
559

Received : 31 December 2015, Revised : 16 June 2016
Accepted : 18 July 2016, Online published : 31 October 2016

1. INTRODUCTION
Defending large scale enterprise networks from adversary

attacks is an uphill task faced by present day network
administrators. Defense approaches against such attacks
traditionally have been mostly host centric, where attention
is given to identifying vulnerabilities of the individual hosts
and taking measures to mitigate them. Vulnerability scanning
tools, such as Nessus, OpenVAS, Nexpose, etc. provide per
host vulnerability information and help in achieving these
objectives. However, one major problem with this approach is
that it emphasises more on host specific local information and
does not consider them in the light of global security context
of the network. Theoretically, an exhaustive vulnerability
searching and patching may lead to a secure system. However,
this may not be possible in practice due to the costs involved
and operational constraints. Moreover, in many cases, attackers
combine elementary attacks to launch multistage attacks against
critical assets. These elementary attacks exploit vulnerabilities
of individual hosts and may be either remote or local. Intrusion
Detection Systems, either network or host based, can detect
those elementary attacks but cannot report whether they are
part of a larger attack chain or not.

An attack graph is an important modelling tool used in
the assessment of security of enterprise networks. Using attack
graphs, network administrators can understand how an attacker
can combine vulnerabilities in multiple hosts in a multi-stage
attack to compromise critical resources in a network. Moreover
the size of an attack graph has direct impact on the perceived
risk. Intuitively, a larger attack graph can mean more number of
vulnerabilities that can be exploited or more number of attack
paths to a resource or more attack spread; all implying less
security and hence more risk. An exhaustive attack graph of a
network provides global view of its security posture, enabling

quantitative assessment of the same. Such assessments, when
performed periodically help a network system to evolve over
time.

Since its introduction in 1998, attack graph has attracted
lots of attention from researchers and a considerable amount of
research effort has been spent in the development of theory and
practices around the idea of attack graph. In its earlier days,
dedicated security teams (called Red teams) used to determine
overall security of networks by hand-drawing gigantic attack
graphs and then analysing them. Obviously, this approach was
tedious, error prone and did not scale up as the network size
grew. This gave rise to the need for automated methods of
attack graph generation. Automated techniques also guarantee
that the generated attack graph is exhaustive and succinct. An
exhaustive attack graph contains all possible attack paths and a
succinct attack graph contains only those initial network states
from where the attacker can reach the goal. Initial research
proposed custom algorithms, model checking, logic based
approaches as attack graph generation methods. However, the
scalability issue in attack graph generation is still a challenging
research problem. Other research efforts aimed at using attack
graphs for analysing or quantifying security risks of enterprise
networks.

Lippmann and Ingols9 has published a survey on attack
graph generation and analysis techniques, in 2005. This paper
aims at providing a consolidated view of major attack graph
generation and analysis techniques reported till now.

2. ATTACK GRAPH GENERATION
Graph is a natural choice as formalism while considering

an automated technique for network security analysis. Dacier3
introduced the concept of privilege graph for describing
vulnerabilities of a network system. Each node in a privilege
graph represents a set of privilege owned by a user or a set
of users and each edge represents a vulnerability. In an attack

Attack Graph Generation and Analysis Techniques

Mridul Sankar Barik*, Anirban Sengupta, and Chandan Mazumdar
*Department of Computer Science and Engineering, Jadavpur University, Kolkata - 700 032, India

*E-mail: mridulsankar@gmail.com

ABSTRACT

As computer networks are emerging in everyday life, network security has become an important issue.
Simultaneously, attacks are becoming more sophisticated, making the defense of computer networks increasingly
difficult. Attack graph is a modelling tool used in the assessment of security of enterprise networks. Since its
introduction a considerable amount of research effort has been spent in the development of theory and practices
around the idea of attack graph. This paper presents a consolidated view of major attack graph generation and
analysis techniques.

Keywords: Attack graph, alert correlation, network hardening, security metric

REvIEw PaPER

Defence Science Journal, Vol. 66, No. 6, November 2016, pp. 559-567, DOI : 10.14429/dsj.66.10795
 2016, DESIDOC

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Defence Science Journal

https://core.ac.uk/display/333722844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DEf. SCI. J., VOL. 66, NO. 6, NOVEMBER 2016

560

tree22 each path to a leaf node represents sequence of attacks by
which an attacker can reach goal state from its initial state. An
attack graph essentially is a consolidated representation of an
attack tree where some or all common nodes across different
attack paths are merged.

Figure 1 shows a simple network configuration that is used
as a running example throughout this paper. Corresponding
attack graph representations, namely the exploit dependency
attack graph; logical attack graph and multiple prerequisite
attack graph is described in relevant subsections.

In this network configuration Firewall-1 controls traffic
between the external and internal network. Assumed location
of that attacker is on host H0 in the external network. In the
DMZ of internal network a web server runs on host H1 and
a login server (via ssh) on host H2. The web service requires
access to a back end database server which is running on host
H3. Firewall-1 allows http and ssh traffic to the web server and
login server respectively, and blocks all other traffic. Firewall-2
allows access to the database server coming only from the web
server. Host H1 is running a vulnerable version of Apache web
server, which has vulnerability (CVE-2006-3747) that allows
a remote attacker to exploit and gain user privilege on the Web
Server. The ssh service on H2 has a vulnerability (CVE-2002-
0640), which allows remote attackers to gain user privilege.
Database server H3 is a Linux box running MySQL database
which has a remotely exploitable vulnerability (CVE-2009-
2446), enabling attacker to gain user privilege. The Linux
kernel in host H3 also has vulnerability (CVE-2004-0495) that
allows local user to gain root privilege. Attacker’s objective
is to gain root privilege on the database server. for notational
convenience short symbols are used for different vulnerabilities
as shown in Table 1.

