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1. INTRODUCTION
Sheet explosive1 is a flexible polymer bonded explosive 

(PBX) comprises energetic materials like  hexahydro-1,3,5-
trinitro-1,3,5-triazine (RDX)/ octahydro-1,3,5,7-tetranitro-
1,3,5,7-tetrazocine (HMX) uniformly dispersed in a polymeric 
matrix. High energy materials (HEMs) such as RDX, HMX, 
etc., in explosive formulations provide the power/ energy 
to achieve desired performance for the system. Polymeric 
materials such as hydroxyl terminated polybutadiene (HTPB), 
ethyl vinyl acetate (EVA), natural rubber provide continuum 
for dispersion of energetic materials and play vital role in 
deciding structural integrity and flexibility as well as safety 
during handling and transportation of sheet explosives. In 
addition to metal cutting, demolition and metal welding, sheet 
explosive is an importance component of explosive reactive 
armour (ERA)2-4. ERA consists of sandwiched sheet explosive 
which provide additional protection to armoured vehicles 
including tanks against attack by projectiles and shaped charge 
warheads. Conventional explosives such as RDX/TNT and 
HMX/TNT have drawbacks such as poor mechanical properties 
and a rather high sensitivity. Improvement in these parameters 
can be achieved by the use of polymeric binder systems. 

RDX-based sheet explosive formulations with various 
binders like natural rubber and thermoplastic elastomers 
(TPEs) such as copolymers of ethylene and vinyl acetate 
[ethylene vinyl acetate (EVA) copolymers] and Estane have 
been studied5-6. These formulations were prepared by rolling 

process. The pentaerythritol tetranitrate (PETN)-based high 
energy sheet explosive formulation (DXD-19) was prepared 
by extrusion process and average value of the velocity of 
detonation was reported to 7200 m/s7. Among low molecular 
weight polymers like hydroxyl terminated polybutadiene have 
been found wide application in the area of propellants and 
PBXs8 due to the presence of higher fuel content, clean curing 
reaction and stable urethane linkage formed by isocyanate 
curatives. HMX-based PBXs with various polymer matrices 
have been formulated and investigated9,10. The velocity of 
detonation and impact sensitivity for castable HMX-based 
formulation with 20 per cent HTPB-IPDI binder system was 
reported to 8020 m/s and 8.44 J, respectively11. The velocity of 
detonation of RDX and HMX-based formulations with 18 per 
cent HTPB-HMDI binder system was also reported to 7526 
m/s and 7812 m/s, respectively12. HTPB based sheet explosive 
formulations have also been reported13,14.

Thermal characterisation and analysis of energetic 
materials and their formulations are important not only for 
understanding the kinetics of their thermal decomposition, but 
also for assessing the effect of their exothermic decomposition 
on the potential hazards in their handling, processing, and 
storage15,16. Thermal characterisation of PBX containing RDX 
or HMX with HTPB-binder has been reported by different 
authors17-21.

The performance, sensitivity and thermal analysis data 
obtained from HMX-based sheet explosive formulation have 
been compared in this paper with the existing conventional 
RDX-based sheet explosive formulation13,14. 
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2. EXPERIMENTAL
2.1 Materials

HMX (particle size: 10 µm) and RDX (particle size: 5 
µm - 6 µm) were used as energetic materials in sheet explosive 
formulations. HMX and RDX were obtained from in-house 
developed resources. HMX and RDX were coated with 6 per 
cent dioctyl phthalate (DOP) to enhance the safety aspects 
during the processing of explosive formulations.  

HTPB was obtained from Anabond, India and 
dioctyladipate (DOA) procured from local source was added as 
plasticizer. 4,4’-Methylene diphenyl diisocyanate (MDI) was 
procured from trade and added as curative. The formulations 
were processed by solventless technique. 

2.2 Characterisation Methods
The mechanical properties of formulations were 

determined using Hounsfield Universal Testing Machine 
(capacity 25 kN) at a strain rate of 50 mm/min. The samples 
were prepared according to ASTM D638 type IV. The density 
was measured by standard method using Archimedes principle. 
The impact sensitivity of the sheet explosive formulations 
were determined by using the fall hammer method (2 kg drop 
weight) as per the Bruceton staircase approach and results are 
given in terms of statistically obtained 50 per cent probability 
of explosion (h50). A set of 25 experiments was conducted at 
various height intervals for each formulation. The friction 
sensitivity was determined on a Julius Peters apparatus 
operating up to 360 N using standard methodology. The shock 
sensitivity was measured by aluminium block gap test22 to 
determine the minimum pressure of a shock wave that can 
initiate detonation of the sheet explosive sample (diameter 63 
mm, thickness 7 mm). A cylindrical pressed RDX:Wax (95:5) 
of diameter 30 mm and height 100 mm was used as a donor 
charge to generate the shock wave. The wave was allowed to 
pass through an aluminium block of 63 mm diameter with a 
height varying from 10 mm to 30 mm. The critical pressure 
(P) in GPa across the aluminium block by which the sheet 
explosive can be detonated with 50 per cent probability was 
determined from the following relation.

