
ON THE FLOW OF A DUSTY FLUID 

Banaras Hindu University, Varanasi 

(Received 21 June 1976; revised 30 Atipd 1976) 

The present paper deals with the flow of rt fluid with uniform distribution of dust partides in twoparts. In part A, 
the motion induced in the dusty fluid is considered in the case when the plane move$ parallel to itselfimpulsively 
from rest with uniform velocity; for this case, the velocity profiles of fluid as well as dust particles are obtained. In 
 pa^ BB, the flow is produced by the motion of cylinders. %O cases are taken : (d) cylinders moving exponentially 
with time and, (Zi) cylinders nfoving in simple harmonic motion. 

The study of the fluid flow containing solid particles has been the .subject of scientific and ery:inwring 
research for a long time. The interest in problems'o~ flow of a dusty fluid4i.e. a mixed system of fluid and 
dust particles) has increased in recent years. Situations which occur frequently axe concerned with the mo- 
tion of a liquid or gas which oontains a distribution of solid particles. The mathematical description of - such diverse systems must of course vary widely. In order to formulate-the problem in a reasonably simplk 
mamer and to bring out the essentid features, we make simplifying assumptiom about fie motion of 
fluid and dust pa~ticles. The fluid is incompressible and the pasticles are spheres and ulliform in size; $he 
number of the particles is so large that system of the particles can be considered as continuous mediam. 
The particle-particles interaction and the bulk concentration of the particles are negligible. The f l ~ d  

interaction is according to Stokes drag law. We denote E to be the radius of the particles, v 
the kinematic viscosity of the flu$, p the density of the fluid and m the mass of each particle. Inthe cam of 
spherical K ,  the constant of proportionality in Stokes law is equal to 6npvE. In term of these 
quantities the relaxation time T, which is a measure of the time taken by the dust particles to  adjust to  

in the fluid velocity is given T = m/K. 
B O @ M U L A T I O W  

The equations governing the unsteady motion of an incompressible viscous fluid! with uniform distri- 
bution of dust particles are1 
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where 21 andTare the velocities of fluid anddust pazticles respeotiveIy, N is the number density of duat pw- 
tiole each of mass m, K is the Stokes resistance coefficient. 

As both m and p are uniform N can be taken as const~nt and equal to No. It can be seen from (3) that 
as T -, 0 the particles follow the fluid motion exactly. 

Part A 
We assume that fluid containing a uniform distribution of dust particles occupies the semi-infinite space 

above a rigid plane boundary. The motion induced in the dusty fluid is considered in the case when the 
*lane moves parallel to itself impulsively from rest with uniform velocity. Our aim is to derive the expres- 

' 
sions for the velooity of fluid as well as dust particles. We also assume that the motion is induced by a 
prescribed velocity of the rigid plane boundary at y--0 parallel to itself in the x-direction. 

For the present case, we have 
u1 -- u1 (y, t ) ,  u2 -== 0, us = 0, 
Vl = v1 (y, t ) ,  v4 = 0, v, -- 0, 
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where (u,, 4,1) and (v,, us, v,) are the components of the fluid and dust partkles respectively. The eqfiad 
tiions of moitlon then become 
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where h=onh',/p is the mass concentration of the dust particles. 

Using the dimemionless time variable t /r  and a dimensionless length y/Z/, the above equations 
become 
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where t  and y we now dimensionless. * .  

The boundary conditions me - 
t  0 ,  U ,  = 0 ,  v, = 0  for y > 0 1 > 

t > O ,  u;== l a t t j =  0 t (9) 
u,  -9 0  as y + oo 

I < J 
We now define the ~ a p l a c e  transform 01 US, and v, by d 
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In  terms of (10) from (7) and (8) , we have 

axZ ~1(i-1-h+~) - -- 
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1,s (11) - - u, vl=---• 
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The boundary conditions on transformation become 
< 

U l =  0  8 5  Y . 9 0 0  - 
UI = 11s 86 y = 0 for t 3 0. , ( I 3 )  

& J v i ~  for ul and applying boundary conditions (13), we find 
- -  1 s ( l + h + ~ ) ]  * 

%= aexP[-y J 1 + 8  (14) 

Substituting this value-of zcl in equation (12), we get ' 
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For small values of t which correspond to large values of s, on inversioa we obtain 

1 Y Y - - (- - dit) + t d ~  erfc ( + \/G)] 111 - 2 wt 

Por large values of 8 i.e. s<<lj we obtain 

$4- 
oll  = erfc 2d2 

From the (16) to (19) it is obvious that velocity of the fluid particles is greater than that of the 
dust particles. L 

Part B 
Let the iadii of the coaxial circular cylinders be Rll Rg (Rz> R1). We take:cylin&ical polar system of 

coordinates (s, 8, z) with z-axis along the axis of the cyhnders. 

Then for the present case, we have 

cc, = 0, _ug -= 0, u, = u#(r, t )  

'U, =.- 0, .t'e = 0, v, = l'# (r: t ) ,  
(20) 

where (G, ue, 4 and (u,, vo, v, ) are the components of the fluid and dust particles respectively. The 
fluid motion is eabirely to  unsteady motion of the cylinders, the pressure for upstream- and for down- 
stream being kept equd &@ut the motion. Thus (1.1~) ap/@ = 0 for such case, and equations of 
motion then become \ 

3 Ur - 
at 

(21) 

Let 

(23) 

1) (24) 

where o and h are real constants and 0 < X < 1. 

Lct the boundary conditions b e  
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Bubstituting (23) and (24) in equations (21) and (22), we have 

v = zh/[1 + ( iu  -A" 71, (28) 
where 

( i - A )  1 f  h + ( i u - - A 2 ) y r  
p z  =- 

v [ 1 + ( iu - A2)  r (29) , 

Solutian of (27) is 
= A Jo (ISr) + B Yo (84. <- (30)  

From (30) and (23), we have 

i 

Eliminating A and B with the help of boundary conditions (25) and (26) ,  we get 

where 

If u=O, we have 
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These are the expressions for the vtloc?ty of fluid and dust particles when cylinders move exponentially with 
time. ,, 

~f x = 0 ,  we get 
/ 
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where 
~ O T  -+ iu ( 1  + h + (T? 7:) 8:"-- , 

1 + u2 r3 

These are the'expressions for the velocity of fluid and dust particles when the oylinders are in simple 
harmonic motion. 

From ( S t a n d  (34), it is clear that the velocity of the dust particles is greater than that of the fluid 
when the cylinders move exponentially with time. In the case when the cylinder execute simple harmonic 
motion the dust velocity is less than that of the fluid. When the dust is very fine, therelaxation time 04 the 
dust decreases and ultimately as T 3 0 the dust particles follow the fluid moton exactly i.e. if the masses 
of the dust particles axe small enough their influence on the fluid is reduced and in the limit as m-+ 0 the 
fluid becomes ordinary viscous and y e  get the expressions for the velocity of viscous fluid in the two above 
inentioned oases, 
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