2.1 State Enumeration Based Approach
State enumeration based approaches were the initial

attempts to automated attack graph generation. These
approaches are based on either custom algorithms or based on
model checking techniques.

The concept of attack graph was first introduced by
Phillips and Swiler19,27, in 1998. In their formalism of attack
graph also known as the state enumeration graph; nodes
represent possible system state during execution of an attack.
A system state comprises of information on host(s), user access
levels and effects of the attack so far. Edges represent a change
of state, caused by a single action of the attacker and may be
weighted based on the attacker’s effort required or the time to
succeed. Based on this formalism, the authors have presented
a method28 for automated generation of attack graph with three
kinds of input information: attack templates, a configuration file
and an attacker profile. Attack templates represent attacks (both
known and hypothesised) in the form of a sub-graph describing
conditions necessary for successful execution of the attack and
also any new conditions that it may enable. A configuration
file contains information about the network system under
consideration. This information includes network topology,
configuration of network elements such as hosts, routers,
firewalls, etc. Attacker profile contains information about
attacker’s capabilities. The attack graph generation algorithm
starts from the initial state. It matches attack templates to the
configuration of the network system and attacker’s profile in a
forward exploration manner and generates the graph iteratively.
Put in other ways an attack graph is an instantiation of the attack
templates to the configuration information and attacker profile.
The generation method addressed the issues of redundant path,
node and directed cycle elimination. But the authors have not
provided any complexity analysis; only empirical results on
small examples are given. The obvious problem with this kind
of formalism is the issue of state-space explosion.

Ritchey and Ammann20 first proposed the use of model
checking techniques for attack graph generation. Model
checking in general is a technique which checks whether a
formal model M of a system satisfies a given property p or
not. If the property p is false in the model M, then the model
checker outputs a counter example describing a sequence of
state transitions which ends in violation of the property. Model
checking techniques are popularly used for verifying finite-
state reactive systems, such as sequential circuit designs and
communication protocols. One benefit of using model checking
techniques over custom algorithms for attack graph generation
is that users need not worry about the problem of handling large
state space, which is otherwise elegantly handled by standard
model checking software. The first step in this approach is
to build a model of the system under analysis. This model
includes information on hosts along with their vulnerabilities,
host connectivity, current view of the attacker and exploits
that change the model’s state. The kind of input information
required to build the system model is quite similar to the
approach of Phillips and Swiler19,27 except that in this case, the
host connectivity information represent connectivity between
hosts that remain after considering all traffic-filtering devices
such as routers, firewalls etc. The current view of the attacker

Figure 1. Simple network configuration.

Software Vulnerabiity (CVE-ID) Short symbol

Apache Web Server v1.3, CVE-2006-3747 V1

OpenSSH v2.3.1-v3.3 CVE-2002-0640 V2

MySQL v4.0, v5.0 CVE-2009-2446 V3

Linux Kernel v2.4, v2.6 CVE-2004-0495 V4

Table 1. Short symbols used for different vulnerabilities

Major approaches to attack graph generation are as
follows.

BARIK, et al.: ATTACK GRAPH GENERATION AND ANALySIS TECHNIQUES

561

is same as that of attacker profile and the exploits describe
similar things as attack templates. Authors have used the
SMV model checker tool. Desirable security properties of the
system are specified in temporal logic formulae and the model
checker finds out whether the model of the system satisfies the
formulae. If not, it generates counter examples which show the
sequence of states, from the initial state to the state where the
property is violated. As each state-change corresponds to the
event of execution of an exploit, a counter example produces
an attack path which describes sequence of exploits that leads
an attacker from its initial position to a compromised resource.
Set of all such counter examples would produce a complete
attack graph.

Sheyner23, et al. proposed a method for automated
generation of attack graph using NuSMV model checking tool.
The description of the model of the network is fed to a compiler
which translates it to the input language of the model checker
NuSMV. This model is essentially a finite labelled transition
system. Each state is labelled with a propositional formula.
This network model includes
(i) host connectivity information expressed as a ternary

relation R(h1, h2, p) meaning that host h1 can reach host
h2 on port p

(ii) trust relationship Tr(h1, h2) meaning that a user of host
h2 can log into h1 without any authentication i.e. host h1
trusts host h2

(iii) intruder privilege levels on hosts (none/user/root)
(iv) Intrusion detection systems (IDS) as a relationship ids(h1,

h2, a)={s, d, b} meaning that an attack a from host h1 to h2
is stealthy/detectable/both by an IDS sensor.
Each atomic attack is specified as rules and has four

components: intruder preconditions, network preconditions,
intruder effects and network effects. Safety property of the
system is specified in computation tree logic (CTL). If the safety
property is not satisfied, the NuSMV model checker generates
all possible counter examples whereas the SMV model checker
used by Ritchey and Ammann generates only one counter
example. They termed the resulting graph as a scenario graph.
However, compared to state enumeration graphs which take
more of an ‘attack centric’ view of the system, scenario graphs
are more generic and can model both benign and malicious
system events. Sheyner25 augmented the idea of scenario
graph to include liveness requirement in addition to safety
requirements. for this, he used a system model which supports
both finite and infinite execution.

