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ABSTRACT

Equipped with an advanced radar and other electronic systems mounted on its body, Airborne Early Warning 
and Control System (AWACS) enables the airspace to be monitored from medium to long distances and facilitates 
effective control of friendly aircraft. To operate the complex equipment and fulfill its critical functions, AWACS 
has a specialised flight and mission crew, all of whom are extensively trained in their respective roles. For mission 
accomplishment and effective use of resources, tasks should be scheduled, and individuals should be assigned to 
missions appropriately. In this paper, we implemented evolutionary algorithms for scheduling aircrew on AWACS 
and propose a novel approach using Genetic Algorithms (GA) with a special encoding strategy and modified genetic 
operations tailored to the problem. The objective is to assign aircrew to various AWACS tasks such as flights, 
simulator sessions, ground training classes and other squadron duties while aiming to maximise combat readiness 
and minimise operational costs. The presented approach is applied to several test instances consisting notional 
weekly schedules of Turkish Boeing 737 AEW&C Peace Eagle AWACS Base, generated similar to real-world 
examples.  To test the algorithm and evaluate solution performance, experiments have been conducted on a novel 
scheduling software called AWACS Crew Scheduling (ACS), developed as a test bed. Computational results reveal 
that presented GA approach proves to be quite successful in solving the AWACS Crew Scheduling Problem and 
exhibits superior performance when compared to manual methods.
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1. INTRODUCTION
AWACS is an advanced airborne early warning and  

control system being employed by NATO and the armed 
forces of more than twenty countries, including USA, 
Australia, South Korea, France, Italy, India and Turkey1. It 
detects and identifies air and sea vehicles while facilitating 
guidance of friendly fighters to their targets in the face of 
possible threats2. After the second World War, many types 
of AWACS platforms have been developed. E-3A Sentry 
and Boeing 737 AEW&C (shown in Figs. 1 and 2) are most 
advanced systems currently being operated at various conflict 
zones3. AWACS Aircraft are defined as ‘High Value Air 
Assets’, as they significantly increase the effectiveness of 
Air Forces in the field of operations and are considered as  
strength multipliers which must be protected with the highest 
priority4, 5.

Equipped with a pulse-doppler radar, UHF/VHF/Satellite 
Radios, Datalinks and other advanced electronic mission 
systems, it has critical functions such as surveillance, weapons 
control and electronic intelligence6. AWACS has a specialised 
flight and mission crew with a highly sophisticated training 
system to fulfill all these functions7, 8 as shown in Fig. 3.

An intensive and continuous scheduling activity is carried 
out manually at AWACS bases2. Crew scheduling in this 
complex structure requires a very difficult and time-consuming 
process. To maintain the highest level of readiness in dynamic 
operational conditions and to assign the most suitable crew for 
high-cost AWACS flights, scheduling with classical methods 
may be insufficient, as the solution space will increase 
exponentially, even for a few tasks.

Figure 1. NATO E-3A AWACS (Image Credit: NATO).Received : 07 October 2019, Revised : 03 March 2020 
Accepted : 21 April 2020, Online published : 27 April 2020
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There are numerous studies in the literature aiming to 
optimise crew scheduling. While traditional approaches are 
based on Operations Research techniques (Evans9, Kawakami10, 
Gökcen11, Durkan12, Van Brabant13, Nguyen14, Newlon15, 
Brown16, yavuz17, Boyd18, et al., Vestli19,  et al., Sevimli20) more 
recent research concentrates on artificial intelligence, meta-
heuristics and evolutionary algorithms in particular (Aslan21, 
Dyer22, Erdemir23, Shirley Jr.24 and Boke25).  

Recently significant results have been achieved by  
applying Genetic Algorithms and other naturally inspired 
methods. Most of the published work involving crew 
scheduling in aviation relates to crew pairing and crew 
assignment at commercial airlines. To the best of our knowledge, 
existing work does not address AWACS Crew Scheduling 
problem in particular and research on military aspect is very 
limited. Previous works mentioned above mostly utilise 
computer assisted decision support systems to help build a 
feasible schedule at military squadrons. While they effectively 
provide automation tools to guide schedulers, the algorithms 
proposed do not involve complete solutions considering all 
constraints in dynamic conditions.

