

whole cycle. Finally, the conditionally turbulent flow is described as the flow which has violent 

fluctuations during deceleration phase. In laminar cases, the measured velocity distribution 

matches the theoretical velocity distribution. In conditionally turbulent flow, the measured velocity 

distributions match the theoretical velocity distribution only in acceleration phase while it deviates 

during the deceleration phase due to turbulence occurrence. Also, they concluded that for 𝛼 < 1.6 

the critical Reynolds number is dependent on the Womersley number; while for larger Womersley 

number the critical Reynolds number is a constant value equals to 𝑅𝑒𝛿 = 550. However, Sergeev 

[27] mentioned that the critical Reynolds number is proportional to Womersley number only 

for 𝛼 > 5.6. 

Moreover, Hino et al. [33] studied experimentally the structure of the turbulent oscillating flow. 

Two different techniques are used to measure instantaneous velocity of oscillating flow inside a 

wind tunnel has a rectangular cross section with aspect ratio of 2.6. These techniques are hot wire 

anemometry and laser Doppler velocimetry. The flow inside the wind tunnel is driven by a 

reciprocating piston with diameter of 480 mm. The frequency of oscillatory flow can be varied 

from 0.01886 to 0.4 Hz. As a kind of validation, the measured laminar velocity profiles at different 
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phases during the cycle are compared with theoretical profiles. They reported that there is an 

overshoot in the velocity profile near to the wall during the acceleration phase, while this overshoot 

is vanished during deceleration phase. Regarding the turbulent flow, the measurements showed 

that there is a too small overshoot in the velocity profile during the acceleration phase. Also, near 

to the wall above the viscous sublayer, there is a layer obeys semilog-law like in a steady flow. 

However, the thickness of this layer during the acceleration phase is smaller than during the 

deceleration phase. In addition, the total viscous layer is increased during acceleration phase till 

reaches to maximum value at the end of acceleration then it is suddenly decreased at the beginning 

of deceleration phase due to turbulence generation. Also, the turbulence intensity increases from 

the wall towards the center of the duct in the beginning of the acceleration phase and later in the 

deceleration phase. While, during the reminder part of the cycle; the turbulence intensity profile 

has a peak value near to the wall rather than the center of the duct. Interestingly, they reported that 

the value of the wall shear stress reached to the maximum value at the peak of turbulence 

intensity (𝜔𝑡 ≅ 0.75𝜋) not at the phase of maximum axial velocity (𝜔𝑡 ≅ 0.5𝜋). In addition, the 

turbulence energy production is increased during deceleration phase while is kept constant almost 

in the acceleration phase. Also, the turbulence energy dissipation rate is increased suddenly 

at 𝜔𝑡 ≅ 0.25𝜋; then it decreases suddenly at 𝜔𝑡 ≅ 0.75𝜋, which means the turbulence energy 

production is consumed mainly by the violent turbulent fluctuations during the deceleration phase.  

In the previous experiments, the measurement techniques were intrusive techniques (e.g. How 

wire). However, such technique might have an effect on the acquired results. So, some researchers 

use non-intrusive techniques to study the oscillating flow. Clamen and Minton [34] studied the 

transition of oscillating and pulsatile flows from laminar to turbulence. The flow was described by 

dimensionless parameters which are the oscillatory Reynolds number  (𝑅𝑒𝐷 ), the Womersley 

number (𝛼) and the mean Reynolds number, defined as follows: 

 𝑅𝑒𝐷,𝑠 = 𝑈𝑚𝐷/𝜐      (1.5) 

where  𝑈𝑚 is the mean flow velocity. A hydrogen-bubble technique was used to obtain the velocity 

profile through the pipe cross section. Regarding pure oscillatory flow (i.e. zero mean flow), the 

measured velocity profiles was in agreement with the theoretical velocity profiles for low 

frequencies. However, at higher frequencies, there is about 10% error due to difficulties of keeping 

pure harmonic pipe oscillations. Also, it is worthwhile to mention that the flow regime was laminar 

for all experiments associated with pure oscillatory flow. On the other hand, the regime of pulsatile 

flow was changed from laminar to turbulent. Regarding pulsatile flow, the intermittency of the 

flow, defined as the percentage of the time the flow was disturbed to the total time of 

measurements, is used as an indicator for transition to turbulence in the flow regime. They 

concluded that the increase in the mean Reynolds number at a constant Womersley number leads 

to an increase in the intermittency. However, in some cases at a constant mean Reynolds number 

the increase in the Womersley number leads to a reduction in the intermittency. Also, they 

observed that the flow was laminar up to 𝑅𝑒𝐷 of 1500 and Womersley number up to 7.  
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Also, Eckmann et al. [35] utilized a Laser Doppler Velocimeter (LDV) to study the transition from 

laminar to turbulent in oscillating flow. They used the following parameters to describe the flow; 

the Reynolds number  𝑅𝑒𝛿 , Womersley number (𝛼 ), and the dimensionless amplitude  (𝑆 =
𝑆𝑡𝑟𝑜𝑘𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑡𝑢𝑏𝑒 𝑟𝑎𝑑𝑖𝑢𝑠
). This study covers a range of  𝑅𝑒𝛿 up to 1310 and Womersley number from 6.36 to 

23.3. To ensure conducting measurements in a proper way; they compared the measured velocity 

distribution through the duct, in the laminar cases, with the result of laminar theory of oscillatory 

flow. Their measurements were in a good agreement with theory. The instability of the flow was 

observed at different radial positions. At Reynolds number less than 500 the both core and 

boundary layer flows are stable. For Reynolds number up to 1310, the core flow remains stable. 

However, the boundary layer flow show instabilities during deceleration phase and the flow 

appears to relaminarize again during acceleration phase. In addition, the effect of existence of the 

hot-wire probe inside the flow on the measurements was investigated. A dummy hot-wire probe is 

inserted near to the measurement location (LDV probe) and the instabilities of the flow is 

monitored. The instabilities in the boundary layer is observed at  𝑅𝑒𝛿  above 300. This reduction in 

the critical Reynolds number is due to the existence of the hot-wire probe. 

Moreover, Flisher and Brodkey [36] studied the transition to turbulence in oscillating pipe flow 

using flow visualization technique. They described a mechanism for turbulence generation in 

oscillating flow. The dimensionless parameters used in this study are Reynolds number  𝑅𝑒𝛿  and 

Womersley number (𝛼) ranged from 536 to 1340 and 4.66 to 11.74, respectively. They mentioned 

that series of events or flow structures are responsible for generating turbulence in oscillating flow 

like steady flow. However, these events in oscillatory flow are not random in time and space in 

contrast to steady flow turbulence. These events occurred during deceleration phase of the cycle. 

These events are local deceleration, local acceleration, Excitation-traverse vortex and ejection. 

Also, they concluded that the critical Reynolds number ranged from  650 <  𝑅𝑒𝛿 < 1000 . 

However, these values of the critical Reynolds number is much higher than stated values by Merkli 

and Thomann [30]; this discrepancy might be due to some disturbances imposed on the flow in 

Merkli's experimental setup. Also, Merkli used a resonance tube closed from one end while others 

used an oscillating pipe flow. On the other hand, the stated range of the critical Reynolds number 

(650-1000) is reasonable value when compared with values obtained by Hino et al. [32] and 

Sergeev [27]. 

Finally, Akhavan et al. [37] utilized the Laser Doppler Anemometer (LDA) to investigate the 

transition to turbulence in oscillating pipe flow for a range of Reynolds number  𝑅𝑒𝛿 from 550 to 

2000 and Womersley number 𝛼  from 4.95 to 9.9. In order to verify their measurements, the 

measured velocity profiles, in laminar flow, are compared to the theoretical profiles and a good 

agreement is achieved. They classified the flow regimes into four types; namely, laminar flow, 

weakly turbulent flow, conditionally turbulent flow, and fully turbulent flow which is in agreement 

with the classifications of  Hino et al. [33]. They noticed a vigorous turbulent busts during the 

deceleration phase while the flow is relaminarized during the acceleration phase. Also, they 

concluded that the turbulent oscillating flow has the same layers of the turbulent steady flow which 
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are a viscous sublayer, a logarithmic layer and an outer wake. On the other hand, the major 

difference from the steady flow is the ratio of turbulence intensities (axial and radial) and average 

center line velocity has a value twice larger than the value reported for the steady flow. In addition, 

the production rate of turbulence is found to be significant at the late stages of acceleration phase 

and early stages in the deceleration phase. 

In addition, some experiments were conducted on pulsatile flow to understand the transition to 

turbulence in such flow. Trip et al. [38] studied experimentally the transition of water flow from 

laminar to turbulent in a pulsatile pipe flow. Three dimensionless parameters were employed to 

describe the pulsatile flow. These parameters are the mean Reynolds number ( 𝑅𝑒𝐷,𝑠 ), the 

oscillatory Reynolds number ( 𝑅𝑒𝐷 = 𝑈𝑜𝐷/𝜐), and the Womersley number (𝛼) which is the ratio 

of the transit inertia force to the viscous force; where 𝑈𝑜 is the axial velocity. The measurements 

were implemented over a range of mean Reynolds number (2000-5000) and Womersley number 

ranged from 7.1 to 17.67.  The turbulence intensity was used as indication for the turbulence 

generation. Both spatial and temporal intensities were obtained simultaneously by using particle 

image velocimetry (PIV). In laminar cases, the measured velocity distribution in the pipe was in 

agreement with the theoretical velocity distribution obtained from the solution of Navier-Stocks 

equations for the same conditions of that case. Interestingly, they found that there is no effect for 

both oscillatory Reynolds number and Womersley number on the turbulence generation; however, 

the turbulence generation is only associated with the mean Reynolds number and the fully 

developed turbulent flow is achieved at 𝑅𝑒𝐷,𝑠 = 2761. In addition, the turbulence intensity was 

measured during the different phases of the cycle. They found that during the acceleration phase 

the turbulence intensity is decreased and start to increase during acceleration phase. The maximum 

turbulence intensity is achieved at the end of deceleration phase. 

Also, Carpinlioglu and Ozahi [39] derived some governing correlations, based on the available 

experimental data, describing the start of the transition to turbulence in both oscillating and 

pulsatile flows. The start of the transition is recognized by the observation of turbulent bursts 

during the deceleration phase. While the end of transition is marked by the spreading of these 

bursts in the whole cycle. Regarding oscillating flow, they found that the critical Reynolds number 

(𝑅𝑒𝐷)  is dependent only on the Womersley number  (𝛼) . For  0.707 < 𝛼 < 29 , the critical 

Reynolds number can be represented as following (𝑅𝑒𝐷 = 1060 ∗ 𝛼) with accuracy of ±12 %. 

While for 𝛼 > 29, the critical Reynolds number is represented as following (𝑅𝑒𝐷 = 565 ∗ 𝛼). On 

the other hand, the critical Reynolds number in the pulsatile flow is dependent on both Womersley 

number and velocity amplitude ratio (𝑅𝑒𝐷/𝑅𝑒𝐷,𝑠). 

Regarding numerical work in this subject, Ahn and Ibrahim [40] evaluated the performance of high 

Reynolds  𝑘 − 휀 model for turbulent oscillating flow in a pipe. They compared the measured 

normalized velocity distribution and phase difference with the numerical simulation data. For 

laminar flow regime, the oscillating flow can be simulated numerically with high accuracy. For 
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fully developed turbulent flow, the 𝑘 − 휀 model predicts the oscillating flow with an acceptable 

error. However; for transition regime, the numerical data deviates from the experimental one. 

Also, Akhavan et al. [41] investigated numerically the transition to turbulence in oscillating flow 

inside a channel. The stability of the flow to different disturbances is studied using direct numerical 

simulations of the Navier-Stokes equations. Different disturbances such as infinitesimal and finite 

amplitude in two and three dimensions are imposed to the main oscillating flow and the evolution 

of such disturbances is monitored and compared with the experimental results. Out of this work, 

they found that the transition to turbulence in oscillating flow can be captured by a secondary 

instability mechanism of disturbances have two-dimensional finite-amplitude and three-

dimensional infinitesimal amplitude. This method shows a good agreement with experimental 

results. 

Finally, some theoretical work was implemented regarding this subject. For instance, Womersley 

[42] established a method for determining the velocity profile and viscous drag in a circular pipe 

when the pressure gradient varies with time. He expressed the pressure gradient as an exponential 

function of time. So, the real part of this pressure gradient is equivalent to the oscillating pressure 

gradient.  

Drake [43] derived mathematical expressions to predict the velocity profile and skin-friction of 

oscillating flow inside a rectangular duct. He concluded that the velocity profile at too low 

frequencies (dimensionless frequency parameter) is the same as that for a steady flow. While, at 

high frequencies the velocity profile is changes and the maximum velocity is achieved near to the 

walls rather than at the center of the duct. This phenomenon is known as an annular effect. Also, 

the mathematical expression for the velocity profile at high frequencies is divided into two 

expressions where, one is valid near the walls while other is valid near the center of the duct. 

Tsangaris [44] presented the exact solution for of the Navier-Stokes equations for pulsatile flow 

inside a rectangular duct. This solution contains the effect of both steady and oscillating flow on 

the velocity profile. Also, the result of this solution, when only oscillating flow is considered, is 

equivalent to Fan (1965) and Drake (1964) solutions.  

Fan [45] solved the equations of motion and continuity for laminar, incompressible, and fully 

developed flow in a rectangular duct under am axial pressure gradient which is an arbitrary 

function of time. Solutions for four different pressure gradient functions are obtained. Those 

functions are impulsive pressure gradient, Heaviside unit step pressure gradient function, harmonic 

oscillating pressure gradient and purely harmonic motion superimposed on a steady slow. 

 Kerczek and Davis [46] studied the stability of the Stokes layer in an oscillating flow against two 

and three-dimensional disturbances. The approach of energy method is employed to investigate 

the stability criteria. Based on two-dimensional disturbances, the criterion for stokes layer stability 

is (𝑅𝑒𝛿 < 38.9).  
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From the previous review, it can be concluded that the selection of the characteristic length of the 

Reynolds number is important to define the value for the critical Reynolds number. In other words, 

when the diameter of the duct(𝐷) is chosen as a characteristic length; the critical Reynolds number 

is proportional to Womersley number (𝑅𝑒𝐷 = 𝐶 ∗ 𝛼) and the proportionality factor or the critical 

amplitude number (𝐶) ranges from 990 to 1247. However, for those who use the viscous 

penetration depth 𝛿𝑣 = √2𝜐/𝜔 as a characteristic length, the value of the critical Reynolds number 

becomes constant because the effect of the Womersley number is included in the Reynolds number 

itself, where  𝑅𝑒𝛿 =
𝑈𝑜𝛿𝑣

𝜐
=

𝑅𝑒𝐷

2∗𝛼
=

𝐶

2
. Also, it can be noted that the critical Reynolds number 

depends on the frequency range. Many research postulated that the critical Reynolds number for 

sub-acoustic frequency is about 500. On the other hand, the experimental work done to quantify 

the critical Reynolds number in the high frequency range (i.e. acoustic frequency range) is scare. 

Also, the available numerical models cannot predict the transition to turbulence in oscillating 

flows. 

Also, it is noted that PIV system was not used in studying the pure oscillating flow [47]. Although, 

PIV is a good tool for such measurements because we can get 2D velocity field which means the 

velocity distribution in the duct will be measured at all points simultaneously. So, the results of 

the PIV system will be more realistic when compared with other techniques. The reason for not 

using PIV system in the previous experiments is due to the limited sampling frequency of the old 

PIV system (up to 10 Hz). Nowadays, the sampling frequencies of the PIV system reached up to 

5000 Hz. Hence, in this work; PIV system will be utilized to study the oscillating flow inside the 

rectangular duct at sub-acoustic frequency range to validate the methodology applied in this work 

then the study will be extended to the acoustic frequency range.  

Chapter 3 discusses the experimental setup, measurement techniques and signal processing tools 

used to study the transition to turbulence in oscillating flow at both sub-acoustic and acoustic 

frequency ranges. Also, the results are discussed and conclusions are drawn by the end of the 

chapter. 

1.3. Entrance/exit effects 

In steady flows, the entrance/exit effects are well described and understood. On the other hand, 

there are lack of studies focused on these effects in oscillating flows. The entrance/exit effects in 

steady flow cause an energy loss usually referred as minor loss. Also, these effects extend to a 

certain distance known as a development length. In thermoacoustic devices, where the main flow 

has an oscillating behavior, the acoustic displacement at high amplitudes becomes comparable to 

the length of some components of thermoacoustic devices (e.g. heat exchangers). So, the 

entrance/exit effects may extend over the whole length of the heat exchanger. Some studies have 

pointed out to the effects of entrance/exit on the performance of thermoacoustic devices. For 

instance, Swift [48] noticed a discontinuity in temperature measurements between the hot heat 

exchanger duct and the empty duct next to it. Also, Storch et al. [49] reported that the temperature 

distribution over the pulse tube of pulse tube refrigerator exhibits an overshoot near to the both 
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ends of the tube. As shown in Fig. 1.9, there is an overshoot in the temperature distribution near 

to the both ends of the pulse tube. They concluded that this overshoot is due to the entrance/exit 

effects. 

 

Figure 1.9: Gas temperature distribution over the whole length of the pulse tube in 

thermoacoustic refrigerator at different cold end temperatures. Adapted from [49]. 

Although it seems that the entrance/exit effects are important, the available design tools do not 

consider them. In these design tools, it is assumed that the flow properties (e.g. temperature and 

pressure) at the beginning of the segment is the same as the properties at the end of the preceding 

adjacent segment. This joining assumption will not be appropriate wherever the minor losses exist. 

Lately, the design tools added a lumped element to deal with the minor losses. However, this 

lumped element deals with the minor loss from the perspective of the steady flow. This assumption 

lacks of the experimental validation. 

As the thermoacoustic core of engines and refrigerators consist of stack/regenerator and heat 

exchangers, it is important to understand the effects of entrance/exit on the flow characteristics 

near to the end of the stack/regenerator. The stack can be simplified as a set of parallel plates. Most 

of the researchers have followed this simplification in order to easily describe the effects of the 

stack on the flow morphology. For instance, Benon et al. [50] experimentally studied the effects 

of the plate thickness on the formation of vortices at the end of the parallel plate stack. As shown 

in Fig. 1.10, two elongated vortices are formed in the case of thin plate thickness. Whereas, two 

encounter vortices impinge at the end of the plate with the case of thick plate thickness. Also, they 

compared these results with numerical model they developed. The numerical model results agree 
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with the measurements. It is worthwhile to mention that the vortex generation at the inlets/exits of 

the stack region due to sudden contraction/expansion is one of the main mechanisms of viscous 

dissipation. Some numerical studies [51], [52], [53] have tempted to model the oscillating flow 

over the parallel plates. 

  
Figure 1.10: The vorticity field at a certain phase around the stack plates for different plate 

thicknesses: (left) Thin, (Right) Thick. Adapted from [50]. 

 

Also, part of viscous dissipation occurs near to the walls due to the formation of the boundary layer 

[54]. Berson et al. [55] measured the velocity field inside an oscillating boundary layer between 

the parallel plates of the stacks using PIV and compared the results with a simple numerical model. 

They found that the generated vortex is attached to the plate at low amplitudes. Whereas at high 

amplitudes the vortices detached from the plates. However, they concluded that this detachment 

does not indicate any transition to turbulence as  𝑅𝑒𝛿 was much less than the critical value 𝑅𝑒𝛿 =

280 [30]. Moreover, some studies [56] [57] have found that the flow over stack plates is non-

periodic flow and the non-periodicity increases with high amplitudes. 

Some studies have attempted to investigate the evolution process of the vortex generation around 

the parallel plates. Shi et al. [58] described different phenomena occurring during the ejection 

phase. They found that at low velocity amplitudes, two symmetric (with respect to the plate 

centerline) vortices are formed and attached to the plate. These two vortices are either elongated 

or concentrated based on the plate spacing. These findings are in agreement with [50]. At higher 

velocity amplitudes, the elongated vortices break up to form vortex street, as shown in Fig. 1.11. 

At much higher velocity amplitude, the flow turned to be more chaotic, as shown in Fig. 1.12.  
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Figure 1.11: Vorticity field past the stack plates at different phases at 𝑅𝑒𝛿 = 172. Adapted from 

[58]. 

 

 

Figure 1.12: Vorticity field past the stack plates at different phases at 𝑅𝑒𝛿 = 337. Adapted from 

[58]. 

Rezk et al. [59] studied the effects of plate spacing, plate thickness and drive ratio on the flow 

morphology on the oscillating flow over parallel-plate stack. They found that the size of the vortex 

and the associated disturbance zone increase as the thickness of the plate is increased. Also, the 

interaction between vortices increases as the plate separation decreases. 

Shi et al. [60] studied the relation between Reynolds number and Strouhal number in oscillating 

flow over parallel plate stack using LDA. As shown in Fig. 1.12, Strouhal increases with the 

increase of Reynolds number up to a certain level, after which Strouhal number saturates.  
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Figure 1.13: Effect of Reynolds number on Strouhal number in oscillating flow past a parallel-

plate stack. Adapted from [60]. 

Most of the studies mentioned above were concerned with the ejection phase (i.e. moving the flow 

out of the stack). In other words, they studied the flow interactions outside the stack. So, Jaworski 

et al. [61] focused on the suction phase (i.e. moving the flow into the stack). They have tempted 

to define an entrance length inside parallel-plate stack placed inside an acoustic resonator. They 

defined the entrance length as the distance after which the velocity profile becomes nearly 

constant. They pointed out the entrance length changes over the acoustic cycle. 

One of the trends to minimize the disturbance occurred at the inlet/exit of the stack is using a stack 

with different end-plate shapes (i.e. circular and triangular). Aben et al. [62] have investigated 

experimentally utilizing PIV some characteristics of the fluid (vortices and streaming velocity) 

around parallel stacks inside a standing wave resonator. Also, they have studied the effects of the 

drive ratio, the plate thickness, the plat spacing, and the end-plat end on the vortex shedding at the 

entrance of the parallel plate stacks. As shown in Fig. 1.14, the vortex generation with a plate has 

a circular end is smoother than the rectangular end and triangular end with right angle. However, 

the plate with triangular end and small angle reduces the vorticity which indicates less dissipation 

of the flow energy. 
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Figure 1.14: Vorticity field over parallel-plate stack with different end-shape (𝜔𝑜 = 104 𝑠−1). 

Adapted from [62]. 

 

All the previous studies have investigated the effects of several parameters on the flow morphology 

around parallel-plate stack. However, all of these studies have been implemented at low velocity 

amplitudes [63]. Since most of thermoacoustic systems work at high pressure and velocity 

amplitudes, it is important to study the effects of previously mention parameters on the flow 

morphology at high velocity amplitude. 

In this study, the effects of different end-plate shapes on the flow morphology and on the flow 

vorticity and turbulence intensities at a wide range of Reynolds number will be investigated 

experimentally using PIV system. Chapter 4 discusses the experimental setup, measurement 

techniques and signal processing tools used to study the effects of different end-plate shapes at a 

wide range of Reynolds number. Also, the results are discussed and conclusions are drawn by the 

end of the chapter. 
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Chapter 2:  Streaming in a Thermoacoustic Engine 

“This chapter is Reproduced from [Ramadan, Islam; Bailliet, Helene; and Valiere, Jean-

Christophe, “Experimental investigation of the influence of natural convection and end-effects on 

Rayleigh streaming in a thermoacoustic engine”, J. Acoust. Soc. Am., Vol. 143 (1), p 361, 2018.], 

with the permission of the Acoustical Society of America.”  

As mentioned in the introduction section, this chapter focuses on the effects of the natural 

convection flow on Rayleigh streaming flow inside a standing-wave thermoacoustic engine. The 

following subsections discuss the experimental setup, measurement techniques and signal 

processing tools used in this part of the study. Also, the results are discussed and conclusions are 

drawn by the end of the chapter. 

2.1. Experimental setup 

As previously mentioned, the aim of this part of the study is to bridge further the gap 

between the academic configurations in which the steaming phenomenon has been investigated 

and the real thermoacoustic engine. So, a simple yet real thermoacoustic engine is proposed in the 

current study. Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV) are used 

to measure the streaming velocity distributions inside the engine. Also, pressure and temperature 

measurements are performed. The construction of the engine and the different measurement 

techniques are discussed in the following subsections. 

2.1.1. Thermoacoustic engine 

A schematic for the standing-wave thermoacoustic engine used in this study is presented 

in Fig. 2.1a. The resonator is made of a glass tube, to grant an optical access for the laser 

measurements, with inner diameter (2𝑅) of 39 mm and length (𝑙) of 740 mm. As shown in Fig. 

2.1b, the engine core consists of an electric heater attached to a 400 CPSI (Cell Per Square Inch) 

ceramic stack that has a length of 60 mm. The electric heater is 0.6 mm diameter Ni-Cr wire and 

has an electric resistance of 2.1 ohm. The engine core is inserted inside the resonator tube so that 

the heater is located at distance of 129 mm from the left end of the resonator. The heat is supplied 

to the engine through the heater wire connected to a DC-power supply (model: FI3610). In such 

an engine, applying high enough temperature gradient along the stack generates sustainable 

acoustic waves with a specific frequency (𝑓) that depends on the boundary conditions and on the 

working fluid. Since here the resonator is closed at both ends and filled with air at ambient 

conditions, the λ/2 mode is excited and hence the resonance frequency is 𝑓 ≈ 𝑐/2𝑙. A DeltaEc 

model (see Appendix A.1) is built to predict the performance of the engine. 

In order to deeply understand the mean flow patterns in this device, measurements for three 

different parameters (pressure, temperature and velocity) are conducted. A condenser pressure 

microphone (GRAS – model: 40BP) is set at the right end of the resonator to measure the dynamic 

pressure oscillations. The pressure signal is fed to a data acquisition card (model: NI 9234). The 

temperatures at both sides of the stack on the axis of the guide are measured using two type-K 
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thermocouples (identified by the green dots in Fig. 2.1a and further called Th and Ta). In addition, 

the temperatures at different axial and radial locations are measured. Four type-K thermocouples 

(identified by the red dots in Fig. 2.1a) are used either to measure the azimuthal temperature 

distribution of the outside wall along two perpendicular axes (𝐴1 (Ө = 0) 𝑎𝑛𝑑 𝐴2 (Ө =
𝜋

2
)) at two 

different axial locations (at  𝑥 = −140 𝑎𝑛𝑑 − 180  𝑚𝑚 ) or to measure the axial temperature 

distribution (at 𝑥 = 0,−100,−140 𝑎𝑛𝑑 − 180  𝑚𝑚). The signals of all thermocouples are fed to 

a data acquisition card (model: NI 9213) to be stored on the computer. The fluid velocities are 

measured using both Laser Doppler Velocimetry (LDV) and Particle Image Velocimetry (PIV). 

For this purpose, coffee smoke is used to seed the fluid. The coffee is burnt in a closed cavity; the 

smoke that escapes from one hole in this cavity is filtered and cooled down before being introduced 

in the engine. The closed ends of the resonator both have a hole used to introduce the smoke. These 

holes are closed by plugs for normal operation of the engine. The LDV and PIV measurements 

and data processing are described in the following subsections. 

  

(a) (b) 

Figure 2.1: (a) Schematic for the thermoacoustic engine, (b) Photo for the electric heater 

attached to the stack. 
 

2.1.2. Experimental procedure 

In this study, the mean flow velocity is estimated by performing a time average of the particle 

velocity. It is therefore necessary to ensure that the engine has reached its steady-state (defined by 

the variation of the measured quantity not exceeding 5% over the measurement period) so that the 

amplitude of acoustic velocity does not change along the averaging time. In particular, the 

coordination between the processes of heating one side of the stack and of seeding the fluid has to 

be considered carefully so that the engine operating state is as steady as possible during laser 

measurements. When the heater is turned on while both sides of the stack are at ambient 

temperature (normal operation), the temperatures Th and Ta increase until they become nearly 

constant. As shown in Fig. 2.2 (left column), the temperature difference (Th-Ta) becomes constant 

after about 500 seconds. Also, as shown in Fig. 2.3 (left column), the acoustic pressure 

measurements can be considered as steady after about 500 seconds. However, if the measurements 

are started after that time (500 seconds), most of the seeding particles will be settled down to the 

bottom of the resonator and hence the velocity measurements will not be satisfactory due to the 
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low seeding particle density. So, another procedure is followed to shorten the time required to 

achieve steady-state operation. The heater is turned on while the plugs at both ends of the resonator 

are removed, to preheat the engine. Doing so the resonator is not a λ/2 one and the thermoacoustic 

process does not lead to any wave generation. The heating process lasts for about 10 minutes and 

then seeding particles are introduced into the engine. After seeding, the plugs are closed and hence 

the engine starts immediately. Henceforth, this procedure is referred as “Preheating operation”. It 

should be noted that the zero time in the preheating operation refers to the time at which the plugs 

at both ends of the engine are closed. 

 

Figure 2.2: The evolution of the temperature difference (Th-Ta) over time for three different input 

electric power for two different cases: normal operation (left), preheating operation (right). 

As shown in Fig. 2.2 (right), the temperature difference reaches its steady-state operation after 

about 300 seconds. In addition, as shown in Fig. 2.3 (right), the acoustic pressure reaches its steady 

state after about 150 seconds. Also, preliminary measurements for the time evolution of both 

acoustics and mean velocities are conducted. As shown in Fig. 2.4, the acoustic velocity reaches 

its steady-state value after about 100 seconds, while the streaming velocity reaches the steady-state 

value after about 300 seconds. This is explained by the fact that the temperature field influences 

acoustic streaming [11] and hence the streaming transient time is linked to the temperature field 

transient time. Accordingly, the velocity measurements are started 300 seconds after closing the 

plugs; also, the measurement period does not exceed 3 minutes to ensure that there are enough 

seeding particles.  
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Figure 2.3: Evolution of the acoustic pressure over time at the right end of the engine for two 

different cases: Normal operation (left), preheating operation (right) and for three different input 

electric powers: (a) 32.2 W, (b) 59 W and (c) 82.2 W. 

