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1. INTRODUCTION
Multi-user massive multiple-input multiple-output 

(MIMO) technology refers to base stations (BSs) equipped 
with a large number of transmitting antennas. The concept has 
been extensively researched and employed in many wireless 
systems, as it can make full use of space resources, improve 
system channel capacity and communication quality1-2. Precise 
knowledge of reliable CSIT at the transmitter is necessary to 
signal detection, beam forming, resource allocation, and so on3. 
In time division duplexing (TDD) massive MIMO systems, it 
is possible to obtain the CSIT through exploiting the channel 
reciprocity using uplink pilots4. However, the majority of 
systems in use today require FDD, which is considered more 
effective as the different frequency bands are employed by 
uplink and downlink, respectively5-6. Thus CSIT corresponding 
to the FDD system’s up and downlink differs. Let each user 
transmits a sequence of training pilots, the uplink CSIT can be 
estimated at the BS side.

There are two necessary procedures for obtaining CSIT 
for the downlink channel in an FDD system. First, the BS 
sends pilot sequences to all users, then the estimated downlink 
CSIT are fed back to the BS by all users7. As the quantity of BS 
antennas increases, the number of unknown CSIT coefficients 
likewise increases. As a result, the traditional downlink CSIT 
estimation methods for FDD systems, such as least square 
(LS)8, minimum mean square error (MMSE)9, and improved 
algorithms10-11 based on them require excessive training pilot 

and feedback overhead. This illustrates that conventional 
approaches do not suit today’s needs.

Researchers have increasingly focused on compressive 
sensing (CS) in recent years, as it provides a general signal 
acquisition framework that enables the reconstruction of 
sparse signals from a small number of linear measurements12. 
CS applications within the wireless communication and 
networking field have been researched extensively to date. In 
many studies on the channel of massive MU-MIMO system13, 
the channel coefficient matrices tend to be sparse, as the 
number of transmitting antennas increases at the BS. Several 
CSIT estimation approaches have been proposed based on CS 
techniques to reduce the training pilot and feedback overhead, 
under the condition that estimation precision is high. Rao14, 
et al.  proposed a joint orthogonal matching pursuit (J-OMP) 
channel estimation algorithm that can accurately recover the 
downlink CSIT, by exploiting the hidden joint sparsity in the 
user channel matrices. Rao15, et al. then proposed a modified 
subspace pursuit (SP) algorithm to solve conventional CS-
based CSIT estimation problems by exploiting the prior 
support adaptively based on quality information. In addition 
to existing greedy-based signal reconstruction methods, other 
researchers utilised the same sparsity structure proposed by 
Rao14, et al. to build an L1-minimisation-based downlink CSIT 
recovery scheme16. By exploiting the block sparsity of channel 
matrices in the virtual angular domain among different users, 
Xu17, et al. proposed a joint block orthogonal matching pursuit 
(JBOMP) algorithm to estimate CSIT. Whether based on the 
greedy algorithm or convex optimisation algorithm of CS, the 
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CSIT estimation for large and high-order channel coefficient 
matrices in multi-user massive MIMO requires that each 
individual user be accounted for; this wastes training pilots and 
results in excessive feedback overhead. The two types of CS 
algorithms described above also result in high computational 
complexity as the iterations progress. 

Cesar18, et al. developed a novel reconstruction approach 
that can reconstruct a tensor through the relatively small 
amount of multi-way compression measurements, by utilising 
the low multi-linear-rank structure of tensor. Comparing with 
conventional sparse representation-based CS algorithms, this 
Tucker decomposition model-based TCS does not need to 
assume the sparsity or dictionary-based representation and 
performs very well. In addition, it works extremely fast as 
no iteration is involved in the operation. So it is suitable for 
high-dimensional data processing.

In the present study, we regarded the entire CSIT in a 
multi-user massive MIMO system as a 3D tensor expressed as

N M K× ×∈  , where M, N, and K are the number of transmitting 
antennas, receiving antennas and users, respectively. We 
developed a 3D estimation framework for tensor CSIT. And  
proposed a novel downlink CSIT recovery algorithm based 
on TCS, which we tested against conventional CS-based 
estimation algorithms to find that it yields higher estimation 
accuracy with less computing time. 