In this paper, we implement evolutionary algorithms for 
scheduling aircrew on AWACS and propose a novel approach 
using GA with a special encoding strategy and modified genetic 
operations tailored to the problem. In this scope, first of all, 
we defined the problem and formed the chromosome structure. 
Then, we determined hard and soft constraints based on criteria 
mostly referenced in the relevant guidelines, such as mission 
duration, crew rest periods, continuous training requirements, 
equity in task distribution and task diversity. We modelled the 

fitness function of the algorithm mathematically and developed 
unique strategies for genetic algorithm operators such as 
selection, crossover and mutation.

 To test the algorithm and evaluate the performance of 
genetic parameters, while visually presenting the obtained 
results, we developed a novel software called AWACS Crew 
Scheduling (ACS) as a test bed. We applied presented approach 
to a notional weekly schedule of Turkish B737 AEW&C 
AWACS squadron, generated similar to real-world examples. 
We conducted several experiments on the notional weekly 
schedule consisting diverse tasks, including flights, simulator 
sessions, ground training classes and other squadron duties. 
Finally, we presented and analysed computational results. 

2. MATERIAL AND METHODS
2.1 Genetic Algorithms

Genetic algorithms are state-of-the art methods that aim 
to optimise functions by modeling the nature26. It was first 
introduced by John Holland27 and continues to be developed 
by many researchers today28-40. Genetic Algorithm parameters 
represent the genes of chromosomes, while all parameters form 
chromosomes. Each genetic algorithm consists of populations 
represented as chromosomes (individuals). The fitness of the 
population (fitness) is aimed to be maximised or minimised in 
the direction of certain constraints. Each new generation goes 
through processes such as selection, crossover and mutation 
and proceeds towards the next generation28.

2.2 Problem Statement
Most of the conventional AWACS platforms have the 

ability to function on their own by means of integrated mission 
consoles and controllers in various crew positions41,42. The 
problem in this work is described for Turkish AWACS Base 
with its AWACS squadron having four Boeing 737 AEW&C 
aircraft and employing notional 77 combat-ready aircrew 
in 8 different crew positions. A sample weekly schedule is 
generated, consisting of 20 tasks and 131 scheduling slots. 
The tasks have been selected among various categories, such 
as flights, simulator sessions, ground trainings and squadron 
duties. Figure 4 shows notional Turkish AWACS Base created 
for the test scenario.

Figure 4. Notional Turkish AWACS base created for problem 
scenario.

Figure 2. Turkish Boeing 737 AEW&C (Image Credit: Turkish 
Air Force).

Figure 3. Mission Crew Cabin at Turkish B737 AEW&C (Image 
Credit: Turkish Air Force).
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2.3 Scheduling Criteria
There are several criteria assigning aircrew to tasks. 

The primary factors to be considered when building the 
schedule are explained below.

Flight Duration and Crew Rest: Similar to a combat 
squadron, the AWACS has the maximum flight and compulsory 
rest periods that aircrew must observe. The crew rest period 
includes the amount of time specified in the relevant guidelines, 
the time at which no other tasks can be given to individuals 
before and after the flight. These periods are taken into account 
when scheduling.

Training Requirements: AWACS aircrew is intensively 
trained from the day they join the squadron. Continuation 
Training (COT) starts once initial training is complete and 
individual is entitled to combat-ready status. Through flight 
career, she/he must repeat certain training events within the 
specified period, called ‘currency’. These repetitions can be in 
the form of flight, simulator, theoretical classes or computer-
based training. The COT requirements for each crew position 
are specified in detail on the relevant tables in the guidelines and 
executions of each training event are meticulously recorded. 
The failure to maintain currency in the relevant period results 
for an individual to lose combat-ready status temporarily. 

Fairness and Equity in Distribution of Tasks: Fairness is 
also an important factor in the scheduling. Among aircrew, flying 
hours, number of tasks and amount of duties executed during 
the year should be as close as possible and equal distribution 
between individuals should be taken as basis. It is necessary to 
provide equal distribution of tasks not only in terms of fairness 
but also in terms of sharing equal experience. 

2.4 Model Description
The most important step in the solution of the AWACS 

Crew Scheduling Problem is forming the proper chromosome 
structure for the application of genetic processes. Each 
chromosome of the population needs to have knowledge of all 
tasks and slots belonging to a weekly schedule. For each task, 
seat assignments of crew positions can be represented as genes 
that make up the chromosome, where we can call each gene 
a ‘scheduling slot’. Genetic representation and chromosome 
structure for the AWACS Crew Scheduling Problem are given 
in Fig. 5. 