 

Figure 2.4: Evolution of (a) the acoustic velocity and (b) the mean velocity over time at the 

center of the resonator and at axial location x = 180 mm for 32.2 watts input electric power 

(preheating operation). 

2.1.3. LDV measurements and signal processing 

The LDV used to estimate the axial particle velocity is a 1-D LDV system with an argon-krypton 

laser source (Spectra Physics – model: Stabilite 2017) that has 514.5 nm wavelength. As shown in 

Fig. 2.5a, the laser beam passes through a beam splitter to be split into two beams. To overcome 

the problem of the directional ambiguity, the frequency of one of the beams is shifted by a certain 

value in the Bragg cell. The two beams are intersected to form an elliptically-shaped probe volume 

with length of 0.4957 mm and diameter of 0.047 mm; the fringe spacing being 2.694 µm. To 

achieve high sampling rate, the transmitter and the receiver are configured to collect the forward-

scattered light (see Fig. 2.5c). As shown in Fig. 2.5b, the intersection of the probe volume and the 

volume detected by the receiver forms the measurement volume. Both the transmitter and the 

receiver are mounted on a traverse mechanism to facilitate the displacement in both axial and radial 
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directions. The step between two measurement points is set to 10 mm and 2 mm for the axial and 

the radial measurements, respectively. The measurements cover the zone from very near the stack 

(i.e. x = -175 mm) to near the right termination of the resonator (i.e. x = 340 mm). 

 
 

(a) 

 

 
(b) (c)  

Figure 2.5: (a) A schematic for the LDV measurement setup, (b) The probe volume and 

measurement volume, and (c) Photo for LDV and temperature measurements setup. 

 

A burst spectrum analyzer (Manufacturer: Dantec Dynamics – Model: BSA-F80) is used to 

analyze the signal acquired by the LDV receiver. The velocity of any seeding particle crossing the 
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measurement volume, along with its arrival time are stored on the computer. The processing 

technique presented in [64] is used to get both the acoustic and the mean velocities.  

A typical data set acquired from LDV measurements is shown in Fig. 2.6a. The first step is to 

remove the outlier data points by setting an upper and lower limits. For instance, the upper and 

lower limits for data shown in Fig. 2.6a are 5 m/s and -5 m/s so that any data point outside these 

limits is removed from the data set. The following step is to bring back all the data points into one 

acoustic cycle by estimating the exact oscillating frequency (see Fig. 2.6b). Then, the data is 

averaged over a fixed time step (see Fig. 2.6c) and hence the acoustic velocity amplitude can be 

obtained. Finally, in order to get the mean (streaming) velocity; the data points over the acoustic 

cycle are averaged. A Matlab code is used to make all the calculations mentioned above (see 

appendix C.1). 

 
 

(a) 

  
(b)  (c) 

Figure 2.6: (a) A typical data set acquired from LDV, (b) Data points are brought back into one 

acoustic cycle, and (c) Data points are averaged over a fixed time step. 
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Preliminary measurements were conducted to determine the number of samples required to reach 

convergence of the estimation. The deviation from the steady-state value of the mean velocity 

estimated using 70,000 samples versus the number of samples is plotted for different experiments 

in Fig. 2.7. The deviation can be estimated as follows: 

𝐸𝑟𝑟𝑜𝑟 =
|𝑈𝑚𝑒𝑎𝑛(𝑁)−𝑈𝑚𝑒𝑎𝑛(70,000)|

𝑈𝑚𝑒𝑎𝑛(70,000)
∗ 100     (2.1) 

As shown in Fig. 2.7, the deviation from the steady-state value decreases to about 5 % when the 

number of samples exceeds 35,000 samples. Therefore, it is decided to acquire data until the 

number of samples reaches 40,000. 

 

Figure 2.7: The effect of the number of samples on the estimated value of the axial mean velocity 

at the center of the resonator at three different acoustic levels (x = 180 mm). 

2.1.4. PIV measurements and data analysis 

To complement the LDV measurements, PIV was also used. PIV was set to provide an overall 

mapping of the mean flow velocity. Therefore, the comparison with LDV measurements, that 

offers precise punctual measurements of the whole velocity field, allows one to have quite a 

complete description of the mean flow structure. A double pulse 120 mJ Nd:YAG laser with 

maximum repetition rate of 15 Hz is used to illuminate the measurement plane. The images are 

recorded by two adjacent CMOS cameras (Model: CMC-4000) with 2320 Pixels x 1726 Pixels 

resolution. A Nikon lens (Model: Sigma 150 mm) is connected to each camera. The PIV system 

is externally triggered by a TTL signal generated by a lock-in amplifier using the pressure signal 

from the microphone as a reference signal. A schematic diagram for the PIV system is shown in 

Fig. 2.8 and more detailed connection diagram can be found in Appendix B.1. 
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(a) 

 

 
(b) 

 

Figure 2.8: (a) Schematic diagram for PIV measurement system, (b) Photo for PIV 

measurements setup. 

 

In order to improve the quality of the measurements, the light reflections (from walls and 

surroundings) are removed before analyzing the acquired images. So, a low-pass filter is applied 



31 
 

to the acquired images in order to get the reflections (see Fig. 2.9b). Then, the reflection images 

are subtracted from the raw images to get images nearly free from the reflections (see Fig. 2.9c). 

   
(a) (b) (c) 

Figure 2.9: (a) Typical Raw image, (b) Reflection image obtained by applying low-pass filter, 

(c) Final image obtained by subtracting (b) from (a). 

 

PIV was set to measure the mean flow velocity only according to the method developed by Nabavi 

et al. [65] as applied in [9]. The principle of this method is to set the time between pulses to the 

same value as the acoustic period (𝑇 =
1

𝑓
) or to multiples of 𝑇 (see Fig. 2.8a). In this case, the 

correlation between images provides the particle displacement over the acoustic cycle that is the 

mean velocity over the acoustic cycle. In our study, we want to scan the mean velocity over several 

streaming cells but with a good spatial resolution to obtain precise radial profiles of the velocity. 

Since the field of view of the two cameras is shorter than the length of the associated measurement 

area, several successive sets of measurements are performed, the laser and camera being moved 

axially among these sets to cover the whole measurement area; then the collected data are merged 

to get the distribution of the mean velocity within the whole measurement area. 
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2.2. Results and discussion 
2.2.1. Description of the experiments 

In this study, seven experiments under different operating conditions, shown in Table 2.1, were 

conducted. The objective of the first three experiments (1 to 3) is mainly to measure the axial mean 

velocity distributions in both axial and radial directions in the region from 𝑥 = −175 𝑚𝑚 to 𝑥 =

340 𝑚𝑚 . These three experiments correspond to different input electric powers and hence 

different acoustic levels. One goal of our study is also to approach the natural convection flow 

generated in the system. For this purpose, it was necessary to cease the acoustic waves to avoid 

the generation of acoustic streaming. So, in the following three experiments (referred to as 4, 5 

and 6), the plugs at both ends of the resonator were removed to prevent the acoustic oscillations; 

hence the measured mean velocity was associated to heat transfer. These experiments were 

implemented at input electric power similar to the first three experiments (1 to 3). Finally, in order 

to validate that opening the plugs will not affect the measured convection velocity; the last 

experiment (7) was conducted with closed plugs but at input electric power just below the critical 

value associated with the generation of acoustic oscillations. The results of this experiment (7) are 

to be compared with the results of experiment 4 because they have close heating conditions, though 

one has “open plugs” while the other has “closed plugs”. The precision in the measurements of the 

electrical input power and the temperatures were estimated and are given in Table 2.1. 

Also, the uncertainty in the measurements of both acoustic and mean velocities (partly due to the 

fact that the mean temperature is not constant throughout the data acquisition) has been estimated 

by repeating the measurements under the same conditions and calculating the standard deviation 

of these repeated measurements. The uncertainty in the value of the acoustic velocity were 

estimated to be ± 1 %, ± 3.5 % and ± 2 % in experiments# 1, 2 and 3, respectively. The uncertainty 

in the measured mean velocity in experiments# 1, 2 and 3 were found to be ± 12 %, ± 5.8 % and 

± 8.5 %, respectively (see appendix F.1). 

Table 2.1: The operating conditions for experiments 

Exp. 

# 

Electrical 

input 

power 

(Watts) 

𝑹𝒆𝑵𝑳 

Pressure 

Amplitude 

(Pa) 

Oscillating 

Frequency 

(Hz) 

Stack ends temperatures 

(OC) 
Plugs 

𝑥
= −180 𝑚𝑚 

𝑥
= −240 𝑚𝑚 

1 32.2 ± 1% 0.87 820 234 52 ± 9.9% 283 ± 1.5% Placed 

2 59.0 ± 1% 3.59 1950 238 91 ± 5.6% 378 ± 1% Placed 

3 82.2 ± 1% 7.20 2600 241 120 ± 7.4% 457 ± 3.5% Placed 

4 32.2 ± 1% - - - 36.5 ± 2% 282 ± 2% Removed 

5 59.0 ± 1% - - - 46.2 ± 2% 376 ± 2% Removed 

6 82.2 ± 1% - - - 54.6 ± 2% 455 ± 2% Removed 

7 28.1 ± 1% - - - 39 ± 2% 201 ± 2% Placed 

 



33 
 

2.2.2. Mean flow velocity at different acoustic levels 

Before studying the mean velocity, itself, it was verified that the estimation of acoustic velocity is 

correct. The distribution of the acoustic velocity amplitude at the center of the resonator along the 

axis was estimated from LDV measurements. Figure 2.10 shows the distribution of the acoustic 

velocity amplitude (𝑈) normalized by the value of the acoustic velocity amplitude (𝐴) at the 

velocity antinode  (𝑖. 𝑒.  𝑥 = 0) for experiments 1 to 3, that is for three different acoustic levels. 

Also, the results from previous study [9] are plotted on Fig. 2.10 and compared with Exp#3 as it 

has nearly the same Reynolds number. In [9] Rayleigh streaming in an empty guide of the same 

diameter as the one used here was studied. The wave pattern was similar to the present case but 

the wave was generated by loudspeakers at both ends of the resonator. Also, the theoretical 

distribution given by: 

𝑈 𝐴⁄ = cos (
𝜋𝑥

𝑙
)      (2.2) 

is depicted in Fig. 2.10. This figure shows that the distributions in all cases correspond to the λ/2 

resonance of the guide although there is a little deviation near to the stack. This may be due to the 

combined effects of both the heat convection [21] and the end-effects [55]. 

 

Figure 2.10: Axial acoustic velocity amplitude along the axis of the resonator at different 

acoustic levels. 

Figure 2.11 shows results for the axial mean velocity estimate by LDV and by PIV for experiments 

1 to 3, together with results from [9] and theoretical expectation of axial velocity for Rayleigh 

streaming. The latter, initially developed by Lord Rayleigh [7] for the flow between two parallel 

plates, is written for the case of a cylindrical tube as follows: 

𝑈𝑅𝑎𝑦(𝑥, 𝑟) =
3𝐴2

8𝑐
sin (

2𝜋𝑥

𝑙
) (1 − 2 (

𝑟

𝑅
)
2

+
𝑒−𝜓

3
𝛾),     (2.3a) 

𝛾 = (2 +
𝛿𝑣

𝑟
) cos(𝜓) + (4 +

𝛿𝑣

𝑟
) sin(𝜓) + 𝑒−𝜓 (1 +

𝛿𝑣

2𝑟
),    (2.3b) 

Where 𝑟 is the radial distance measured from the axis of the tube and 𝜓 = (𝑅 + 𝑟)/𝛿𝑣 . The mean 

velocities plotted in Fig. 2.11 were normalized by the value of the amplitude of the Rayleigh 
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streaming 𝐴𝑅𝑎𝑦 =
3𝐴2

8𝑐
= 𝑈𝑅𝑎𝑦(𝑙 4⁄  , 0 ). Figure 2.11 shows that the streaming pattern can be 

separated in three different regions. The first region is bounded by the right end of the resonator 

and the solid-vertical line, the second region extends from the solid-vertical line to the dashed-

vertical line and the last region lies between the dashed-vertical line and the right end of the stack. 

In the first region, at low acoustic levels (Fig. 2.11a and b), there is a good agreement between the 

measured axial mean velocity distribution and the theoretical expectations of Rayleigh streaming. 

At higher acoustic level (Fig. 2.11c), a discrepancy between the measurements and the theoretical 

expectations is observed. Both results of PIV and LDV measurements agree with results of [9] 

which allow us to state that the deviation from Rayleigh streaming in this region is due to non-

linearity in the acoustic streaming. This is confirmed by results shown by Fig. 2.12 that gives the 

radial distributions of the axial mean velocity at different axial locations for all acoustic levels. At 

low acoustic levels (Fig. 2.12a and b), the distribution of the axial mean velocity indeed has a 

parabolic shape in agreement with the Rayleigh streaming pattern. It should be noted that the bump 

in the measured velocity profile at x= 275 in Fig. 2.12a is due to a local lack of seeding particles. 

At higher acoustic level (Fig. 2.12c), the radial distribution shows a deviation from the parabolic 

pattern that characterizes non-linear Rayleigh streaming as was found by Reyt et al. [9]. Color 

maps for the axial component of the mean velocity (left part of Fig. 2.12) also agree with results 

of Rayleigh streaming in an empty guide [9].  

In the first region, we can therefore conclude that the measured mean velocity is due to acoustic 

Rayleigh streaming only. The extent of this region can be determined using Fig. 2.11.  To 

determine more accurately this extent, the radial distributions of the measured axial mean velocity 

at different axial locations in the left half of the resonator are plotted along with the theoretical 

expectations of Rayleigh streaming. As shown in Fig. 2.13, the measured mean axial velocity 

distribution agrees with the theoretical expectations up to a certain axial distance and this distance 

decreases as the acoustic level is increased. This distance limits the end of this region and it was 

found to be -60 mm, -40 mm and -20 mm for experiments 1, 2 and 3 respectively. Figure 2.14 

shows that the maximum increase in the temperature at the left-limit of this region is about 2 OC. 

It was checked that the temperature of the rest of this region is almost constant and equal to the 

ambient temperature; therefore, this region is further called the “cold streaming region”.  
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Figure 2.11: Axial mean velocity normalized by Rayleigh streaming velocity amplitude along the 

axis of the guide at different acoustic levels (a) Exp# 1, (b) Exp# 2 and (c) Exp# 3. 

The part of the resonator closer to the stack, in which the mean flow pattern differs from Rayleigh 

streaming expectation for reasons other than high amplitudes affects, can be further divided in two 

regions, based on the literature on end effects and especially on [17]. Flow disturbances generated 

at the end of a thermoacoustic stack have been the subject of several studies (e.g., [55] and [56]) 

that generally investigated the end effects region from the point of view of acoustics, determining 

the distance over which the acoustic velocity is affected by the flow disturbances generated near 

to the stack ends. However, the dissymmetry of oscillating flow going out of and in a constriction, 

is associated to the generation of a mean flow - known as “jet-driven streaming” - so that we can 

expect that close to the stack the measured mean velocity (partly) results from end effects. In order 

to set the limit between the associated “end-effects region” close to stack and the “hot streaming 

region” results of a previous study [17], that ranges the distance over which the mean velocity is 

modified by introducing a stack, are used. In [17] a stack similar to the one used in the present 

study was set in a guide of the same diameter as the present one. The stack was kept at ambient 

temperature; the wave being generated at a frequency of 88 Hz by loudspeakers. LDV 

measurements showed that placing a stack in the resonator locally modifies the streaming pattern. 

This modification depends on the position of the stack in the streaming pattern and on the acoustic 

amplitude, the distance over which the streaming pattern is modified being almost proportional to 

the particle displacement amplitude. To estimate the right-limit of the “end-effects region” for case 

#2 (vertical dotted line in Fig. 2.11b), we used the fact that in [17], for 𝑅𝑒𝑁𝐿 = 4, the streaming 

pattern was modified over a distance of 12 times the particle displacement amplitudes from the 

stack end. For a 238 Hz working frequency at similar 𝑅𝑒𝑁𝐿 the right-limit of the “end-effects 

region” should be 4cm from the stack end. Then the limits for experiments #1 and #3 are set by 

using the proportionality to particle displacement amplitude.  
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In the second region, the measured mean velocity differs from the theoretical expectations of 

Rayleigh streaming. The objective of the next subsection is to investigate the contribution of 

natural convection in the mean velocity measurements conducted in this “hot streaming region”. 

 
(a) 

 
(b) 

 
(c) 

Figure 2.12: Left: Vector map of the streaming velocity and normalized color map of the axial 

component of the streaming velocity. Right: Radial distributions of the axial streaming velocity 

measured by PIV at different experimental conditions (a) Exp# 1, (b) Exp# 2 and (c) Exp# 3. 
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Figure 2.13: Radial distribution of the axial mean velocity obtained by PIV at different axial 

locations and at different experimental conditions: (a) Exp# 1, (b) Exp# 2 and (c) Exp# 3. 

 

 

Figure 2.14: The axial distribution of the outside wall temperature at different input electric 

powers. 

2.2.3. Natural convection velocity at different input electric powers 

As explained in the previous section, the measured mean velocity in both the “hot streaming 

region” and the “end-effects region” does not agree with the theoretical expectations. In the present 

study, we want to show that one reason for this disagreement is the axial temperature distribution 

along with the non-uniform temperature distribution over the cross section of the resonator that is 

associated with natural convection and thus, with the generation of a mean flow that is further 
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called the “natural convection” flow. As a first approach to quantify the importance of the natural 

convection flow (due to buoyancy force) in the present study, the natural convection flow in a 

horizontal cavity with different end temperatures [66] is considered. The aim of this approach is 

to answer to the question: does natural convection induce a significant flow for temperature 

distributions encountered in our set up? Therefore, neither acoustics not streaming flow are 

described here. The equivalent horizontal cavity is bounded on one side by the cold end of the 

stack and on the other side by the right termination of the duct. In such cavity, the non-dimensional 

momentum equation in the radial direction can be written as following [66]: 

𝑢
𝜕v

𝜕𝑥
+ 𝑣

𝜕v

𝜕𝑟
= −Pr

𝜕𝑃

𝜕𝑟
+ 𝐺𝑟 + Pr (

𝜕2v

𝜕2𝑥
+

𝜕2v

𝜕2𝑟
)   (2.4) 

where Pr is Prandtl number and 𝐺𝑟 is Grashof number:  

𝐺𝑟 =
8𝑔𝛽(𝑇𝑎𝑣𝑔−𝑇∞)𝑅3

𝜈2       (2.5) 

where 𝑔  is the gravitational acceleration, 𝛽  is the expansion coefficient of air at ambient 

conditions, 𝑇𝑎𝑣𝑔 is the average temperature of the cold side of the stack (shown in Fig. 2.16) and 

𝑇∞ is the ambient temperature. The estimated value of the Grashof number in all experiments (see 

Fig. 2.16) is much larger than unity that indicates the buoyancy has a crucial role in setting the 

distribution of the mean flow in the “hot streaming” region.  

In order to experimentally determine the contribution of the natural convection flow to the 

measured mean flow velocity in the engine, it is necessary to decouple the natural convection flow 

field and the acoustic streaming field. To get the natural convection velocity field only, the acoustic 

oscillations should be stopped while the input electric power is supplied to the heater for heating 

purposes. This is achieved by removing the plugs at both ends of the resonator to cease the 

oscillations. The associated experiments are numbered 4, 5 and 6 (see Table 2.1). 

In order to validate the approach of removing the plugs to cease the acoustic oscillations, the results 

of both experiments 4 (plugs off) and 7 (plugs on) are compared. As shown in Fig. 2.15, the 

measured mean velocities of experiments 4 and 7 are quite similar, revealing that removing plugs 

does not affect the generation of a natural convection flow. Figure 2.15 also shows that the mean 

velocity for experiments 4 to 7 (that are without sound generation) is almost zero in the cold 

streaming region. This can be seen as the reason for the good agreement previously discussed 

between the measured mean velocity and the Rayleigh streaming expectations in this region. Away 

from the cold steaming region, it is observed that the magnitude of the mean velocity globally 

increases as the wall temperature gradient increases (see Fig. 2.14).  

Figure 2.15 shows that the natural convection flow velocity decreases as it approaches the stack, 

which partially blocks the flow. Figure 2.16 gives results of wall temperature measurements for 

different positions along the guide circumference and for different axial positions. It reveals that 

the temperature is not uniform over the section of the guide and that the temperature non-
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uniformity increases as the stack is approached. This non-uniformity along with the temperature 

increase can be considered as the origin of the free convection flow.  

The natural convection velocity can be roughly estimated to linearly increase over the hot 

streaming region. Comparing Fig. 2.11 and Fig. 2.15 then it appears that the axial evolution of the 

natural convection velocity is roughly similar to the expected Rayleigh streaming over this region 

but with opposite sign (3A²/8c is equal to 0.025 m/s for Exp #2). Hence, it can be inferred that the 

nearly zero measured mean velocity given by Fig. 2.11 in the hot streaming region is, qualitatively, 

the superposition of the Rayleigh streaming expectations and of the free convection velocity 

distribution given by Fig. 2.15. However, quantitative analysis cannot be provided as the 

temperature distributions in the sets (1 to 3) are quite different from the ones for sets (4 to 6). As 

shown in Fig. 2.16, the measured temperatures when the acoustic oscillations are ceased (Exp# 4 

to 6) have much lower values than in the cases where the acoustic oscillations exist (Exp# 1 to 3). 

The reason for this is the thermoacoustic heat pumping: Acoustic oscillations carry heat from the 

hot side of the stack to its cold side and hence the temperature of the fluid close to the cold side of 

the stack is higher when the engine is running (Exp# 1 to 3). 

Figure 2.17 shows the vector map of mean velocity for Exp. #4 and #5 together with the color map 

for the axial mean velocity (left part) and the radial distribution of the axial mean velocity at 𝑥 =

−120 𝑚𝑚. This figure shows the structure of the free convection flow. The maximum velocity is 

observed at the center of the duct and there is a reverse flow near to the walls. This may refer to 

the existence of a vortex; however, the radial distributions (right part of the figure) show that the 

cross-sectional average is not zero, meaning that the vortex is not a complete one. 

 

Figure 2.15: Natural convection velocity (mean velocity with no sound) measured along the axis 

of the resonator for different experimental conditions. 
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Figure 2.16: Radial temperature distribution along the two perpendicular axes A1 and A2 (Ө =

0 𝑎𝑛𝑑 90 deg) at two different axial locations (x=-180mm top and x=-140mm bottom) for 

experiments #1 to 6. 

The vortex observed is not axisymmetric and the measurement plane is not the most appropriate 

to approach its structure. The observed discontinuity is due to the fact that the natural convection 

flow is driven by buoyancy and hence the complete vortex could be observed in a plane 

perpendicular to the measurement plane (i.e. parallel to the ground). However, performing 

measurements in that plane was not feasible with the current facility. Therefore, Fig. 2.17 depicts 

a cross section in the natural convection vortex in the measurement plane. 

 

(a) 
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(b) 

Figure 2.17: Left: Vector map of the natural convection velocity together with color map of the axial 

component of the natural convection velocity, right: Radial distributions of the axial natural convection 

velocity at x = −120 mm for different experimental conditions (a) Exp# 4 and (b) Exp# 5. 

 

2.3. Conclusions 
The effects of both the natural convection and the end-effects on the Rayleigh streaming pattern 

in a simple standing-wave thermoacoustic engine was investigated experimentally. The axial mean 

velocity field over the resonator was measured for different acoustic levels. The results reveal that 

the mean velocity pattern changes over three different regions, namely the cold streaming region, 

the hot streaming region and the end-effects region. In the cold streaming region, the measured 

axial mean velocity agrees with the theoretical expectations of Rayleigh streaming at low acoustic 

level, whereas it deviates from theoretical expectations as the acoustic level is increased due to 

high amplitude effects, which agrees with the literature. Also, measurements performed when the 

engine is turned off showed that the natural convection velocity is almost zero over this region, 

explaining the reason for agreement between the measured mean velocity and the theoretical 

expectations of Rayleigh streaming. In the hot streaming region, the measured mean velocity 

disagrees with Rayleigh streaming expectation. Measurements performed when the engine is 

turned off showed that one reason for this disagreement is the non-uniformity of the temperature 

over the cross section, generating a natural convection flow that superimposes the acoustic 

streaming. In the last region, the measurements do not agree with the theoretical expectations due 

to the combined effect of both natural convection and end-effects at the exit of the stack.  

Finally, this study shows that in a simple engine, such as the one under study, for which the radial 

distribution of the temperature is not uniform, the mean velocity results not only from acoustic 

streaming (Rayleigh and jet-driven streaming) but also from natural convection. 
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2.4. Recommendations for future work 
As mentioned above, it is believed that the effects of the natural convection on the mean flow 

distribution inside a thermoacoustic engine is a three-directional problem. In the current study, the 

effects of the natural convection were investigated as a two-dimensional problem (due to some 

limitations in the used facility) so that further investigations are required to complement the 

findings of the current work. 

As the natural convection phenomenon is driven by the buoyancy force and hence gravity plays a 

role in the natural convection flow, the tilting of the engine (between horizontal and vertical 

positions) will change the pattern of the natural convection flow inside the thermoacoustic engine. 

Therefore, it is important to investigate the effects of the different positions on the convection flow 

pattern.  
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Chapter 3:  Transition to Turbulence in Oscillating Flow 

As mentioned in the introduction section, this chapter discusses the transition to turbulence in the 

oscillating flow at sub-acoustic and acoustic frequency ranges. The following subsections discuss 

the experimental setup, measurement techniques and signal processing tools used in this part of 

the study. Also, the results are discussed and conclusions are drawn by the end of the chapter. 

3.1. Experimental Setup 

As mentioned previously in the introduction section, the main objectives of this part of the study 

are to validate the using of the PIV tool in studying the transition to turbulence of an oscillating 

flow at sub-acoustic (i.e. <20 Hz) frequency range and to extend the work to the acoustic frequency 

range (i.e. >20 Hz). Therefore, the experimental setup is designed to generate an oscillating flow 

for two different frequency ranges (i.e. sub-acoustic and acoustic). For the sub-acoustic frequency 

range, a mechanical system (i.e. Scotch-yoke mechanism) is utilized to generate an oscillating flow 

with frequencies ranged from 0.5 Hz to 1.5 Hz that correspond to Womersely numbers (𝛼) of 7.1 

and 12.3, respectively. As for the acoustic frequency range, an electromechanical system (i.e. 

acoustic loudspeakers) is used to generate an oscillating flow at the resonance frequency of the 

system to achieve high velocity amplitudes. DeltaEc codes for both systems are built to predict the 

range of Reynolds numbers  (𝑅𝑒𝛿)  that can be achieved by each system. It is found that the 

Reynolds number varies from 140 to 607 and from 200 to 630 for the system driven by the Scotch-

yoke mechanism (see appendix A.2) and by the speakers (see appendix A.3), respectively. 

However, the actual measured ranges of the Reynolds number varies from 140 to 510 and from 

205 to 466 for the Scotch-yoke’s system and the speakers’ system, respectively. The discrepancy 

between the measured and the predicted values is mainly due to the inability of the DeltaEc code 

to model the non-linear losses generated at high velocity amplitudes. 

In the following subsections, each part in the experimental setup will be explained in details. 

3.1.1. Driving mechanism of the oscillating flow 

3.1.1.A. Scotch Yoke Mechanism 

To generate an oscillating flow with very low frequencies (i.e. up to 2 Hz), it was not feasible to 

use speakers because they have very limited displacement amplitude and hence, at very low 

frequencies, they will not generate high enough velocity amplitudes to achieve turbulent flow. So, 

a mechanical system is used to generate the oscillating with low frequencies and large 

displacement amplitudes. There are two common mechanical mechanisms for generating the 

oscillating flow namely the crank-slider mechanism and Scotch Yoke mechanism. Merkli and 

Thomann [30] stated that Scotch Yoke mechanism is nearly free of harmonics comparing with the 

crank-slider mechanism. Hence, in the current work a Scotch Yoke mechanism is built. The Scotch 

Yoke mechanism is used to convert the rotary motion to a linear motion and vice versa. In this 

setup, the Scotch Yoke mechanism is driven by 4 Kw AC-electric motor (Manufacturer: ELMA-

TROYAN, Model: T 132MA 6 B3). The rated rotational speed of this motor was selected to be 
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low (i.e. 960 rpm) in order to achieve high torque at low speeds which will enable us to work at 

very low frequencies (i.e. down to 0.3 Hz).  

 
 

(a) 

 

(b) 

Figure 3.1: Schematics for the experimental setup including the measurement systems: (a) 

Oscillating flow is generated by Scotch-yoke mechanism, (b) Oscillating flow is generated by 

two opposite speakers. Appendices B.2 and B.3 present the exact connection diagrams for both 

experimental setups. Images for both systems are presented in appendix D.1 and D.2. 
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The frequency of this motor is governed by a variable speed driver (Manufacturer: Schneider-

Electric, Model: ATV312HU40N4). A pneumatic piston-cylinder assembly (Manufacturer: 

JELPC, Model: S125X300) is connected to the mechanism in order to generate the oscillating flow 

inside the resonator. The pneumatic cylinder has a piston with diameter of 125 mm and the stroke 

limit of 300 mm. This cylinder has two gas inlets/outlets each is ½ inch in diameter. Each of these 

inlets/outlets are connected to one end of the resonator through 1500 mm flexible pipe with 

diameter of 1 inch. In addition, the piston displacement amplitude can by changed from 35 mm to 

100 mm through changing the pin location in the flywheel. The mechanical drawings of different 

parts of the mechanism are presented in appendix D.7. 

3.1.1.B. Loudspeakers 

To generate an oscillating flow with a frequency above the acoustic frequency limit (i.e. >20Hz), 

the scotch Yoke mechanism was not suitable in that case as the maximum rotational speed of the 

electric motor is 16 Hz. Hence, two opposite powerful speakers (Massive Toro-104, maximum 

power rating of each is 1200 watts) were utilized for that purpose. To achieve maximum velocity 

amplitude at the center of the resonator (i.e. velocity antinode and dynamic pressure node), the 

electric poles of one of the speakers is reversed (see appendix B.3). By reversing the poles of one 

of the speakers, the speakers (in such configuration, 180O out of phase) will move in the same 

direction achieving maximum velocity amplitude at the center of the resonator. To harvest the 

maximum possible velocity amplitude, the speakers are operated at the resonance frequency. To 

specify the resonance frequency of the system, the dynamic pressure (at the location P2, see Fig. 