Performance of attack graph generation techniques based
on model checking20,23,25 is dependent on the efficiency of the
model checker tools themselves, which are specifically designed
for handling large state spaces. These techniques encode
network state information in number of state variables which
increase considerably with increasing network size, number of
atomic attacks and vulnerabilities. They also face significant
exponential state-space problems even for moderate-sized
networks. Performance results reported by Sheyner23, et al.
gives some idea about this problem. for 2 hosts with 4 atomic
attacks, the model has 91 bits of state information, and 110
reachable states. for 4 hosts with 8 atomic attacks, the model
has 229 bits of state information, and 6190 reachable states.

The resulting attack graph has 5948 nodes and 68364 edges
and needed 2 h to generate.

2.2 TVA Approach
Earlier approaches to attack graph generation suffered

from scalability issues as the attack graph representation
used in those approaches, i.e. the state enumeration graph
or the scenario graph, assumed full exponential state-space.
The monotonicity assumption on attacker’s behaviour, first
introduced by Ammann1, et al. was a key enabler in handling
this issue. This assumption says that preconditions of an attack
are never invalidated by successful execution of another attack.
Although this may not be true in all the cases (i.e. buffer overflow
attack against a service causes it to terminate, preventing
further use in other attacks), the monotonicity assumption
helps in reducing the complexity of analysis from exponential
to polynomial. The resulting graph which enumerates all such
possible exploit sequences is known as the exploit dependency
graph. In worst case, this representation has number of nodes
as quadratic to the number of exploits. In exploit dependency
attack graph, each exploit or dependency appears only once and
there are no edges between independent exploits. Whereas, in
a state enumeration attack graph, there may be edges between
exploits even though there are no dependency relationships
between them. Moreover, a single attack path may appear more
than once in a state enumeration attack graph.

Topological vulnerability analysis (TVA)6,7 adopts a
topological approach to network vulnerability analysis. It
considers a set of modelled attacker exploit on a network and
then finds out different sequences of exploits or attack paths
starting from attacker’s initial state leading to compromise of
critical network assets. for this, TVA requires an extensive
knowledgebase of known vulnerabilities and attack techniques.
TVA attack graph generation engine uses the algorithm
proposed by Ammann1, et al. for attack graph generation. It
has O(n6) computational complexity, which was later improved
to O(n3) Ammann2, et al.; n being the number of hosts in the
network.

The attack graph model used in TVA uses two types of
nodes, exploit nodes and security condition nodes. This model
of attack graph is based on exploit dependency graphs. Exploit
nodes represent attacks (exploitation of certain vulnerabilities)
and security condition nodes represent either the attack post-
condition or pre-condition. An exploit is defined by pre and
post conditions. Directed edges from security condition nodes
to attack nodes represent pre-conditions of an attack, of which
all must be met for an attack to be successful. A directed edge
from an attack node to a security condition node represents post-
condition of an attack. An advantage of exploit dependency
graphs is that instead of modelling hosts, exploits on hosts
are modeled, thus reducing the computational complexity. On
the other hand, this model requires information on low-level
attack details. Vulnerability information are based on pre- and
post-conditions. figure 2 shows the exploit dependency attack
graph for the example network of fig. 1.

In exploit dependency attack graph, ovals represent
exploits and are labelled with corresponding vulnerabilities.
Other nodes represent either some network condition or

DEf. SCI. J., VOL. 66, NO. 6, NOVEMBER 2016

562

attacker’s capability. for example, network condition http
(H0, H1) means accessibility of web service on host H1 from
host H0. Attacker capability user(H0) means, attacker has user
privilege on host H0. Directed edges in and out of exploit nodes
identify pre and post-conditions respectively of an attack. for
example, exploitation of MySQL vulnerability CVE-2009-
2446 on host H3 from host H1 i.e. V3(H1, H3) requires pre-
conditions user(H1) and mysql(H1, H3) and generates a post-
condition user(H3). Exploit dependency attack graph elegantly
enumerates different attack paths leading to a critical resource.
In this example, there are two attack paths leading to attacker
gaining root privilege on H3. They are V1(H0, H1) → V3(H1,
H3) → V4(H3) and V2(H0, H2) → V1(H2, H1) → V3(H1,
H3) → V4(H3) respectively.

2.3 Logic Programming Based Approach
Multi host, multistage vulnerability analysis (MulVAL)17

is a logic-programming based approach to network security
analysis. It uses a representation of attack graph known as
logical attack graph which shows logical dependencies among
attack goals and configuration information. A node in the
logical attack graph is a logical statement which encodes only
some part of network state. Unlike the state enumeration graph
or scenario graph, it does not represent or encode the entire
state of the network. Edges represent the causality relationships
between various network configurations. Size of a logical
attack graph is polynomial to the network being analysed.
However, one requirement of logical attack graph is that the
cause of an attacker’s potential privilege should be expressible
as a propositional formula in terms of network configuration
information. A logical attack graph is a directed graph. It can
also be represented as a tree.

figure 3 shows the logical attack graph, corresponding to
the simple network configuration of Fig. 1. It contains two types
of nodes, i.e. derivation nodes and fact nodes. Rectangles and
circles represent derivation nodes and fact nodes respectively.
Derivation nodes are labeled with interaction rules. fact nodes

are labeled with logical statements in the form of a predicate
applied to its arguments. Shaded circles are primitive fact nodes
i.e. facts that hold true in the initial state. Un-shaded circles
represent derived fact nodes, i.e. new facts that are generated
as a result of application of interaction rules over existing
facts. Edges in a logical attack graph represent a ‘depends on’
relationship.