2. SYSTEM AND BASIC THEORY 
2.1 Multi-user Massive MIMO System

We consider a multi-user massive MIMO system working 
in FDD mode that containing only one BS and K users. The 
BS has M transmitting antennas and each user is equipped with 
N receiving antennas ( M N ). To complete the estimation 
of downlink CSIT, the BS transmits a sequence of T training 
pilots by M transmitting antennas. At the i-th user terminal, 
the received measurement by the pilot can be expressed as 
follows:

i i iY H X N= + , 1,...,i K=                                             (1)

where N M
iH ×∈  is actually the downlink channel coefficient 

matrix from BS to the i-th user. M TX ×∈  is the training pilot 
and N N T

i
×∈  is a gaussian random noise matrix with zero 

mean and variance 2
nσ . Accurate CSIT estimation at the BS is 

of great significance for the efficient use of space resources 
and the improvement of system capacity and performance. 
For the systems working in FDD mode, the CSIT estimation is 
performed in two parts: 
(a) each user estimates its own local CSI of Hi individually; 
and 
(b) the estimated CSI is fed back to the BS side, as shown in 
Fig. 1. 

2.2 Compressive Sensing and Tensor Decomposition
Traditional CS is a method for reconstructing the signals 

with sparse representations12. given a vector Mx ∈ , if it has 
r nonzero entries, it can be called r-sparse. The CS defines the 
measurement criterion for the signal x  given by:

y x n= φ +                                                                       (2)
with the measurement matrix N M×φ∈ where N M< and 

N Mn ×∈ is the measurement noise. The reconstruction is a 
process that knows φ  and recovers x  from y .

A tensor is a multi-dimensional matrix; for example, 
1 2 NI I I× × ×∈    is an N-th order tensor18. A vector and a matrix 

can be regarded as a one-order tensor and a second-order tensor, 
respectively, e.g., Ix ∈  and 1 2I IX ×∈ . The number of modes 
is actually the dimension (order) of the tensor. 1 2 NI I I× × ×∈  
is an N-order tensor and nI is the dimension of its n-mode. 
The element of a tensor is referred as 1 2 Ni i ix ⋅⋅⋅ . A tensor is high-
order complex problem and cannot be calculated by general 
methods. It is necessary to unfold the tensor to the matrix to 
apply the higher-order singular value decomposition technique 
and simplify the product of the tensor and measurement matrix. 
Namely, the tensor should be rearranged to matrices according 
to the different modes.

Definition 1 (n-mode unfolding of tensor): n-mode 
unfolding of tensor is the process that all elements in n-mode 
of tensor are arranged in a matrix of column vectors to obtain a 
new matrix. Assume a tensor 1 2 NI I I× × ×∈   , fibers in mode-n 
are the vectors acquired by fixing all of indices except those 
that correspond to columns (n=1), rows (n=2), etc. Tensor 
elements ( 1 2, , Na a a⋅ ⋅ ⋅ ) maps to the matrix elements ( ,na b ), 
with 1 ( 1)k kz n

b a B
≠

= + −∑ where 1z
k mm n

B I−

≠
= ∏ .

Definition 2 (n-mode product of tensor and matrix): A 
tensor cannot be directly multiplied by a matrix. Thus, the 
product of matrix and tensor is actually the n-mode unfolding 
of this tensor multiplied by the matrix in the same dimension. 
Assigning 1 2 NI I I× × ×∈   and nR IU ×∈ as the tensor and 
the matrix respectively, the n-mode product of them is

1 1 1= n n NI I R I I
n U − +×⋅⋅⋅× × × ×⋅⋅⋅×× ∈     defined by:

1 2 1 1 1 2
1

n

n n N n N n
n

I

i i i ri i i i i i ri
i

y x u
− +⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅

=

= ∑                                         (3)

Higher order singular value decomposition (HOSVD) 
is a common tensor decomposition method that can be used 
to approximately decompose the tensor 1 2 NI I I× × ×∈    into 
a core tensor product with multiple matrices. It is defined as 
follows:

1 1 2 2 N NU U U= × × × ×                                           (4)

where 1 2 NR R R× × ×∈    is a core tensor which is in the 
same dimension as   and n nR I

nU ×∈  ( n nR I ) are the 
corresponding mode-n sensing matrices. The HOSVD provides 
a low-rank approximation with orthogonal factors and a core 
tensor for the original tensor.