3.1b) is recoded over a certain frequency range. As shown in Fig. 3.2, the dynamic pressure peaks 

at frequency of 23.3 Hz. It is worthwhile to mention that the discrepancy between the measured 

dynamic pressure, near the resonance frequency, and the value of the numerical simulation is 

mainly due to the assumptions of the linear theory [1] used in DeltaEc which are not valid at high 

pressure amplitudes. Hence, the values of the numerical simulation agree well with the measured 

values at low pressure amplitudes (i.e. away from the resonance frequency).  

 

Figure 3.2: The variation of the dynamic pressure (at location P2) with the operating frequency. 
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3.1.2. Resonator 

The resonator is made of 1900 mm stainless steel tube with square cross section (the outer and 

inner side lengths of the square are 50 mm and 44 mm, respectively). At the middle of the 

resonator, 500 mm of the stainless steel tube is replaced by a glass tube to grant an optical access 

for the PIV measurements. Also, at both ends of the resonator; flow straighteners are inserted in 

order to suppress any disturbances created due to the end effects. The flow straightener is made of 

100 CPSI (cell per square inch) ceramic stack and has length of 25 mm. Also, Gerrard and Hughes 

[67] postulate that the flow turns to be fully developed at length (𝐿) = 0.03 ∗ 𝐷 ∗ 𝑅𝑒𝛿. Based on 

the literature, the flow is considered to be laminar till  𝑅𝑒𝛿 = 500  and thus the maximum 

development length required is 660 mm; accordingly, the measurement section (i.e. glass tube) is 

placed 700 mm away from the both ends of the resonator. In addition, four threaded holes are made 

in the resonator to facilitate the pressure measurements. The locations of these holes are 100 mm, 

600 mm, 1300 mm and 1800 mm away from one end of the resonator. Also, two threaded holes 

are drilled at distances of 50 mm and 1850 mm to feed seeding particles through one of them. 

3.2. Measurement systems 

3.2.1. Dynamic pressure measurements 

The dynamic pressure measurements were implemented mainly to verify that the systems used to 

generate oscillating flow are working properly (i.e. produce pure sine-wave with minimum 

harmonics). Since there are two different systems used to generate the oscillating flow at different 

frequency ranges, two different pressure measurement techniques are used to monitor the pressure 

oscillations. The techniques are described in the following subsections. 

3.2.1.A. Low-frequency pressure measurement 

At very low frequencies, the system operates away from the resonance frequency and hence the 

produced dynamic pressure is too low. So, a reluctance pressure sensor is used for measuring the 

oscillating pressure. The reluctance pressure sensor (Manufacturer: Validyne – Model: D45) is 

connected to a demodulator (Manufacturer: Validyne – Model: CD15) that amplifies and interprets 

the signal of the pressure sensor. The output signal from the demodulator is fed to a data acquisition 

card to be stored and analyzed via the computer. A flexible tube is used to connect between the 

pressure port in the resonator and the positive port of the pressure sensor. As shown in Fig. 3.3a, 

the pressure signal in the positive part of the cycle exhibits a sinusoidal behavior whereas the 

negative part is deformed. The reason for this deformation is the positive port of the sensor can 

measure only pressures higher than the mean pressure (atmospheric pressure in this study) while 

the negative pressures are not measured properly. Also, to make sure that this explanation is 

correct, the pressure port in the resonator is connected to the negative port of the sensor. As shown 

in Fig. 3.3b, the measurements show that same deformation observed in Fig. 3.3a but with the 

positive part. So, to overcome this problem, the pressure port in the resonator is always connected 

to the positive port of the sensor and the positive part of the measurements is only considered and 

the negative part is a mirror for the positive part. 
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(a) 

 

 
(b) 

Figure 3.3:The pressure signal of the oscillating flow with frequency of 1.5 Hz when the 

pressure port in the resonator is connected to (a) the positive port in the pressure sensor and (b) 

the negative port in the pressure sensor. 

 

The pressure measurements were conducted at three different amplitudes at the same frequency 

(0.5 Hz). As shown in Fig. 3.4, the pressure measurements show a sinusoidal behavior for all 

amplitudes. Also, an FFT analysis is performed for the pressure signals to observe the frequency 

content and investigate the harmonics generated in the flow. The matlab code used to perform the 

FFT analysis is presented in appendix C.2. As shown in Fig. 3.4, the value of the spectral density 
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has a peak value at the oscillating frequency while the amplitude of the spectral density at the 1st 

harmonic frequency is much smaller than the value at the oscillating frequency which reveals that 

the contribution of the harmonics to the signal is null. 

(a) 

 
Figure 3.4: 

The pressure 

signal and 

spectral 

density of the 

pressure 

signal at 

oscillating 

frequency of 

0.5 Hz and at 

three 

different 

pressure 

amplitudes: 

(a) 100 pa, 

(b) 200 pa 

and (c) 450 

pa. 

(b) 

 

(c) 
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3.2.1.B. High-frequency pressure measurements 

At the acoustic frequency range, the system operates at the resonance frequency and hence it 

produces high dynamic pressure amplitudes. So, a piezo-resistive pressure transducer is used to 

measure the dynamic pressure. The microphone is connected to a signal amplifier and the 

amplified signal is supplied to a data acquisition card to be recorded on the computer. As shown 

in Figure 3.1b, the pressure is measured at two different axial locations namely P1 and P2. 

The results of the pressure measurements at high frequency range can be found in appendix E.1 

along with some spectral analysis for the signals. 

3.2.2. PIV system description  

The PIV system consists of three main parts, namely the laser light source, a high speed camera, 

and the synchronizer (timer box). Each of these parts are described in the following subsections. 

3.2.2.A. Light source and seeding particles 

The laser light sheet is generated using an Nd: YLF laser (Dantec Dynamics model LDY303-PIV) 

with a wave length of 527 nm (i.e. green laser). As shown in Fig. 3.1, the light sheet with a 

thickness of around 3 mm illuminates the seeding particles at the center of the measurement 

section. A jet-atomizer (Manufacturer: TSI and Model: 9306) is used to atomize the seeding liquid 

which is olive oil. Olive oil is commonly utilized as seeding particles for PIV measurements in air 

because it has many advantages. First, the produced seeding particles are homogenous in shape 

(i.e. spherical particles). Second, the produced particles do not agglomerate like in solid-seeding 

particles; and hence the size distribution of the particles is narrow. Third, the mean particle 

diameter (𝑑𝑝) is about 0.6 microns and the density (i.e. 𝜌𝑝 = 900 kg/m3) is much lower than solid 

particles and thus the seeding particles have good dynamic properties (i.e. the seeding particle are 

able to follow the flow with almost no slipping). Fourth, the refractive index of the olive oil seeding 

particles (i.e. 1.47 at 527 nm-wave length) is plausible which means the amount of the reflected 

light is enough to be detected by the sensor of the camera. Finally, olive oil is commercially 

available and inexpensive when compared with other alternatives and it is also chemically inert 

and non-corrosive. 

3.2.2.B. High speed camera and lens 

A Complementary Metal-Oxide Semiconductor (CMOS) camera (Photron SA1.1, maximum 

frame rate of 5400 frames/s, a resolution of 1024 X 1024 Pixels2, 8 GB internal memory and is 

mounted on a 3D traverse mechanism) is used to capture and record the images for the seeded 

flow. In the current study, two different lenses are used with the camera. Each lens provides a 

certain spatial resolution and field of view. Images for both lenses are presented in appendix D.3. 

For the low-frequency oscillating flow, the minimum viscous penetration depth is around 1.8 mm 

and hence a prime lens (60 mm Nikon AF macro) is connected to the camera providing a spatial 

resolution of 0.33 mm and field of view of approximately 44 mm. At the higher frequency range, 

the viscous penetration depth is around 0.46 mm and hence a zoom lens (Navitar: 1-60135AD, 
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Zoom 6000) is connected to the camera providing a spatial resolution of 0.078 mm and a field of 

view of 10 mm.  

3.2.2.C. Synchronization 

A synchronization box (National Instruments, Model: 80N77) is used to synchronize between the 

laser light pulses and the frames of the CMOS camera. In other words, the camera should capture 

the image and the laser light illuminates the flow field simultaneously. Also, in order to start the 

PIV measurements at a certain phase (i.e. phase-locked PIV measurements), the synchronization 

box is triggered by an external signal. For the Scotch-Yoke mechanism, the trigger signal is 

provided by the line-tracker sensor, see appendix B.2. For the loudspeakers case, the trigger signal 

is provided through the TTL output of the function generator, see appendix B.3. However, the TTL 

output of the function generator is not a pulse signal and hence a pulse generator is needed to 

generate a pulse signal for triggering. Since we don’t have a pulse generator, the acquired data is 

processed and the starting phase was determined using matlab code (see appendix C.4). It is 

worthwhile to mention that the camera is a timer box slave and hence the maximum frame rate of 

the camera is reduced to two third of the rated frame rate (i.e. 
2×5400

3
= 3600 frames/s). 

3.2.3. Adjusting the parameters of the PIV system 

PIV measurement process requires many precautions in order to get accurate results. In the 

following subsections, the adjustment of all measurement parameters will be explained in details. 

3.2.3.A. Parameters of the imaging system (camera and lens) 

The imaging system should be calibrated in order to specify its magnification ratio. The 

magnification ratio (𝑀) is defined as: 

𝑀𝑎𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 (𝑀) =
𝑇ℎ𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑚𝑒𝑟𝑎 𝑠𝑒𝑛𝑠𝑜𝑟

𝑇ℎ𝑒 𝑎𝑐𝑡𝑢𝑎𝑙 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝐹𝑂𝑉
    (3.1) 

The size of the camera sensor is a fixed value and equals to 20 mm × 20 mm. A calibration plate 

(see appendix D.4) is placed at the measurement plane, in order to determine the actual size of the 

field of view (𝐹𝑂𝑉).  

The depth of field, which is the thickness of the focused measurement plane, can be determined as 

following: 

𝐷𝑒𝑝𝑡ℎ 𝑂𝑓 𝐹𝑖𝑒𝑙𝑑 (𝐷𝑂𝐹) = 4 ∗ (1 +
1

𝑀
)2 ∗ 𝑓#

2 ∗ 𝜆    (3.2) 

Where, 𝜆 is the wave length of the laser light source, 𝑓# is the ratio of the focal length of the lens 

to the aperture diameter. Most of the modern lenses have  𝑓# = √2
𝑛

 where 𝑛 = 0, 1, 2, …. The 

value of the DOF should be small enough to focus the image within the laser sheet thickness yet 

large enough to avoid losing seeding particles due to out of plane motion. 
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In addition, the object distance (𝑜𝑑), which is the distance between the camera sensor and the 

measurement plane, can be calculated as well.  

𝑂𝑏𝑗𝑒𝑐𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑜𝑑) = 𝐹𝑜𝑐𝑎𝑙 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑚𝑒𝑟𝑎 𝑙𝑒𝑛𝑠 (𝑓𝑙) ∗  (1 +
1

𝑀
)  (3.3) 

3.2.3.B. Parameters of the seeding particles 

Seeding particle characteristics have to be specified in order to make sure that the appropriate 

seeding particles are used. The rule of thumb in seeding particle selection process is that the 

particle diameter should be small enough to follow the flow but yet large enough to reflect 

plausible amount of light.  

One of the most important characteristics of the seeding particle is to determine the effective image 

diameter (𝑑𝑒) of the particle at the measurement plane. To determine this value; both geometric 

and diffraction effects have to be considered. The diffraction spot size (𝑑𝑠) can be calculated as 

following: 

𝑑𝑠 = 2.44 ∗ (1 +
1

𝑀
) ∗ 𝑓# ∗ 𝜆      (3.4) 

And hence, the effective particle diameter can be calculated as follows: 

𝑑𝑒 = √(𝑀 ∗ 𝑑𝑝)
2
+ 𝑑𝑠

2
     (3.5) 

The first term in the equation above represents the physical size of the particle on the camera 

sensor. If the second term is the dominant (i.e.  𝑀 ∗ 𝑑𝑝 ≪ 𝑑𝑠), the effective particle diameter is 

defined by the diffraction limit. Hence, the physical size of the seeding particle can be increased 

without any significant change in the value of the effective particle diameter. Increasing the 

physical particle diameter, increases the amount of reflected light however the dynamic 

performance of the particle decreases. On the other hand, if the first term is the dominant (i.e.  𝑀 ∗

𝑑𝑝 ≫ 𝑑𝑠), the effective particle diameter is defined by both the magnification ratio and the physical 

particle diameter. 

The dynamic performance is the ability of the seeding particle to follow the flow with no slip even 

if the flow is accelerating or decelerating and also, its ability to follow the turbulent fluctuations 

in the case of turbulent flow. The following calculations will show how to estimate the dynamic 

performance characteristics of the seeding particle. 

 The velocity lag between the fluid flow velocity and the particle velocity can be estimated as 

follows: 

𝑉𝐿 = 𝑑𝑝
2 ∗

𝜌𝑝−𝜌𝑓

18𝜇
∗ 𝑎      (3.6) 



52 
 

Where, 𝜌𝑓 , 𝜇 𝑎𝑛𝑑 𝑎 are the fluid density, dynamic viscosity and acceleration, respectively. As 𝑉𝐿 

becomes smaller the ability of the particle to follow the flow will improve. 

In turbulent flows, the ability of the seeding particle to follow the turbulent fluctuations can be 

estimated by determining an important parameter known as the characteristic frequency (𝑓𝑝) of 

the particle motion. 

𝑓𝑝 =
18𝜇

𝜌𝑝𝑑𝑝
2       (3.7) 

The value of the characteristic frequency should be much higher than the turbulent fluctuations 

frequency (𝑓𝑓),  in order to make sure that the particles follow the turbulent fluctuations. The 

relation between the turbulent velocity fluctuations of the flow  (�̅�𝑓
2)and the particle velocity 

fluctuations (�̅�𝑝
2) can be calculated as follows [68]:  

�̅�𝑝
2

�̅�𝑓
2 =

1

1+
𝑓𝑓.

𝑓𝑝

       (3.8) 

The settling velocity (𝑈∞), which is the velocity of the particle due to the gravity, is an important 

seeding particle characteristic.  

𝑈∞ = 𝑑𝑝
2 ∗

𝜌𝑝−𝜌𝑓

18𝜇
∗ 𝑔     (3.9) 

Where, 𝑔 is the gravitational acceleration. 

The value of the settling velocity should be small enough in order to make sure that the seeding 

particles do not leave the measurement plane during the measurement duration and hence the out 

of plane motion error will be reduced. In other words, the settling velocity should be less than the 

ratio between the DOF and the measurement duration (i.e. 𝑈∞ <
𝐷𝑂𝐹

𝑡𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡 
). 

3.2.3.C. Parameters of the laser light source 

As stated previously, the laser source used with the PIV system has wavelength  (𝜆) of 527 nm 

and the light sheet thickness is about 4 mm. The laser source consists of two different laser heads. 

The two laser heads should produce nearly the same power and hence thermal sensor 

(Manufacturer: Ophir, Model: 30(150)A-LP1-18) connected to power meter (Manufacturer: 

Ophir, Model: Nova II) are used to measure the laser power produced by each head. 

 In order to get the velocity field, two laser pulses separated by a certain time illuminate the flow 

field while the camera captures two frames, simultaneously. The time between the two pulses (∆𝑡) 

is an important parameter and should be optimized well. Because, If the time between pulses is 

too large, the particles in the interrogation area will travel distance larger than the length of the 

interrogation area and hence proper correlation between the two frames will not be possible. Also, 

the correlation always presumes that the flow velocity is constant over that (i.e. ∆𝑡) period of time 
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and therefore in the transient flows (i.e. velocity changes with time) the time between pulses should 

be as minimum as possible in order to avoid the acceleration/deceleration error. On the other hand, 

if the time between pulses is too short; the particle displacement within the interrogation area will 

be too small; consequently, the distinguishing between particle displacement and the random 

error (𝜎𝑟𝑎𝑛𝑑) becomes impossible. The random error is equal to: 

𝜎𝑟𝑎𝑛𝑑 = 𝐾 ∗ 𝑑𝑒      (3.10) 

Where 𝐾 is a constant ranged from 0.05 to 0.1 based on the experimental conditions.  

Accordingly, it was found that the optimum time between pulses is: 

∆𝑡𝑜𝑝𝑡 = √
2𝜎𝑟𝑎𝑛𝑑

𝑀𝑎
      (3.11) 

Based on the time between pulses and the number of interrogation areas (e.g. 16 × 16 pixels2) in 

the FOV; both the maximum and the minimum detectable velocities can be determined as follows: 

𝑉𝑚𝑎𝑥 ≤
0.25∗𝑁𝑖𝑛𝑡𝑒𝑟𝑟𝑜𝑔𝑎𝑡𝑖𝑜𝑛∗𝑑𝑝𝑖𝑡𝑐ℎ∗𝑀

∆𝑡
     (3.12) 

𝑉𝑚𝑖𝑛 ≤
2∗𝑀∗𝑑𝑒

∆𝑡
       (3.13) 

Where,   𝑁𝑖𝑛𝑡𝑒𝑟𝑟𝑜𝑔𝑎𝑡𝑖𝑜𝑛  is the number of interrogation areas is one direction (e.g. 16 pixels) 

and 𝑑𝑝𝑖𝑡𝑐ℎ is the distance between the sensors of the CMOS camera and can be calculated as 

follows: 

𝑑𝑝𝑖𝑡𝑐ℎ = 
𝑇ℎ𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑚𝑒𝑟𝑎 𝑠𝑒𝑛𝑠𝑜𝑟 (20 𝑚𝑚)

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑜𝑛𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 (1024)
    (3.14) 

It is preferred that the measured flow velocity to be within the range bounded by the maximum 

and minimum detectable velocities. However, the minimum flow velocity limit can be pushed 

down by suing subpixel interpolation technique and thus increasing the dynamic range of the 

measurements. 

All of the parameters mentioned above are considered for each measurement. An example for the 

calculations of theses parameters is presented in appendix D.5. 

3.2.4. Processing of the PIV images 

In order to produce the velocity vector map, the images captured by the PIV system have to be 

processed. The image processing technique includes several steps. First, the light reflections have 

to be removed from the raw images. For any PIV measurement, there are many reflections. These 

reflections can be reduced physically during the measurement process, see appendix D.6 for more 

details about the techniques of reflections removing. However, some reflections will always 

remain in the captured raw images (see Fig. 3.5a). To remove these reflections, a low-pass filter is 
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applied on the images to extract the reflections from the raw image (see Fig. 3.5b). By subtracting 

the reflection image from the raw image, an image for the seeding particles only can be obtained 

(see  Fig. 3.5c).  

The seeding particles images are then analyzed. Each pair of images are analyzed to produce a 

velocity vector map. Each image is divided into a certain number of interrogation areas where the 

size of the interrogations area is predefined (e.g. 16 × 16 pixels2). Then an adaptive correlation is 

used to get the velocity vector for each interrogation area. Also, it is preferred that the seeding 

particle density to be within 5 to 10 particles per interrogation area in order to get proper 

correlation. The size of the interrogation area represents the spatial resolution of the measurements. 

   
(a) (b) (c) 

Figure 3.5: (a) Typical raw image, (b) Reflection image obtained by applying low-pass filter, 

(c) Final image obtained by subtracting (b) from (a). 

 

3.2.5. Experimental procedure 

Before starting the measurements, the imaging system is calibrated (as explained previously) to 

determine the size of the field of view and the magnification ratio. Then the measurement section 

(glass duct) is cleaned well to remove any seed contamination from the previous measurements. 

Afterwards, seeding particles are injected inside the resonator duct through a certain port near to 

one end of the resonator while another port near to the other end of the resonator is open to make 

sure that the seeding particles are dispersed all over the resonator. Then, the ports are closed firmly 

to avoid any leaks. The seeding particles are left inside the resonator for about 3 minutes to make 

sure that the flow motions created due to the injection of the seeding particles ceases. Then, the 

driving system of the oscillating flow (i.e. Scotch Yoke mechanism or speakers) is turned on and 

the PIV measurements started after about 1 minute to make sure that the flow characteristics are 

stabilized. Finally, the images are stored on the computer and analyzed (as explained previously). 

The post-processing of the data to produce the final results is explained in the following section. 
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3.3. Results and discussion 

As mention at the beginning of this chapter, there are two main objectives. The first one is to 

validate the using of the PIV tool in studying the transition to turbulence of an oscillating flow at 

sub-acoustic (i.e. <20 Hz) frequency range. The second objective is to extend the work to the 

acoustic frequency range (i.e. >20 Hz). Accordingly, the results section has been divided into two 

subsections. 

3.3.1. Sub-acoustic frequency range 

As shown in Fig. 3.6, the PIV field of view covers the whole width (𝑊) of the duct. However, the 

data is presented over one half of the duct width because the data is symmetric around the axis. 

The sampling frequency of the PIV system is adjusted to be multiple (𝐴 = 50) of the frequency 

of the oscillating flow. Also, the measurement duration is adjusted to cover a total number of cycles 

of 𝐵 = 50. Hence, the total number of the velocity vector maps per measurement is 𝐴 × 𝐵 =

2500. The time between pulses is adjusted, as explained previously, to allow the seeding particles 

to move a distance nearly equal to a quarter of the interrogation window length. 

 

Figure 3.6: Schematic representing the field of view of the PIV imaging system. 

The method of analyzing the measured data to get the velocity distribution over the cross section 

is quite similar to the method used in [38]. The velocity vectors in each map is spatially averaged 

along the x-direction because the velocity is almost constant in that direction. Then, phase 

averaging is implemented to get the velocity distribution over one cycle of oscillations. 

A graphical representation for the method of the analysis is depicted in Fig. 3.7. The total number 

of vectors in each map is 𝑁 × 𝑀, where 𝑁 𝑎𝑛𝑑 𝑀 are the total number of interrogation areas in x-

direction and y-direction and equals to 127 and 127, respectively. The total number of velocity 

vectors maps are indexed from 𝑖 = 1 to 𝑖 = 𝐴 × 𝐵. The velocity vector at each interrogation area 

within the velocity map is referred as 𝑈𝑖(𝑛,𝑚) and includes both x-direction 𝑢𝑖(𝑛,𝑚) and y-

direction v𝑖(𝑛,𝑚) velocity components. Then, the velocity vectors at the same y-position are 

averaged along x-axis and hence the spatial-average velocity distribution can be expressed as 

�̅�𝒊(𝒎) =
𝟏

𝑵
∑ 𝑼𝒊(𝒏,𝒎)𝑵

𝒏=𝟏      (3.15) 

Finally, the maps of those 50 oscillating cycles are averaged to get the phase-average velocity 

vector distribution over one oscillating cycle that can be expressed as 
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�̅̅�∅(𝒎) =
𝟏

𝑩
∑ 𝑼𝑨𝒊+∅(𝒎)𝑩−𝟏

𝒊=𝟎       (3.16) 

where ∅ is the phase number in the cycle and is ranged from ∅ = 1 to ∅ = 𝐴. 

 

 

𝟏

𝑵
∑ 𝑈𝑖(𝒏,𝒎)
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𝟏

𝑩
∑ 𝑼𝑨𝒊+∅(𝒎)

𝑩−𝟏

𝒊=𝟎

 

 

(a)       (b)                  (c) 

 

 Figure 3.7: (a) An example for velocity vectors map. (b) Spatial-average velocity distribution. 

(c) Phase-average velocity distribution. 

3.3.1.A. Experimental conditions 

Nine experiments are conducted at different conditions, as shown in Table 3.1. For all experiments 

the resonator is filled with air at atmospheric pressure and temperature (25o C). The experiments 

cover a range of Reynolds numbers (𝑅𝑒𝛿) between 141 and 510 and a range of Womersley number 

(𝛼 ) between 7.1 to 12.3. 

Table 3.1: Operating conditions for different experiments at sub-acoustic frequency range 

Experiment # 𝒇 (Hz) 𝑼𝒐 (m/s) 𝜹 (mm) 𝑹𝒆𝜹 𝜶 

1 0.5 0.7 3.16 141 7.1 

2 1 1.4 2.2 196 10 

3 1.5 2.0 1.8 230 12.3 

4 0.5 1.3 3.16 262 7.1 

5 1 2.5 2.2 350 10 

6 1.5 3.6 1.8 412 12.3 

7 0.5 2.2 3.16 442 7.1 

8 1 3.5 2.2 490 10 

9 1.25 4.0 2.0 510 11.3 

 

3.3.1.B. Results 

As mentioned in section 3.3.1. the total number of phases per cycles (𝐴) is fifty and the number of 

the averaged-cycles per phase (𝐵)  is fifty as well. In order to make sure that the used number of 

averaged images per phase is enough for the stationarity of the data, the number of averaged-cycles 

is changed and its effects on the flow characteristics are investigated. As shown in Fig. 3.8, as the 



57 
 

number of averaged-cycles is increased, the value of the mean velocity at any phase becomes 

nearly constant. It is found that the number of cycles required to get a stable mean velocity data is 

more than 30 cycles at a high Reynolds number (i.e. 𝑅𝑒𝛿 = 490). However, the 30-cycles criterion 

may be insufficient for the stability of the higher moment like velocity fluctuations and hence the 

turbulence intensities based on x and y velocity components are calculated using different numbers 

of averaged-cycles (𝐵). The turbulence intensities based on x and y velocity components at any 

phase, 𝐼𝑥∅
  and 𝐼𝑦∅

, respectively can be calculated as follows: 

𝑰𝒙∅
(𝒎) = √

𝟏

𝑩
∑ [�̅�𝑨𝒊+∅(𝒎) − �̅̅�∅(𝒎)]𝟐𝑩−𝟏

𝒊=𝟎      (3.17) 

𝑰𝒚∅
(𝒎) = √

𝟏

𝑩
∑ [�̅�𝑨𝒊+∅(𝒎) − �̅̅�∅(𝒎)]𝟐𝑩−𝟏

𝒊=𝟎      (3.18) 

 

Figure 3.8: The effect of the number of the averaged-images on the value of the mean velocity 

over the cycle at two different Reynolds numbers: (a) Experiment# 1 and (b) Experiment# 8 

 

Figure 3.9: The effect of the number of the averaged-images on the values of the turbulence 

intensities (based on x and y velocity components) over the cycle at the center of the duct (𝑦 = 0) 

at two different experimental conditions: (a, c) Experiment# 1 and (b, d) Experiment# 8. 
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As shown in Fig. 3.9, the values of the turbulence intensities over the cycle becomes stable when 

the number of the averaged-cycles exceeds 40 images; and hence 50 images are sufficient to get 

converged velocity data which is in agreement with the findings of [38]. Hereinafter, the presented 

data are based on averaging 50 cycles. 

In order to validate the measurement procedure explained above; the measured distribution of the 

axial velocity over the half width of the duct is compared with the theoretical expectations derived 

in [45] and expressed as follows: 

𝑢(𝑦, 𝑧, 𝑡) =
16𝑈𝑜

𝜋
∑ ∑

(−1)𝑙+𝑘

(2𝑙+1)(2𝑘+1)

∞
𝑘=0 𝑐𝑜𝑠

(2𝑙+1)𝜋

2𝑊
𝑦 × 𝑐𝑜𝑠

(2𝑘+1)𝜋

2𝑊
𝑧 × 𝜎∞

𝑙=0    (3.19) 

where, 

 𝜎 =
𝛾(

𝜋2

4
)[(2𝑙+1)2+(2𝑘+1)2] cos(2𝜋𝑓𝑡)+𝜑2 sin(2𝜋𝑓𝑡)

𝜑2+(
𝜋2

16
)[(2𝑙+1)2+(2𝑘+1)2]2

    (3.20) 

and, 

𝜑 =
2𝜋𝑓𝑊2

𝜈
       (3.21) 

As the theoretical expectations were derived for the flow in the laminar regime; the comparison is 

done at the lowest Reynolds number (Exp.#1). As shown in Fig. 3.10 (Exp.#1), there is a good 

agreement between the measured and the theoretical values over the whole cycle. It should be 

noted that the positive half of the cycle is only considered since the negative and positive halves 

are identical. 

In order to recognize the end of the laminar regime; the measured distributions of the axial velocity 

at different Reynolds numbers are compared with the theoretical expectations. As shown in , as 

the Reynolds number is increased up to 230; the measured values agree well with the theoretical 

expectations over the whole cycle. For Reynolds number higher than 230, the agreement with 

theory is valid over the whole cycle except at the deceleration phase (∅ = 𝜋/4). This behavior is 

observed up to Reynolds number of 412. For Reynolds number higher than 412, it is observed that 

the deviation from theory in the boundary layer extends to the acceleration phase as well. For 

Reynolds number higher than 500, there is a large deviation from theory in the boundary layer at 

the phases where the velocity direction is reversed. Also, the discontinuity in the velocity 

distribution at these phases may be due to the increase of the acceleration error inherited in PIV 

technique. 
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Figure 3.10: The measured () and the theoretical (▬) distributions of the axial velocity over the 

half width of the duct at different phases during the cycle at different experimental conditions. 
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The phase-average turbulence intensities in both directions normalized by the centerline axial 

velocity amplitude  (𝑈𝑜) are calculated. Also, the value of the Reynolds shear stress divided by 

the flow density is calculated as follows: 

𝑅𝑒𝑠𝑡𝑟𝑒𝑠𝑠∅
(𝑚) 𝜌⁄ =

1

𝐵
∑ [�̅�𝐴𝑖+∅(𝑚) − �̅̅�∅(𝑚)] ∗ [�̅�𝐴𝑖+∅(𝑚) − �̅̅�∅(𝑚)]𝐵−1

𝑖=0    (3.22) 

As shown in Fig. 3.11a, the phase-average turbulence intensity based on x-velocity component 

increases as the Reynolds number is increased. Also, the maximum value is achieved near to the 

wall rather than the center of the duct. In Fig. 3.11b, the phase-average turbulence intensity based 

on y-velocity component increases as the Reynolds number is increased. In Fig. 3.11c, the phase-

average Reynolds stress divided by the density increases as the Reynolds number is increased. 