To describe system properties MulVAL uses Datalog,
which is a syntactic subset of the Prolog programming language.
Required input data such as software vulnerability advisories,
configuration and network topology information are encoded as
Datalog tuples, whereas attack techniques are specified using
Datalog rules. These rules are hand-coded and specify exploits
such as code execution, file access, and privilege escalation.
MulVAL uses Prolog logic engine XSB35 as reasoning engine
for evaluating rules on input facts. XSB computes all possible
paths to satisfy a defined goal.

following is an example of interaction rules in Datalog.
Rule 1: Remote exploit of a privilege-escalation vulnerability
in a service program
execCode(Host, User) :-
 networkService(Host, Program, Protocol, Port, User),
 vulExists(Host, VulID, Program, remoteExploit,
privEscalation),
 netAccess(Attacker, Host, Protocol, Port).

This is a generic rule which specifies the pre and post-
condition for this attack:
if
 (Program is running as User on Host as a service listening
on Protocol and Port) AND
 (it contains a remotely exploitable vulnerability whose
impact is privilege escalation) AND
 (the attacker can access the service through the network)
then
 (the attacker can execute arbitrary code on the machine as
User)

Similarly Rule 2, 3 and 4 are other interaction rules that have
been used for generating the example attack graph.

Rule 2: Local exploit of a privilege-escalation vulnerability in
a service program
execCode(Host, root) :-
 vulExists(Host, VulID, Program, localExploit,
privEscalation),
 execCode(Host, User).

Rule 3: Direct network access
netAccess(Source, Target, Protocol, Port):-

hacl(Source, Target, Protocol, Port)
located(attacker, Source)

Rule 4: Multi-hop access
netAccess(Source, Target, Protocol, Port):-

execCode(Source, User)
hacl(Source, Target, dbProtocol, dbPort)

 Network (router and firewalls) configurations are modeled as
abstract host access-control lists (HACL) in form of logical
statements using the predicate hacl. Predicate vulExists

Figure 2. Exploit dependency attack graph.

BARIK, et al.: ATTACK GRAPH GENERATION AND ANALySIS TECHNIQUES

563

encodes output of vulnerability scanner tool.
following is a complete list of labels of nodes in the logical
attack graph of fig. 3.

hacl(H0, H1, httpProtocol, httpPort)1.
located(Attacker, H0)2.
direct network access3.
netAccess(H0, H1, httpProtocol, httpPort)4.
networkService(H1, httpd, httpProtocol, httpPort, 5.
Apache)
vulExists(H1, ’CVE-2006-3747’, httpd, remoteExploit, 6.
privEscalation)
remote exploit of a server program7.
execCode(H1, Apache)8.
hacl(H1, H3, dbProtocol, dbPort)9.
multi-hop access10.
netAccess(H1, H3, dbProtocol, dbPort)11.
networkService(H3, mysqld, dbProtocol, dbPort, mysql)12.
vulExists(H3, ’CVE-2009-2446’, mysqld, remoteExploit, 13.
privEscalation)
remote exploit of a server program14.
execCode(H3, Apache)15.
vulExists(H3, ’CVE-2004-0495’, linux-kernel, 16.
localExploit, privEscalation)
local exploit of OS kernel17.
execCode(H3, root)18.
hacl(H0, H2, sshProtocol, sshPort)19.
direct network access20.
netAccess(H0, H2, sshProtocol, sshPort)21.
networkService(H2, sshd, sshProtocol, sshPort, SSH)22.
vulExists(H2, ’CVE-2002-0640’, sshd, remoteExploit, 23.
privEscalation)
remote exploit of a server program24.
execCode(H2, SSH)25.
hacl(H1, H2, httpProtocol, httpPort)26.
multi-hop access27.
netAccess(H2, H1, httpProtocol, httpPort)28.
remote exploit of a server program29.
The MulVAL logic programming based approach17 has

O(n2) complexity under the assumption of constant table look-
up time. Empirical results show that, worst case running time
varies between O(n2) to O(n3) for number of hosts upto 1000
with up to 100 vulnerabilities.

2.4 NetSPA Approach
The network security planning architecture (Net

SPA)5 attack graph generation system is based on a new
representation of attack graph, i.e. the multiple prerequisites
graph which scales linearly to the size of the network. This tool
uses readily available source of data to automatically compute
network reachability, classify vulnerabilities, build the graph
and recommend actions to improve network security. Multiple
prerequisite graphs are much faster to generate and have
greater expressive power than the author’s previous works on
predictive graphs10,11.

A multiple-prerequisite attack graph consists of three types
of nodes, i.e. state nodes, prerequisite nodes, and vulnerability
instance nodes. State nodes represent attacker’s level of access
on a given host. Prerequisite nodes represent either a reachability
group or preconditions of one or several attacks. Vulnerability
instance nodes represent particular vulnerabilities. Directed edges
from state nodes to prerequisite nodes represent the capabilities
those states enable for the attacker. Prerequisite nodes point to
vulnerability instance nodes that represent the set of attacks that
the prerequisite node enables. Directed edge from vulnerability
instance nodes to a single state node represent the state the
attacker can reach by successfully exploiting the vulnerability.
Put in other way, a state provides prerequisites, which allow
exploitation of vulnerability instances, which in turn provide
more states to the attacker. The concept of prerequisite nodes
helps in reducing the number of edges compared to having state
nodes pointing directly to vulnerability instance nodes, since
many state nodes can imply the same set of attacks.

figure 4 shows the multiple prerequisite attack graph
corresponding to the network configuration of Fig. 1. Circles
represent state nodes, rectangles represent prerequisite nodes,
and triangles represent vulnerability instance nodes. State nodes
A, B, C, D, E represent attacker’s level of access on different
hosts i.e. user(H0), user(H1), user(H2), user(H3), and root(H3)
respectively. Directed edge from state node A i.e. user(H0) to
prerequisite node ‘Can Reach H1, H2’ represent the capability
of attacker that is enabled by this state. Directed edge from
prerequisite node ‘Can Reach H1, H2’ to vulnerability instance
nodes V1 and V2 represent attacks enabled by this prerequisite.
Only when the attacker is in state B, it enables reachability to
host H3. The attacker can now gain state D via exploitation of
vulnerability V3.

