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1. INTRODUCTION
Electronic warfare (EW) receiver systems are designed in 

wide or narrow band configurations with operating frequency 
range 0.5 GHz to 40 GHz to capture the electromagnetic 
scenario in real time with high probability of intercept. Current 
EW receiver systems work on digital receiver technology with 
Nyquist sampling, enabling digital processing by traditional 
signal processing software algorithms. There are two main 
reasons for improving the technology, First one is the Nyquist-
rate for ultra wide band receivers, and is very large and gets 
limited by the speed of the analog to digital converter (ADC); 
and second,  even if it is possible to sample a large bandwidth, 
the resulting digital dataset is very high; and this requires an 
enormous amount of transmission power to transmit for remote 
sensors applications1.

The instantaneous bandwidth of digital receiver depends 
on sampling rate of ADC and must be wide enough in order to 
improve the probability of intercept. Modern signal processing 
approach of Sub-Nyquist sampling employs the techniques of 
compressed sensing theory and can be used for radar signal 
acquisition and reconstruction. CS theory implementation using 
random modulator pre-integrator (RMPI) is optimally matched 
for sparse signals. Sparsity is the model as a form of regularisation 
for taking advantage of reduced dimensionality to restrict or 
control the set of coefficient values which are allowed to produce 
an estimate of the data. Sparse signals can be represented as 
linear combinations of a small number of elementary functions 
belonging to a larger collection, or dictionary of functions.

Compressed sensing theory using RMPI states that a 
receiver signal can be sampled randomly without loss at a 
rate close to its information content and recover with stable 
recovery mechanism in the presence of noise and corruption. 
The RMPI provides with increased bandwidth and resolution 
without utilising superior ADCs below Nyquist rate. In this 
paper recovery and reconstruction of received radar signal 
from RMPI samples using advanced non linear algorithms 
(CoSaMP) is discussed. The simulated result of reconstructed 
signal is also presented.

2. RaNDOm mODUlaTOR PRe-INTegRaTOR 
THeORY 
 The RMPI is a parallel architecture, performs three 

basic functions i.e. demodulation, low pass filtering and 
low rate sampling. These functions are implemented using a 
multiplier, integrator and low rate sampling ADC. However 
single channel RMPI provides the information required in 
digital form. The parallel channels are necessary to obtain the 
additional information like geometric and structural properties 
of the signal by projecting to union of subspaces 2, 3, 4. The block 
diagram of EW receiver front end single channel configuration 
using Sub-Nyquist sampling is given in Fig. 1. 

The input signal x(t) is received through a Front End 
Amplifier (FEA) and antenna, where x(n) is digitised version 
of x(t). The RMPI first stage multiplies the input RF signal x(t) 
and random discrete time sequence P(n) . The random discrete 
time sequence P(t) of ± 1 with equal probability called as 
chipping sequence, which switches at Nyquist rate and spreads 
the spectrum over the entire band width, where P(n) is digitised 
version of P(t). The integration serves as a linear projector of 
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randomly switched x(t)5. The integrator output can be sampled 
instantaneously every ‘R’ seconds, which is a fraction of the 
Nyquist rate to obtain a sequence of (compressing the signal’s 
information) small number of measurements Y(m) = (y1, y2, 
y3,…….ym) as defined in the matrix form

1 11 1 12 2 1

1 1 2 2

....
( )

....
N N

m M M MN N

y X X X
Y m

y X X X
= ϕ + ϕ + + ϕ 

=  = ϕ + ϕ + + ϕ 
         (1)

The sub-Nyquist sampled data Y(m) is recovered by non 
linear signal recovery algorithm. The signal recovery algorithm 
uses restricted isometry (RIP) and coherence properties 
of measurement matrix as a measure of the signal. The 
recovery algorithm relies on linear programming and convex 
optimisation theory for extraction of sparse signal support and 
sparse coefficients required for signal reconstruction. Master 
clock driven control circuit is used to synchronise the process 
and reset the integrator after each frame.

3.  RaDaR SIgNal ReCOVeRY 
Any signal can be written as a weighted linear 

combination of sparse basis. Most radar signals are sparse 
in time and frequency domains and can be represented by a 
number of projections on a random basis. An s-sparse radar 
discrete-time signal vector x(N×1) can be written as x =Ψ α , 
where α  is a sparse representation of coefficient vector x in the 
basis Ψ(N×M). The signal s-sparse means that x has s nonzero 
elements only6. 