Also, it is obvious that the value of the phase-average Reynolds stress increases significantly when 

the Reynolds number exceeds 500. The sharp increase in the value of the Reynolds stress beyond 

a certain value of Reynolds number characterizes the transition to turbulence process. So, it can be 

concluded that the critical Reynolds number is about 500 which is in agreement with the literature 

[27], [28]. 

 

Figure 3.11: The distribution of the Phase-average turbulence intensity normalized by the 

centerline axial velocity amplitude over the half width of the duct based on: (a) x-velocity 

component and (b) y-velocity component. (c) The distribution of the phase-average Reynolds 

stress divided by the density over the half width of the duct. 

3.3.2. Acoustic frequency range 

As the frequency of the oscillating flow gets higher, the size of the viscous penetration depth 

becomes smaller (i.e. 0.46 mm). Hence, in order to capture sufficient points inside the viscous 

penetration depth a zoom lens is used. The zoom lens provides a field of view of 10 mm and a 
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spatial resolution of 0.078 mm. As shown in Fig. 3.12, the PIV field of view covers a certain part 

of the duct width. The side length of the covered area is 10 times the size of the viscous penetration 

depth. The sampling frequency of the PIV system is adjusted to be an integer multiple (𝐴 = 25) 

of the frequency of the oscillating flow. Also, the measurement duration is adjusted to cover a total 

number of cycles of 𝐵 = 100 . Hence, the total number of the velocity vector maps per 

measurement is 𝐴 × 𝐵 = 2500. The time between pulses is adjusted, as explained previously, to 

allow the seeding particles to move a distance nearly equal to a quarter of the interrogation window 

length. 

 

Figure 3.12: Schematic representing the field of view of the PIV imaging system. 

3.3.2.A. Experimental conditions 

Nine experiments are conducted at different conditions, as shown in Table 3.2. For all experiments 

the resonator is filled with air at atmospheric pressure and temperature (25o C). The experiments 

cover a range of Reynolds numbers (𝑅𝑒𝛿) between 205 and 466. 

Table 3.2: Operating conditions for different experiments at acoustic frequency range 

Experiment # 𝒇 (Hz) 𝑼𝒐 (m/s) 𝜹 (mm) 𝑹𝒆𝜹 𝜶 
1 23.3 7 0.46 205 48.5 

2 23.3 8.2 0.46 240 48.5 

3 23.3 9.25 0.46 272 48.5 

4 23.3 10.3 0.46 302 48.5 

5 23.3 11.46 0.46 336 48.5 

6 23.3 12.78 0.46 375 48.5 

7 23.3 14.3 0.46 418 48.5 

8 23.3 15.2 0.46 445 48.5 

9 23.3 15.9 0.46 466 48.5 

 

3.3.2.B. Results 

3.3.2.B.1. Stationarity of the data 

In order to calculate the different quantities (e.g. velocity distribution, turbulence intensities, … 

etc.) from the PIV data, the same post-processing technique presented in section 3.3.1. is used 

here. However, as the oscillating frequency gets much higher, the number of averaged-cycles 

required to achieve the stationarity of data has to be checked. Hence, 200 vector maps are captured 



62 
 

for a certain phase at 𝑅𝑒𝛿 = 240, to investigate the effects of the number of the averaged-cycles 

on the stationarity of the data.  

As shown in Fig. 3.13, the deviation of the velocity components from the stationary values 

(estimated based on 200 vector maps) is plotted versus the number of the averaged-cycles. The 

deviation can be calculated as follows: 

𝐸𝑟𝑟𝑜𝑟 (%) =
|𝑉𝑎𝑙𝑢𝑒(𝑁)−𝑉𝑎𝑙𝑢𝑒(200)|

𝑉𝑎𝑙𝑢𝑒(200)
∗ 100    (3.23) 

 

(a) 

 

(b) 

Figure 3.13: The effect of the number of the averaged-cycles on the values of 

the velocity components (x and y) at 𝑅𝑒𝛿 = 240 for different traverse 

locations of the resonator: a) 𝑦 = 2𝛿 𝑣 and b) 𝑦 = 5𝛿 𝑣 



63 
 

 

The error decreases with increasing the number of the averaged-cycles. At traverse location 𝑦 =

2𝛿 𝑣 (Fig. 3.13a), the maximum error is less than 1.5 % which is very small value. Whereas the 

maximum error reaches up to 3 % at traverse location 𝑦 = 5𝛿 𝑣 (Fig. 3.13b). These values of error 

are acceptable; and hence as long as the number of the averaged-cycles is more than 10 cycles, the 

measured mean velocity components are acceptable. However, the 10 cycles criterion may be not 

sufficient for the convergence of the higher moment quantities (e.g. turbulence intensities). 

Therefore, the effect of the number of the averaged-cycles on the turbulence intensities is 

investigated. 

 

(a) 

 

(b) 

Figure 3.14: The effect of the number of the averaged-images on the values 

of the turbulent intensities (x and y) at 𝑅𝑒𝛿 = 240 for different traverse 

locations of the resonator: a) 𝑦 = 2𝛿 𝑣 and b) 𝑦 = 5𝛿 𝑣 
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As shown in Fig. 3.14a, the maximum value of the error is about 35 % and it drops down to 5% as 

the number of the averaged cycles exceeds 100 cycles. Also, at traverse location 𝑦 = 5𝛿 𝑣 (Fig. 

3.14b), the maximum error is about 30 % and it drops down to 5 % as the number of the averaged 

cycles exceeds 100 cycles. It is assumed that the data is stationary if the error is less than 5 % and 

hence the 100 cycles are sufficient for data convergence. Hereinafter, the presented data are based 

on averaging 100 cycles. 

As the PIV camera memory cannot store more than 2700 double-images (i.e. vector maps), the 

total number of vector maps per measurement is selected to be 2500 (i.e. less than the limit of the 

camera memory). Hence, the number of the vector maps captured per cycle is 25. 

3.3.2.B.2. Axial Velocity distributions 

In order to validate the measurements, the measured axial velocity distribution is plotted and 

compared with the theoretical axial velocity distribution at low Reynolds number. The theoretical 

velocity distribution given by equation 3.19 is used here, however, this theoretical solution is 

mainly used for low frequency oscillating flow. Hence, another theoretical solution (used in [69]) 

is used to check the validity of the former solution at higher frequencies. As shown below, both 

theoretical solutions are identical. Hence, both solutions are used in this study to check the validity 

of the measurements. 

As shown in Fig. 3.15, the measured and the theoretical axial velocity distributions are plotted for 

different Reynolds numbers and at five different phases (see appendix C.5 for the matlab code 

used to calculate and plot the data). These five phases are selected to cover one half of the acoustic 

cycle because both halves are similar. At low Reynolds numbers (up to 𝑅𝑒𝛿 = 240), the measured 

velocity distributions agree well with the theoretical expectations at the traverse locations (𝑦) more 

than 3𝛿𝑣 for all phases. At traverse locations less than 3𝛿𝑣, there is also an agreement between the 

measurement and the theoretical expectations for some phases (e.g. 45, 90 and 135 deg) whereas 

the measurements deviate from the theoretical expectations at the other phases (0 and 180 deg). 

This deviation exists for all Reynolds numbers. This discrepancy is mainly due to the acceleration 

error associated with the PIV technique (When analyzing the PIV images, it is assumed that the 

measured velocity is constant over the time between the two images (i.e. time between pulses)). 

At these phases (0 and 180 deg), the flow experiences the maximum acceleration (i.e. 2𝜋𝑓𝑈𝑜) and 

therefore the maximum error is expected to occur at these phases. This error was not significant 

when the measurements were conducted at low frequency range (see Fig. 3.10) because the 

maximum acceleration of the flow (i.e. 2𝜋𝑓𝑈𝑜) is much less than the current case.  
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Figure 3.15: The ensemble-average measured (red dots) and the theoretical (solid lines) axial velocity 

distributions at different phases within the acoustic cycle for different Reynolds numbers. 
 

  



67 
 

As the Reynolds number increases (272 ≤ 𝑅𝑒𝛿 ≤ 418), the measured axial velocity distribution 

deviates from the theoretical expectations at the acceleration phase (i.e. 45 deg) for traverse 

locations (𝑦) less than 3𝛿𝑣. For higher Reynolds number up to 466, the discrepancy between the 

measurements and the theoretical expectations extends to the deceleration phase (i.e. 135 deg) as 

well. This discrepancy may be regarded as an indication for the transition to turbulence as 

concluded in [69]. Hence, it can be assumed that the critical Reynolds number, at which the flow 

is considered non-laminar, is around 270 which agrees with the previous literature [30], [69]. 

However, using the axial velocity distribution as a criterion for the occurrence of turbulence is not 

strong enough. Hence, it is necessary to use some turbulence tools or parameters to make a strong 

evidence for the occurrence of turbulence. In the following subsections, some turbulence 

parameters will be used for that purpose. 

3.3.2.B.3. Turbulence Intensities and Reynold stress 

Turbulence intensity and Reynold stress are good tools to investigate the occurrence of turbulence 

and they have been used in some studies [33] [38] to investigate the turbulence occurrence in the 

oscillating flow. In the current work, turbulence intensities are calculated as presented previously 

in equations 3.17 and 3.18 and normalized by the velocity amplitude 𝑈𝑜. Also, Reynolds stress is 

calculated as presented in equation 3.22 and normalized by 𝑈𝑜
2 (see appendix C.6 for the matlab 

code used to calculate the turbulence intensities and Reynolds stress). 

As shown in Fig. 3.16, the turbulence intensity based on the axial velocity component (Ix) is almost 

zero at traverse locations (𝑦) more than 2𝛿 𝑣 for all phases and at low Reynolds number (up to 

𝑅𝑒𝛿 = 272). At traverse locations (𝑦) less than 2𝛿 𝑣, the turbulence intensity (Ix) is almost zero 

at phases with zero mean velocity (i.e. 0 and 180 deg) whereas it shows an overshoot at traverse 

location (𝑦) equals nearly 𝛿 𝑣 for other phases (i.e. 45, 90 and 135 deg). This overshoot is reported 

in [38] and [70], this can be due to the significant change in the velocity gradient near to the wall 

at these phases which significantly increases the turbulence intensity based on the axial velocity 

component (Ix). To overcome this overshoot, it was recommended in [38] to consider the 

turbulence intensity based on the traverse velocity component (Iy) because the mean value of the 

traverse velocity is always zero.  

As shown in Fig. 3.16, the distribution of the turbulence intensity based on the traverse velocity 

component (Iy) is almost flat and equals to zero for all phases and at low Reynolds numbers (up 

to 𝑅𝑒𝛿 = 272). As the Reynolds number increases (302 ≤ 𝑅𝑒𝛿 ≤ 375), the turbulence intensity 

(Ix) at the acceleration phase (i.e. 45 deg) started to increase up to traverse location (𝑦) of 7𝛿 𝑣. 

Also, the turbulence intensity (Iy) slightly increases at all phases. At higher Reynolds number 

(𝑅𝑒𝛿 ≥ 418), the turbulence intensity (Ix) increases up to traverse location (𝑦) of around 10𝛿 𝑣. 

Also, the turbulence intensity (Iy) continues to increase for all phases.  

As explained above, the turbulence intensities (Ix and Iy) started to increase at Reynolds number 

above 272 that indicates occurrence of turbulent bursts at some phases and hence it can be 

concluded that the critical Reynolds number is around 272. In order to support this finding, the 
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normalized Reynolds stress is calculated as well. As shown in Fig. 3.17, at low Reynolds number 

(up to 240), the distribution of the normalized Reynolds stress is almost flat and equals to zero for 

all phases. At Reynolds number of 272, the distribution of the normalized Reynolds stress is still 

flat and equals to zero for all phases except at the phase of the maximum velocity (i.e. 90 deg). At 

this phase, the value of Reynolds stress peaks at traverse location (𝑦) of around 2𝛿 𝑣 . As the 

Reynolds number increases (up to 375), the distribution of the Reynolds stress peaks at traverse 

location (𝑦) of around 2𝛿 𝑣 for some phases (i.e. 45, 90 and 135 deg). At higher Reynolds numbers 

(𝑅𝑒𝛿 ≥ 418), the distribution of Reynolds stress becomes random and has non-zero value for 

some phases and also it extends up to traverse location (𝑦) of around 10𝛿 𝑣, similar behavior is 

reported in [33]. 
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Figure 3.16: The measured turbulence intensities distribution based on axial (red dots) and traverse 

(black dots) at different phases over the acoustic cycle for different Reynolds numbers. 
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Figure 3.17: The distribution of the normalized Reynolds stress at different phases over the acoustic 

cycle for different Reynolds numbers. 
 

 

In order to summarize the results discussed above, the phase-average turbulence intensities and 

the Reynolds stress are calculated. As shown in Fig. 3.18a, the turbulence intensity based on the 

axial velocity component (Ix) increases as the Reynolds  number is increased. Also, the distribution 

peaks at a certain axial location  (𝑦). The peak location shifts away from the wall as the Reynolds 

number is increased. Moreover, the turbulence intensity based on travers velocity component (Iy) 

increases as the Reynolds number is increased, as shown in Fig. 3.18b. 

Finally, the distribution of the phase-average normalized Reynolds stress (see Fig. 3.18c) is almost 

flat for Reynolds number up to 240. At Reynolds number of 272, the distribution is flat except for 

the traverse locations between 𝛿𝑣 and 2.5𝛿𝑣 where it peaks at a traverse location of around 1.5𝛿𝑣. 

This sudden peak in the distribution indicates the occurrence of turbulence and hence it can be 

concluded that the critical Reynolds number is around 272 which agrees with the previous 

literature [30], [69]. Also, As the Reynolds number increases, the location of the peak shifts 

gradually away from the wall. At Reynolds number higher than 418, a sudden increase in the level 

of the Reynolds stress is observed which may indicate the existence of fully turbulence features 

over the whole cycle.  
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 (a) (b) (c) 

Figure 3.18: The distribution of the phase-average turbulence intensity based on axial velocity 

component (Ix), (b) The distribution of the phase-average turbulence intensity based on 

traverse velocity component (Iy), (c) The distribution of the normalized Reynolds stress. 
 

3.3.2.B.4. Vorticity field 

The vorticity field usually is used to describe the rotational characteristics of the flow. The vorticity 

field is mathematically defined as the curl of the velocity vector and can be expressed as follows: 

휁 ≡ ∇ × �⃗�       (3.24) 

where �⃗�  is the velocity vector. As the PIV system provides only two-dimensional velocity field, 

the vorticity field, perpendicular to that velocity field, can be calculated as follows: 

휁𝑧 =
∂v

𝜕𝑥
−

∂u

𝜕𝑦
      (3.25) 

where u and v are the axial and the traverse velocity components at a given location, respectively. 

In the current work, the ensemble-average velocity fields are used to calculate the vorticity field 

numerically at different phases over the cycle (see appendix C.7 for the matlab code used). The 

data is produced for 25 different phases, however, only 5 phases are presented covering one half 

of the cycles because both halves are symmetric but with opposite directions. 
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As shown in Fig. 3.19, at low Reynolds number, the vorticity field shows a near zero value (i.e. 

green color) all over the domain except near to the wall (𝑦 ≤ 2𝛿 𝑣). At traverse locations 𝑦 ≤ 2𝛿 𝑣, 

the intensity of the vorticity has a maximum value at the phase with maximum axial velocity at 

the center of the duct (i.e. 90 deg) because at this phase the velocity gradient near to the wall has 

a maximum value. At the phases where the axial velocity is zero at the center of the duct (i.e. 0 

and 180 deg), the velocity distribution near to the wall has non-zero values (see Fig. 3.15) and 

hence there is a velocity gradient near to the wall which generates a non-zero vorticity field. Also, 

it can be observed that the vorticity field is nearly the same over the axial direction because the 

velocity distribution is almost constant over the axial distance within the measurement area. 

As the Reynolds number is increased (up to 375), the intensity of the vorticity increases for traverse 

locations 𝑦 ≤ 2𝛿𝑣, whereas the rest of the field still shows a zero value of vorticity. At higher 

Reynolds numbers (𝑅𝑒𝛿 ≥ 418), the vorticity has maximum values at the phase with maximum 

velocity at the center of the duct (i.e. 90 deg) and limited to the traverse location 𝑦 ≤ 2𝛿𝑣. As the 

velocity decreases (phase 0, 45, 135 and 180), the vortex structure starts to move away from the 

wall and towards the center of the duct which explains why the turbulence intensities and the 

Reynolds stress peak at different traverse locations for different Reynolds number (see Fig. 3.18). 

As the vorticity field describes the large turbulent structures, it is necessary to look for the small 

turbulent structures of the flow. In the following section, the Kolmogrov length scale will be 

calculated over the whole field of view.  
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Figure 3.19: The vorticity field (in s-1) at different phases for different Reynolds numbers. 
 

 

3.3.2.B.5. Kolmogorov Length scale 

Kolmogorov length scale defines the size of the smallest turbulence structure in the flow. At this 

smallest scale the turbulent kinetic energy is converted into heat via viscosity. The Kolmogorov 

length scale is mathematically described as follows [71]: 

휂 = (
𝜈3

𝜖
)

1

4
       (3.26) 

where 𝜈 is the kinematic viscosity and 𝜖 is the rate of dissipation of turbulent kinetic energy. In 

order to calculate 𝜖 , the nine components of the fluctuating velocity gradient 

(
𝜕�̀�

𝜕𝑥
,
𝜕�̀�

𝜕𝑦
,
𝜕�̀�

𝜕𝑧
,
𝜕v̀

𝜕𝑥
,
𝜕v̀

𝜕𝑦
,
𝜕v̀

𝜕𝑧
,
𝜕ẁ

𝜕𝑥
,
𝜕ẁ

𝜕𝑦
,
𝜕ẁ

𝜕𝑧
) have to be available. Since these components cannot be 



77 
 

obtained for a typical 2D PIV measurement, some assumptions have to be made. If the flow is 

assumed to be homogeneous and isotropic then only one of these nine components is needed. 

However, this assumption does not employ the available four components that can be obtained 

from 2D PIV measurements. So, another assumption is made to utilize the available four 

components of the PIV measurement. This assumption is local isotropy of the flow, which can be 

expressed mathematically, as follows [72]: 

(
𝜕�̀�

𝜕𝑧
)
2

= (
𝜕ẁ

𝜕𝑥
)
2

= (
𝜕v̀

𝜕𝑧
)
2

= (
𝜕ẁ

𝜕𝑦
)
2

=
1

2
[(

𝜕�̀�

𝜕𝑦
)
2

+ (
𝜕v̀

𝜕𝑥
)
2

]    (3.27) 

(
𝜕�̀�

𝜕𝑧

𝜕ẁ

𝜕𝑥
) = (

𝜕v̀

𝜕𝑧

𝜕ẁ

𝜕𝑦
) = (

𝜕�̀�

𝜕𝑦

𝜕v̀

𝜕𝑥
)      (3.28) 

Hence, for 2D PIV measurements the rate of dissipation of turbulent kinetic energy can be 

calculated as follows [73]: 

𝜖 = 3𝜈 [(
𝜕�̀�

𝜕𝑥
)
2

+ (
𝜕v̀

𝜕𝑦
)
2

+ (
𝜕�̀�

𝜕𝑦
)
2

+ (
𝜕v̀

𝜕𝑥
)
2

+ 2(
𝜕�̀�

𝜕𝑦

𝜕v̀

𝜕𝑥
)
2

+
2

3
(
𝜕�̀�

𝜕𝑥

𝜕v̀

𝜕𝑦
)
2

]   (3.29) 

where, �̀� and v̀ are the axial and traverse fluctuating velocity components, respectively.  

When the PIV data is used to calculate the dissipation rate, the effect of the size of the interrogation 

area should be considered. Xu et al. [72] stated that the size of the interrogation area has a 

significant effect on the calculated value of 𝜖. As the size of the interrogation area increases, the 

results deviate from the correct value. This deviation is mainly due to the fact that each velocity 

vector is obtained by averaging the velocity of the seeding particles within the interrogation area 

and thus the obtained velocity is a spatially filtered velocity. Also, they found that if the size of the 

interrogations area is twice the smallest length scale, there is an error of around 10 % in the 

calculated value of 𝜖 with the assumption of local isotropy. The error decreases as the size of the 

interrogation area decreases. In the current work, the size of the interrogation area is about 0.076 

× 0.076 mm2 which is less than the smallest length scale and hence this error is expected to be very 

small. The ensemble-average fluctuating velocity fields at different phases are used to calculate 

the distribution of the Kolmogorov length scale over the flow field (see appendix C.8 for the matlab 

code used). The data is produced for 25 different phases, however, only 5 phases are presented to 

cover one half of the cycles because both halves are symmetric. 
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Figure 3.20: The Kolmogorov length scale (in mm) over the whole field of view at different phases for 

different Reynolds number. 
 

As shown in Fig. 3.20, at low Reynolds number (i.e. 205), the smallest length scale (i.e. bluish-

color) is limited to the traverse locations near to the wall (i.e. 𝑦 ≤ 2𝛿 𝑣). At the phase with the 

maximum velocity (i.e. 90 deg) the small length scales can be found at traverse locations (𝑦) even 

larger than 2𝛿 𝑣. As the Reynolds numbers increases (up to 302), the small length scales are mainly 

limited to the traverse locations (𝑦) less than 2𝛿 𝑣. For higher Reynolds number (302 ≤ 𝑅𝑒𝛿 ≤

466), the small scales continue to spread in the whole field of view near the deceleration phases 

(i.e. 0, 135 and 180 deg), that may be an indication for the turbulence occurrence. 
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3.3.2.B.6. Spatial Energy spectra 

The turbulent energy spectrum is one of the tools that describes the characteristics of the turbulent 

flows such as the decay of the turbulent kinetic energy across the different eddies. The most 

common energy spectrum is the temporal energy spectrum that gives an indication of the decay of 

the turbulent kinetic energy at different frequencies and it can be calculated from one-point time 

resolved measurement (e.g. LDA or hot wire). The other type of energy spectra is the spatial energy 

spectrum that describes the decay of the turbulent kinetic energy at different wavenumbers. The 

wavenumber (𝑘𝑖) is defined as follows: 

𝑘𝑖 =
2𝜋

𝑖×𝑆𝐼𝐴
     (3.30) 

where 𝑖  is the interrogation area number and ranges from 2 to N (the total number of the 

interrogation areas in one direction) and 𝑆𝐼𝐴 is the side length of the interrogation area. 

The spatial energy spectrum cannot be directly calculated from one-point measurement unless 

Taylor hypothesis of frozen turbulence [74] is utilized. This hypothesis assumes that the temporal 

turbulent energy spectrum at one fixed point is similar to the spectrum at different location due to 

the advection of the turbulent structures from one location to another with the mean flow velocity, 

known as convection velocity. However, using this hypothesis to calculate the spatial energy 

spectrum from one-point measurement leads to error especially at higher wave numbers [75]. Since 

the PIV technique provides the spatial distribution of the velocity in two dimensions, the spatial 

turbulent energy spectrum can be calculated directly without using the Taylor hypothesis. 

In the current work, the PIV data is used to calculate the spatial turbulent energy spectra 𝐸𝑢 and 

𝐸v based on the axial and the traverse fluctuating velocity components, respectively. The method 

used to calculate the spatial energy spectra are described in [76]. The ensemble-average data are 

used to calculate the energy at different wavenumbers (𝑘) . The maximum wave number 

corresponds to twice the size of the interrogation area (see appendix C.9 for the matlab code used 

to calculate the spatial energy spectra). 

As shown in Fig. 3.21, the spatial turbulent energy spectra based on the axial fluctuating velocity 

component are plotted at different phases and for different Reynolds numbers. Also, the data is 

compared with the cycle-average spatial energy spectrum and the universal slope of the turbulent 

energy spectrum (-5/3). At all Reynolds numbers, it is observed that the spatial energy spectrum 

has a wavy pattern (i.e. fluctuating around a constant value) up to a certain wavenumber after 

which the energy level decays with a constant rate. The rate of the decay agrees well with the 

universal decay slope (-5/3). This wavy pattern may be due to the oscillating nature of the flow. 

Also, for all Reynolds numbers, it is observed that the cycle-average spatial energy spectrum is 

higher than the energy spectrum at the deceleration phases (0, 135 and 180 deg). During the 

acceleration phases (45 and 90 deg), the spatial energy spectrum is higher than the cycle-average 

spectrum. At any given phase, the energy level increases as the Reynolds number is increased. 
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As shown in Fig. 3.22, the spatial turbulent energy spectra based on the traverse fluctuating 

velocity component are plotted at different phases and for different Reynolds numbers. Also, the 

data is compared with the cycle-average spatial energy spectrum and the universal slope of the 

turbulent energy spectrum (i.e. -5/3). At a given Reynolds number, it is observed that the energy 

level is almost the same for all phases and hence, the cycle-average energy spectrum equals to 

energy spectrum at any phase.  
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Figure 3.21: The spatial energy density spectra based on axial velocity component (red dots) at 

different phases compared to the cycle-average spatial energy spectra (blue dots) and the universal 

slope of -5/3 (solid line). 
 

This is unlike the spatial energy spectra based on the axial fluctuating velocity component (see 

Fig. 3.21) because the main flow doesn’t have obvious oscillating behavior in the traverse direction 

compared to the axial direction. Also, the wavy-pattern presented in Fig. 3.21 is not obvious with 
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the spectrum based on traverse velocity component. The decay of the energy with wave number 

has a slope similar to the universal slope (-5/3). Also, the energy level increases as the Reynolds 

number is increased. 
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Figure 3.22: The spatial energy density spectra based on traverse velocity component (red dots) at 

different phases compared to the cycle-average spatial energy spectra (blue dots) and the universal 

slope of -5/3 (solid line). 
 

In order to summarize the results, the cycle-average energy spectra for different Reynolds number 

are plotted in Fig. 3.23. The cycle-average spatial energy spectra 𝐸𝑢 at small wavenumbers have 

wavy-pattern which may be due to the oscillating behavior of the flow because in steady turbulent 
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flows, this phenomenon (wavy pattern of the spatial energy spectrum) was not observed [76]. At 

larger wavenumbers, the energy spectra decay with slope of -5/3 which means that there is no 

difference between the decay of the turbulent fluctuations in the oscillating flow and steady flow 

at high wavenumbers. Also, the energy level of the spectra increase as the Reynolds number is 

increased. 
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Figure 3.23: (a) The cycle-average spatial energy density spectra of axial velocity 

component. (b) The cycle-average spatial energy density spectra of traverse velocity 

component.  
 

3.4. Conclusions 

The transition to turbulence in oscillating flow at low frequencies has been investigated 

experimentally using PIV measurements. The axial velocity distribution in a square duct is 

measured at different Reynolds numbers and Womersley numbers and compared with the 

theoretical expectations based on the analytical solution of the Navier Stokes equations. At low 

Reynolds number, the measured values are in agreement with the theoretical expectations. As the 

Reynolds number is increased the agreement is violated in the deceleration phase first and then in 

more phases during the cycle. At the critical Reynolds number of around 500, it is observed that 

there is a sudden jump in the level of the axial turbulence intensity. These findings comply with 

the previous literature and hence they validate the use of the PIV system to study the transition to 

turbulence in oscillating flow. Therefore, the work is extended to high (i.e. acoustic) frequency 

range. 
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At high (acoustic) frequency range, the transition to turbulence has been investigated using PIV 

measurements. The Reynolds stress distribution is utilized as a criterion for the occurrence of 

turbulence. At low Reynolds number, it is observed that the Reynolds stress distribution is flat and 

equals to zero. At Reynolds  number of 272, a sudden increase in the Reynolds stress value is 

observed at a traverse location of around 1.5𝛿𝑣. This sudden increase is due to the occurrence of 

turbulence. As the Reynolds number increases, the location of the peak in the Reynolds stress 

distribution moves gradually away from the wall. At Reynolds number higher than 418, another 

sudden increase in the level of the Reynolds stress is observed which may indicate the end of the 

transition to turbulence regime and the start of fully turbulent oscillating flow. Figure 3.24 

summarizes the findings of the current work and compares it with the findings of the previous 

literature. Also, the spatial energy spectra of the flow are investigated. It shows an increase in the 

turbulent kinetic energy level as the Reynolds number increases. Also, at a given Reynolds 

number, the decay of the turbulent kinetic energy with the wavenumber complies with the 

universal slope (-5/3) in the Taylor region. 

 

Figure 3.24: Graphical representation for the findings of the present work as compared to the 

previous literature.  
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3.5. Recommendations for future work 

The transition to turbulence in the oscillating flows is an important topic in many applications such 

as thermoacoustic systems (i.e. engine and refrigerator). In the current work, the transition to 

turbulence is investigated using PIV system inside an empty resonator at ambient conditions. 

However, the real thermoacoustic systems have many components and mean temperature varies 

inside these systems and hence it is important to study the turbulent characteristics of the flow 

inside high amplitude real thermoacoustic systems. Also, the current study investigated the 

transition to turbulence at only one frequency in the acoustic frequency range. Hence, it may be 

necessary to investigate how the higher frequencies affected the transition to turbulence.  
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Chapter 4:  Effects of the plate-end shape on the oscillating flow 

morphology 

As mentioned in the introduction section, this chapter focuses on the effects of the plate-end shape 

on the oscillating flow characteristics such as vorticity and turbulence intensities. The following 

subsections discuss the experimental setup, measurement techniques and signal processing tools 

used in this part of the study. Also, the results are discussed and conclusions are drawn by the end 

of the chapter. 

4.1. Experimental setup 

In the previous chapter, the transition to turbulence in the oscillating flow inside an empty 

resonator has been investigated at low and high frequency ranges. In thermoacoustic devices, the 

thermoacoustic process occurs in the thermoacoustic core which consists of stack and heat 

exchangers. So, the effects of these components on the oscillating flow characteristics (e.g. 

vorticity, non-periodicity or turbulence intensity) have to be investigated. For simplicity, the stack 

is usually modelled as a set of parallel plates separated by a certain distance. 