NetSPA generation method scales roughly as O(n log n).
Experimental results show that it can scale up to 50000 hosts
for synthetic networks.

3. ATTACK GRAPH BASED SECURITY
ANALYSIS
The sole objective of generating an attack graph is to

enable assessment of security. There are many ways in which
information encoded in an attack graph can be used to gain
vital insight into the global security posture of a network. This
helps security administrators to make correct decisions about
mitigation strategies.

3.1 IDS Alert Correlation and Sensor Placement
Multi-step network intrusions comprise of multiple attack Figure 3. Logical attack graph.

DEf. SCI. J., VOL. 66, NO. 6, NOVEMBER 2016

564

steps with one preparing for the next. Intrusion detection system
alert correlation techniques help in deciding whether an isolated
alert is part of an ongoing multi-step network intrusion. It also
helps in attack scenario reconstruction. Popular alert correlation
techniques use prior knowledge about attack strategies or alert
dependencies. Other techniques aggregate alerts with similar
attributes (such as alerts with same destination addresses) or
statistical patterns.

Almost all these techniques use nested loop approach
where each new alert is compared with previously received
alerts to mark those which prepare for the new one. This
approach fits well in off-line applications such as intrusion
forensics, by storing in memory index of received alerts.
However, for applications like defense against multi-step
intrusions which require near real time alert correlation, this
approach fails miserably due to the growing size of the alert
index. One solution to this problem is to maintain a sliding
window of previously received alerts close enough to the new
alert. But an attacker can defeat this method either by passively
delaying the second step or actively introducing new alerts
between two steps.

Noel14, et al. first reported use of attack graphs in
minimising the effect of false alarms by correlating isolated
intrusion alerts as part of multistep attack paths. Their alert
correlation method is based on the shortest distance between
exploits in the attack graph. Also, any IDS alert which does not
feature in the possible future activities of the attacker (as can be
observed in the attack graph) can readily be classified as false.
However this solution is based on the assumption that the attack
graph is updated in a timely fashion corresponding to changes
in network topology and configuration. Also, the entire attack
graph should be resident in memory for this analysis, which is
a severe restriction for large enterprise networks.

Wang30, et al. proposed a queue graph based approach

for removing the limitations of the nested loop approach. The
queue graph data structure only keeps in memory the latest
alert matching each of the known exploits.

TVA attack graph has been used for planning optimal
placement of IDS sensors15 against all possible attacks. In this
technique, isolated intrusion alerts are mapped to known exploits
(represented as nodes) in an attack graph. It enables correlation
of alerts corresponding to a multi-step attack scenario, and also
prioritisation of alerts based on distance from critical network
assets. further, using the knowledge of network vulnerability
paths encoded in an attack graph, network administrators can
formulate best possible options for responding to attacks.

3.2 Minimum Cost Network Hardening
An attack graph reveals the different ways network

resources can be compromised, but it does not provide any
direct solution to harden the network. One of the network
hardening measure is to remove or patch vulnerabilities. A
good network hardening approach should remove specific
vulnerabilities so that none of the attack paths leading to given
critical resources can be realised, and also the cost involved
in removing those vulnerabilities is minimum13. Jha8 , et al.
have presented a technique which allows analysts to determine
minimal set of security measures (i.e. removal of attacks) that
would guarantee safety of the system. They have provided a
formal characterisation of the problem and have proved that it
is polynomially equivalent to the minimum hitting set problem.
However these solutions suffer from implementation issues
as some of the vulnerabilities are consequences of exploiting
other vulnerabilities and the consequences cannot be removed
without first removing the causes. So, for removing a single
vulnerability there may be multiple choices with different
costs, considering the different sets of vulnerabilities it may
implicitly depend upon. A different approach of minimum
cost of network hardening was presented by Noel13, et al.
and improved by Wang29, et al. The authors considered each
vulnerability as a Boolean variable and derived a logical
statement for the negation of given critical statement, in terms
of initial conditions. If this logical statement is represented in
disjunctive normal form (DNf), then each of the disjunctions
in it provides a different hardening option. The option with
minimum cost is chosen as the network hardening solution.

3.3 Network Forensics
forensic analysis is typically performed after an incidence

of break-in occurs. Its objective is to find attacker’s probable
actions, to assess damage and to collect digital evidence
in case legal action is required. Clever attackers use anti-
forensics techniques and tools to prevent proper forensic
investigation. These techniques aim at reducing quality and
quantity of digital evidences or traceable information captured
by different tools.

Attack graph based forensic analysis enables administrators
to prove that a series of IDS alerts are not isolated; rather they
correspond to a sequence of attacks in a coherent attack plan.
Liu12, et al. proposed a solution where they have augmented
attack graphs with anti-forensic activity nodes that help in
identifying missing evidences.