2.5 Fitness Function and Mathematical Model
In genetic algorithms, the quality of the solution can be 

determined by fitness function. The factors that determine 
the quality of the AWACS Crew Scheduling problem are 
hard and soft constraints, as in other scheduling problems. 
It is desirable that a candidate solution fulfills all hard 
constraints and meets soft constraints to maximum extent.  

The mathematical model is expressed by the principle of 
minimisation or maximisation of the fitness function. In the 
modelling of the AWACS Crew Scheduling Problem, functions 
of hard and soft constraints are aimed to be minimised by the 
‘cost’ principle. Each gene that does not meet the desired 
criteria adds some cost to the function in varying amounts.  
The total cost of whole chromosome is obtained by sum of all 
these costs. 

Hard Constraints: Forming the candidate pools is the 
first step eliminating unsuitable individuals from selection. 
Profession, availability and other administrative options are 
considered to assign aircrew to tasks, in particular to relevant 
slots.  The most important issue emerges as time conflict. An 
individual cannot be assigned to two tasks at the same time. 
On the other hand, crew rest and crew duty period limitations 
cannot be violated either. 

 To overcome time conflicts, task timings are distributed 
to individuals’ time space as timeslots. Once a timeslot receives 
more than one task, its value is incremented by one. Total value 
of timeslots, which have a value of two, or more than two add 
some cost to chromosome. This is called ‘conflict cost’. Since, 
it is a hard constraint, the total conflict cost of a chromosome 
must equal to zero. Chromosomes which have no conflict cost 
are called ‘valid solution’.

 The conflict cost of a chromosome can be calculated as 
follows;

0

n

ij tij
t
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=

= ∑                                                                      (1)

where c is conflict cost, i is aircrew, i=0...n; n is total aircrew in 
the pool; j is task, j=0...n; n is task count, t is timeslot, t=0....n; 
total timeslots, v is conflict value. Here
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Total time conflict cost of a chromosome can be described 
as;

0

n
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=
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where l is gene, l=0....n; n is gene count in total.
Soft Constraints:  To find the total cost of a chromosome, 

it is necessary to evaluate the soft constraints that affect the 
performance of the solution. Each soft constraint adds a certain 
cost to the fitness function. Costs added by each gene belonging 
to the candidate solutions are collected and the overall cost of 
the chromosome is obtained. In the AWACS Crew Schedules, 
the training requirements, task diversity and fairness in the task 
distribution constitute general soft constraints. 

The most important factor in assigning AWACS aircrew 
to the schedule is the fulfillment of COT requirements. For 
this purpose, amount of days remaining for currency should 

be calculated. Every task has specific training 
events. If a task contains a training event, which 
a person is to execute for COT, days remaining 
for currency indicate how urgent a person is to 
fly corresponding mission. In other words, if the 
deadline is approaching for a specific training 
event, that person has higher priority to be Figure 5. Genetic representation and chromosome structure.
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assigned to schedule for a task containing the dedicated training 
event. For example, Pilot A has 15 days left for currency on 
training event ‘Air-to-air refueling (AAR)’. Person B has 5 
days left for currency for the same training event. If task X 
contains AAR, Person B should be assigned to schedule with 
higher priority.

Training Requirements cost can be calculated as follows;

max

min ijk
ijk

k

d
te

P
=                                                             (3)

where i = 1,…,n,  j = 1,…,m, k = 1,…,q, ijkd is Days remaining 
for currency, for person i, in task j, containing training event 
k. maxkP  is Maximum currency period for training event k, for 
all repetition columns. n is number of aircrew in the same crew 
position, m is task count, q is raining event count.

For the whole chromosome, all training requirements 
costs are summed,  To obtain total training requirements cost.
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Duties: The above calculation is for tasks such as flight, 
simulator and refresher trainings. The calculation is slightly 
different for squadron duties. It is important to collect statistics 
on how often a duty is performed, and which days that specific 
duty have been assigned (weekday, weekend). The duty cost 
can be obtained as follows.

ij ijw
ij

ij ij

r r
q

S S
= +                                                                  (5)

where ijq  is Duty cost of aircrew i for task j, ijr  is Amount of 
duties performed before, ijS  is amount of total days stayed in 
duty roster. ijvr  is Amount of duties performed in day type w 
(weekdays, weekends).