In the current study, the effects of the plate-end shape on the flow morphology have been 

investigated experimentally using PIV measurements. As shown in Fig. 4.1, the plates are placed 

at the center of the resonator (see section 3.1.2. for detailed description of the resonator). The 

oscillating flow is generated by two opposite loudspeakers (see section 3.1.1.B. for detailed 

description of the loudspeakers) operating at the resonance frequency of the system (i.e. 23.3 Hz). 

 

Figure 4.1: Schematic for the experimental setup showing the position of the plates and the PIV 

measurement system. 
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Figure 4.2: Schematic for the different plate-end shapes: (a) Rectangular, (b) Circular, (c) 

Triangular with cone angle of 90O and (d) Triangular with cone angle of 30O. 

Four different plate sets are used. Each set consists of four parallel plates separated by a distance 

of 5 mm and have the same plate-end shape. As shown in Fig. 4.2, four different plate-end shapes 

(i.e. rectangular, circular, 90O triangular and 30O triangular) are used. Each plate has a width of 5 

mm and a height of 43 mm (a bit less than the side length of the resonator, 45 mm). In order to 

eliminate the effects of one end of the plate on the other end, the length of the plate (𝐿𝑝 =

200 𝑚𝑚) is chosen to be longer than the displacement amplitude of the oscillations. Hence, the 

Keulegan-Carpenter number (𝐾𝐶), which is defined as follows: 

𝐾𝐶 =
𝑈𝑜

2𝜋𝑓𝐿𝑝
      (4.1) 

should be less than 1 to avoid interactions between the disturbances before and after the plates. As 

shown in Table 4.1, the maximum Keulegan-Carpenter number in the current study is 0.351. 

It is worthwhile to mention that the four plate-end shapes used in the current study are similar to 

the shapes used in [62]. In that study the effects of the plate end-shape on the vorticity field were 

reported at one acoustic velocity amplitude. Also, the maximum Reynolds number (𝑅𝑒𝛿) achieved 

in that study was about 67. However, it is important to investigate the effects of the plate-end 

shapes at high acoustic amplitudes and hence the current study focuses on these effects at higher 

Reynolds numbers (up to 302). As shown in Table 4.1, eight different experimental conditions are 

tested for each set of plates (4 sets) which results in total number of experiments of 32. 

Table 4.1: Experimental conditions used for different plate-end shape. 

Experimental 

Condition# 
𝒇 (Hz) 𝑼𝒐 (m/s) 𝑋𝐴𝑚𝑝 =

𝑼𝒐

2𝜋𝑓
 (mm) 𝜹 (mm) 𝑹𝒆𝜹 𝜶 𝐾𝐶 

1 23.3 2.4 16.4 0.46 70 48.5 0.082 

2 23.3 3.7 25.3 0.46 108 48.5 0.126 

3 23.3 5.1 34.8 0.46 150 48.5 0.174 
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4 23.3 5.9 40.3 0.46 173 48.5 0.202 

5 23.3 7.5 51.2 0.46 219 48.5 0.256 

6 23.3 8.3 56.7 0.46 245 48.5 0.283 

7 23.3 9.2 62.8 0.46 270 48.5 0.314 

8 23.3 10.3 70.3 0.46 302 48.5 0.351 

 

4.2. PIV measurements 

The PIV measurements are performed to visualize the oscillating flow around the plates. For 

detailed description of the PIV system, refer to section 3.2.2. Also, the adjustment of the PIV 

system parameters are explained in section 3.2.3. As shown in Fig. 4.1, a mirror is used to divert 

the laser light sheet with 90 degrees in order to illuminate the measurement area. In order to avoid 

the interactions of the disturbances generated from mirror with the flow in the measurement area, 

the mirror is placed away from the plates with a distance (250 mm) much longer than the largest 

displacement amplitude of the oscillations (i.e. 70.4 mm). 

In order to determine the furthest distance at which the disturbances can travel away from the 

plates, a prime lens (60 mm Nikon AF macro) is attached to the camera to provide a larger field 

of view. The size of the field of view is 54 × 54 𝑚𝑚2 with spatial resolution (i.e. size of the 

interrogation area) of 0.42 mm. However, the size of the field of view is not enough to cover large 

axial distance (i.e. 1.5 times the displacement amplitude) for some of the experimental conditions. 

For these experimental conditions (𝑅𝑒𝛿 ≥ 150), the camera is traversed axially to cover the 

required axial distance (i.e. 1.5 times the displacement amplitude). As shown in Fig. 4.1, there are 

two axial locations at which the measurements are performed namely M1 and M2. 

Based on the findings presented in the previous chapter (see section 3.3.2.B.1. , the number of the 

averaged-cycles required to achieve the stationarity of the data is 100 cycles which also agrees 

with the findings of [77]. Hence, the measurement duration covers 100 cycles with 25 phases per 

cycle. So, the total number of velocity maps per measurement is 2500 maps. 

4.3. Results and discussion 

4.3.1. Vorticity field and velocity vector map 

The vorticity field is an important measure for the rotational characteristics of the flow and it has 

been used in different studies, as mentioned in the introduction, to describe the oscillating flow 

around the parallel plates. 

The ensemble-average velocity fields are used to get the vorticity fields. The calculations of the 

vorticity field are presented in section 3.3.2.B.4. The total number of the velocity vectors per map 

is 16129 (127 × 127) vectors. This number of vectors is a huge number and hence the individual 

vector will not be visible if the data is presented with the full resolution. Hence, each three columns 

are spatially-averaged to keep the velocity vector visible. The matlab code used to calculate and 

plot both the vorticity fields and vector maps is presented in appendix C.11. 
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Figure 4.3: Representation for the selected phases over the acoustic cycle. 

In the previous chapter, the vorticity fields are presented for only one half of the cycle because 

both halves are similar. However, in this part of the study, the vorticity field around the plates 

changes throughout the whole cycle because of the different flow morphology during the ejection 

and suction stages. As shown in Fig. 4.3, the first half of the cycle represents the ejection stage in 

which the flow moves outwards the plates. Whereas the other half of the cycle represents the 

suction stage in which the flow moves inwards the plates. Hence, the data are calculated for the 

whole 25 phases but only 8 phases (red dots), shown in Fig. 4.3, are selected to be presented in the 

current work. Furthermore, appendix E.2 includes a link for the videos that present the vorticity 

fields at the whole 25 phases and for all cases. In the following subsections, the results are 

presented for some cases only (see appendix E.2 for the results of all cases). 

4.3.1.A. Vorticity field as a function of phase 

The vorticity field changes throughout the whole cycle and hence, it is important to study the 

evolution of the vorticity field with time (i.e. phase). Figure 4.4 presents the vorticity field at 

different phases at 𝑅𝑒𝛿 of 70 for the rectangular-plate end shape. As shown in Fig. 4.4a, the mean 

flow velocity is zero and the vorticity field  has nearly zero value as well. As the velocity increases, 

the vorticity field start to develop in the boundary layers around the plates as shown in Fig. 4.4b. 

On one side of each plate there is a positive vorticity field whereas on the other side a negative 

vorticity field. As shown in Fig. 4.4c, there are two counter-rotating vortices attached to the plate-

edge. As the velocity increases (see Fig. 4.4d), the vortices are transformed in two elongated 

vortices which is observed in [56]. The generated vortices are transported with the flow till they 

reach an axial distance nearly equals to one acoustic displacement amplitude (i.e. x 𝑋𝐴𝑚𝑝
⁄ = 1), as 

shown in Fig. 4.4d. As shown in Fig. 4.4e, the mean flow velocity is almost zero and there are two 

counter-rotating vortices attached to the edge of each plate. Afterwards, the flow direction is 

reversed (i.e. the flow moves inwards to the plates) and hence the vorticity is limited to the 

boundary layers around the plates, as shown in Fig. 4.4f. As the velocity increases, the intensity 
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magnitude of the vorticity (i.e. the intensity of the colors in the map) in the boundary layer 

increases, as shown in Fig. 4.4g. 

The evolution of the vorticity field has been studied for different plate-end shapes at the same 𝑅𝑒𝛿 

of 70. As shown in Fig. 4.5, the evolution of the vorticity field for the circular plate-end shape with 

time is reported. For most of the phases, the vorticity field is similar to the rectangular plate-end 

shape presented in Fig. 4.4. However, at phase d (see Fig. 4.5d) the two counter-rotating vortices 

are not elongated as presented with the rectangular plate-end shape (see Fig. 4.4d). For the 90O 

triangular plate-end shape (see Fig. 4.6), the generated vortices reach to an axial distance of about 
x

𝑋𝐴𝑚𝑝
⁄ = 0.7 which indicates that the triangular plate-end shape reduces the axial distance over 

which the flow is disturbed. Decreasing the cone angle of the triangular (see Fig. 4.7) makes further 

reduction in the distance over which the flow is distributed by the generated vortices (i.e. 
x

𝑋𝐴𝑚𝑝
⁄ = 0.5). This finding has direct impact on the optimum design of the stack shape in order 

to reduce the non-linear loss associated with the flow separation at the inlet/exit of the stack in a 

thermoacoustic engine and refrigerators. 
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Figure 4.4: Vorticity field and vector map around the plates with rectangular end shape in the 

measurement area (M1) at different phases (a-h, see Fig. 4.3) over one acoustic cycle for 

Reynolds number (𝑅𝑒𝛿) of 70. 
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Figure 4.5: Vorticity field and vector map around the plates with circular end shape in the 

measurement area (M1) at different phases (a-h, see Fig. 4.3) over one acoustic cycle for 

Reynolds number (𝑅𝑒𝛿) of 70. 
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Figure 4.6: Vorticity field and vector map around the plates with 90O triangular end shape in the 

measurement area (M1) at different phases (a-h, see Fig. 4.3) over one acoustic cycle for 

Reynolds number (𝑅𝑒𝛿) of 70. 
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Figure 4.7: Vorticity field and vector map around the plates with 30O triangular end shape in the 

measurement area (M1) at different phases (a-h, see Fig. 4.3) over one acoustic cycle for 

Reynolds number (𝑅𝑒𝛿) of 70. 
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4.3.1.B. Effects of Reynolds number 

The Reynolds number represents the ratio between the inertia force and viscous force and hence, 

this ratio affects the flow patterns around the plates. However, Aben et al. [62] found that not only 

the Reynolds number affects the flow patterns around the plates but also the Strouhal number (𝑆𝑡), 

which is defined as follows: 

𝑆𝑡 =
𝑃𝑙𝑎𝑡𝑒 𝑡ℎ𝑖𝑐𝑘𝑛𝑒𝑠𝑠∗𝑓

𝑈𝑂
.      (4.2) 

In this work the Strouhal number (𝑆𝑡) varies from 0.011 to 0.048. As shown in Fig. 4.8, the 

vorticity fields and vector maps are presented for three different Reynolds number at different 

phases (a-h) for the plates with rectangular end-shape. At the beginning of the ejection stage (i.e. 

phase a), the mean flow velocity is almost zero and also the vorticity in the vicinity of the plates 

has a very weak value (i.e. almost zero). At phase c, the intensity of the vorticity field increases as 

the Reynolds number is increased. At low Reynolds number (i.e. 𝑅𝑒𝛿 = 70), two counter-rotating 

vortices are attached to the plate end. As the Reynolds number increases the vortices transformed 

into two elongated vortices attached to the plate end. In addition, two separated vortices are 

observed at the end of the elongated vortices. As the velocity ejection stage decreases (phase d), 

the two separated vortices are disappeared. Also, the disturbance in the flow extends to an axial 

distance nearly equals to one acoustic displacement amplitude. During the suction stage (phases 

e-h), the vorticity in limited to the boundary layers around each plate. Same phenomena are 

observed with the case of circular-plate end shapes (see Fig. 4.9). For the 90O triangular plate end-

shape (see Fig. 4.10), two counter-rotating vortices are observed at low Reynolds number. At 

higher Reynolds numbers, two elongated vortices are observed and there are no separated vortices 

observed unlike the case of rectangular plate end-shape. Same observations are recorded for the 

30O triangular plate-end shape. However, the disturbances in the case of 30O triangular (see Fig. 

4.11) plate-end shape extend to a smaller axial distance (i.e. less than one acoustic displacement 

amplitude). Generally, there is no much change in the vortex patterns at different Reynolds 

numbers because the range of the Strouhal number (𝑆𝑡) in the current study is very low and also 

the Reynolds number range is very high. According to the findings of [62], the vortex pattern tends 

to the elongated vortex pattern for high Reynolds number and low Strouhal number.  
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Figure 4.8: Vorticity fields and vector maps around the plates with rectangular end shape at different 

phases (a-h, see Fig. 4.3) for three different Reynolds. 
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Figure 4.9: Vorticity fields and vector maps around the plates with circular end shape at different 

phases (a-h, see Fig. 4.3) for three different Reynolds. 
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Figure 4.10: Vorticity fields and vector maps around the plates with 90O triangular end shape at 

different phases (a-h, see Fig. 4.3) for three different Reynolds. 
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Figure 4.11: Vorticity fields and vector maps around the plates with 30O triangular end shape at 

different phases (a-h, see Fig. 4.3) for three different Reynolds. 
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4.3.2. Turbulence intensities 

The heat transfer processes in thermoacoustic systems are affected by the flow patterns in the 

vicinity of the stack. The analysis usually relays on the mean flow characteristics such as the 

vorticity fields. It was believed that the flow patterns around the plates in the oscillating flow are 

cyclic. However, Berson et al. [56] found that the flow near to a thermoacoustic stack is non-

periodic. The non-periodicity of the flow is a statistical quantity that can be characterized by the 

turbulence intensity. The turbulence intensity represents the fluctuations of the velocity around a 

mean (ensemble-average) value. In the current study, the turbulence intensities based on both 

velocity components (𝑢, 𝑣) are calculated over the whole measurement area. The normalized 

turbulence intensities are calculated as follows: 

𝐼𝑥(𝑥, 𝑦, ∅) =
100

𝑈𝑜
√

1

𝑁
∑ [𝑢(𝑥, 𝑦, ∅, 𝑖) − �̅�(𝑥, 𝑦, ∅)]2𝑁=100

𝑖=1     (4.3) 

𝐼𝑦(𝑥, 𝑦, ∅) =
100

𝑈𝑜
√

1

𝑁
∑ [𝑣(𝑥, 𝑦, ∅, 𝑖) − �̅�(𝑥, 𝑦, ∅)]2𝑁=100

𝑖=1     (4.4) 

where ∅ is the phase number which is ranged from 1 to 25, 𝑈𝑜 is the velocity amplitude at the 

centerline, 𝑁 is the total number of cycles and 

�̅�(𝑥, 𝑦, ∅) =
1

𝑁
∑ 𝑢(𝑥, 𝑦, ∅, 𝑖)𝑁=100

𝑖=1 ,      (4.5) 

�̅�(𝑥, 𝑦, ∅) =
1

𝑁
∑ 𝑣(𝑥, 𝑦, ∅, 𝑖)𝑁=100

𝑖=1       (4.6) 

It is worthwhile to mention that the term “turbulence intensity” usually refers to the velocity 

fluctuations due to small incoherent structures in the flow. However, in this work, the term 

“turbulence intensity” takes into account the total fluctuations due to larger coherent structures 

(i.e. vortices) and the small incoherent structures as well. Also, the calculated turbulence intensities 

include the measurement uncertainty. However, the value of the measurement uncertainty does 

not exceed 3%, as described in the following section. The matlab code used to calculate and plot 

the turbulence intensities is presented in appendix C.12. 

4.3.2.A. Turbulence intensity as a function of phase 

The turbulence intensities distributions are plotted around the plates over the whole field of view 

for different Reynolds numbers. Also, for the sake of quantitative comparisons, the turbulence 

intensities profiles are plotted for one plate (as the turbulence intensities patterns are similar for 

both plates) at four axial locations namely X1, X2, X3 and X4. As shown in Fig. 4.12, these axial 

locations X1, X2, X3 and X4 correspond to x 𝑋𝐴𝑚𝑝
⁄ of 0.25, 0.5, 1 and 1.5, respectively for all 

Reynolds numbers except for Reynolds number of 302, the axial location X4 corresponds to 
x

𝑋𝐴𝑚𝑝
⁄  of 1.3.  
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As shown in Fig. 4.13, at the beginning of the ejection stage (phase a), both turbulence intensities 

(𝐼𝑥 and 𝐼𝑦) distributions are almost zero in the whole field of view. At phase b, the turbulence 

intensities start to develop and extend to an axial location less than  x 𝑋𝐴𝑚𝑝
⁄ of 0.5. At phase c, the 

turbulence intensities reach to the maximum value at the axial location of x 𝑋𝐴𝑚𝑝
⁄ =0.25 (see Fig. 

4.17). Then the location of the maximum turbulence intensities shifts to an axial location of 
x

𝑋𝐴𝑚𝑝
⁄ =0.5 at phase d. At phase e, the turbulence intensities profiles are nearly similar for all 

axial locations up to x 𝑋𝐴𝑚𝑝
⁄ =1. During the suction stage (phases f-h), the generated turbulence 

moves towards the plates till the values become very small at phase h. The monitoring of the 

turbulence intensities at phase h is important because the value of the turbulence intensities far 

from the plates represent the value of the measurement uncertainty as there is no flow structures 

during this phase. Also, at phase h the flow moving towards the plates reach to the maximum 

displacement amplitude and hence if there are any disturbances generated due to the reflecting 

mirror (see Fig. 4.1) they should appear during this phase. Also, it should be noted that both 

turbulence intensities (𝐼𝑥 and 𝐼𝑦) are almost similar which implies that the generated turbulence is 

homogenous. 

The turbulence intensities distributions are also plotted for different plate-end shapes, as shown in 

Fig. 4.14 to Fig. 4.16. Generally, the same phenomena are observed for the different plate-end 

shapes. However, the axial distance at which the generated turbulence reaches is nearly similar for 

both rectangular and circular cases. This distance becomes smaller in the case of the 90O triangular 

and even smaller for the 30O triangular plate-end shape.  

 

Figure 4.12: Representation for the axial locations at which the turbulence intensities distribution 

are plotted.  
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Figure 4.13: Distribution of the turbulence intensities around the plates with rectangular end 

shape in the measurement area (M1) at different phases (a-h, see Fig. 4.3) over one acoustic 

cycle for Reynolds number (𝑅𝑒𝛿) of 70. 
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Figure 4.14: Distribution of the turbulence intensities around the plates with circular end shape 

in the measurement area (M1) at different phases (a-h, see Fig. 4.3) over one acoustic cycle for 

Reynolds number (𝑅𝑒𝛿) of 70. 
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Figure 4.15: Distribution of the turbulence intensities around the plates with 90O triangular end 

shape in the measurement area (M1) at different phases (a-h, see Fig. 4.3) over one acoustic 

cycle for Reynolds number (𝑅𝑒𝛿) of 70. 
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Figure 4.16: Distribution of the turbulence intensities around the plates with 30O triangular end 

shape in the measurement area (M1) at different phases (a-h, see Fig. 4.3) over one acoustic 

cycle for Reynolds number (𝑅𝑒𝛿) of 70. 
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Figure 4.17: Turbulence intensity (𝐼𝑥) distribution at different phases (a-h, see Fig. 4.3) at four 

different axial locations (X1, X2, X3 and X4) and for different plate-end shapes at Reynolds 

number (𝑅𝑒𝛿) of 70. 
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Figure 4.18: Turbulence intensity (𝐼𝑦) distribution at different phases (a-h, see Fig. 4.3) at four 

different axial locations (X1, X2, X3 and X4) and for different plate-end shapes at Reynolds 

number (𝑅𝑒𝛿) of 70. 
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4.3.2.B. Effects of Reynolds number 

As shown in Fig. 4.19 and Fig. 4.20, the cycle-average turbulence intensities profiles at the same 

axial location for the same plate-end shape do not change a lot with the change of the Reynolds 

number. There are two reasons for this phenomena. First, as explained previously, the calculated 

value of the turbulence intensities takes into account both the large structures (i.e. vortices) and 

the small incoherent structures. So, the value of the turbulence intensities is mainly dependent on 

the large flow structures. As explained in the previous sections, the vorticity patterns do not change 

significantly with the Reynolds number (i.e. the dominant patterns are elongated vortices) and 

hence the turbulence intensities do not change with the Reynolds number. Second, the investigated 

range of the Reynolds number in the current study is much higher than the previous studies and 

hence the lowest Reynolds number investigated in this work is higher than the values in the 

previous studies. It is known that the turbulence intensities level becomes constant after a certain 

Reynolds number in the case of pulsatile flow [38]. So, it seems that the same phenomenon occurs 

with the pure oscillating flow, however, further investigations are required to confirm this finding. 
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Figure 4.19: Cycle-average turbulence intensity (𝐼𝑥) distribution at four different axial 

locations (X1, X2, X3 and X4) and for different plate-end shapes at different Reynolds 

numbers. 
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Figure 4.20: Cycle-average turbulence intensity (𝐼𝑦) distribution at four different axial 

locations (X1, X2, X3 and X4) and for different plate-end shapes at different Reynolds 

numbers. 

 



113 
 

4.3.2.C. Effects of plate-end-shape 

As shown in Fig. 4.21, the cycle-average turbulence intensities distributions are plotted at the same 

Reynolds number for different plate-end shapes. For low Reynolds number and near to the plates 

(i.e. axial locations X1 and X2), the turbulence intensities for rectangular, circular and 90O 

triangular are nearly similar. The cycle-average turbulence intensity (𝐼𝑥) for the 30O triangular 

plate-end shape decreases significantly. However, at further axial locations (i.e. X3 and X3), the 

turbulence intensities for all plate-end shapes are nearly similar. 
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Figure 4.21: Cycle-average turbulence intensities (𝐼𝑥 𝑎𝑛𝑑 𝐼𝑦) distribution at four different axial 

locations (X1, X2, X3 and X4) and for different plate-end shapes at two different Reynolds 

numbers. 
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4.4. Conclusions 

In this part of the study, the effects of the plate-end shapes on the flow morphology at high velocity 

amplitudes have been investigated experimentally using PIV system. Four plate-end shapes are 

used namely rectangular, circular, 90O triangular and 30O triangular. The evolution of the vorticity 

field with time over a complete acoustic cycle has been described. The vorticities originate near 

the walls of the plates at the beginning of the ejection stage and then move to an axial distance of 

approximately one acoustic displacement amplitude. Afterwards, the vortices move back into the 

plates during the suction stage. As the Reynolds number increases, the vortices transformed into 

two-elongated vortices. Also, the same phenomena occur with all other plate-end shapes. 

However, for the 30O triangular plate-end shape, the disturbances of the flow extend to an axial 

distance less than the acoustic displacement amplitude. 

The turbulence intensities distributions are investigated for different plate-end shapes at different 

Reynolds numbers. The evolution of the turbulence intensities with time over a complete acoustic 

cycle has been reported. At the beginning of the ejection stage, the turbulence intensities are almost 

zero in the whole field of view. Afterwards, the turbulence intensities values increase near the 

plates and then the turbulence intensities spread over an axial distance of about one acoustic 

displacement amplitude. During the suction stage, the generated turbulence moves with the main 

flow inwards to the plates. The increase of the Reynolds number does not significantly change the 

turbulence intensities because the calculated values of the turbulence intensities are mainly 

dependent on the large flow structures which do not change significantly with the Reynolds 

number. It is found that the 30O triangular plate-end shape reduces the cycle-average turbulence 

intensity near to the plate end whereas the other shapes have nearly the same turbulence level. 

4.5. Recommendations for future work 

In the current study, the investigation of the flow morphology is implemented for fixed plate 

thickness and plate separation. These two parameters have significant effects on the vortex patterns 

at mentioned in previous studies. However, the effects of these parameters on the turbulence 

intensities (or non-periodicity) have not been investigated yet. Also, in the current study the 

investigated Strouhal numbers are small and hence it is recommended to study the effects of the 

large Strouhal numbers on the non-periodicity of the flow. 

In the current study, the effects of different parameters on the flow morphology have been 

investigated in the vicinity of the parallel plates. However, during the suction stage the generated 

vortices affect the flow characteristics between the plates. The effects extend to a certain axial 

distance in the channels formed by the parallel plate. So, it is important to investigate the effects 

of the vortices on the flow characteristics between the plates during the suction stage. 

In the real thermoacoustic systems, the spacing of the stack plates is less than 1 mm and also, the 

plate thickness is usually a fraction of mm. Hence, the study of the flow morphology between 

plates have similar configuration of the real stack is important to understand the flow behavior.  
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Chapter 5:  Summary and conclusions 

In order to make the thermoacoustic devices economically competitive to the conventional systems 

of power generation or refrigeration, both the efficiency and the power density of the 

thermoacoustic systems should be improved. In order to improve the power density of the 

thermoacoustic devices, the velocity and pressure amplitudes of the oscillations should be 

increased. By increasing the oscillation amplitude, the linear theory is no longer valid to predict 

the performance of thermoacoustic systems and hence understanding of the non-linear phenomena 

that occur at high amplitudes will help in improving the performance of these systems. The current 

study focuses on some of the non-linear phenomena in the thermoacoustic systems. These 

phenomena are streaming, turbulence generation and entrance effects. 

In chapter 2, the effects of the natural convection flow on the Rayleigh streaming flow in a simple 

standing-wave thermoacoustic system have been investigated experimentally. Streaming is a 

second order steady flow superimposed on the oscillating flow. This steady flow convects a certain 

amount of heat with no contribution to the thermoacoustic conversion process and hence it is 

considered as a loss. The effects of different parameters on the Rayleigh streaming in an empty 

resonator have been the focus of many researchers. However, the Rayleigh steaming in a real 

thermoacoustic system was not investigated. In the current study, the distribution of the mean flow 

velocity inside a simple standing-wave thermoacoustic engine is measured using PIV and LDV 

systems. The measurements are conducted along the axis of the resonator covering an axial 

distance from the cold side of the stack to the termination of the resonator duct. The measurements 

reveal that the mean velocity patterns changes over three different regions, namely the “cold 

streaming” region, the “hot streaming region” and the “end-effects” region. In the cold streaming 

region, the measured axial mean velocity agrees with the theoretical expectations of Rayleigh 

streaming at low acoustic level, whereas it deviates from theoretical expectations as the acoustic 

level is increased due to high amplitude effects, which agrees with the literature. Also, 

measurements performed when the engine is turned off showed that the natural convection velocity 

is almost zero over this region, explaining the reason for agreement between the measured mean 

velocity and the theoretical expectations of Rayleigh streaming. In the hot streaming region, the 

measured mean velocity disagrees with Rayleigh streaming expectation. Measurements performed 

when the engine is turned off showed that one reason for this disagreement is the non-uniformity 

of the temperature over the cross section, generating a natural convection flow that superimposes 

the acoustic streaming. The natural convection flow has a magnitude comparable to the magnitude 

of Rayleigh streaming but in the opposite direction. Hence, the measured mean velocity (in some 

cases) is almost zero which means the natural convection flow can be utilized to cancel the 

streaming flow. However, more studies are still needed to understand how the natural convection 

flow can be controlled in order to cancel the streaming flow. In the last region, the measurements 

do not agree with the theoretical expectations due to the combined effect of both natural convection 

and end-effects at the exit of the stack. 
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In chapter 3, the characteristics of the oscillating flow inside an empty resonator are investigated 

for two different frequency ranges, namely sub-acoustic (low) frequency range and acoustic (high) 

frequency range. In the sub-acoustic frequency range, the transition the turbulence has been 

investigated experimentally using PIV measurements. The axial velocity distribution in a square 

duct is measured at different Reynolds numbers and Womersley numbers and compared with the 

theoretical expectations. At low Reynolds number, the measured values are in agreement with the 

theoretical expectations. As the Reynolds number is increased; the agreement is violated in the 

deceleration phase first and then in more phases in the cycle. At the critical Reynolds number 

around 500, it is observed that there is a jump in the level of the axial turbulence intensity. These 

findings comply with the previous literature and hence using the PIV system to study the transition 

to turbulence in oscillating flow is validated. Therefore, the work is extended to high (i.e. acoustic) 

frequency range. At high (acoustic) frequency range, the transition to turbulence has been 

investigated using PIV measurements. The Reynolds stress distribution is utilized as a criterion for 

the occurrence of turbulence. At low Reynolds number, it is observed that the Reynolds stress 

distribution is flat and equals to zero. At Reynolds  number of 272, a sudden increase in the 

Reynolds stress value is observed at traverse location of around 1.5𝛿 𝑣. This sudden increase is 

due to the occurrence of turbulence. As the Reynolds number increases, the location of the peak 

in the Reynolds stress distribution moves gradually away from the wall. At Reynolds number 

higher than 418, another sudden increase in the level of the Reynolds stress is observed which may 

indicate the end of the transition to turbulence Regime and start of fully turbulent oscillating flow. 

Also, the spatial energy spectra of the flow are investigated. It shows an increase in the turbulent 

kinetic energy level as the Reynolds number increases. Also, at a given Reynolds number, the 

decay of the turbulent kinetic energy with the wavenumber complies with the universal slope (-

5/3).  

In chapter 4, the flow characteristics in the vicinity of a parallel plate stack with different plate-

end shapes are investigated experimentally using PIV measurements. Four plate-end shapes are 

used namely rectangular, circular, 90O triangular and 30O triangular. The evolution of the vorticity 

field with time over a complete acoustic cycle has been described. The vorticities originate near 

the walls of the plates at the beginning of the ejection stage and then move to an axial distance of 

an approximately one acoustic displacement amplitude. Afterwards, the vortices move back into 

the plates during the suction stage. As the Reynolds number increases, the vortices transformed 

into two-elongated vortices. Also, the same phenomena occur with all other plate-end shapes. 

However, for the 30O triangular plate-end shape, the disturbances of the flow extend to an axial 

distance less than the acoustic displacement amplitude. 