At the receiver side it is critical to be able to reconstruct 
the original signal x(t) from the compressed version. In this 
case a measurement matrix Ф(M×N) and the output signal 
Y(m×1) are collected such that: Y = Φx. The vector x needs 
to be recovered from the matrix Ф and measurement results 
Y(m) with the constraint M < N. It is an undetermined system 
of equations, there are infinitely possible solutions for x signal. 
If the signal x is known to be sparse, then the sparsest solution 
would be acceptable. We can write the output signal y =  Ф.x 
=Ф.Ψ.α, where vector α should be determined and apply the 
constraint of sparsity on the vector α.

The RMPI receiver hardware digitises the randomly 
projected linear samples into a stream of compressed 
measurements m. The measurements m contain signals x(n) 
drawn from one of a collection of low-dimensional subspaces 
(Sp) indexed by a parameter set p = (p1; p2; : : : ; pK). The 
collection of m measurements corresponding to d dimensional 
signal can be expressed mathematically using a measurement 

matrix Ф of size m × d, containing the inner products between 
each pair of RMPI measurement vector Ф(n) in columns and 
basis functions x(n) in rows. The first step in recovery is to 
design a proper sensing matrix and a recovery algorithm 
specific to the designed sensing matrix.

The sensing matrix Ф is to be constituted by chipping 
sequence, sub sampling rate and impulse response matrix of 
integrator. The sensing matrix Ф is with restricted isometry 
constant δ2s ≤ c. The RMPI output vector samples of an 
arbitrary signal, contaminated with arbitrary noise is given by 
y = Фx + error, for a given y Є Rm, we want to recover an 
approximately s-sparse vector x Є RN under the assumption 
that the vector of unknown errors Є Rm, where x[n] has the 
form. 
x[n] = µ(tn- 0τ ). A0 cos(2Πf0tn+ θ0);   tn= n/fnyq;   n = 1; .... N;   

(2)
The signal x(n) is defined on the interval [0,T]. The 

instantaneous time samples are defined as tn. The RMPI output 
at the end of each time interval T after low rate sampling is 
given by    

0
( ) ( ) ( - ) ( )m

n
y m y t n mT Y mT

=
= δ =∑                        (3)      

                                 
For a given precision parameter η, the algorithm CoSaMP 

produces an s-sparse approximation x(n) that satisfies Eqn. (3)
║x(n) – x(n)║2 ≤ C . max {η,(1/√s)║x(n) – x(n)s/2║1 + ║e║2 

(4)
where x(n)s/2 is a best (s/2)-sparse approximation to x(n).

The Y(m) samples are s-sparse and infinitely many 
solutions are possible. Finding the most suitable solution is 
difficult to reconstruct the original input signal for optimum 
solution by CS recovery algorithms. The sensing is carried out 
in discrete signal model by computing the linear projection y(m) 
= Ф(n)x(n) with a set of radar parameters corresponding to the 
subspace (Sp) will be searched. The subspace (Sp) contains 
a signal which comes closest to explaining the measurements 
y(m). In the subspace no two s-sparse vectors can be mapped to 
the same low-dimension vector. The ambient data dimension 
is large (N) in many applications, the relevant information 
typically resides in a much lower dimensional space.

The block diagram of recovery and reconstruction of CS 
based receiver signal is as shown in Fig. 2. The information 
required for successful signal recovery is that the reconstruction 
algorithm uses the matrix Ф, the dictionary matrix Ψ and input 
compressed samples Y(m) to produce the output vector α. 
The CS based signal recovery algorithm expands the RMPI 
output sequence y(m) and divides the sequence into frames 
(small set of orthogonal vectors). The algorithm identifies the 
signal space (non zero terms) from the frame, discard the zero 
vectors and form the set of signal support vectors with higher 
amplitude. The transformation or dictionary matrix Ψ contain 
reference set of multiple signals i.e. elementary functions 
belong to a larger collection or dictionary of functions. The 
sampling matrix Ф contains the incoherent base vectors used 
for acquisition of the signal. The convex optimisation block 
multiply the sampling matrix and dictionary matrix (Column 
by row) to produce the sparse signal reconstruction matrix 
with base vectors Ã exploiting the fact that Y(m) will be sparse 
in the frame (P=ΨФ) and the correct representation of Ã that 

Figure 1.  block diagram of eW receiver front end.
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yields our data x = Ψ α . In CS theory the following equality 
for solving linear inverse problem is defined for reconstructing 
a signal from its compressed measurements Y(m).