Total duty cost of a chromosome is;
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Task Diversity: In an AWACS Squadron, each individual 
should perform each type of mission in equal amounts for 
sharing equal experience. The diversity in task distribution 
provides the maximum benefit, while providing equal 
opportunity to aircrew. Especially in the practice of the 
exercises and operational flights, it is highly valuable. 

On the other hand, aircrew roles in the aircraft should be 
equally distributed as well. For example, AWACS Surveillance 
Operators (SO), as a team, have different roles on each flight. 
An SO can either be a datalink operator, tracker or a runner. 
Each has specific duties and training items. Thus, it is beneficial 
to track the number of roles performed and distribute them 
equally.

The task diversity cost of the aircrew can be obtained by 
dividing the number of duty repetitions by the number of days 
that the individual is in her/his position of duty;

ij
ij

i

b
R

µ =                                                                           (7)

ijµ   Task Diversity cost of aircrew i, for task j; ijb  is  
Amount of repetition in task/role

iR   Amount of days in active duty
Total task diversity cost of a chromosome can be calculated 

as;
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Equal Distribution of Tasks (Fairness): While keeping 
high readiness, with COT requirements fulfilled properly, 
aircrew should be assigned to tasks in equal amount for fairness. 
Every person should have equal, or close to equal number of 
flying hours and simulator tasks executed or instructional duties 
performed on an annual basis. This will ensure high morale for 
the whole aircrew in the squadron.  

Fairness cost of an individual can be obtained by;

i
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ih    is fairness cost of aircrew i; iu  is total flying hours/
tasks performed; iR  is amount of days in active duty.

Total fairness cost of a chromosome can be calculated as;
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Total Cost: As a result of the calculations above, the total 
cost of a chromosome can be obtained by summing all costs 
together.

( )
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= ∆ + ∆ + ∆ + ∆µ + ∆∑                     (11)

The objective of the fitness function in our case is the 
minimisation of costs. Thus, Overall fitness function of GA, 
specific to our problem can be described as;

( )
0

min min
n

ijk ijk ij ij ij i
l

T te c q h
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= ∆ + ∆ + ∆ + ∆µ + ∆∑       (12)

where
ijkT  is total cost of fitness function, ijkte∆ is the training 

event readiness function for flight, Simulator and ground 
training; ijc∆  is cost of time confliction, ijq∆  is duty equity 
cost, ij∆µ  is cost for equal distribution of tasks, ih∆  is general 
equity cost, 

i =0....n; flying individual in crew
j = 0....n; tasks
k = 0....n; training events
It must be noted that,  to obtain valid solutions, the conflict 

cost of the function must be zero.

min 0
min 0

ij

ij

c valid
c invalid

∆ = ⇒

∆ > ⇒
                                                (13)

To summarise; it is aimed to minimise the total cost of 
GA fitness function  To select the best candidate for scheduling 
slots. A gradual decrease in total cost is expected in every 
iteration of GA process. 

 To measure the performance of solutions in this work, 
performance charts have been prepared for each individual at 
the AWACS Squadron. The solutions obtained by GA have 
been compared with those performance charts to measure 



DEF. SCI. J., VOl. 70, NO. 3, MAy 2020

244

solution quality. Although the criteria are met, based on 
performance charts, the algorithm will continue to seek more 
suitable solution alternatives. Considering the problem has 
many aspects, it should be aimed at obtaining the optimum 
value within the acceptable solution time. The pseudo code for 
whole GA Process is given at Fig. 6.

Figure 7. Test bed software (ACS)- main window.

Function GA
1  Begin
2 load aircrew list and classify based on crew positions
3 load task records and create training requirements table
4 Generate initial population randomly
5 Create time space for all aircrew and insert timeslots for 

assigned tasks
6 Calculate costs
7 [    Calculate conflict cost
       Calculate training requirements cost
       Calculate task diversity cost
       Calculate fairness cost
       Calculate duty cost
  ]      Sum all costs to obtain total cost of fitness function
8 Sort total costs
9 Identify elite chromosomes and separate them for direct 

transfer to the next generation
10 Apply tournament selection and obtain new population
11 Apply crossover and obtain new population
12 Mutate new population and obtain final population
13 Continue loop until stopping criteria is achieved
14  End

Figure 6. Pseudo code for GA solution.