3. THE PROPOSED ALGORITHM
Primary goal of this study was to establish a novel 

CSIT estimation algorithm for multi-user massive MIMO 
systems based on TCS. Our algorithm consists of two parts. 
An estimation framework for the 3D CSIT that makes the 

Figure 1. Frame structure in FDD multi-user massive MIMO 
system.
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tensor CSIT measurable via 2D training pilot, and CSIT 
reconstruction based on TCS. The proposed CSIT estimation 
algorithm is illustrated in Fig. 2; the algorithm is introduced 
step-by-step below.

 

†
2

† †
1 1 2 2 31 33Z ZY Y Z Y

∧

= × × ×                                        (8)

where †
( )nY  is the pseudo-inverse matrix of each mode-n of core 
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( )( )n n

nZ =                                                            (10)

In effect, nZ  is the mode-n unfolding of n  and 
∧

  
is the accurate recovered CSIT. The pseudo code used for the 
proposed algorithm is as follows.

Algorithm
Input:

1) Tensor CSIT  N M K× ×∈
2) Training pilot M TX ×∈
3) Sensing matrices 1

N N×Φ ∈ , 3
K K×Φ ∈

Output: Reconstruction of CSIT 
∧


Start:

1) Compute core tensor  according to formula (7);
2) Compute ( 1, 2,3)nZ n =  according to Eqns (9)-(10); 
3) Compute the MP Pseudo-Inverse †

( )nY ;
4) Reconstruct 

∧

  according to equation (8).
End

4. EXPERIMENT RESULTS
Performance of the proposed algorithm is experimentally 

verified. We compare the performance of the proposed 
algorithm to the J-OMP recovery algorithm14, weighted block 
L1-minimisation algorithm (hereafter referred to as WB L1-
minimisation)16, and JBOMP algorithm17. Our simulation 
experiments consider a narrow band (flat fading) massive 
MU-MIMO system in FDD mode, where the BS is equipped 
with M transmitting antennas and there are K users, each of 
which has N receiving antennas. We utilise the spatial channel 
model (SCM) for MIMO channel modeling in 3gPP standard19 
to generate the channel coefficients. The angle of departures 
is uniformly and randomly distributed over[0,2 ]π , and we 
assume that all spatial paths have same path loss.

Figure 3 compares the proposed algorithm, J-OMP, WB 
L1-minimisation algorithm, and JBOMP for different SNRs 
and the parameters were set according to our references16. 
Namely, the number of transmitting antennas at BS M = 160, 
the number of receiving antennas at MS N = 2, the number of 
users K = 40, and the number of training pilot symbols T = 
45. The proposed algorithm outperforms the other algorithms, 
though it does show worse normalised mean square error 
(NMSE) at low SNR (<3 dB) than the Tseng’s method16.

As shown in Fig. 4, the NMSE of the estimated CSIT 
versus the number of pilot symbols T were compared, with 
the parameter settings M = 100, N = 2, K = 40, and transmit 
SNR = 30 dB. We found that the estimation accuracy of CSIT 

  Figure 2. Proposed algorithm.

3.1 Estimation Framework
There are K (number of users) downlink channel matrices

H N M
i

×∈ , each of which is estimated individually in existing 
algorithms. In the proposed estimation framework, we regard 
the number of users K as the third dimensionality and combine 
the all channel matrices, so that the CSIT can be expressed as a 
three-order tensor N M K× ×∈  , the modes of which include the 
number of transmitting antennas, receiving antennas and users 
in the FDD massive MU-MIMO system. The 3D CSIT cannot 
be measured directly by training pilot X M T×∈ . Furthermore, 
the TCS-based reconstruction algorithm requires multi-way 
compressive measurements, but the pilot broadcast by the 
BS can only provide measurement in one mode. To solve this 
problem, we designed a new measurement strategy that can be 
divided into two stages.