Y = Фx = Ф Ψ α = P α;    P = Ф Ψ;          (5)
where Ф and P are M × N measurement matrices in signal 
and transform domain respectively. Where  M << N. Applying 
simple matrix inversion or inverse transformation techniques 
on compressed measurements y(m) does not result in a sparse 
solution. 

4.   ReCOVeRY algORITHmS 
 The compressed samples collected from input signal 

with all its characteristics contain orthogonal bases very 
important to recover them. Since the collected samples are 
very few the recovery algorithms should be intelligent enough 
to recover the information. The recovery algorithms are 
categorised into 3 main groups, which are ℓ1-minimisation, 
greedy, and combinatorial algorithms. The most difficult 
part of signal reconstruction is to identify the locations of the 
largest components in the radar received signal achieving the 
stability, guarantees and fast reaction time. Other important 
algorithm properties such as storage requirements, ease of 
implementation and flexibility have to be compared for other 
applications. The main signal recovery algorithms used in 
compressed sensing are ℓ1-minimisation, orthogonal matching 
pursuit, iterative thresholding, regularised OMP, compressive 
sampling matching pursuit (CoSaMP) and subspace matching 
pursuit. Most of these methods calculate the support of the 
signal iteratively. Compute the quality of the output signals 
with error computation ||Φx-x||2 in approximating the samples 
and reflecting the actual approximation error7,8,9.

4.1 Restricted Isometry Property 
When the measurements are contaminated with noise or 

have been corrupted by some error such as quantisation, it will 

be useful to consider stronger conditions. Restricted isometry 
property (RIP) preserves the structure of the sparse and 
compressible signals. Matrix A satisfies RIP approximately 
preserves the distance between any pair of s-sparse vectors. 
RIP can be defined as M be an mxd sensing matrix, Then for 
every integer s and 0 < Є < 1, RIP satisfies the (s; Є), Restricted 
Isometry Property,  if for every s-sparse vector Ã we have

(1 -Є)║Ã ║2 ≤ ║M Ã ║2 ≤ (1 + Є) ║M Ã║2          (6)
where║.║ denotes the Euclidean norm

4.2 Coherence
 The mutual coherence of the N-dimensional orthonormal 

bases Ф and Ψ is the maximum absolute value for the inner 
product between rows of Ф and columns of Ψ of the bases:

μ(ФΨ) = max  <Фi ,Ψj>                           (7)
1≤ i,  j ≤ N
The parameter µ is the measure of coherence to be close 

to minimum value, each of the measurement vectors must be 
spread out in the Ψ domain. A small value of µ(ФΨ) indicates 
that Φ and Ψ are incoherent with each other, i.e., no element 
of one basis (Ψ) has a sparse representation in terms of the 
other basis (Φ). When both Φ and Ψ are orthogonal, the 
minimum number of measurements is required for perfect 
reconstruction.

4.3 CoSamP algorithm
The CoSaMP algorithm invokes iteratively to approximate 

the received signal using the RIP and incorporates several other 
ideas from the literature to accelerate the algorithm and to 
provide strong guarantees. Suppose that the sampling matrix Ф 
has restricted isometry constant δ2S< 0.1, for an s-sparse signal 
x, the vector y = Ф*Фx can serve as a proxy for the signal 
because the energy for s components is same in x and y. Since 
the samples have the form y = Фx, we can obtain the proxy just 

Figure 2. Recovery and reconstruction of CS based receiver signal.
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by applying the matrix Ф* to the sample.
Compressive sampling matching pursuit performs 

the following activities with RMPI output samples. In 
identification, the current approximation induces a residual 
from the current samples, used to construct a proxy for the 
residual and locates the largest components of the proxy. 
As the algorithm progresses in support merger set of newly 
identified components are united with the set of components 
that appear in the current approximation as a tentative support 
for next approximation. In estimation on tentative support set 
the algorithm use least-squares to estimate the approximation 
of the radar signal on the merged set of components. In pruning 
the algorithm produces a new approximation by retaining only 
the largest entries in this least-squares signal approximation. In 
sample update the samples are updated so that they reflect the 
residual, the part of the signal that has not been approximated. 
This process is repeated until the halting criterion is triggered 
i.e., until we have found the recoverable energy in the signal 
or not.