P = 50.28 e-0.06038x

where x = thickness of the Al block in mm
The velocity of detonation (VOD) was determined by the 

ionisation probe technique in which the pin type ionisation 
probes (twisted enamel copper wire) placed at predetermined 
points used as sensors for detecting the arrival time of detonation 
wave and recorded by the oscilloscope (YOKOGAWA Dl9140, 
1GHz). 

Thermal analysis was carried out by a differential 
scanning calorimeter (Perkin Elmer DSC-7).  Approximately 

0.5 mg of sample was taken at various heating rates at 5 °C/min 
- 20 °C/min in the temperature range of 50 °C - 350 °C for the 
determination of the exothermic decomposition temperature. 
The activation energy and thermokinetic parameters of 
formulations were determined by applying the Kissinger 
kinetic equation23-24,

2ln ln a
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where β is the heating rate (°C/min), TP is the exothermic 
decomposition (peak) temperature (K), A is the pre-exponential 
factor (frequency factor), Ea is the activation energy (kJ/mol)  
and R is the gas constant (8.314 J/K mol). The morphology of 
HMX- based sheet explosive formulation was assessed using 
scanning electronic microscope (SEM Philip ICON Model 
SEM-Xl30) for confirmation of uniform coating of explosive 
particle by polymeric material.

2.3 Theoretical Performance Prediction
Prior to processing the sheet explosive formulations, 

the theoretical performance prediction of HMX based sheet 
explosive formulations using BKW code which is based on 
FORTRAN executable program was carried out. The value 
of α, β, θ and κ were taken as 0.5, 0.16, 400, and 10.91, 
respectively, to determine the theoretical VOD, where α,  β, 
θ and κ are BKW equation constants25-26. The theoretical 
maximum density (TMD) was calculated by using formula 
as [TMD = ΣWi/(ΣWi/ρi)] where, Wi is weight percentage of i 
component, ρi is density of i component. The theoretical data 
for sheet explosive formulation RDX/HTPB-binder (80/20), 
HMX/HTPB-binder (80/20) and HMX/HTPB-binder (78/12) 
are given in Table 1. The VOD of explosives and formulations 
was calculated at TMD. The formula weight of sheet explosive 
formulations was taken as 100 g. The oxygen balance for 
RDX, HMX and sheet explosive formulations is determined 
using standard formula27.

2.4 Processing of Sheet Explosive Formulations
The binder HTPB alongwith dioctyl adipate (DOA), 

lecithin and ferric acetyl acetonate (FeAA) were added into 
sigma blade mixer (speed: 35 RPM) and the ingredients were 
mixed under controlled vacuum condition at 40 °C - 50 °C for 
about 15 min. The DOP coated RDX or HMX was added to 
the polymeric matrix and mixed for about 2 h under vacuum at  
40 °C - 50 °C. Subsequently, the temperature was brought down 
to ~25 °C and MDI was added. The mixing was continued for 
another 30 min - 40 min. The dough was kept for partial curing 
under controlled relative humidity at room temperature. The 

Explosives and formulations Formula TMD (kg/m3) Calculated VOD (m/s) Detonation pressure (GPa) Oxygen balance (%)
RDX C3H6N6O6 1816 8819 35.4 -21.61
RDX/HTPB-binder (80/20) C2.49H4.33N2.14O2.23 1522 7389 20.9 -78.56
HMX C4H8N8O8 1900 9161 39.6 -21.61
HMX/HTPB-binder (80/20) C2.49H4.33N2.14O2.23 1567 7568 22.5 -78.56
HMX/HTPB-binder (78/22) C2.60H4.49N2.09O2.19 1540 7464 21.4 -84.14

Table 1. Theoretical calculation output of RDX, HMX and sheet explosive formulations
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semi-cured dough was rolled between two rollers at ambient 
temperature to obtain sheets of desired thickness. Curing of 
sheet explosive was carried out at room temperature for 24 h in 
a controlled relative humidity.

3. RESULTS AND DISCUSSION
In order to handle materials in safe manner, energetic 

materials such as RDX and HMX were coated with 6 per 
cent dioctyl phthalate. The high surface tension of the liquid 
binder can hamper the wetting of the explosive particles. 
Therefore, a surface active agent lecithin was incorporated as 
processing aid to reduce the surface tension for better mixing. 

The practically, maximum 78 per cent loading of HMX in 
HTPB-binder was achieved. It may be due to various factors 
such as packing patterns, shape and morphology of the HMX 
particles.

The results on density and tensile strength, percentage 
elongation of the formulations are given in Table 2. It is clear 
from the Table 2 that formulations containing HMX exhibited 
higher density and marginally lower tensile strength compared 
to reference formulation (RDX/HTPB, 80/20). The SEM 
images for RDX, HMX and sheet explosive formulations  
(Fig. 1) were revealed that solid particles uniformly distributed 
in the polymeric matrix and mostly particles are coated with 

Figure 1. SEM Images for (a) RDX, (b) RDX/HTPB (80/20), (c) HMX, and (d) HMX/HTPB (78/22).