The turbulence intensities distributions are investigated for different plate-end shapes at different 

Reynolds numbers. The turbulence intensities also represent the non-periodicity of the oscillating 

flow in the vicinity of the stack. The evolution of the turbulence intensities with time over a 

complete acoustic cycle has been reported. At the beginning of the ejection stage, the turbulence 

intensities are almost zero in the whole field of view. Afterwards, the turbulence intensities values 
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increase near the plates and then the turbulence intensities spread over an axial distance of about 

one acoustic displacement amplitude. During the suction stage, the generated turbulence moves 

with the main flow inwards to the plates. The increase of the Reynolds number does not 

significantly change the turbulence intensities because the calculated values of the turbulence 

intensities are mainly dependent on the large flow structures which do not change significantly 

with the Reynolds number. It is found that the 30O triangular plate-end shape reduces the cycle-

average turbulence intensity near to the plate end whereas the other shapes have nearly the same 

turbulence level. Finally, the results of this work reveal that the flow in the vicinity of the stack is 

a non-periodic flow. However, the available numerical models assume that the oscillating flow is 

a periodic flow and hence the current numerical models should be improved to account for the 

non-periodicity of the flow around the stack. 
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Appendices (A): DeltaEc Codes 

A.1 DeltaEc code for the thermoacoustic engine 
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A.2 DeltaEc code for the oscillating flow driven by the Scotch-yoke 

mechanism. 
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A.3 DeltaEc code for the oscillating flow driven by the speakers. 
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Appendices (B): Connection diagrams 

B.1 Connection diagram for streaming PIV measurements 

 

List of the devices used in the diagram are mentioned below: 
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B.2 Connection diagram for the experimental setup in Chapter 3:  

(Oscillating flow is generated by Scotch-yoke mechanism) 

 

List of the devices used in the diagram are mentioned below: 
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B.3 Connection diagram for the experimental setup in Chapter 3: 

(Oscillating flow is generated by two opposite speakers) 

 

List of the devices used in the diagram are mentioned below: 
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Appendices (C): Matlab Codes 

C.1 Plot the acoustic velocity and the streaming velocity distributions 

from LDV data and compare them with the theoretical distributions 
                 %%%%The function of this code is to plot both the acoustic 

and the streaming axial velocity distribution from LDV data%%%%% 
% clear the memory  
clear All 
clear 
clc 
% Read the data file 
N_files=input('The total number of axial locations (files)='); 
F_pos=input('The axial position of the first location in mm (x-value)='); 
L_pos=input('The axial position of the last location in mm (x-value)='); 
S_pos=input('The axial step in mm='); 
Freq_Imposee=input('Enter a value for the expected frequency (Hz)='); %%Hz 
sp=input('The speed of sound (m/s)='); 
pos=F_pos:S_pos:L_pos; 
pos=[pos, -175]; %% If you have more points; they must be added to the 

vector. 
for FF=1:1:N_files 
    if FF<10 
    indx=['0' num2str(FF)]; 
    else 
      indx=num2str(FF);   
    end 
fid = fopen(['test30_3.0000',indx,'.txt'],'rt');  
Data = textscan(fid, '%f %f %f %f', 'HeaderLines',6);  
fclose(fid);  
RIEN=Data{1}; 
AT=Data{2}; 
TT=Data{3}; 
LDA1=Data{4}; 
AT=AT*10^-3; %% time (s) 
n=size(LDA1,1);           %number of points 
nn=0; 
% plotting the raw data to determine the maximum and minimum velocity 
% limits 
plot(AT,LDA1,'*g'); 
xlabel('Time (seconds)'); ylabel('U_a_c (m/s)'); 
grid on  
grid minor 
% Input parameters 
ST=n; 
VLp=input('Enter the positive velocity limit (m/s)='); 
VLn=input('Enter the negative velocity limit (m/s)='); 
% toff=input('The time offset for this set of data='); 
%Discretizing the data 
%  
for NST=0:ST:n-ST 
T=AT((nn*ST+1):(nn+1)*ST,1)'; %% time (s) 
V=LDA1((nn*ST+1):(nn+1)*ST,1)'; %% velocity (m/s) 
Nb_pt=length(T); 

  
if n>10                     %   criterion for the number of points 
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%%Frequency 

  
%     Vmoyf=zeros(1,2001); 

  
    choix=2;   

                  
    if(choix==1) 
       f=Freq_Imposee-1:0.001:Freq_Imposee+1; 
       size_f=size(f,2); 
%        Vmoyf=zeros(1,size_f); 
       for i=1:size_f; 
          Xf=mean(V.*cos(2*pi*f(i)*T)); 
          Yf=mean(V.*sin(2*pi*f(i)*T)); 
          Vmoyf(i)=2*sqrt(Xf^2+Yf^2);    
       end 
       %plot(Vmoyf) 
       [MaxV,K]=max(Vmoyf); 
       freq=f(K); 

 
    elseif(choix==2) 
       %%%PASS 1 
       f=Freq_Imposee-5:0.1:Freq_Imposee+5; %+/- 5 
       size_f=size(f,2); 
       Vmoyf=zeros(1,size_f); 
       for i=1:size_f; 
          Xf=mean(V.*cos(2*pi*f(i)*T)); 
          Yf=mean(V.*sin(2*pi*f(i)*T)); 
          Vmoyf(i)=2*sqrt(Xf^2+Yf^2);    
       end 
       [MaxV,K]=max(Vmoyf); 
       freq=f(K); 

  
       %%%PASS 2 
       f=freq-0.1:0.01:freq+0.1; 
       size_f=size(f,2); 
       Vmoyf=zeros(1,size_f); 
       for i=1:size_f; 
          Xf=mean(V.*cos(2*pi*f(i)*T)); 
          Yf=mean(V.*sin(2*pi*f(i)*T)); 
          Vmoyf(i)=2*sqrt(Xf^2+Yf^2);    
       end 
       [MaxV,K]=max(Vmoyf); 
       freq=f(K); 

  
       %%%PASS 3 
       f=freq-0.01:0.001:freq+0.01; 
       size_f=size(f,2); 
       Vmoyf=zeros(1,size_f); 
       for i=1:size_f; 
          Xf=mean(V.*cos(2*pi*f(i)*T)); 
          Yf=mean(V.*sin(2*pi*f(i)*T)); 
          Vmoyf(i)=2*sqrt(Xf^2+Yf^2);    
       end 
       [MaxV,K]=max(Vmoyf); 
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       freq=f(K); 

    
    end 

  
end 

  
periode=1/freq; 

  
V1=V; 
T1=T; 
for i=1:ST 
    nb_periode=floor(T1(i)/periode); 
    T1(i)=T1(i)-nb_periode*periode; 
end 
%% Sorting the data 
% j=0; 
[T2,kc]=sort(T1); 
T2=T2'; 
% V2=zeros(n,1); 
for i=1:ST 
    V2(i,1)=V1(kc(i)); 
end 

 
%                 pos_BZ=find(abs(V2)>0.1 & abs(V2)<3); 
                pos_BZ=find(VLn<V2&V2<VLp); 
                T2_BZ=T2(pos_BZ); 
                V2_BZ=V2(pos_BZ); 
 plot(T2_BZ,V2_BZ,'*k'); 
% ylim([-1*ceil(abs(VL)*1.01), ceil(abs(VL)*1.01)]); 
 xlabel('Time (seconds)'); ylabel('U_ac (m/s)'); 
 hold on 
m=length(T2_BZ); 
Vitesse=zeros(m,2); 
Vitesse(:,1)=T2_BZ; 
Vitesse(:,2)=V2_BZ; 
T6=Vitesse(:,1); 
V6=Vitesse(:,2); 
[m,kk]=size(T6); 

  
%% Averaging the data over the interval : (T3,V3) 
for i=1:m-1 
    DT(i)=T6(i+1,1)-T6(i,1);  
end 
Dt=max(DT);                 
NbInt=floor(periode/Dt);  % number of intervals per cycle 
Nb=zeros(NbInt,1); 
p=periode/NbInt;           
for j=1:NbInt 
    T3(j)=(2*j-1)*p/2; 
    ii=0; 
    for i=1:m; 
        if or(T6(i) < (j-1)*p,j*p <= T6(i)) 
%             ; 
%          if T6(i) < (j-1)*p 
%          elseif j*p <= T6(i) 
         else 
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            ii=ii+1; 
            Nb(j)=Nb(j)+1; 
            SV(j,ii)=V6(i); 
         end 
    end 
    if and(Nb(j)==0,j==1); 
        V3(j)=V6(j); 
    elseif and(Nb(j)==0,j>1); 
         V3(j)=V3(j-1); 
    else 
    V3(j)=median(SV(j,:)); 
    end 
%     V33(j)=mean(SV(j,:)); 
    P3(j)=Nb(j)/m;   

    clear SV 
end 
plot(T3,V3,'og'); 
hold on 
% plot(T3,V33,'-r'); 
pn=num2str(FF); 
saveas(gcf,[pn '.jpg']); 
hold off 
close 
    nn=nn+1; 
    Fr(nn)=freq; 
    Aac(nn)=(max(V3)-min(V3))/2; 
    Us(nn)=mean(V3); 
    Ti(nn)=AT(NST+ST); 
clear T3 p Nb NbInt V3 V33 V2 
end 
Fr_F(FF)=Fr(nn); 
Aac_F(FF)=Aac(nn); 
Us_F(FF)=Us(nn); 
end 
%Theoretical curves 
pos_theo=F_pos:(S_pos/100):L_pos; 
pos_max=find(pos==0); %%% find the velocity at the center of the resonator 

(zero position). 
uac_theo=Aac_F(pos_max)*cos(0.5*pi*pos_theo/369); 
ustr_theo=(3*Aac_F(pos_max)^2/(8*sp))*sin(1*pi*pos_theo/369); 
% Plotting 
subplot(3,1,1) 
plot(pos,Fr_F,'*k'); 
xlabel('Position (mm)'); ylabel('Frequency(Hz)'); 
grid on 
grid minor 
% xlim([-150 360]);ylim([237 242]); 
subplot(3,1,2) 
plot(pos,Aac_F,'*g',pos_theo,uac_theo,'-k'); 
xlabel('Position (mm)'); ylabel('U_a_c (m/s)'); 
legend('Measured','theoretical'); 
grid on 
grid minor 
% xlim([-150 360]); 
subplot(3,1,3) 
plot(pos,Us_F,'*r',pos_theo,ustr_theo,'-k'); 
xlabel('Position (mm)'); ylabel('U_s_t_r_e_a_m_i_n_g (m/s)'); 
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legend('Measured','theoretical'); 
grid on 
grid minor 
% xlim([-150 360]); ylim([-.05 .05]); 
saveas(gcf,'Axial_Distribution.fig'); 
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C.2 Plot the pressure signal and energy density of the pressure signal 
%%%%%This functions of this codes are:%%%%% 
%%%%%1- Removes the negative part of the signal because the sensor was 
%%%%%connected to the positive pressure port and hence the negative values 
%%%%%are not correct;%%%%% 
%%%%%2- Plots the pressure signal with time%%%%% 
%%%%%3- Calculates the Energy Density of the signal to make sure that there 
%%%%%is no harmonics or at least they are negligible%%%%% 
clear all; 
clc; 
A=xlsread('Data divided by 2.xlsx'); 
samprate= 200; %Hz 
OF=0.5; %Hz 
time=A([2:end],1); 
volt=2*A([2:end],2); 
volto=volt; %%%original voltage signal 

  
%%% Removing the negative part from the signal because the pressure signal 
%%%was connected to the positive pressure port and hence the negative 
%%% data are not reliable. 
pv=find(volt>=0); 
timep=time(pv); 
voltp=volt(pv); 
volt=-1*volt; 
nv=find(volt<0); 
timen=time(nv)+0.5/OF; 
voltn=volt(nv); 
time=[timep;timen]; 
volt=[voltp;voltn]; 
[b m]=sort(time); 
volt=volt(m); 
[r c]=size(volt); 
time=0:1/samprate:(r-1)/samprate; 
time=time'; 

  
%%%Convert the voltage signal to pressure signal using calibration data 
Pressure = volt*85.48-1.9; %%%% Pressure signal after removing the negative 

part 
Pressureo= volto*85.48-1.9; 
%%%% Calculate standard dev., mean and effective bandwidth 
numens = 1; %%% number of ensemble average 
samples = length(Pressureo); 
delta = 1/samprate; 
nyquist = samprate/2; 
reclength = samples/samprate; 
avg = mean(Pressureo); 
stddev = std(Pressureo); 
bndwdth = 1/(reclength); 
%%%% Data Standardization %%%% 
x = Pressureo - avg; 
%%%% Autospectrum Estimate %%%% 
% clear ilng N nd j T specest 
N = 2^floor(log2(samples/numens)); 
% 'N' is the number of points per ensemble. 
% It is coerced to be power of 2 
nd = floor(samples/N); 
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disp('For efficiency (i.e. power of 2 algorithm),') 
disp(['the actual number of ensembles is ',num2str(nd),'.']) 
disp(' ') 
% 'nd' is the number of ensembles based on 
% 'N' and total samples 
q = 0.5; 
% 'q' is the overlap parameter. Overlapping 
% is done to minimize random error induced 
% by Hanning tapering 

  
ilng = nd/q; 
j = (1:1:ilng); 
T = N*delta; 
frqres = 1/T; 
rnderr = 1/(nd)^(1/2); 

  
for count = 1:nd/q-1 
    specmat(:,count) = x(q*(count-1)*N+1:(q*(count-1)+1)*N); 
end 
% apply Hanning window 
t = (0:delta:T-delta)'; 
hann = 1 - (cos(t*pi/T)).^2; 
clear count 
for count = 1:nd/q-1 
    specdata(:,count) = specmat(:,count).*hann; 
end 
specint = abs(delta*(8/3)^(1/2)*fft(specdata)); 
specest = 2/(N*nd*delta)*sum(specint.^2,2); 
k = (0:1:N/2)'; 
fk = k/(N*delta); 
srtspecf = sortrows([fk(2:N/2+1)';specest(2:N/2+1)']',2); 
%%%% Plotting %%%% 
subplot(3,1,1) 
f=fit(time,Pressure,'fourier2'); 
plot(f,'-k',time,Pressure,'r.') 
% axis([-0.03  0.03  -100 100 ]) 
title(['\bf Voltage Signal']) 
% set(gca,'YTick',[-3000,-1500,0,1500,3000]) 
grid on 
xlabel('\bf Time (second)'); 
ylabel( '\bf Pressure (Pa)');  
subplot(3,1,2) 
plot(fk, specest(1:N/2+1)); 
axis([0 max(fk) 0 max(specest(1:N/2+1))]); 
xlabel('Frequency (Hz) -- Linear Scale'); 
ylabel('Energy. Density (Pa^2.s)'); 
grid on 
subplot(3,1,3) 
axis([0 1 0 1]) 
text(0.25,7/8,'Max. Autospectral Density Location (Hz)') 
text(0.25,5/8,['1) ',num2str(srtspecf(N/2,1))]) 
text(0.25,3/8,['2) ',num2str(srtspecf(N/2-1,1))]) 
text(0.25,1/8,['3) ',num2str(srtspecf(N/2-2,1))]) 
text(0.5,5/8,['4) ',num2str(srtspecf(N/2-3,1))]) 
text(0.5,3/8,['5) ',num2str(srtspecf(N/2-4,1))]) 
text(0.5,1/8,['6) ',num2str(srtspecf(N/2-5,1))]) 
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text(0.75,5/8,['7) ',num2str(srtspecf(N/2-6,1))]) 
text(0.75,3/8,['8) ',num2str(srtspecf(N/2-7,1))]) 
text(0.75,1/8,['9) ',num2str(srtspecf(N/2-8,1))]) 
saveas(gcf,'FFT_Pressure.fig'); 
saveas(gcf,'FFT_Pressure.jpg'); 
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C.3 Calculate auto correlation and Energy density of the pressure 

signal 
%%%%%This functions of this codes are:%%%%% 
%%%%%1- plots the pressure signal and fit the data 
%%%%%2- Removes the fitted curve from the original data to get the 
%%%%%fluctuating component 
%%%%%3- Calculates the auto correlation of the original signal and of the 
%%%%%fluctuating signal as well 
%%%%%4- Calculates the Energy density of the original signal and of the 
%%%%%fluctuating signal as well 
clear 
clc 
close 
disp('Please make sure that the file names in lines and are changed'); 
de=0.045; %% diameter of the duct (m); 
nu=1.57*10^-5; %%kinematic viscosity of the working fluid (m^2/s); 
fs=9320; %% The sampling frequency Hz 
f=23.3; %% The oscillating frequency Hz 
dv=sqrt(2*nu/(2*pi*f)); %%% Viscous penetration depth 
s=input('The sensitivity of the microphone (mv/kPa)='); %%% The sensitivity 

of the microphones are as follows 
G=50;%%% The gain of the signal conditioner 
%%%% Microphone#1 (close to measurement section SN#23619)=16.49 mv/Kpa 
%%%% Microphone#2 (close to the speaker SN#23749)=19.315 mv/Kpa 
P=xlsread('1.xlsx'); %%% Pressure Signal from microphone 
P=1000*(P-mean(P))*1000/(50*s); %%% value in Pa 
[L a]=size(P); 
t=(0:1:L-1)/fs; 
%%% fitting the signal on sine wave 
F=fit(t',P,'fourier2'); 
M=F(t); 
Pf=P-M; %%%% Removing the fitted signal from the original one. 
subplot(2,4,1) 
plot(F,'-k',t,P,'.r'); 
legend('measured','fitted data'); 
xlim([0 0.1]); 
xlabel('time (s)'); 
ylabel('Pressure (Pa)'); 
subplot(2,4,5) 
plot(t,Pf,'.r'); 
legend('Fluctuating pressure'); 
xlim([0 0.1]); 
xlabel('time (s)'); 
ylabel('Pressure (Pa)'); 
%%%Calculate the autocorrelation of the original signal 
ho=xcorr(P,'coeff'); 
subplot(2,4,2) 
plot((1:2*L-1)/round(fs/f),ho); 
xlabel('Time/Time of cycle'); 
title('Autocorr for original signal'); 
%%%Calculate the autocorrelation of the signal after removing the fitted 
%%%data 
h=xcorr(Pf,'coeff'); 
subplot(2,4,6) 
plot((1:2*L-1)/round(fs/f),h); 
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xlabel('Time/Time of cycle'); 
title('Autocorr for the fluctuating component'); 

  
%%%% Calculating the FFT and energy density spectrum for the original 
%%%% signal 
aFData=fft(P); % Take FFT of P signal 
N=L/2; % FFT will yield half the number of unique points 
aFreq=fs*(1:N)/N; % Frequency array (half the length of signal) 
aFMag=abs(aFData(1:N)/L); % Normalized Magnitude array (half the length of 

signal) 
subplot(2,4,3) 
semilogx(aFreq(2:N)/2,aFMag(2:N)) % Plot frequency against magnitude 
title('Single-Sided Amplitude Spectrum of P(t)') 
xlabel('Frequency (Hz)') 
ylabel('|P(f)| (Pa)') 
% Plot the energy density spectrum 
Power=abs(fft(P)).^2/L; %Power is the magnitude squared by L 
Energy=Power/fs; 
subplot(2,4,4) 
loglog(aFreq/2,Energy(2:L/2+1)) 
title('Energy Density Spectrum') 
xlabel ('Frequency (Hz)') 
ylabel ('Energy, E(f) (=Power/frequency) (Pa^2.s)') 

  
%%%% Calculating the FFT and energy density spectrum for the signal after 

removing the fitted 
%%%data 
aFData=fft(Pf); % Take FFT of P signal 
N=L/2; % FFT will yield half the number of unique points 
aFreq=fs*(1:N)/N; % Frequency array (half the length of signal) 
aFMag=abs(aFData(1:N)/L); % Normalized Magnitude array (half the length of 

signal) 
subplot(2,4,7) 
semilogx(aFreq(2:N)/2,aFMag(2:N)) % Plot frequency against magnitude 
title('Single-Sided Amplitude Spectrum of P(t)') 
xlabel('Frequency (Hz)') 
ylabel('|P(f)| (Pa)') 
% Plot the energy density spectrum 
Power=abs(fft(Pf)).^2/L; %Power is the magnitude squared by L 
Energy=Power/fs; 
subplot(2,4,8) 
loglog(aFreq/2,Energy(2:L/2+1)) 
title('Energy Density Spectrum') 
xlabel ('Frequency (Hz)') 
ylabel ('Energy, E(f) (=Power/frequency) (Pa^2.s)') 

  
%%% saving the data 
saveas(gcf,'P1.fig'); 
saveas(gcf,'P1.jpg'); 
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C.4 Calculate the spatial average velocity distribution for each vector 

map 
%%%% This code plots the spatial average of velocity distribution for each 

velocity vector%%% 
clear 
clc 
close 
disp('Please make sure that the file names in line 27 are changed'); 
de=0.045; %% diameter of the duct (m); 
nu=1.57*10^-5; %%kinematic viscosity of the working fluid (m^2/s); 
fs=582.5; %% The sampling frequency Hz 
f=23.3; %% The oscillating frequency Hz 
dv=sqrt(2*nu/(2*pi*f)); %%% Viscous penetration depth 
n=input('The number of files to be read='); 
video=VideoWriter('output.avi'); 
video.FrameRate=1; 
open(video); 
for i=1:1:n; 
    t(i)=(i-1)/fs; %%% time of each velocity map 
    if i<11 
    pointn = ['000' num2str(i-1)]; 
    elseif i<101 
    pointn = ['00' num2str(i-1)];     
    elseif i<1001 
    pointn = ['0' num2str(i-1)];     
    else 
    pointn = num2str(i-1); 
    end    
fid = fopen(['Amp_2.5vpp_Fre23.3Hz_SF_582.5Hz_TbP_30_Amplifier(-

20and0).53k0nrjz.00',pointn,'.csv'],'rt');   %%%%%%%%% Enter numeric file 

name 
  A = textscan(fid,'%f %f %f %f %f %f %f 

%f','delimiter',',','Multipledelimsasone',1,'Headerlines',10); 
  A = ([A{1,1} A{1,2} A{1,3} A{1,4} A{1,5} A{1,6}]);  
  fclose(fid); %% close file 
 ncount=numel(A); 
   for k = 1:ncount/6 
      XP(k)=A(k,1); %Interrogation area number in x-direction 
      YP(k)=A(k,2); %Interrogation area number in y-direction 
      X(1+XP(k),1+YP(k))=A(k,3);  %True value of x in mm 
      Y(1+XP(k),1+YP(k))=A(k,4);  %True value of y in mm 
      u(1+XP(k),1+YP(k))=A(k,5); %True value of u in m/s 
      v(1+XP(k),1+YP(k))=A(k,6); %True value of v in m/s 
   end 
    %% Spatial Averaging for the data in x-direction 
    for y=1:1:127 
     Ya(i,y)=mean(Y(:,y));  
     ua(i,y)=median(u(:,y)); %%% here the median is used instead of mean to 

eliminate the effect of spurious vectors. 
     va(i,y)=median(v(:,y)); %%% here the median is used instead of mean to 

eliminate the effect of spurious vectors. 
    end 

  
end 
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%% getting the velocity amplitude at the center of the duct and the phase of 

the starting point 
 for j=1:1:n 
     uac(j)=ua(j,round(127/2)); 
 end 
 ff=fit(t',uac','fourier2'); 
 tf=0:(1/((360)*f)):1/f; %%% The precision of the phase is about 0.5 deg 
 Fc=ff(tf); 
 [Amp Phsn]= max(Fc); 
 Amp=(max(Fc)-min(Fc))/2; %%Amplitude of the wave at the center of the duct 
 [zz tnPh]=size(tf); 
 Phr=Phsn/tnPh*360; 
 Phs=360+90-Phr; 
 xx=floor(Phs/360); 
 Phase=Phs-xx*360; %%% The phase of the starting point  
%  plot(ff,t,uac,'-*g'); 
%  ylabel('Acoustic Velocity (m/s)'); 
%  xlabel('Time (sec)'); 
name=num2str(round(n/(fs/f))); 
save(['Spatial Average 

dis_',name,'cycles'],'Ya','ua','va','Phase','Amp','t','n'); 
clear i 
break 
 %% Plotting the measured data versus the theoretical values 
 for Ph=1:1:n 
   %%%% Calculating the theoretical distribution in a circular pipe (Reyt's 

work 2013) 
   tc=t(Ph)+(Phase/360)*(1/f)-0.25*(1/f);  %%% The last term is added because 

the phase is measured from the time at which the velocity is zero (sine 

wave), 
   %%% Whereas the starting time of the theoretical equation is at 
   %%% maximum velocity (Cos wave).  
   for D = 0:0.0001:1 %% D: dimensionless depth. This "For-loop" is to 

calculate the velocity at different depths. 
   y = round(D*100+1); 
   PsI(y)=D*de/2; 
   wI(y)=Amp*exp(i*2*pi*f*tc)*(1-(besselj(0,PsI(y)*sqrt(-

1*i*2*pi*f/nu))/besselj(0,(de/2)*sqrt(-1*i*2*pi*f/nu)))); 
   end 
    %%%% Calculating the theoretical distribution in a square duct (Fan's 

work 1965) 

    
for D = 0:0.01:1 %% D: dimensionless depth. This "For-loop" is to calculate 

the velocity at different depths. 
    y = round(D*100+1); 
    PsF(y)=D/2; 
    k=1; 
    wt=t(Ph)*f*2*pi+(Phase/360)*2*pi; 
    W=0; %% dimensionless width; 
    P=1; %% aspect ratio of the rectangular duct (width/depth); 
    FP=de*de*(2*pi*f)/(4*nu); %% dimensionless frequency parameter = 

(width*depth*omega)/(4*Dynamic viscosity); 
 for m=0:1:100; %% these "For-loops" are to calculate the double summation in 

equation (17) 
    for  n=0:1:100; 
  t1=(-1)^(m+n)/((2*m+1)*(2*n+1)); %% first term of equ (17) 
  t2=cos((2*m+1)*(pi*W/2)); %% second term of equ (17) 
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  t3=cos((2*n+1)*(pi*D/2)); %% third term of equ (17) 
  t4n=(FP*pi^2*[((2*m+1)^2/P)+((2*n+1)^2*P)]*cos(wt)/4)+(FP^2*sin(wt)); %% 

numerator of the fourth term of equ (17) 
  t4d=(pi^4*([((2*m+1)^2/P)+((2*n+1)^2)*P]^2)/16)+FP^2; %% denominator of the 

fourth term of equ (17) 
  vv(k)=t1*t2*t3*(t4n/t4d);  
  k=k+1; 
    end 
 end 
 wF(y)=Amp*16*sum(vv)/pi^2; %% dimensionless velocity (%% equation # 17); 
end  

     
   %%%%% Plotting the theoretical values of both Fan and Reyt versus the 

measured values 
   Sh=-0.002; %%% This value is used to shift the data to get the wall 

position by trial 
   plot(ua(Ph,:),(Ya(Ph,:)/(1000)+Sh)/dv,'*r',wI,(-1*PsI+(de/2))/dv,'-

k',wF,(-1*PsF+0.5)*de/dv,'-g') 
   legend('Measured','Reyt,2013','Fan,1965','Location','northeast');  
   xlim([-1.2*Amp 1.2*Amp]);  
   ylim([0.0 10]); 
   xlabel('Acoustic Velocity (m/s)'); 
   ylabel('width/\delta_v'); 
   name=num2str(Ph); 
   saveas(gcf,['Phase#',name,'.jpg']); 
   saveas(gcf,['Phase#',name,'.fig']); 
   img = imread(['Phase#',name,'.jpg']); 
   writeVideo(video,img);  
 end 
 close  
 clear 
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C.5 Calculate the ensemble average velocity distribution at different 

phases 
%%%% This code plots the ensemble average velocity distribution at 
%%%% different phases over one acoustic cycle 
clear 
clc 
close 
load('Spatial Average dis_100cycles'); This file is created by the code in 

Appendix C.4 
de=0.045; %% diameter of the duct (m); 
nu=1.57*10^-5; %%kinematic viscosity of the working fluid (m^2/s); 
fs=582.5; %% The sampling frequency Hz 
f=23.3; %% The oscillating frequency Hz 
dv=sqrt(2*nu/(2*pi*f)); %%% Viscous penetration depth 
nPh=round(fs/f);%%% the number of phases in each cycle 
% n=input('The number of files to be read='); 
NOC=round(n/nPh); %%% The total number of cycles 
video=VideoWriter('Ensemble_Average.avi'); 
video.FrameRate=1; 
open(video); 
for P=1:1:nPh; 
    YEA(P,:)=Ya(P,:); 
    uEA(P,:)=ua(P,:); 
    vEA(P,:)=va(P,:); 
    for g=nPh+P:nPh:n 
        YEA(P,:)=YEA(P,:)+Ya(g,:); 
        uEA(P,:)=uEA(P,:)+ua(g,:); 
        vEA(P,:)=vEA(P,:)+va(g,:); 
    end 
     YEA(P,:)= YEA(P,:)/NOC; 
     uEA(P,:)= uEA(P,:)/NOC; 
     vEA(P,:)= vEA(P,:)/NOC; 
end 
save('Ensemble Average dis','YEA','uEA','vEA'); 
 % Plotting the measured data versus the theoretical values 
 for Ph=1:1:nPh 
   %%%% Calculating the theoretical distribution in a circular pipe (Reyt's 

work 2013) 
   tc=t(Ph)+(Phase/360)*(1/f)-0.25*(1/f);  %%% The last term is added because 

the phase is measured from the time at which the velocity is zero (sine 

wave), 
   %%% Whereas the starting time of the theoretical equation is at 
   %%% maximum velocity (Cos wave).  
   for D = 0:0.0001:1 %% D: dimensionless depth. This "For-loop" is to 

calculate the velocity at different depths. 
   y = round(D*100+1); 
   PsI(y)=D*de/2; 
   wI(y)=Amp*exp(i*2*pi*f*tc)*(1-(besselj(0,PsI(y)*sqrt(-