3. EXPERIMENTAL SETUP
We developed a Windows desktop application called ACS 

to conduct tests for GA solutions. The software is programmed 
in C# language by using Microsoft Visual Studio. The 
generated tasks in the notional weekly schedule, basic 
aircrew data and past flight records have been pre-loaded 
into the program. The parameters, such as number of 
squadrons in the base, total amount of aircrew, crew 
positions and any parameter belonging to any AWACS 
system in the world can be flexibly changed as desired. 
A screenshot from the test bed software is given  
in Figs. 7 and 8.

All experiments were performed on an x64-based 
desktop computer with Windows 10 operating system 
running on Intel i7 3770 (3.40 Ghz) processor and 8 GB 
of RAM.  To shorten the test periods, flying hours and 
duty records of the individuals were kept constant and the 
focus was on cost minimisation for COT Requirements. 
The ultimate goal is to find the lowest-cost-solution as 
soon as possible.

Authors conducted 20 experiments with different 
sets of GA parameters. For each parameter set, we kept 
the remaining variables fixed to ensure measurable 
results. Each experiment was repeated at least three 
times and the average data was recorded. Finally, 
the schedule performance was evaluated based on 
performance charts.

Within the test scenario, the COT requirements and 

current status of each individual has been listed in the training 
module. A screenshot from the training module is shown in 
Fig. 8.  To test the quality of the algorithm correctly, the COT 
status of each person has been determined differently and it is 
desired to measure whether the solution output can evaluate 
the COT priorities properly. As shown in the table in Fig. 8, for 
each individual, the training events for crew position’s COT 
are listed and the number of repetitions required and maximum 
days to remain currency are specified. The current status is 
listed as ‘actual’ remaining days for currency.

4. RESULTS AND DISCUSSION
Experiment parameters and results of all experiments are 

given in Table 1. The results show that a minimum of 90% 
success has been achieved in all parameter groups while 100% 
schedule performance guaranteed on 16 experiments out of 
20. 

The experiments showed that the approach we put 
forward with this study was able to achieve a more robust 
schedule in a much shorter time than the solution provided 
by manual methods. In AWACS Squadrons, a scheduler from 
each crew position works intensively and collaborates with 
other schedulers to prepare a weekly schedule. As a result of 
the consecutive meetings and endless corrections, the final 
schedule is obtained and released. The resulting schedule is a 
non-ideal product, where only conflicts are resolved. However, 
the ACS software, which was developed with our approach, 
was able to prepare the optimal schedule in less than an hour 
with a classic desktop computer.

The scheduling module is the interface that presents the 
user with the best solution and other alternative suggestions 
as a result of running the genetic algorithm (Fig. 9). In this 



ÜNAl & BAşçIFTçI : USING EVOlUTIONARy AlGORITHMS FOR THE SCHEDUlING OF AIRCREW ON AWACS

245

Table 1. Experimental results
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1 20 0.1 1 0.6 0.05 0.1 500 10.38 %93 1160