Formulations Density 
(kg/m3)

Tensile strength 
(MPa)

Elongation 
(per cent)

Sensitivity parameters Experimental 
VOD (m/s)Impact, h50 (J) Friction (N) Shock (GPa)

RDX/HTPB-binder (80/20) 1430 1.0 11 14.7 > 360 16.0 7200
HMX/HTPB-binder (78/22) 1470 0.9 12 10.8 > 360 12.5 7300

Table 2. Physical, sensitivity and explosive properties of sheet explosive formulations

(a) (b)

(d)(c)
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polymer.
The sensitivity characteristics of the RDX/HMX-HTPB 

sheet explosives are given in Table 2. 
HMX-based sheet explosive gave higher impact 

sensitivity (h50) of 10.8 J compared to RDX-based formulation 
(14.7 J). In shock sensitivity test, the 50 per cent probability 
of detonation of HMX/HTPB formulation was found at 12.5 
GPa which is more sensitive compared to 16.0 GPa for RDX-
based formulation. The VOD of formulation containing HMX 
was found to be 7300 m/s which is relatively higher to RDX 
based reference formulation as shown in Table 2. It may be 
an outcome of optimised packing of solid particles for HMX 
in formulation which is also reflected in density difference 
of both formulations. The trends in experimental VOD of 
sheet explosive formulations in this study were confirmed by 
calculated VOD based on BKW code (Table 1). 

Higher sensitivity of sheet explosive formulation to shock 
stimuli is required for initiation by kinetic energy projectile 
because KE projectile is made from metallic penetrator to 
create low shock pressure on target than chemical energy 
projectile (explosive warhead). The sheet explosive formulation 
containing HMX was found to be more sensitive in terms 
of shock stimuli and higher VOD compared to the reference 
RDX/HTPB formulation. 

The thermal analysis for both the sheet explosive 
formulations was studied using differential scanning 
calorimetric (DSC) technique at various heating rates, β (5 °C/
min, 10 °C/min, 15 °C/min, and 20 °C/min). The decomposition 
exothermic peaks for RDX/HTPB (80/20) and HMX/HTPB 
(78/22) were observed in the range 220 °C - 239 °C and 260 
°C- 279 °C, respectively at different heating rates (5 °C/min, 
10 °C/min, 15 °C/min, and 20 °C/min) and shown in Table 
3 and Figs. 2 and 3. It was also observed that decomposition 
peak shifts toward higher temperatures with increasing heating 
rate.

The activation energies were calculated from the peak 
temperature (Tp) for maximum reaction rate for decomposition 
of sheet explosive formulations using Kissinger kinetic 
equation. Kissinger plots of these formulations are shown 
in Fig. 4 and the calculated data are given in Table 3. The 
activation energies of RDX/HTPB (80/20) and HMX/HTPB 
(78/22) formulations were observed about 146.90 kJ/mol and 
170.08 kJ/mol, respectively. The results also indicate that HMX 
based formulation is more thermally stable than reference 

formulation. The activation energy for RDX/HTPB (80/20) and 
HMX/HTPB (80/20) formulations has been reported as 157 kJ/
mol - 159 kJ/mol and 182 kJ/mol - 187 kJ/mol, respectively18,21. 
The reason for difference in activation energies between results 
for studied formulations and the references might be the purity 

Formulations β (°C/min) Tp (°C) Tp (K) 1000/Tp (K
-1) -ln(β/Tp

2)(K-1min-1) Ea (kJ/mol) lnA (min-1) linear correlation 
co-efficient (r2)

RDX/HTPB 
(80/20)

5 220.17 493.32 2.03 10.79

146.90 34.87 0.996
10 228.50 501.65 1.99 10.13
15 234.26 507.41 1.97 9.75
20 239.00 512.15 1.95 9.48

HMX/HTPB 
(78/22)

5 259.72 532.87 1.88 10.95

170.08 37.44 0.994
10 267.77 540.92 1.85 10.28
15 273.96 547.11 1.83 9.90
20 278.60 551.75 1.81 9.63

Table 3. Kinetic parameters for sheet explosive formulations

Figure 2. DSC thermograms of RDX/HTPB (80/20) at various 
heating rates (°C/min).

TEMPERATURE (°C)

Figure 3. DSC thermograms of HMX/HTPB (78/22) at various 
heating rates (°C/min).

TEMPERATURE (°C)
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and crystal defects of the explosives, the effect of the particle 
size used28 and differences in the composition of the polymeric 
binders29.

4. CONCLUSIONS
The VOD of formulation containing HMX was found 

marginally superior to RDX-based reference formulation. 
The sheet explosive containing HMX was found to be more 
sensitive in term of shock stimuli compared to the reference 
RDX/HTPB formulation. HMX-based sheet explosive 
formulation is found more thermally stable compared with 
RDX sheet explosive formulation. It can be inferred that, the 
results obtained in the present investigation indicate that the 
formulation containing HMX with HTPB binder could be 
promising for ERA application to defeat lower caliber KE 
projectiles and high explosive anti-tank ammunition. 
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