1*i*2*pi*f/nu))/besselj(0,(de/2)*sqrt(-1*i*2*pi*f/nu)))); 
   end 
    %%%% Calculating the theoretical distribution in a square duct (Fan's 

work 1965) 

    
for D = 0:0.01:1 %% D: dimensionless depth. This "For-loop" is to calculate 

the velocity at different depths. 
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    y = round(D*100+1); 
    PsF(y)=D/2; 
    k=1; 
    wt=t(Ph)*f*2*pi+(Phase/360)*2*pi; 
    W=0; %% dimensionless width; 
    P=1; %% aspect ratio of the rectangular duct (width/depth); 
    FP=de*de*(2*pi*f)/(4*nu); %% dimensionless frequency parameter = 

(width*depth*omega)/(4*Dynamic viscosity); 
 for m=0:1:100; %% these "For-loops" are to calculate the double summation in 

equation (17) 
    for  n=0:1:100; 
  t1=(-1)^(m+n)/((2*m+1)*(2*n+1)); %% first term of equ (17) 
  t2=cos((2*m+1)*(pi*W/2)); %% second term of equ (17) 
  t3=cos((2*n+1)*(pi*D/2)); %% third term of equ (17) 
  t4n=(FP*pi^2*[((2*m+1)^2/P)+((2*n+1)^2*P)]*cos(wt)/4)+(FP^2*sin(wt)); %% 

numerator of the fourth term of equ (17) 
  t4d=(pi^4*([((2*m+1)^2/P)+((2*n+1)^2)*P]^2)/16)+FP^2; %% denominator of the 

fourth term of equ (17) 
  vv(k)=t1*t2*t3*(t4n/t4d);  
  k=k+1; 
    end 
 end 
 wF(y)=Amp*16*sum(vv)/pi^2; %% dimensionless velocity (%% equation # 17); 
end  
  Phs=Phase+(Ph-1)*360/nPh; 
if Phs>360 
    Phs=round(Phs-360); 
else 
    Phs=round(Phs); 
end   
subplot(1,2,1,'position',[0.1 0.35 0.25 0.3]); 
th=0:1:360; 
ampl=sin(th*pi/180); 
plot(th,ampl,'-k',Phs,sin(Phs*pi/180),'*r','markersize',15); 
set(gca,'fontsize',14) 
xlabel('Phase, deg'); 
ylabel('U/Amp'); 
ylim([-1.2 1.2]) 
grid on 
   %%%%% Plotting the theoretical values of both Fan and Reyt versus the 

measured values 
   Sh=-0.0021; %%% This value is used to shift the data to get the wall 

position by trial 
   subplot(1,2,2,'position',[0.45 0.1 0.45 0.8]); 
   plot(uEA(Ph,:),(YEA(Ph,:)/(1000)+Sh)/dv,'*r',wI,(-1*PsI+(de/2))/dv,'-

k',wF,(-1*PsF+0.5)*de/dv,'-g') 
   set(gca,'fontsize',14) 
   legend('Measured','Reyt,2013','Fan,1965','Location','northeast');  
   xlim([-1.2*Amp 1.2*Amp]);  
   ylim([0.0 10]); 
   name=num2str(Phs); 
   xlabel('Acoustic Velocity (m/s)'); 
   ylabel('width/\delta_v'); 
   title(['Phase=',name,'deg']); 
   saveas(gcf,['Phase#',name,'deg.jpg']); 
   saveas(gcf,['Phase#',name,'deg.fig']); 
   img = imread(['Phase#',name,'deg.jpg']); 
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   writeVideo(video,img);  
 end 
 close  
 clear 
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C.6 Calculate the turbulence intensities and Reynold Stress  
 

%%%% This code plots the turbulence intensities based on both velocity 
%%%% components and the Reynold Stress 
clear 
clc 
close 
load('Ensemble Average dis'); %%% This file is generated by the code in 

Appendix C.5  
load('Spatial Average dis_100cycles'); %%% This file is generated by the code 

in Appendix C.4 
de=0.045; %% diameter of the duct (m); 
nu=1.57*10^-5; %%kinematic viscosity of the working fluid (m^2/s); 
fs=582.5; %% The sampling frequency Hz 
f=23.3; %% The oscillating frequency Hz 
dv=sqrt(2*nu/(2*pi*f)); %%% Viscous penetration depth 
nPh=round(fs/f);%%% the number of phases in each cycle 
% n=input('The number of files to be read='); 
NOC=round(n/nPh); %%% The total number of cycles 
% video=VideoWriter('output_Tur_In.avi'); 
% video.FrameRate=1; 
% open(video); 
for P=1:1:nPh; 
    Fx(P,:)=(ua(P,:)-uEA(P,:)).^2; %%%% fluctuations in x-direction 
    Fy(P,:)=(va(P,:)-vEA(P,:)).^2; %%%% fluctuations in y-direction 
    Re(P,:)=(ua(P,:)-uEA(P,:)).*(va(P,:)-vEA(P,:)); %%%% Reynolds stress 
    for g=P+nPh:nPh:n 
        Fx(P,:)=Fx(P,:)+(ua(g,:)-uEA(P,:)).^2;  
        Fy(P,:)=Fy(P,:)+(va(g,:)-vEA(P,:)).^2;  
        Re(P,:)=Re(P,:)+(ua(g,:)-uEA(P,:)).*(va(g,:)-vEA(P,:)); 
    end 
    Ix(P,:)=sqrt(Fx(P,:)/NOC); 
    Iy(P,:)=sqrt(Fy(P,:)/NOC); 
    Res(P,:)=abs(Re(P,:))/NOC; 
end 
save('Turbulence intenesities','YEA','Ix','Iy','Res'); 

  
%%%%% Plotting the turbulence intensities distribution at different 
%%%%% phases 
 for Ph=1:1:nPh 
Phs(Ph)=Phase+(Ph-1)*360/nPh; 
if Phs(Ph)>360 
    Phs(Ph)=round(Phs(Ph)-360); 
else 
    Phs(Ph)=round(Phs(Ph)); 
end 
   %%%%% Plotting the turbulence intensities distribution at different 
   %%%%% phases 
   Sh=-0.002; %%% This value is used to shift the data to get the wall 

position by trial 
   subplot(1,2,1); 
   plot(100*Ix(Ph,:)/Amp,(YEA(Ph,:)/(1000)+Sh)/dv,'-

*r',100*Iy(Ph,:)/Amp,(YEA(Ph,:)/(1000)+Sh)/dv,'-ok') 
   legend('Ix','Iy','Location','northeast');  
   xlim([0 40]);  
   ylim([0.0 10]); 
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   xlabel('Turbulent Intensity, %'); 
   ylabel('width/\delta_v'); 
   set(gca,'fontsize',14) 
   subplot(1,2,2); 
   plot(100*Res(Ph,:)/(Amp^2),(YEA(Ph,:)/(1000)+Sh)/dv,'-*r') 
   legend('Re_s_t_r_e_s_s','Location','northeast');  
   xlim([0 0.15]);  
   ylim([0.0 10]); 
   xlabel('Reynolds stress/U^2, (%)'); 
   ylabel('width/\delta_v'); 
   set(gca,'fontsize',14) 
   name=num2str(Phs(Ph)); 
   saveas(gcf,['Phase#',name,'deg.jpg']); 
   saveas(gcf,['Phase#',name,'deg.fig']); 
%    img = imread(['Phase#',name,'deg.jpg']); 
%    writeVideo(video,img);  
 end 
 close 
 [v o]=sort(Phs); %%% Sorting the phases  
 %%%% Plotting the turbulence intensities versus the phase at different 
 %%%% widths 
 for W=23:1:100 %% Here we started from 23 NOT 1 because the first 22 points 

were located outside/on the wall of the duct 
   %%%%% Plotting the turbulence intensities distribution at different 
   %%%%% phases 
   subplot(1,2,1); 
   plot(v,100*Ix(o,W)/Amp,'-*r',v,100*Iy(o,W)/Amp,'-ok') 
   legend('Ix','Iy','Location','northeast');  
   ylim([0 40]);  
   xlim([0 360]); 
   ylabel('Turbulent Intensity, %'); 
   xlabel('Phase, deg'); 
   set(gca,'fontsize',14) 
   subplot(1,2,2); 
   plot(v,100*Res(o,W)/(Amp^2),'-*r') 
   legend('Re_s_t_r_e_s_s','Location','northeast');  
   ylim([0 0.15]);  
   xlim([0 360]); 
   ylabel('Reynolds stress/U^2, (%)'); 
   xlabel('Phase, deg'); 
   set(gca,'fontsize',14) 
   name=num2str((W-22)*(.076/1000)/dv); 
   saveas(gcf,['Width',name,'dv.jpg']); 
   saveas(gcf,['Width',name,'dv.fig']); 
   img = imread(['Width',name,'dv.jpg']); 
%    writeVideo(video,img);  
 end 
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C.7 Calculate the vorticity field at different phases  
 

%%%% This code plots the vorticity field at different phases 
clear 
clc 
close 
disp('Please make sure that the file names in line 32 are changed'); 
load('Spatial Average dis_100cycles.mat'); %%% This file is generated by the 

code in Appendix C.4 
de=0.045; %% diameter of the duct (m); 
nu=1.57*10^-5; %%kinematic viscosity of the working fluid (m^2/s); 
fs=582.5; %% The sampling frequency Hz 
f=23.3; %% The oscillating frequency Hz 
dv=sqrt(2*nu/(2*pi*f)); %%% Viscous penetration depth 
n=input('The number of files to be read='); 
NOC=round(n*f/fs); %%Total number of cycles 
PPC=round(fs/f); %%% Number of points per cycle 
video=VideoWriter('Vorticity.avi'); 
video.FrameRate=1; 
open(video); 
for jj=1:1:PPC; 
    l=0; 
    for j=jj:PPC:n 
        l=l+1; 
    t(l)=(l-1)/fs; %%% time of each velocity map 
    if j<10 
    pointn = ['000' num2str(j)]; 
    elseif j<100 
    pointn = ['00' num2str(j)];     
    elseif j<1000 
    pointn = ['0' num2str(j)];     
    else 
    pointn = num2str(j); 
    end    
fid = fopen(['Amp_0.85vpp_Fre23.3Hz_SF_582.5Hz_TbP_55_Amplifier(-

20and0).53u1xaad.00',pointn,'.csv'],'rt');   %%%%%%%%% Enter numeric file 

name 
  A = textscan(fid,'%f %f %f %f %f %f %f 

%f','delimiter',',','Multipledelimsasone',1,'Headerlines',10); 
  A = ([A{1,1} A{1,2} A{1,3} A{1,4} A{1,5} A{1,6}]);  
  fclose(fid); %% close file 
  [c d]=size(A(:,1)); 
  xp(:,l)=A(:,1); 
  yp(:,l)=A(:,2); 
  x(:,l)=A(:,3); 
  y(:,l)=A(:,4); 
  up(:,l)=A(:,5); 
  vp(:,l)=A(:,6); 
    end 
    for d=1:1:c 
    XP(d)=median(xp(d,:)); 
    YP(d)=median(yp(d,:)); 
    X(d)=median(x(d,:)); 
    Y(d)=median(y(d,:)); 
    u(d)=median(up(d,:)); 
    v(d)=median(vp(d,:)); 
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    end 
    for k=1:1:c 
      Px(k)=XP(k); %Interrogation area number in x-direction 
      Py(k)=YP(k); %Interrogation area number in y-direction 
      xx(1+Px(k),1+Py(k))=X(k)/1000;  %True value of x in m 
      yy(1+Px(k),1+Py(k))=Y(k)/1000;  %True value of y in m 
      U(1+Px(k),1+Py(k))=u(k); %True value of u in m/s 
      V(1+Px(k),1+Py(k))=v(k); %True value of v in m/s 
    end  
    Ph(jj)=Phase+(jj-1)*(360/PPC); 
    if Ph(jj)>360 
        Ph(jj)=Ph(jj)-360; 
    else 
        Ph(jj)=Ph(jj); 
    end 
   name=num2str(round(Ph(jj))); 
   save(['Vor_Phase_',name,'deg'],'Px','Py','xx','yy','U','V'); 

    
   %%%% Plotting the vorticity field 
   clear j 
   [g h]=size(U); 
   for i = 1:g       
       for j = 1:h 
              if or(and(i==1,j<h),and(j==1,i<g))   %%bottom and left borders 

, Forward technique is used 
               dudy(i,j)=(U(i,j+1)-U(i,j))/(yy(i,j+1)-yy(i,j)); 
               dvdx(i,j)=(V(i+1,j)-V(i,j))/(xx(i+1,j)-xx(i,j)); 
               vort(i,j)=dvdx(i,j)-dudy(i,j); 
           elseif or(and(i==g,j>1),and(j==h,i>1)) %%top and right borders , 

backward technique is used 
               dudy(i,j)=(U(i,j)-U(i,j-1))/(yy(i,j)-yy(i,j-1)); 
               dvdx(i,j)=(V(i,j)-V(i-1,j))/(xx(i,j)-xx(i-1,j)); 
               vort(i,j)=dvdx(i,j)-dudy(i,j); 
           elseif and(i==g,j==1) %%bottom and right corner , forward and 

backward techniques are used respectively. 
               dudy(i,j)=(U(i,j+1)-U(i,j))/(yy(i,j+1)-yy(i,j)); 
               dvdx(i,j)=(V(i,j)-V(i-1,j))/(xx(i,j)-xx(i-1,j)); 
               vort(i,j)=dvdx(i,j)-dudy(i,j); 
            elseif and(i==1,j==h) %%top and left corner ,  backward and 

forward techniques are used respectively. 
               dudy(i,j)=(U(i,j)-U(i,j-1))/(yy(i,j)-yy(i,j-1)); 
               dvdx(i,j)=(V(i+1,j)-V(i,j))/(xx(i+1,j)-xx(i,j)); 
               vort(i,j)=dvdx(i,j)-dudy(i,j); 
              else %%All internal points , central difference technique is 

used 
               dudy(i,j)=(U(i,j+1)-U(i,j-1))*0.5/(yy(i,j+1)-yy(i,j-1)); 
               dvdx(i,j)=(V(i+1,j)-V(i-1,j))*0.5/(xx(i+1,j)-xx(i-1,j)); 
               vort(i,j)=dvdx(i,j)-dudy(i,j); 
           end 

  
       end 
   end 
subplot(1,2,1,'position',[0.07 0.35 0.25 0.3]); 
th=0:1:360; 
ampl=sin(th*pi/180); 
plot(th,ampl,'-k',Ph(jj),sin(Ph(jj)*pi/180),'*r','markersize',15); 
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set(gca,'fontsize',14) 
xlabel('Phase, deg'); 
ylabel('U/Amp'); 
ylim([-1.2 1.2]) 
grid on 
% Plot the vector map and vorticity contour levels 
% in dimensionless form (Amp/dv = 1381499.02 s^-1)  
subplot(1,2,2,'position',[0.45 0.1 0.5 0.85]); 
 Sh=-2/1000; %%%(m) This value is used to shift the data to get the wall 

position by trial  
pcolor(xx/dv,(yy+Sh)/dv,vort); hold on 
set(gca,'fontsize',14) 
xlim([0 20]) 
ylim([0 10]) 
xlabel('x/\delta_v'); 
ylabel('width/\delta_v'); 
% title(['Phase=',name,'deg']); 
% quiver(xx/(1000*dv),(yy+Sh)/(1000*dv),U,V,'Color',[0 0 

0],'AutoScaleFactor',3.);  
colorbar('southoutside'); 
shading interp; 
set(gca, 'clim', [-25000 25000]); 
colormap([0 0 0; jet]); 
set(gca,'fontsize',14) 
saveas(gcf,['Vor_Phase_',name,'deg.fig']); 
saveas(gcf,['Vor_Phase_',name,'deg.jpg']); 
img = imread(['Vor_Phase_',name,'deg.jpg']); 
writeVideo(video,img);  
close 
end 
clear 
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C.8 Calculate the Kolmogorov length scale at different phases  
%%%% This code calculates the Kolmogorov length scale 
clear 
clc 
close 
disp('Please make sure that the file names in line 32 are changed'); 
load('Spatial Average dis_100cycles.mat'); %%% This file is generated by the 

code in Appendix C.4 
de=0.045; %% diameter of the duct (m); 
nu=1.57*10^-5; %%kinematic viscosity of the working fluid (m^2/s); 
fs=582.5; %% The sampling frequency Hz 
f=23.3; %% The oscillating frequency Hz 
dv=sqrt(2*nu/(2*pi*f)); %%% Viscous penetration depth 
n=input('The number of files to be read='); 
NOC=round(n*f/fs); %%Total number of cycles 
PPC=round(fs/f); %%% Number of points per cycle 
video=VideoWriter('kolmogorov.avi'); 
video.FrameRate=1; 
open(video); 
for jj=1:1:PPC; 
    l=0; 
    for j=jj:PPC:n 
        l=l+1; 
    t(l)=(l-1)/fs; %%% time of each velocity map 
    if j<10 
    pointn = ['000' num2str(j)]; 
    elseif j<100 
    pointn = ['00' num2str(j)];     
    elseif j<1000 
    pointn = ['0' num2str(j)];     
    else 
    pointn = num2str(j); 
    end    
fid = fopen(['Amp_1.3vpp_Fre23.3Hz_SF_582.5Hz_TbP_44_Amplifier(-

20and0).53irros5.00',pointn,'.csv'],'rt');   %%%%%%%%% Enter numeric file 

name 
  A = textscan(fid,'%f %f %f %f %f %f %f 

%f','delimiter',',','Multipledelimsasone',1,'Headerlines',10); 
  A = ([A{1,1} A{1,2} A{1,3} A{1,4} A{1,5} A{1,6}]);  
  fclose(fid); %% close file 
  [c d]=size(A(:,1)); 
  xp(:,l)=A(:,1); 
  yp(:,l)=A(:,2); 
  x(:,l)=A(:,3); 
  y(:,l)=A(:,4); 
  up(:,l)=A(:,5); 
  vp(:,l)=A(:,6); 
    end 
    for d=1:1:c 
    XP(d)=median(xp(d,:)); 
    YP(d)=median(yp(d,:)); 
    X(d)=median(x(d,:)); 
    Y(d)=median(y(d,:)); 
    u(d)=median(up(d,:)); 
    v(d)=median(vp(d,:)); 
    end 
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    for k=1:1:c 
      Px(k)=XP(k); %Interrogation area number in x-direction 
      Py(k)=YP(k); %Interrogation area number in y-direction 
      xx(1+Px(k),1+Py(k))=X(k)/1000;  %True value of x in m 
      yy(1+Px(k),1+Py(k))=Y(k)/1000;  %True value of y in m 
      U(1+Px(k),1+Py(k))=u(k); %True value of u in m/s 
      V(1+Px(k),1+Py(k))=v(k); %True value of v in m/s 
    end  
    Ph(jj)=Phase+(jj-1)*(360/PPC); 
    if Ph(jj)>360 
        Ph(jj)=Ph(jj)-360; 
    else 
        Ph(jj)=Ph(jj); 
    end 
    %%%%removing the mean velocity 
    Um=mean(U'); Vm=mean(V');  
    Um=Um'; Vm=Vm'; 
    Um=repmat(Um, [1, 1+Px(k)]); Vm=repmat(Vm, [1, 1+Px(k)]); 
    U=U-Um;  V=V-Vm; 
   name=num2str(round(Ph(jj))); 
   save(['Phase_',name,'deg'],'Px','Py','xx','yy','U','V'); 
   %%%% Plotting the Kolmogorov length scale field 
   clear j 
   [g h]=size(U); 
   for i = 1:g       
       for j = 1:h 
              if or(and(i==1,j<h),and(j==1,i<g))   %%bottom and left borders 

, Forward technique is used 
               dudx(i,j)=(U(i,j+1)-U(i,j))/(xx(i+1,j)-xx(i,j));  
               dvdy(i,j)=(V(i+1,j)-V(i,j))/(yy(i,j+1)-yy(i,j));    
               dudy(i,j)=(U(i,j+1)-U(i,j))/(yy(i,j+1)-yy(i,j)); 
               dvdx(i,j)=(V(i+1,j)-V(i,j))/(xx(i+1,j)-xx(i,j)); 
               dis(i,j)= 3*nu*(dudx(i,j)^2+ 

dvdy(i,j)^2+dudy(i,j)^2+dvdx(i,j)^2+2*(dudy(i,j)* 

dvdx(i,j))+(2*(dudx(i,j)*dvdy(i,j))/3)); %%%% energy dissipation rate 
               KL(i,j)=(nu^3/dis(i,j))^0.25; %%Kolmogorov length scale 
           elseif or(and(i==g,j>1),and(j==h,i>1)) %%top and right borders , 

backward technique is used 
               dudx(i,j)=(U(i,j)-U(i,j-1))/(xx(i,j)-xx(i-1,j)); 
               dvdy(i,j)=(V(i,j)-V(i-1,j))/(yy(i,j)-yy(i,j-1)); 
               dudy(i,j)=(U(i,j)-U(i,j-1))/(yy(i,j)-yy(i,j-1)); 
               dvdx(i,j)=(V(i,j)-V(i-1,j))/(xx(i,j)-xx(i-1,j)); 
               dis(i,j)= 3*nu*(dudx(i,j)^2+ 

dvdy(i,j)^2+dudy(i,j)^2+dvdx(i,j)^2+2*(dudy(i,j)* 

dvdx(i,j))+(2*(dudx(i,j)*dvdy(i,j))/3)); %%%% energy dissipation rate 
               KL(i,j)=(nu^3/dis(i,j))^0.25; %%Kolmogorov length scale 
           elseif and(i==g,j==1) %%bottom and right corner , forward and 

backward techniques are used respectively. 
               dudx(i,j)=(U(i,j+1)-U(i,j))/(xx(i,j)-xx(i-1,j)); 
               dvdy(i,j)=(V(i,j)-V(i-1,j))/(yy(i,j+1)-yy(i,j)); 
               dudy(i,j)=(U(i,j+1)-U(i,j))/(yy(i,j+1)-yy(i,j)); 
               dvdx(i,j)=(V(i,j)-V(i-1,j))/(xx(i,j)-xx(i-1,j)); 
               dis(i,j)= 3*nu*(dudx(i,j)^2+ 

dvdy(i,j)^2+dudy(i,j)^2+dvdx(i,j)^2+2*(dudy(i,j)* 

dvdx(i,j))+(2*(dudx(i,j)*dvdy(i,j))/3)); %%%% energy dissipation rate 
               KL(i,j)=(nu^3/dis(i,j))^0.25; %%Kolmogorov length scale 
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            elseif and(i==1,j==h) %%top and left corner ,  backward and 

forward techniques are used respectively. 
               dudx(i,j)=(U(i,j)-U(i,j-1))/(xx(i+1,j)-xx(i,j)); 
               dvdy(i,j)=(V(i+1,j)-V(i,j))/(yy(i,j)-yy(i,j-1)); 
               dudy(i,j)=(U(i,j)-U(i,j-1))/(yy(i,j)-yy(i,j-1)); 
               dvdx(i,j)=(V(i+1,j)-V(i,j))/(xx(i+1,j)-xx(i,j)); 
               dis(i,j)= 3*nu*(dudx(i,j)^2+ 

dvdy(i,j)^2+dudy(i,j)^2+dvdx(i,j)^2+2*(dudy(i,j)* 

dvdx(i,j))+(2*(dudx(i,j)*dvdy(i,j))/3)); %%%% energy dissipation rate 
               KL(i,j)=(nu^3/dis(i,j))^0.25; %%Kolmogorov length scale 
              else %%All internal points, central difference technique is 

used 
               dudx(i,j)=(U(i,j+1)-U(i,j-1))*0.5/(xx(i+1,j)-xx(i-1,j)); 
               dvdy(i,j)=(V(i+1,j)-V(i-1,j))*0.5/(yy(i,j+1)-yy(i,j-1)); 
               dudy(i,j)=(U(i,j+1)-U(i,j-1))*0.5/(yy(i,j+1)-yy(i,j-1)); 
               dvdx(i,j)=(V(i+1,j)-V(i-1,j))*0.5/(xx(i+1,j)-xx(i-1,j)); 
               dis(i,j)= 3*nu*(dudx(i,j)^2+ 

dvdy(i,j)^2+dudy(i,j)^2+dvdx(i,j)^2+2*(dudy(i,j)* 

dvdx(i,j))+(2*(dudx(i,j)*dvdy(i,j))/3)); %%%% energy dissipation rate 
               KL(i,j)=(nu^3/dis(i,j))^0.25; %%Kolmogorov length scale 
           end 
       end 
   end 
subplot(1,2,1,'position',[0.07 0.35 0.25 0.3]); 
th=0:1:360; 
ampl=sin(th*pi/180); 
plot(th,ampl,'-k',Ph(jj),sin(Ph(jj)*pi/180),'*r','markersize',15); 
set(gca,'fontsize',14) 
xlabel('Phase, deg'); 
ylabel('U/Amp'); 
ylim([-1.2 1.2]) 
grid on 
% Plot the Kolmogorov length scale contour  
subplot(1,2,2,'position',[0.45 0.1 0.5 0.85]); 
 Sh=-1.8/1000; %%%(m) This value is used to shift the data to get the wall 

position by trial  
pcolor(xx/dv,(yy+Sh)/dv,KL*1000); hold on %%%% values of Length scale in mm 
set(gca,'fontsize',14) 
xlim([0 20]) 
ylim([0 10]) 
xlabel('x/\delta_v'); 
ylabel('width/\delta_v'); 
% title(['Phase=',name,'deg']); 
% quiver(xx/(1000*dv),(yy+Sh)/(1000*dv),U,V,'Color',[0 0 

0],'AutoScaleFactor',3.);  
colorbar('southoutside'); 
shading interp; 
set(gca, 'clim', [0 1]); 
colormap([0 0 0; jet]); 
set(gca,'fontsize',14) 
saveas(gcf,['KL_Phase_',name,'deg.fig']); 
saveas(gcf,['KL_Phase_',name,'deg.jpg']); 
img = imread(['KL_Phase_',name,'deg.jpg']); 
writeVideo(video,img);  
close 
end  
clear  
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C.9 Calculate the spatial energy density spectra at different phases  
%%%% This code calculates the spatial energy spectra of the signal in 
%%%% y-direction 
clear 
clc 
close 
disp('Please make sure that the file names in line 33 are changed'); 
load('Spatial Average dis_100cycles.mat'); %%% This file is generated by the 

code in Appendix C.4 
de=0.045; %% diameter of the duct (m); 
nu=1.57*10^-5; %%kinematic viscosity of the working fluid (m^2/s); 
fs=582.5; %% The sampling frequency Hz 
f=23.3; %% The oscillating frequency Hz 
dv=sqrt(2*nu/(2*pi*f)); %%% Viscous penetration depth 
n=input('The number of files to be read='); 
NOC=round(n*f/fs); %%Total number of cycles 
PPC=round(fs/f); %%% Number of points per cycle 
video=VideoWriter('Spatial Energy Spectra.avi'); 
video.FrameRate=1; 
open(video); 
for jj=1:1:PPC; 
    l=0; 
    for j=jj:PPC:n 
        l=l+1; 
    t(l)=(l-1)/fs; %%% time of each velocity map 
    if j<10 
    pointn = ['000' num2str(j)]; 
    elseif j<100 
    pointn = ['00' num2str(j)];     
    elseif j<1000 
    pointn = ['0' num2str(j)];     
    else 
    pointn = num2str(j); 
    end    
fid = fopen(['Amp_0.85vpp_Fre23.3Hz_SF_582.5Hz_TbP_55_Amplifier(-