Figure 4. Multiple prerequisite attack graph.

BARIK, et al.: ATTACK GRAPH GENERATION AND ANALySIS TECHNIQUES

565

3.4 Attack Graph Based Security Metrics
To improve the security of a network, administrators

must be able to measure the same. A security metric measures
or assesses the extent to which a system meets its security
objectives. Using suitable security metrics one can measure
how secure a network currently is, and how secure it would
be after introducing new security mechanisms or configuration
changes. This is necessary if a network has to evolve through
network hardening.

An attack graph shows all possible attack paths that an
attacker may follow to achieve her goal. However, in general,
it does not provide any solution to harden the network.
Traditionally, network hardening involves removal or patching
of vulnerabilities, thereby preventing attackers from exploiting
them to compromise critical hosts. However, it is not always
possible to remove all vulnerabilities in a network setting.
This may be due to high cost involved or owing to operational
constraints. So, there is a need to have good security metrics
which enable comparison of relative security of different
network configuration options. A number of security metrics
have been proposed in literature based on attack graphs.

Network compromise percentage (NCP) security metric
indicates the percentage of network hosts where the attacker
has obtained user or superuser privilege. Asset values can
be associated with individual hosts before computing the
NCP metric. This metric was proposed by Lippmann11, et al.

Computation of this metric may require traversal of the entire
attack graph.

Weakest adversary security metric18 measures the security
strength of a network in terms of the strength of the weakest
adversary who can successfully penetrate the network. It
computes the minimal set of initial conditions the weakest
adversary should satisfy in order to compromise the network.

Idika and Bhargava4 have presented a solution which
overcomes the shortcomings of existing attack graph based
security metrics, i.e. Shortest path metric, number of paths
metric, and mean of path lengths metric. Their approach
combines these existing metrics with other metrics, to overcome
their shortcomings.

Wang 31, et al. proposed attack resistance security metric
to measure the attack resistance of a network configuration
in terms of measures of individual exploits. The authors
introduced the notion of exploit dependency graph which
shows different possible sequences of exploits that an attacker
can execute to compromise critical hosts in a network setting.
The dependency relation between the exploits may be either
conjunctive or disjunctive. They also introduced two types
of composition operators corresponding to disjunctive and
conjunctive dependency relationships between individual
exploits to compute the overall security measure, i.e. the
attack resistance of the network configuration. Authors used
a function to capture the information about how execution of
one exploit may affect the resistance value of another exploit.
This is helpful in cases where two or more exploits involve the
same vulnerability. Such exploits are related by this function to
indicate the fact that successful exploitation of one instance of
the vulnerability should reduce the resistance of the others due
to the attacker’s accumulated experiences and tools.

Zero day vulnerabilities are those for which there is
no prior knowledge or experience. The k-zero day safety34
security metric is based on the number of unknown zero day
vulnerabilities. A network is said to be k-zero day safe if at
least k unknown vulnerabilities are required for compromising
a network asset, regardless of types of those vulnerabilities.
A higher value of k indicates a relatively secure network. The
authors have introduced the idea of zero day attack graph for
computing zero day safety of a network.

Noel and Jajodia16 proposed a suite of security metrics
based on attack graph of a network, for measuring overall
security risk. The metrics are grouped into families which are
then combined into a single score. Single risk score is often
beneficial for network administrators in situations where they
have to interpret multiple scores. The different families of
security metrics are
(i) Victimisation: scores network services and their

vulnerabilities,
(ii) Size: measures risk in terms of the attack graph size,
(iii) Containment: measures security risk in terms of the

degree with which the attack graph contains attacks across
different network protection domains such as different
subnets, and

(iv) Topology: based on graph theoretic properties of the attack
graph such as the weakly connected components, strongly
connected components, length of maximum shortest path
etc.
The construction of an attack graph is based on the

assumption that, a vulnerability can always be exploited. But,
in reality, there is a wide range of probabilities associated
with exploitability of vulnerabilities. This probability is
dependent on the skill of the attacker and the difficulty of the
exploit. Attack graphs show only what is possible without any
indication of what is likely.

Attack graph based probabilistic security metric32,26
approach uses common vulnerability scoring system (CVSS)
values for individual exploits and computes a cumulative score
considering the causal relationship among exploits and security
conditions.

Wang33, et al. presented an approach which integrates
attack graph and Hidden Markov model (HMM) together,
for exploring the probabilistic relation between system
observations and states. They have used a modified version
of dependency attack graph to represent network assets
and vulnerabilities. This is then fed to HMM for estimating
attack states, whereas their transitions are driven by a set of
predefined cost factors associated with potential attacks and
countermeasures. A heuristic searching algorithm is employed
to automatically infer the optimal security hardening through
cost-benefit analysis.

4. CONCLUSION
Attack graph is a useful abstraction of security state of

a network, enabling automated solutions for reasoning about
the same. This paper has given a short review of attack graph
generation and analysis techniques reported so far in literature.
Some of the research challenges in attack graph based network
security analysis are.