4.4 Subspace matching Pursuit algorithms
The  subspace matching pursuit (SP) algorithm is very 

similar to CoSaMP algorithm .The CoSaMP and SP methods 
differ in the last step, the CoSaMP algorithm takes as a new 
estimate the intermediate estimate is restricted to the new 
smaller support set,  while SP solves a second least-squares 
problem restricted to this reduced support.

The Table 1 compares different algorithms with their 
performance5. 

5. CoSamP SImUlaTION aND ReSUlTS 
The algorithm requires the sparsity level s as part of its 

input. The first method is to deduce the sparsity level s from the 
number m of measurements from m = 2s log N/s. The second 
method is to run CoSaMP using range of sparsity levels and 
to select the best approximation obtained. To limit the time 
and cost vary sparsity level s along G.P, say s = 1,2,4,8....., 
m, which increases the runtime by a factor no worse than O 
(log m). The quality of the output signal y, compute the error  
||Φy-u||2 in approximating the samples and reflecting the actual 
approximation error. A priori the signal has to be simulated for 
sparsity level for correct recovery using CoSaMP algorithm.  
The samples have been sorted from highest amplitude to lowest 
amplitude in pruning14.

5.1 Ultra Wideband Pulse
The CoSaMP algorithm is simulated in MATlAB 2013b 

with ultra wideband pulse. The total numbers of 480 samples 
are used and 150 measurements have been considered for 

simulation. It is observed that the input signal sparsity level 
9 is to be defined and considered twice the sparsity level of 
samples for correct recovery. Input impulse and the recovered 
pulse of uWP is depicted in Fig. 3(a). The error between these 
two pulses is about10-12 6.0 x 10-3. 

5.2  Random Pulse Spike
The CoSaMP algorithm is simulated in MATlAB 2013b 

with random pulse spikes. The total number of 512 samples 

Figure 3. Original and reconstructed waveform of (a) UWP 
and (b) Random pulse spikes. [Units: Time(s), 
amplitude(Volts)].

Table 1.  Comparison of algorithm

algorithm Implementation/ Flexibility guarantees Stability Recovery time
ℓ1-norm minimisation Simple uniform uniform Slow, recover well at low sampling rate. 
OMP Simpler iterative Not good Far less stable Fast, recovers with higher sampling rate.
ROMP Iterative Strong Stable Fast, compute second least-squares, 

restricted support vectors.
CoSaMP Iterative Strong Stable Fast
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are used and 150 measurements have been considered for 
simulation. It is observed that the input signal sparsity level 
20 is to be defined for correct recovery. The input pulse and 
the recovered pulse of random pulse spikes with error of 
1.6089x10-15 is depicted in Fig. 3(b)13.

5.3 linear frequency modulated Waveform
The CoSaMP algorithm is simulated in MATlAB 2013b 

with lFM waveform. The total number of 512 samples are used 
and 150 measurements have been considered for simulation. 
It is observed that the input signal sparsity level 50 is to be 
defined for correct recovery. The input pulse and the recovered 
pulse of lFM signal with error of 6.5 x 10-15.is depicted in  
Fig. 4(a)13.

5.4 barker Pulse Coded Waveform
The CoSaMP algorithm is simulated in MATlAB 2013b 

with barker coded pulse waveform. The total numbers of 512 
samples are used and 200 measurements have been considered 
for simulation. It is observed that the input signal sparsity 
level 100 is to be defined for correct recovery. The input pulse 
and the recovered pulse of Barker coded signal with error of 
3.22x10-14 is depicted in Fig. 4(b)13,14.

6. CONClUSION
The sub Nyquist sampling and compressed sensing based 

random modulator pre-integrator architecture eliminates high 
speed ADC technology. The RIP and coherent properties of 
the signal is exploited in recovery and reconstruction. The 
function of recovery and reconstruction algorithm is defined 
with comparative performance. The CS reconstruction 
algorithm CoSaMP is simulated in MATlAB 2013b with 
ultra-wideband pulse, random pulse spikes, lFM, Barker 
coded pulse waveforms and recovered successfully. The 
RMPI circuit implementation, recovery and reconstruction of 
the radar received signal be explored for use in EW receiver 
technology.
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