2 50 0.1 1 0.6 0.05 0.1 500 8.43 %97 2600

3 100 0.1 1 0.6 0.05 0.1 500 8.06 %100 5500

4 200 0.1 1 0.6 0.05 0.1 500 7.95 %100 10700

5 100 0.1 1 0.6 0.05 0.1 500 8.06 %100 5500

6 100 0.4 1 0.6 0.05 0.1 500 8.04 %100 5300

7 100 0.7 1 0.6 0.05 0.1 500 7.89 %100 5400

8 100 0.1 1 0.6 0.05 0.1 500 8.06 %100 5500

9 100 0.1 2 0.6 0.05 0.1 500 8.11 %100 5200

10 100 0.1 3 0.6 0.05 0.1 500 8.01 %100 5200

11 100 0.1 1 0.3 0.1 0.05 500 8.11 %100 4800

12 100 0.1 1 0.6 0.1 0.05 500 8.06 %100 5500

13 100 0.1 1 0.9 0.1 0.05 500 8.01 %100 5700

14 100 0.1 1 0.6 0.01 0.1 500 7.80 %100 5000

15 100 0.1 1 0.6 0.05 0.1 500 8.06 %100 5500

16 100 0.1 1 0.6 0.1 0.1 500 8.90 %99 5600

17 100 0.1 1 0.9 0.2 0.1 500 10.92 %91 5600

18 100 0.1 1 0.6 0.1 0.05 500 8.07 %100 5500

19 100 0.1 1 0.6 0.1 0.1 500 8.06 %100 5500

20 100 0.1 1 0.6 0.1 0.2 500 8.10 %100 5500

Figure 8. Test bed software (ACS) - COT tables.
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interface, the notional weekly schedule and the information 
about each task, such as task type, mission name, date, start 
and end times, are displayed in the relevant cells. 

Based on performance charts, cells are automatically 
coloured as red, yellow and green. A red cell indicates a hard 
constraint is violated. A yellow cell shows soft constraints 
have not been met for designated aircrew, while fulfilling all 
hard constraints. A green cell demonstrates all hard and soft 
constraints have been met.

The final schedule obtained with an optimal run is 
demonstrated in Fig. 9. For each slot, the most suitable aircrew 
assigned to the corresponding task is indicated in green. While 
guaranteed for any time conflict, unsuitable candidates are 
shown in yellow.

5. CONCLUSIONS AND FUTURE WORK
The AWACS Crew Scheduling problem falls into the NP-

Hard problem class as most of the scheduling problems, and 
it is impossible to solve with classical methods, because the 
solution space exponentially increases as the number of tasks 
to be scheduled and aircrew to be assigned. 

In this paper, we implemented evolutionary algorithms 
for scheduling aircrew on AWACS and proposed a novel 
approach using Genetic Algorithms (GA) with a special 
encoding strategy and modified genetic operations tailored to 
the problem. The objective was to assign aircrew to various 
AWACS tasks such as flights, simulator sessions, ground 
training classes and other squadron duties while aiming to 
maximise combat readiness and minimise operational costs. 
We applied our proposed approach to several test instances 
consisting notional weekly schedules of Turkish Boeing 737 
AEW&C Peace Eagle AWACS Base, generated similar to real-
world examples.  To test the algorithm and evaluate solution 
performance, we developed a novel scheduling software called 
AWACS Crew Scheduling (ACS) as a test bed.  

Several experiments were planned and carried out to 
monitor solution performance with different GA parameters 
such as population size, crossover strategy, crossover rate, 
mutation rate and elitism rate. In this context, each parameter 

has been examined by keeping other parameters constant and 
the results were recorded. 

With the solutions obtained from the experiments are 
examined; Genetic Algorithms have proven to be quite 
successful in solving the AWACS Crew Scheduling Problem. 
In this scope;
(a) The defined hard constraints have been 100% satisfied in 

all experiments and at least 80% of the entire population 
for each experiment was found to meet the entire hard 
constraints.

(b) Based on the performance chart to analyse soft constraints, 
it has been observed that in a majority of experiments, 
aircrew are assigned to proper tasks, with more than 90% 
success, defined as high priority in COT Status tables. 
With optimised parameters, this ratio has increased up to 
100%.

(c) Especially for refresher trainings, the GA was able to 
assign a complete list of aircrew required to maintain 
currency.  

(d) The solution durations have been at an acceptable level, 
meeting the hard constraints only in seconds and fulfilling 
the soft constraint requirements in minutes.
In addition to the results obtained above, some COT 

training events, which is still difficult to be managed by manual 
methods, can easily be followed by the software and proper 
assignments can be made with the proposed algorithm. For 
example, the training events named as ‘linkSO’ and ‘Runner’ 
for the SO task position is not only task-based, but also seat-
based roles in aircraft. In other words, the assignment of the 
individual to that flight is not sufficient by itself but needs 
to be assigned to the corresponding seat. The algorithm has 
successfully scheduled these priorities and has been able to 
meet other requirements not currently included in the scope of 
the directives but required for the success of the tasks.

We estimate that, in practice, the algorithm will generate 
very fast and robust schedules when it is considered that the 
generated artificial schedule contains only test-oriented and 
difficult-to-solve criteria that are rarely encountered under real 
conditions.

Figure 9. Final schedule obtained with ACS.
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In future studies it is recommended to develop optimisation 
techniques to shorten the solution time of the algorithm and to 
model the dynamic criteria AWACS aircrew need.
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