DEf. SCI. J., VOL. 66, NO. 6, NOVEMBER 2016

566

Attack graph generation solutions require input information •
which is captured using different software tools; but, this
is not a completely automated process. Information about
different vulnerabilities, i.e. their pre- and post-conditions
are still manually encoded by domain experts. This is due
to the fact that, public information about vulnerabilities
are mostly available in the form of unstructured or semi-
structured texts, rendering their automated extraction
difficult. Natural language processing (NLP) techniques
can be used for this purpose.
Scalability issue in attack graph generation for moderate •
and large enterprise networks is still a challenging task.
Big data framework for large graph processing is a
promising solution towards achieving this goal.
As far as the different attack graph based analysis •
techniques are concerned, use of attack graph in network
forensics analysis is a relatively unexplored area.
for forecasting possible future attacks, existing attack •
graph based techniques correlates intrusion alerts.
Possible future attack paths from that point onwards forms
a prediction. But in practice, many such attack paths are
never tried by attackers. This lack of precision can be
overcome by considering more context information such
as intrusion response actions, exploit probabilities etc.
Also, many of the analysis techniques are tied with a •
particular representation of attack graph. There is a
need of uniform semantics of attacks, so that analysis
techniques can be applied irrespective of the underlying
representation and generation method.

REFERENCES
1. Ammann, P.; Wijesekera, D. & Kaushik, S. Scalable,

graph-based network vulnerability analysis. In
Proceedings of the 9th ACM Conference on Computer and
Communications Security, 2002. pp. 217-224.

2. Ammann, P.; Pamula, J.; Ritchey, R. & Street, J. A host-
based approach to network attack chaining analysis. In
21st Annual Computer Security Applications Conference,
Tucson, AZ, 2005. doi: 10.1109/CSAC.2005.6

3. Dacier, M. & Deswarte, y. Privilege graph: An extension
to the typed access matrix model. In Proceedings of the 3rd
European Symposium on Research in Computer Security
(ESORICS ‘94), D. Gollman, ed., Brighton, U.K., Lecture
Notes in Computer Science 875, Springer-Verlag, 1994.
pp. 317-334.

4. Idika, N. & Bhargava, B. Extending attack graph-based
security metrics and aggregating their application. IEEE
Trans. Dependable Secure Comput., 2012, 9(1), 75-85.

 doi: 10.1109/TDSC.2010.61
5. Ingols, K.; Lippmann, R. & Piwowarski, K. Practical

attack graph generation for network defense. In ACSAC
’06: Proceedings of the 22nd Annual Computer Security
Applications Conference. Washington, DC, USA: IEEE
Computer Society, 2006. pp. 121–130.

6. Jajodia, S.; Noel, S. & O’Berry, B. Topological analysis of
network attack vulnerability. In Managing cyber threats:
Issues, approaches and challenges. Edited by V. Kumar,
J. Srivastava, A. Lazarevic. Kluwer Academic Publisher,

2003.
7. Jajodia, S. & Noel, S. Topological vulnerability analysis:

A powerful new approach for network attack prevention,
detection, and response. In ASIACCS ‘07: Proceedings of
the 2nd ACM symposium on Information, computer and
communications security, 2007.

8. Jha, S.; Sheyner, O. & Wing, J. Two formal analyses of
attack graphs. In Proceedings of the 15th IEEE workshop
on Computer Security foundations (CSfW ‘02). IEEE
Computer Society, Washington, DC, USA, 49-63.

 doi: 10.1109/CSfW.2002.1021806
9. Lippmann, R. & Ingols, K. An annotated review of past

papers on attack graphs. MIT Lincoln laboratory Project
Report, 31 March 2005. Project Report ECS-TR-2005-
054.

10. Lippmann, R. & Ingols, K. Evaluating and strengthening
enterprise network security using attach graphs. MIT
Lincoln laboratory, August 2005. Project Report
Number,

11. Lippmann, R.; Ingols, K.; Scott, C.; Piwowarski, K.;
Kratkiewicz, K.; Artz, M. & Cunningham, R. Validating
and restoring defense in depth using attack graphs. In
IEEE Military Communications Conference, 23-25 Oct.
2006. MILCOM 2006. pp.1-10.

 doi: 10.1109/MILCOM.2006.302434.
12. Liu, C.; Singhal, A. & Wijesekera, D. Using attack graphs

in forensic examinations. In 7th International Conference
on Availability, Reliability and Security (ARES), 20-24
Aug. 2012, pp. 596-603. doi: 10.1109/ARES.2012.58

13. Noel, S.; Jajodia, S.; O’Berry, B. & Jacobs, M. Efficient
minimum-cost network hardening via exploit dependency
graphs. In Proceedings of 19th Annual Computer Security
Applications Conference, 8-12 Dec. 2003. pp. 86-95.
 doi: 10.1109/CSAC.2003.1254313

14. Noel, S.; Robertson, E. & Jajodia, S. Correlating intrusion
events and building attack scenarios through attack graph
distances. In 20th Annual Computer Security Applications
Conference, 2004, pp.350-359, 6-10 Dec. 2004.

 doi: 10.1109/CSAC.2004.11
15. Noel, S. & Jajodia. S. Optimal IDS sensor placement and

alert prioritization using attack graphs. J. Network Syst.
Manag., 2008, 16(3), 259-275.

 doi: 10.1007/s10922-008-9109-x
16. Noel, S. & Jajodia, S. Metrics suite for network attack

graph analytics. In Proceedings of the 9th Annual
Cyber and Information Security Research Conference
(CISR 2014), Robert K. Abercrombie and J. Todd
McDonald (Eds.). ACM, New york, Ny, USA, 5-8.
doi:10.1145/2602087.2602117

17. Ou, X.; Boyer, W.f. & McQueen, M.A. A scalable
approach to attack graph generation. In Proceedings of the
13th ACM conference on Computer and communications
security. New york, Ny, USA: ACM, 2006. pp. 336-345.