Stage 1: The BS broadcasts a sequence of T compressive 
training pilots X M T×∈  withT M . The tensor CSIT 
measurement strategy is then to let the training pilot measure 
the mode-2 of the tensor CSIT N M K× ×∈  directly. The 
process of users observes the compressed measurements from 
the training pilot, which can be formulated as

2Y X N= × +                                                              (5)
which also can be expressed as

(2)Y X N= +                                                               (6)
where (2) NK M×∈  is the mode-2 unfolding expression 

of tensor N M K× ×∈  and N NK T×∈  is a gaussian random 
noise matrix.

Stage 2: Each user feeds back the observed values, which 
altogether comprise the final result NK TY ×∈ of stage 1 to the 
BS side. gaussian sensing matrices 1

N N×Φ ∈ , 3
K K×Φ ∈  

are then utilised to measure the other two modes of measured 
tensor N T K× ×∈� . The measurement and feedback procedures 
are then complete. Considering the second measurement is 
complete in the BS, the sensing matrices used in this stage 
are not sent to users by the BS. This does not consume the 
bandwidth or incur any additional cost due to the training pilot 
or feedback.

3.2 CSIT Reconstruction 
We utilise the TCS18 which is stable, fast, and accurate to 

decompose and reconstruct tensor CSIT  :

1 1 3 32 X= × Φ × × Φ                                                  (7)
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increases as T increases. The proposed algorithm also showed 
a substantial performance gain from T = 45. 

We also compared the NMSE of the estimated CSIT versus 
the number of antennas at BS under N = 2, K = 40, T = 45, 
and SNR = 30dB. As shown in Fig. 5, the proposed algorithm 
achieved better performance than the other three algorithms, 
especially when the number of transmitting antennas was 
small (<100). On the contrary, we found that the quality of 
CSIT estimation decreases as M increases. The dimensions of 
the channel coefficient matrices grow larger as M increases, 
suggesting under CS theory that more measurements are 
required. Thus the estimation accuracy decreases as M increases 
regardless of which of the four algorithms is utilised.

Figure 6 compares the proposed algorithm, J-OMP, WB 
L1-minimisation algorithm, and JBOMP versus the number of 
users under M = 160, N = 2, T = 45, and SNR = 30 dB. The 
proposed algorithm outperforms other algorithms, especially 
when K is less than 30. Moreover, the estimated accuracy 

decreases as the number of users increases, but the magnitude 
of the reduction is not significant. In the proposed algorithm, 
the accuracy is always kept at a higher level, although it reduces 
a lot when 20 25K≤ ≤ .

In Table 1, we compare the average computation time in 
terms of different quantities of transmitting antennas at the BS 
side. Simulation experiments were performed in Matlab2010b 
on the work station with a 2.1 gHz Intel Celeron CPU and 6 
gB RAM. The parameter settings of the multi-user massive 
MIMO system were N = 2, K = 40, T = 45, and SNR=30dB. 
The proposed algorithm requires much less computation time 
than the weighted block L1-minimisation algorithm, but is 
slightly slower than the J-OMP and JBOMP.

5. CONCLUSIONS
This paper proposed a novel 3D method based on TCS to 

Figure 6. NMSE of the proposed algorithm, J-OMP14, WB L1-
minimisation16 and JBOMP17 with different number 
of users.

Figure 3. NMSE of the proposed algorithm, J-OMP14, WB L1-
minimisation16 and JBOMP17 for different SNRs.

Figure 4. NMSE of the proposed algorithm, J-OMP14, WB L1-
minimisation16 and JBOMP17 with different number 
of training pilot symbols T.

Figure 5. NMSE of the proposed algorithm, J-OMP14, WB L1-
minimisation16 and JBOMP17 with different number 
of antennas at BS.
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estimate the CSIT for multi-user massive MIMO systems in 
FDD mode. The proposed algorithm first presents an estimation 
framework to measure the tensor CSIT via a general training 
pilot, then the downlink CSIT is accurately recovered via the 
TCS reconstruction algorithm. By comparison against the 
J-OMP estimation algorithm, weighted block L1-minimisation 
algorithm, and JBOMP algorithm, the NMSE of our approach is 
remarkably low. The proposed algorithm has better estimation 
quality than other existing algorithms. It is also non-iterative, 
meaning it yields complete estimation results faster than other 
algorithms.
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