20and0).53u1xaad.00',pointn,'.csv'],'rt');   %%%%%%%%% Enter numeric file 

name 
  A = textscan(fid,'%f %f %f %f %f %f %f 

%f','delimiter',',','Multipledelimsasone',1,'Headerlines',10); 
  A = ([A{1,1} A{1,2} A{1,3} A{1,4} A{1,5} A{1,6}]);  
  fclose(fid); %% close file 
  [c d]=size(A(:,1)); 
  xp(:,l)=A(:,1); 
  yp(:,l)=A(:,2); 
  x(:,l)=A(:,3); 
  y(:,l)=A(:,4); 
  up(:,l)=A(:,5); 
  vp(:,l)=A(:,6); 
    end 
    for d=1:1:c 
    XP(d)=median(xp(d,:)); 
    YP(d)=median(yp(d,:)); 
    X(d)=median(x(d,:)); 
    Y(d)=median(y(d,:)); 
    u(d)=median(up(d,:)); 
    v(d)=median(vp(d,:)); 
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    end 
    for k=1:1:c 
      Px(k)=XP(k); %Interrogation area number in x-direction 
      Py(k)=YP(k); %Interrogation area number in y-direction 
      xx(1+Px(k),1+Py(k))=X(k)/1000;  %True value of x in m 
      yy(1+Px(k),1+Py(k))=Y(k)/1000;  %True value of y in m 
      U(1+Px(k),1+Py(k))=u(k); %True value of u in m/s 
      V(1+Px(k),1+Py(k))=v(k); %True value of v in m/s 
    end  
    Ph(jj)=Phase+(jj-1)*(360/PPC); 
    if Ph(jj)>360 
        Ph(jj)=Ph(jj)-360; 
    else 
        Ph(jj)=Ph(jj); 
    end 
   name=num2str(round(Ph(jj))); 
   save(['Phase_',name,'deg'],'Px','Py','xx','yy','U','V'); 
   %%% Calculating the spatial energy spectra 
   clear j k 
   %%%% removing the data outside the duct (The first 22 IA) 
   xx=xx(:,23:end); 
   yy=yy(:,23:end)-(22*0.076423/1000); 
   U=U(:,23:end); 
   V=V(:,23:end); 
   [g h]=size(U); 
   for j = 1:1:g 
      for L=1:1:h 
          k(L)=2*pi/yy(j,L); 
          fu(L)=sum(abs(U(j,:)-mean(U(j,:))).*exp(-1*i*k(L)*yy(j,:))); 
          fv(L)=sum(V(j,:).*exp(-1*i*k(L)*yy(j,:))); 
          Eu(j,L)=yy(j,end)*(fu(L)*conj(fu(L)))/(2*pi*h^2); %%% energy 

spectra based on axial velocity component 
          Ev(j,L)=yy(j,end)*(fv(L)*conj(fv(L)))/(2*pi*h^2); %%% energy 

spectra based on traverse velocity component 
      end 
   end  
   %%% Averaging the energy spectra on the axial direction 
   s=127; %%%step for averaging 
   for m=1:s:g-s+1 
       EuA(jj,:)=mean(Eu(m:m+s-1,:)); 
       EvA(jj,:)=mean(Ev(m:m+s-1,:)); 
       %%%%Plotting 
      subplot(1,2,1) 
      %%%plotting line with slope of -5/3 
        x1=k(3);y1=EuA(jj,3);x2=300; 
        ss=-5/3; %%%slope 
        y2=10^(ss*(log10(x2)-log10(x1))+log10(y1)); 
        Lx=[x1 x2];Ly=[y1 y2]; 
      loglog(k,EuA(jj,:),':*r',Lx,Ly,'k') 
      legend('Measured','slope=-5/3'); 
      xlabel('wave number (k), radians/m','fontsize', 14); 
      ylabel('E_u(k), (m^2/s^2)/(rad/m)','fontsize', 14); 
%       title(['Phase=',name,'deg'],'fontsize', 14); 
      xlim([100 4e4]) 
      grid on; 
      set(gca,'fontsize', 14) 
      subplot(1,2,2) 
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        x1=k(3);y1=EvA(jj,3);x2=300; 
        ss=-5/3; %%%slope 
        y2=10^(ss*(log10(x2)-log10(x1))+log10(y1)); 
        Lx=[x1 x2];Ly=[y1 y2]; 
      loglog(k,EvA(jj,:),':*r',Lx,Ly,'k') 
      legend('Measured','slope=-5/3'); 
      xlabel('wave number (k), radians/m','fontsize', 14); 
      ylabel('E_v(k), (m^2/s^2)/(rad/m)','fontsize', 14); 
%       title(['Phase=',name,'deg'],'fontsize', 14); 
      xlim([100 4e4]) 
      grid on; 
      set(gca,'fontsize', 14) 
       saveas(gcf,['Phase',name,'deg.fig']); 
       saveas(gcf,['Phase',name,'deg.jpg']); 
       img = imread(['Phase',name,'deg.jpg']); 
       writeVideo(video,img); 
       close 
   end 
end 
 %%% calculating the cycle average energy spectra 
EuCA=mean(EuA);%%%cycle Average energy spectra; 
EvCA=mean(EvA);%%%cycle Average energy spectra; 
EUCA=sqrt(EuCA.*EvCA);%%%% The product of both energy spectra 
%%%plotting 
subplot(1,3,1) 
x1=k(1);y1=EuCA(1);x2=300; 
        ss=-5/3; %%%slope 
        y2=10^(ss*(log10(x2)-log10(x1))+log10(y1)); 
        Lx=[x1 x2];Ly=[y1 y2]; 
      loglog(k,EuCA,':*b',Lx,Ly,'k') 
      legend('Cycle Average','slope=-5/3'); 
      xlabel('wave number (k), radians/m','fontsize', 14); 
      ylabel('E_u(k), (m^2/s^2)/(rad/m)','fontsize', 14); 
%       title('Cycle average','fontsize', 14); 
      xlim([100 4e4]) 
      grid on; 
      set(gca,'fontsize', 14) 
subplot(1,3,2) 
x1=k(1);y1=EvCA(1);x2=300; 
        ss=-5/3; %%%slope 
        y2=10^(ss*(log10(x2)-log10(x1))+log10(y1)); 
        Lx=[x1 x2];Ly=[y1 y2]; 
      loglog(k,EvCA,':*b',Lx,Ly,'k') 
      legend('Cycle Average','slope=-5/3'); 
      xlabel('wave number (k), radians/m','fontsize', 14); 
      ylabel('E_v(k), (m^2/s^2)/(rad/m)','fontsize', 14); 
%       title('Cycle average','fontsize', 14); 
      xlim([100 4e4]) 
      grid on; 
      set(gca,'fontsize', 14) 
      subplot(1,3,3) 
x1=k(1);y1=EUCA(1);x2=300; 
        ss=-5/3; %%%slope 
        y2=10^(ss*(log10(x2)-log10(x1))+log10(y1)); 
        Lx=[x1 x2];Ly=[y1 y2]; 
      loglog(k,EUCA,':*b',Lx,Ly,'k') 
      legend('Cycle Average','slope=-5/3'); 
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      xlabel('wave number (k), radians/m','fontsize', 14); 
      ylabel('E_U_V(k), (m^2/s^2)/(rad/m)','fontsize', 14); 
%       title('Cycle average','fontsize', 14); 
      xlim([100 4e4]) 
      grid on; 
      set(gca,'fontsize', 14) 
saveas(gcf,'Cycle Average.fig'); 
saveas(gcf,'Cycle Average.jpg'); 
%  quiver(xx/(dv),(yy)/(dv),U,V,'Color',[0 0 0],'AutoScaleFactor',1.) 
clear 
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C.10 Calculate the velocity amplitude and the starting phase of the 

freestream (away from the plates) 
%%%% This code gets the velocity amplitude and starting phase of the 

oscilating flow away from the plates 
clear 
clc 
close 
disp('Please make sure that the file name in line 22 is changed'); 
nu=1.57*10^-5; %%kinematic viscosity of the working fluid (m^2/s); 
fs=582.5; %% The sampling frequency Hz 
f=23.3; %% The oscillating frequency Hz 
dv=sqrt(2*nu/(2*pi*f)); %%% Viscous penetration depth 
n=input('The number of files to be read='); 
for i=1:1:n; 
    t(i)=(i-1)/fs; %%% time of each velcoity map 
    if i<11 
    pointn = ['000' num2str(i-1)]; 
    elseif i<101 
    pointn = ['00' num2str(i-1)];     
    elseif i<1001 
    pointn = ['0' num2str(i-1)];     
    else 
    pointn = num2str(i-1); 
    end    
fid = fopen(['Rect_0.4vpp_test.56nbq7z4.00',pointn,'.csv'],'rt');   %%%%%%%%% 

Enter numeric file name 
  A = textscan(fid,'%f %f %f %f %f %f %f 

%f','delimiter',',','Multipledelimsasone',1,'Headerlines',10); 
  A = ([A{1,1} A{1,2} A{1,3} A{1,4} A{1,5} A{1,6}]);  
  fclose(fid); %% close file 
 ncount=numel(A); 
   for k = 1:ncount/6 
      XP(k)=A(k,1); %Interrogation area number in x-direction 
      YP(k)=A(k,2); %Interrogation area number in y-direction 
      X(1+XP(k),1+YP(k))=A(k,3);  %True value of x in mm 
      Y(1+XP(k),1+YP(k))=A(k,4);  %True value of y in mm 
      u(1+XP(k),1+YP(k))=A(k,5); %True value of u in m/s 
      v(1+XP(k),1+YP(k))=A(k,6); %True value of v in m/s 
   end 
    %% Spatial Averaging for the data in x-direction away from the the plates 

(columns 125 to 127) 
    for y=1:1:127 
     Ya(i,y)=mean(Y(125:127,y));  
     ua(i,y)=median(u(125:127,y)); %%% here the median is used instead of 

mean to eleminate the effect of spurious vectors. 
     va(i,y)=median(v(125:127,y)); %%% here the median is used instead of 

mean to eleminate the effect of spurious vectors. 
    end 

  
end 
%% getting the velocity amplitude at the center of the duct and the phase of 

the starting point 
 for j=1:1:n 
     uac(j)=ua(j,round(127/2)); 
 end 
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 ff=fit(t',uac','fourier2'); 
 plot(ff,t',uac','*k'); 
 tf=0:(1/((360)*f)):1/f; %%% The precision of the phase is about 0.5 deg 
 Fc=ff(tf); 
 [Amp Phsn]= max(Fc); 
 Amp=(max(Fc)-min(Fc))/2; %%Amplitude of the wave at the center of the duct 
 [zz tnPh]=size(tf); 
 Phr=Phsn/tnPh*360; 
 Phs=360+90-Phr; 
 xx=floor(Phs/360); 
 Phase=Phs-xx*360; %%% The phase of the starting point  
%  plot(ff,t,uac,'-*g'); 
%  ylabel('Acoustic Velocity (m/s)'); 
%  xlabel('Time (sec)'); 
name=num2str(round(n/(fs/f))); 
save(['Spatial Average dis_',name,'cycles'],'Ya','ua','va','t','n','Phase'); 
close 
save('Amplitude','Amp'); 
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C.11 Calculate the vorticity field and plot vector maps around the plates 
%%%% This code plots the vorticity field at different phases 
clear 
clc 
close 
disp('Please make sure that the file name in line 37 is changed'); 
load('Spatial Average dis_100cycles.mat'); %%%obtained from code in appendix 

C.10.  

load('Amplitude.mat'); %%%obtained from code in appendix C.10. 
de=0.045; %% diameter of the duct (m); 
nu=1.57*10^-5; %%kinematic viscosity of the working fluid (m^2/s); 
fs=582.5; %% The sampling frequency Hz 
f=23.3; %% The oscillating frequency Hz 
%%%%%%Parameters to be changed for each case 
SL=0; %%% the starting location in the axial direction in mm 
Shx=-0.4; %%% This value is used to make the zero location at the plate end 

(it can be obtained by trial) 
PHsh=15; %%% this value is added to the value of the starting phase to fine 

tune its value because the synchronizer is not precise enough. 
%%%% 
dv=sqrt(2*nu/(2*pi*f)); %%% Viscous penetration depth 
Xa=Amp/(2*pi*f); %%%Displacement amplitude in m 
n=input('The number of files to be read='); 
NOC=round(n*f/fs); %%Total number of cycles 
PPC=round(fs/f); %%% Number of points per cycle 
for jj=1:1:PPC; 
    l=0; 
    for j=jj:PPC:n 
        l=l+1; 
    t(l)=(l-1)/fs; %%% time of each velcoity map 
    if j<10 
    pointn = ['000' num2str(j)]; 
    elseif j<100 
    pointn = ['00' num2str(j)];     
    elseif j<1000 
    pointn = ['0' num2str(j)];     
    else 
    pointn = num2str(j); 
    end    
fid = fopen(['Rect_0.4vpp_test.56nbq7z4.00',pointn,'.csv'],'rt');   %%%%%%%%% 

Enter numeric file name 
  A = textscan(fid,'%f %f %f %f %f %f %f 

%f','delimiter',',','Multipledelimsasone',1,'Headerlines',10); 
  A = ([A{1,1} A{1,2} A{1,3} A{1,4} A{1,5} A{1,6}]);  
  fclose(fid); %% close file 
  [c d]=size(A(:,1)); 
  xp(:,l)=A(:,1); 
  yp(:,l)=A(:,2); 
  x(:,l)=A(:,3); 
  y(:,l)=A(:,4); 
  up(:,l)=A(:,5); 
  vp(:,l)=A(:,6); 
    end 
    for d=1:1:c 
    XP(d)=median(xp(d,:)); 
    YP(d)=median(yp(d,:)); 
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    X(d)=median(x(d,:)); 
    Y(d)=median(y(d,:)); 
    u(d)=median(up(d,:)); 
    v(d)=median(vp(d,:)); 
    end 
    for k=1:1:c 
      Px(k)=XP(k); %Interrogation area number in x-direction 
      Py(k)=YP(k); %Interrogation area number in y-direction 
      xx(1+Px(k),1+Py(k))=(X(k)+SL)/1000;  %True value of x in m  
      yy(1+Px(k),1+Py(k))=Y(k)/1000;  %True value of y in m 
      U(1+Px(k),1+Py(k))=u(k); %True value of u in m/s 
      V(1+Px(k),1+Py(k))=v(k); %True value of v in m/s 
    end  
    Ph(jj)=Phase+PHsh+(jj-1)*(360/PPC); %%% constant is added to adjust the 

phase 
    if Ph(jj)>360 
        Ph(jj)=Ph(jj)-360; 
    else 
        Ph(jj)=Ph(jj); 
    end 
   %%%% Averaging the data in axial direction (x-dir) to improve the 

apperance 
%%%% of vector map in the plot 
for ii=1:1:127 
    pp=1; 
    for dd=1:3:127-1   
    xxa(pp,ii)=mean(xx(dd:dd+3,ii)); 
    yya(pp,ii)=mean(yy(dd:dd+3,ii)); 
    Ua(pp,ii)=mean(U(dd:dd+3,ii)); 
    Va(pp,ii)=mean(V(dd:dd+3,ii)); 
%     xxa(ii,pp)=mean(xx(ii,dd:dd+1)); 
%     yya(ii,pp)=mean(yy(ii,dd:dd+1)); 
%     Ua(ii,pp)=mean(U(ii,dd:dd+1)); 
%     Va(ii,pp)=mean(V(ii,dd:dd+1)); 
    pp=pp+1; 
    end 
end 
   %%%% Calculating the vorticity field 
   clear j 
   [g h]=size(U); 
   for i = 1:g       
       for j = 1:h 
              if or(and(i==1,j<h),and(j==1,i<g))   %%bottom and left borders 

, Forward technique is used 
               dudy(i,j)=(U(i,j+1)-U(i,j))/(yy(i,j+1)-yy(i,j)); 
               dvdx(i,j)=(V(i+1,j)-V(i,j))/(xx(i+1,j)-xx(i,j)); 
               vort(i,j)=dvdx(i,j)-dudy(i,j); 
           elseif or(and(i==g,j>1),and(j==h,i>1)) %%top and right borders , 

backward technique is used 
               dudy(i,j)=(U(i,j)-U(i,j-1))/(yy(i,j)-yy(i,j-1)); 
               dvdx(i,j)=(V(i,j)-V(i-1,j))/(xx(i,j)-xx(i-1,j)); 
               vort(i,j)=dvdx(i,j)-dudy(i,j); 
           elseif and(i==g,j==1) %%bottom and right corner , forward and 

backward techniques are used respectively. 
               dudy(i,j)=(U(i,j+1)-U(i,j))/(yy(i,j+1)-yy(i,j)); 
               dvdx(i,j)=(V(i,j)-V(i-1,j))/(xx(i,j)-xx(i-1,j)); 
               vort(i,j)=dvdx(i,j)-dudy(i,j); 
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            elseif and(i==1,j==h) %%top and left corner ,  backward and 

forward techniques are used respectively. 
               dudy(i,j)=(U(i,j)-U(i,j-1))/(yy(i,j)-yy(i,j-1)); 
               dvdx(i,j)=(V(i+1,j)-V(i,j))/(xx(i+1,j)-xx(i,j)); 
               vort(i,j)=dvdx(i,j)-dudy(i,j); 
              else %%All internal points , central difference technique is 

used 
               dudy(i,j)=(U(i,j+1)-U(i,j-1))*0.5/(yy(i,j+1)-yy(i,j-1)); 
               dvdx(i,j)=(V(i+1,j)-V(i-1,j))*0.5/(xx(i+1,j)-xx(i-1,j)); 
               vort(i,j)=dvdx(i,j)-dudy(i,j); 
           end 
       end 
   end   
   Phr(jj)=round(Ph(jj)); 
      name=num2str(Phr(jj)); 
   save(['Vor_Phase_',name,'deg'],'xxa','yya','Ua','Va','xx','yy','vort'); 
%%%%% plotting 
figure('units','normalized','outerposition',[0 0 1 1]) 
subplot(1,2,1); 
subplot('position',[0.07 0.35 0.25 0.3]); 
th=0:1:360; 
ampl=sin(th*pi/180); 
plot(th,ampl,'-k',Ph(jj),sin(Ph(jj)*pi/180),'*r','markersize',15); 
set(gca,'fontsize',14) 
xlabel('Phase, deg'); 
ylabel('U/Amp'); 
ylim([-1.2 1.2]) 
grid on 
% Plot the vector map and vorticity contour levels 
subplot(1,2,2); 
subplot('position',[0.45 0.1 0.5 0.85]); 
Shy=0/1000; %%%(m) This value is used to shift the data to get the wall 

position by trial  
pcolor(xx/Xa+Shx,(yy+Shy)/Xa,vort);  
% set(e1,'facealpha',0.5) 
hold on 
set(gca,'fontsize',14) 
% xlim([0 118.4]) 
ylim([0.95 2.25]) 
xlabel('x/X_A_m_p'); 
% ylabel('width/\delta_v'); 
% title(['Phase=',name,'deg']); 
colorbar('southoutside'); 
shading interp; 
% set(gca, 'clim', [-7000 7000]); 
colormap(b2r(-5000,5000)) 
set(gca,'fontsize',14) 
hold on 
quiver(xxa/Xa+Shx,(yya+Shy)/Xa,Ua,Va,'Color',[0 0 0],'AutoScaleFactor',2);  
hold off 
set(gca,'YTickLabel',{' '}) 
saveas(gcf,['Vor_Phase_',name,'deg.fig']); 
saveas(gcf,['Vor_Phase_',name,'deg.jpg']); 
close 
end 
save('Phases_vor','Phr'); 
clear  
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C.12 Calculate the turbulence intensities around the plates  
clear 
close 
clc 
disp('Please make sure that the file name in line 35 is changed'); 
load('Spatial Average dis_100cycles.mat'); 
load('Amplitude.mat'); 
nu=1.57*10^-5; %%kinematic viscosity of the working fluid (m^2/s); 
fs=582.5; %% The sampling frequency Hz 
f=23.3; %% The oscillating frequency Hz 
dv=sqrt(2*nu/(2*pi*f)); %%% Viscous penetration depth 
Xa=Amp/(2*pi*f); %%%Displacement amplitude in m 
n=input('The number of files to be read='); 
%%%%%%Parameters to be changed for each case 
Shx=-0.4; %%%This value is used to make the zero location at the plate end 

(it can be obtained by trial) 
SL=0; %%% the starting location in the axial direction in mm 
PHsh=15; %%% this value is added to the value of the starting phase to fine 

tune its value because the synchronizer is not precise enough. 
%%%% 
NOC=round(n*f/fs); %%Total number of cycles 
PPC=round(fs/f); %%% Number of points per cycle 
for jj=1:1:PPC 
    l=0; 
    for j=jj:PPC:n 
        l=l+1; 
    t(l)=(l-1)/fs; %%% time of each velcoity map 
    if j<10 
    pointn = ['000' num2str(j)]; 
    elseif j<100 
    pointn = ['00' num2str(j)];     
    elseif j<1000 
    pointn = ['0' num2str(j)];     
    else 
    pointn = num2str(j); 
    end    
fid = fopen(['Rect_0.4vpp_test.56nbq7z4.00',pointn,'.csv'],'rt');   %%%%%%%%% 

Enter numeric file name 
  A = textscan(fid,'%f %f %f %f %f %f %f 

%f','delimiter',',','Multipledelimsasone',1,'Headerlines',10); 
  A = ([A{1,1} A{1,2} A{1,3} A{1,4} A{1,5} A{1,6}]);  
  fclose(fid); %% close file 
      ncount=numel(A); 
        for k = 1:ncount/6 
      XP(k)=A(k,1); %Interrogation area number in x-direction 
      YP(k)=A(k,2); %Interrogation area number in y-direction 
      X(1+XP(k),1+YP(k))=(A(k,3)+SL)/1000;  %True value of x in m 
      Y(1+XP(k),1+YP(k))=A(k,4)/1000;  %True value of y in m 
      u(1+XP(k),1+YP(k))=A(k,5); %True value of u in m/s 
      v(1+XP(k),1+YP(k))=A(k,6); %True value of v in m/s 
        end 
    U(:,:,l)=u; 
    V(:,:,l)=v;    
    end 
    %%% Calculating the phase 
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        Ph(jj)=Phase+PHsh+(jj-1)*(360/PPC); %%% constant is added to adjust 

the phase 
    if Ph(jj)>360 
        Ph(jj)=Ph(jj)-360; 
    else 
        Ph(jj)=Ph(jj); 
    end 
%%% Calculate the turbulence intensities 
for ii=1:1:127 
    for bb=1:1:127 
        for dd=1:1:l 
       Uv(dd)=U(ii,bb,dd); 
       Vv(dd)=V(ii,bb,dd); 
        end 
       Um(ii,bb)=mean(Uv); 
       Vm(ii,bb)=mean(Vv); 
       SU(ii,bb)=sqrt((l-1)/l)*std(Uv);%%/A(i,j)*100; 
       SV(ii,bb)=sqrt((l-1)/l)*std(Vv); 
    end 
end 
%%%%Plotting 
%%%%% plotting 
Phr(jj)=round(Ph(jj)); 
name=num2str(Phr(jj)); 
figure('units','normalized','outerposition',[0 0 1 1]) 
subplot(1,3,1); 
subplot('position',[0.05 0.4 0.25 0.3]); 
th=0:1:360; 
ampl=sin(th*pi/180); 
plot(th,ampl,'-k',Ph(jj),sin(Ph(jj)*pi/180),'*r','markersize',15); 
set(gca,'fontsize',14) 
xlabel('Phase, deg'); 
ylabel('U/Amp'); 
ylim([-1.2 1.2]) 
grid on 
% Plot the turbulence intensity vector map based on x-velocity component 
subplot(1,3,2); 
subplot('position',[0.35 0.2 0.28 0.6]); 
Shy=0/1000; %%%(m) This value is used to shift the data to get the wall 

position by trial  
pcolor(X/Xa+Shx,(Y+Shy)/Xa,SU/Amp*100);  
% set(e1,'facealpha',0.5) 
set(gca,'fontsize',14) 
% xlim([0 118.4]) 
ylim([0.95 2.25]) 
xlabel('x/X_A_m_p'); 
% ylabel('width/\delta_v'); 
title('I_x (%)'); 
colorbar('southoutside'); 
shading interp; 
% set(gca, 'clim', [-100 100]); 
% colormap([0 0 0; jet]); 
colormap(b2r(0,100)) 
set(gca,'fontsize',14) 
set(gca,'YTickLabel',{' '}) 
% Plot the turbulence intensity vector map based on y-velocity component 
subplot(1,3,3); 
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subplot('position',[0.7 0.2 0.28 0.6]); 
Shy=0/1000; %%%(m) This value is used to shift the data to get the wall 

position by trial  
pcolor(X/Xa+Shx,(Y+Shy)/Xa,SV/Amp*100);  
set(gca,'fontsize',14) 
% xlim([0 118.4]) 
ylim([0.95 2.25]) 
xlabel('x/X_A_m_p'); 
% ylabel('width/\delta_v'); 
title('I_y (%)'); 
colorbar('southoutside'); 
shading interp; 
% set(gca, 'clim', [-100 100]); 
% colormap([0 0 0; jet]); 
colormap(b2r(0,100)) 
set(gca,'fontsize',14) 
set(gca,'YTickLabel',{' '}) 
saveas(gcf,['Tur_Phase_',name,'deg.fig']); 
saveas(gcf,['Tur_Phase_',name,'deg.jpg']); 
close 
end 
save('Phases_Tur','Phr'); 
clear 
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Appendices (D): Miscellaneous 

D.1 Image for the experimental setup and the measurement system 

(Oscillating flow is driven by Scotch Yoke mechanism 
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D.2 Image for the experimental setup and the measurement system 

(Oscillating flow is driven by two opposite speakers) 
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D.3 Images for the prime lens and zoom lens used with the CMOS 

camera 

 
 

Prime lens  

 

Zoom lens  
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D.4 Image for the calibration plate used for calibration of the PIV 

imaging system 
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D.5 Example for the parameters of the PIV system. 
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D.6 Methods used to reduce the light reflections, physically. 

In order to reduce the light reflections during the PIV measurement, a black sheet is placed below 

the measurement section and a black adhesive tape is stuck on the side of the measurement section, 

as shown below. 
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D.7 Mechanical drawings of different parts of the Scotch-Yoke 

mechanism 
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Appendices (E): Additional measurement data 

E.1 Pressure measurements at high frequency range 

The dynamic pressure of the system at the resonance frequency (i.e. 23.3 Hz) is measured at two 

different axial locations for different experimental conditions to make sure that the flow exhibits 

an oscillating behavior over the entire range of the study. As shown in the figures below, the 

dynamic pressure at different Reynolds number shows a sinusoidal behavior. Also, the Auto-

correlation for the pressure signal shows a typical result of the sinusoidal signal. Moreover, the 

amplitude spectrum shows a peak at the resonance frequency while the amplitude of the harmonics 

is much lower than the value at the resonance frequency. Therefore, the system doesn’t produce 

any significant harmonics. 

Preliminary trials were performed to investigate the transition to turbulence in the oscillating flow 

using the pressure signals. In order to do so, the fluctuating component of the pressure signal is 

obtained by subtracting the original pressure signal from the fitted data. Then the spectral analysis 

is performed on the fluctuating component of the pressure signal, as shown in the figures below. 

At the same Reynolds number, the maximum value of the fluctuating component of the pressure 

signal is roughly the same at both axial locations. As the Reynolds number is increased the 

maximum value of the fluctuating component of the pressure signal increases. Also, the energy 

density spectrum for the fluctuating component of the pressure signal at all Reynolds number 

shows a decay for the signal at higher frequencies. However, there is no significant phenomena 

(e.g. sharp increase in the maximum value of the fluctuating component of the pressure) observed 

at a certain Reynolds number to indicate the occurrence of turbulence.  

The matlab codes used to perform the spectral analysis for the pressure signal are presented in 

appendices C.2 and C.3. 
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(a) 

 

(b) 

 Fig 1: Auto correlation, Amplitude spectrum and Energy density of the original pressure signal 

and the fluctuating component of the pressure signal for 𝑹𝒆𝜹 = 𝟐𝟎𝟓 at two different points: (a) 

P1, (b) P2. 
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(a) 

 

(b) 

Fig 2: Auto correlation, Amplitude spectrum and Energy density of the original pressure signal 

and the fluctuating component of the pressure signal for 𝑹𝒆𝜹 = 𝟐𝟒𝟎 at two different points: (a) 

P1, (b) P2. 
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(a) 

 

(b) 

Fig 3:Auto correlation, Amplitude spectrum and Energy density of the original pressure signal 

and the fluctuating component of the pressure signal for 𝑹𝒆𝜹 = 𝟐𝟕𝟐 at two different points: (a) 

P1, (b) P2. 
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(a) 

 

(b) 

Fig 4: Auto correlation, Amplitude spectrum and Energy density of the original pressure signal 

and the fluctuating component of the pressure signal for 𝑹𝒆𝜹 = 𝟑𝟎𝟐 at two different points: (a) 

P1, (b) P2. 
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(a) 

 

(b) 

Fig 5: Auto correlation, Amplitude spectrum and Energy density of the original pressure signal 

and the fluctuating component of the pressure signal for 𝑹𝒆𝜹 = 𝟑𝟑𝟔 at two different points: (a) 

P1, (b) P2. 
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(a) 

 

(b) 

Fig 6: Auto correlation, Amplitude spectrum and Energy density of the original pressure signal 

and the fluctuating component of the pressure signal for 𝑹𝒆𝜹 = 𝟑𝟕𝟓 at two different points: (a) 

P1, (b) P2. 

 



194 
 

 

(a) 

 

(b) 

Fig 7: Auto correlation, Amplitude spectrum and Energy density of the original pressure signal 

and the fluctuating component of the pressure signal for 𝑹𝒆𝜹 = 𝟒𝟏𝟖 at two different points: (a) 

P1, (b) P2. 
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(a) 

 

(b) 

Fig 8: Auto correlation, Amplitude spectrum and Energy density of the original pressure signal 

and the fluctuating component of the pressure signal for 𝑹𝒆𝜹 = 𝟒𝟒𝟓 at two different points: (a) 

P1, (b) P2. 
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(a) 

 

(b) 

Fig 9: Auto correlation, Amplitude spectrum and Energy density of the original pressure signal 

and the fluctuating component of the pressure signal for 𝑹𝒆𝜹 = 𝟒𝟔𝟔 at two different points: (a) 

P1, (b) P2. 
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E.2 Links for the videos of the vorticity field and turbulence intensity 

fields around the plates with different end-plate shapes 

The link below contains Microsoft PowerPoint Presentation (*.pptx) files and categorized as 

following: 

1- “Rectangular Plates.pptx”: This file includes videos for the vorticity field and turbulence 

intensities for rectangular plate-end shape at different Reynolds numbers. 

2- “Circular Plates.pptx”: This file includes videos for the vorticity field and turbulence 

intensities for circular plate-end shape at different Reynolds numbers. 

3- “Sharpe Triangular Plates.pptx”: This file includes videos for the vorticity field and 

turbulence intensities for 90O triangular plate-end shape at different Reynolds numbers. 

4- “Smooth Triangular Plates.pptx”: This file includes videos for the vorticity field and 

turbulence intensities for 30O triangular plate-end shape at different Reynolds numbers. 

 

Download from here: 

https://drive.google.com/drive/folders/1bfGkhYUaAloKo5x_yBBRon4fiTe1iLO4?usp=sharing 
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Appendices (F): Uncertainty analysis 

F.1 Uncertainty evaluation 

The uncertainty of measurements can be divided into two types namely, type A and type B. The 

former type of uncertainty gives a value for the repeatability of the measurement process whereas 

the latter type represents the systematic components of the uncertainty. In the current work, only 

type A uncertainty is considered. 

According to M3003, type A uncertainty is evaluated by statistical analysis of a series of 

observations and is calculated as follows: 

𝑈𝐴 =
𝜎𝑛−1

√𝑛
 

Where, n is the number of samples. 

𝜎𝑛−1 is the standard deviation of measurement. 

𝜎𝑛−1 = √
1

𝑛 − 1
∑(𝑞𝑖 − �̅�)2

𝑛

𝑖=1

 

Where, 𝑞𝑖 is the value of measured quantity. 

�̅� is the mean value of repeated measurements. 

�̅� =
𝑞1 + 𝑞1+𝑞1 + ⋯+ 𝑞𝑛

𝑛
 

The reported uncertainty is based on a standard uncertainty 𝑈𝐴 multiplied by a coverage factor k 

= 2 to provide a coverage probability (or confidence interval) of approximately 95%. 

                                                           
 M3003: The Expression of Uncertainty and Confidence in Measurement, United Kingdom 

Accreditation Service (UKAS), edition 3, 2012. 