18. Pamula, J.; Jajodia, S.; Ammann, P. & Swarup, V.
A weakest-adversary security metric for network
configuration security analysis. In Proceedings of the 2nd
ACM workshop on Quality of protection (QoP 2006).
ACM, New york, Ny, USA, 31-38.

BARIK, et al.: ATTACK GRAPH GENERATION AND ANALySIS TECHNIQUES

567

 doi: 10.1145/1179494.1179502
19. Phillips, C. & Swiler, L.P. A graph-based system for

network-vulnerability analysis. In Proceedings of the
1998 workshop on New Security Paradigms (NSPW ‘98).
ACM, New york, Ny, USA, 71-79.

 doi: 10.1145/310889.310919
20. Ritchey, R.W. & Ammann, P. Using model checking to

analyze network vulnerabilities. In Proceedings of the
IEEE Symposium on Security and Privacy. Washington,
DC, USA: IEEE Computer Society, 2000, pp. 156-165.

 doi: 10.1109/SECPRI.2000.848453
21. Sawilla, R.E. & Ou, X. Identifying critical attack assets

in dependency attack graphs. In Proceedings of the 13th

European Symposium on Research in Computer Security:
Computer Security (ESORICS ‘08), Sushil Jajodia and
Javier Lopez (Eds.). Springer-Verlag, Berlin, Heidelberg,
18-34. doi: 10.1007/978-3-540-88313-5_2

22. Schneier, B. & Secrets, Lies: Digital Security in a
Networked World. Chapter 21. John Wiley & Sons, 2000.

23. Sheyner, O.; Haines, J.; Jha, S.; Lippmann, R. & Wing, J.,
M. Automated generation and analysis of attack graphs.
In Proceedings of the 2002 IEEE Symposium on Security
and Privacy. Washington, DC, USA: IEEE Computer
Society, 2002. pp. 273-284.

 doi: 10.1109/SECPRI.2002.1004377
24. Sheyner, O. & Wing, J. Tools for generating and analyzing

attack graphs. In Proceedings of formal Methods
for Components and Objects. Springer Verlag, 2004.
pp. 344-371.

25. Sheyner, O.M. Scenario graphs and attack graphs. Carnegie
Mellon Univ., Pittsburgh, PA, USA. 2004. (Ph.D. Thesis)

26. Singhal, A. & Ou, X. Security risk analysis of enterprise
networks using probabilistic attack graphs. NIST Inter
Agency Report 7788, 2011.

27. Swiler, L.P.; Phillips, C. & Gaylor, T. A graph-based
network-vulnerability analysis system. In Sandia National
Laboratories, Albuquerque, New. ACM Press, 1998, pp.
97-110. doi: 10.2172/573291

28. Swiler, L.P.; Phillips, C.; Ellis, D. & Chakerian, S.
Computer attack graph generation tool. In Proceedings
of the DARPA Information Survivability Conference and
Exposition II, June 2001.

 doi: 10.1109/DISCEX.2001.932182
29. Wang, L.; Noel, S. & Jajodia, S. Minimum-cost network

hardening using attack graphs. J. Comp. Comm., 2006,
29(18), 3812-3824. doi: 10.1016/j.comcom.2006.06.018

30. Wang, L.; Liu, A. & Jajodia. S. Using attack graphs for
correlating, hypothesizing, and predicting intrusion alerts.
J. Comp. Comm., 2006, 29(15), 2917-2933.

 doi: 10.1016/j.comcom.2006.04.001
31. Wang, L; Singhal, A. & Jajodia, S. Measuring the overall

security of network configurations using attack graphs.
In Proceedings of the 21st annual IfIP WG 11.3 working
conference on Data and applications security. Edited by
Steve Barker and Gail-Joon Ahn. Springer-Verlag, Berlin,
Heidelberg, 98-112. 2007.

32. Wang, L; Islam, T.; Long, T.; Singhal, A. & Jajodia, S.
An attack graph-based probabilistic security metric. In
Proceeedings of the 22nd annual IfIP WG 11.3 working
conference on Data and Applications Security, Edited by
Vijay Atluri. Springer-Verlag, Berlin, Heidelberg, 283-
296. 2008. doi: 10.1007/978-3-540-70567-3_22

33. Wang, S.; Zhang, Z. & Kadobayashi, y. Exploring attack
graph for cost-benefit security hardening: A probabilistic
approach. Computer Security, 2013, 32, 158-169.
doi: 10.1016/j.cose.2012.09.013

34. Wang, L.; Jajodia, S.; Singhal, A.; Cheng, P. & Noel,
S. k-Zero day safety: A network security metric for
measuring the risk of unknown vulnerabilities. IEEE
Trans. Dependable Secure Comput., 2014, 11(1), 30-44.

 doi: 10.1109/TDSC.2013.24
35. XSB, http://xsb.sourceforge.net/ [Accessed on 18th July

2016].

CONTRIBUTORS

Mr Mridul Sankar Barik is currently serving as Assistant
Professor in the Department of Computer Science and Engineering,
Jadavpur University. His research interests include distributed
computing, network security, digital forensics, IoT etc.

Mr Anirban Sengupta is presently working as Principal
Research Engineer in the Centre for Distributed Computing,
Jadavpur University, Kolkata. His research interests include
enterprise information security modelling, risk management
and compliance.

Mr Chandan Mazumdar is currently serving as Professor in
the Department of Computer Science & Engineering, Jadavpur
University. His research interests include distributed computing,
information and systems security etc.

