A NOTE ON THE MODE OF VIBRATION IN LAYERED FLAT-TOPPED CONICAL HILL, (DECCAN TRAP TYPE) AND THE STRESSES GENERATED IN EACH LAYER—PART I

(MPS.) JAYASRI DATTA AND SACHINATH MITRA

Jadavpur University, Calcutta

(Received 8 September 1975)

In this paper the authors have calculated the displacements and stresses at each layer of a *n*-layered flat-topped conical hill while the stresses of the type of a confined explosions are applied at the bottom of the hill. The solution is obtained in terms of Bessel's function and the condition of fracturing is also specified.

Deccan traps of basaltic composition covers about 200,000 sq. miles of the peninsular India and conceal a large amount of precious mineral resources. The traps occur as sheets or layers of different hicknesses. A traverse through the country would reveal to any observer the layered nature of the hills which in general have flat tops and often assumes conical shapes.

As a preliminary investigation on the nature of deformation etc. impressed on the Deccan traps by different geodynamic or artificial elastic stresses, we take up the case of the isolated hill with layered flows, as commonly found in Gujrat, Maharashtra, Madhya Pradesh etc.

In the present study we studied the nature of displacement and stresses at different homogeneous layers, when the stress is applied in the form of a confined explosion just at the bottom of the Deccan trap. The basalts being fine-grained and compact are considered to be elastically isotropic.

In this paper, we take up a *n*-layered case, where n is observed in Deccan region, When n is very large, we assume that the displacement is negligible and is equal to zero. We, therefore, in the present model investigated the effect up to (n-1)th level.

Fig. 1 represents the case as postulated and different layers are marked as 1, 2, 3,n. The stress in the form of radial vibration is assumed to be generated at the centre of the base. That is the stress $(rr)_1$ is applied at $r=a_1$. Since the vibration studied is radial, the co-ordinates we take are spherical polar co-ordinates (r, θ, ϕ) . The vertical axis of the cone passing through the explosion centre is the vertical axis of the system.

The modulus of rigidity, μ_N , and density, ρ_n , of N-th layer $(N=1, 2, 3, \ldots, n)$ are constants.

Fig. I—Flat topped conical hill with *n* horizontal layers numbered 1,2,3,...,*n* and γ =aij, for i, j=1,2,3,..., *n* denotes the distance of surface of separation of two consecutive layers i and j from the vertex of conical hill.

FUNDAMENTAL EQUATIONS

Stress equations of motions¹ are :

$$\frac{\partial \widehat{rr}}{\partial r} + \frac{1}{r} - \frac{\partial \widehat{r\theta}}{\partial \theta} + \frac{1}{r \sin \theta} - \frac{\partial \widehat{r\phi}}{\partial \phi} + \frac{1}{r} \left(2 \widehat{rr} - \widehat{\theta} - \widehat{\phi} + \widehat{r\theta} \cot \theta \right) = \rho \frac{\partial^2 u_r}{\partial t^2}$$
(1)

$$\frac{\partial \widehat{r\theta}}{\partial r} + \frac{1}{r} \frac{\partial \theta \theta}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial \widehat{\theta \phi}}{\partial \phi} + \frac{1}{r} \left\{ \left(\widehat{\theta \theta} - \widehat{\phi \phi} \right) \cot \theta + 3 \widehat{r\theta} \right\} = \rho \frac{\partial^2 u_{\theta}}{\partial t^2}$$
(2)

$$\frac{\Im \widehat{r\phi}}{\partial r} + \frac{1}{r} \frac{\partial \widehat{\theta\phi}}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial \widehat{\phi\phi}}{\partial \phi} + \frac{1}{r} \left(\Im \widehat{r\phi} + 2 \widehat{\theta\phi} \cot \theta \right) = \rho \frac{\partial^2 u\phi}{\partial t^2}$$
(3)

Since we are assuming the radial vibrations, displacement, $(u_{\theta})_N = (u_{\phi})_N = 0$ and $(u_r)_N = (u_r)^2 = R_N(r)e^{ipt}$ (where $N=1, 2, 3, \ldots, n$; R is a function of r only).

Hence the stress components

$$(\widehat{r\theta})_N = (\widehat{\theta\phi})_N = (\widehat{r\phi})_N = 0$$

 \mathbf{and}

$$(\widehat{rr})_{N} = \mu_{N} \frac{\partial u_{N}}{\partial r} = \mu_{N} \frac{dR_{N}}{dr} e^{ipt}$$
$$(\widehat{\theta}\widehat{\theta})_{N} = \mu_{N} \frac{u_{N}}{r} = \mu_{N} \frac{R_{N}}{r} e^{ipt}$$
$$(\widehat{\phi}\widehat{\phi})_{N} = \mu_{N} \frac{u_{N}}{r} = \mu_{N} \frac{R_{N}}{r} e^{ipt}$$

Since the vibration is radial, equations (2) and (3) are identically zero and the remaining one reduces to the form :

$$\frac{\partial (\widehat{rr})_N}{\partial r} + \frac{1}{r} \left\{ 2(\widehat{rr})_N - (\widehat{\theta}\theta)_N - (\widehat{\phi}\phi)_N \right\} = \varphi_N \frac{\partial^2 u_N}{\partial t^2}$$

or

$$\frac{d^2 R_N}{dr^2} + \frac{2}{r} \frac{d R_N}{dr} + \left(\nu^2_N - \frac{2}{r^2} \right) R_N = 0$$

Therefore

$$R_N = r^{-1/2} \left\{ A_N J_{3/2} (\nu_N r) + B_N Y_{3/2} (\nu_N r) \right\}$$

Hence

$$(n)_{N} = r^{-1/2} \left\{ A_{N} J_{3/2} (\nu_{N} r) + B_{N} Y_{3/2} (\nu_{N} r) \right\} e^{ip!}$$
(5)
(for N=1, 2, 3,, n)

(4)

where

$$_{N}=\sqrt{\frac{\rho_{N}p^{2}}{\mu_{N}}}$$

Boundary conditions

$$u_N = 0$$
 on $r = a_n$

(II)
$$(\widehat{rr})_1 = S e^{ipt}$$
 on $r = a_1$

A,

where S is a constant

1

.....(n-1).

(6)

(III)
(a)
$$(\widehat{rr})_N = (\widehat{rr})_{N+1}$$
 on $r = a_{N(N+1)}$
(b) $u_N = u_{N+1}^{q}$ f for $N = 1, 2, 3, ...$

Applying boundary condition (I)

$$= - \frac{B_n Y_{3/2} (\nu_n \dot{a}_n)}{J_{3/2} (\nu_n a_n)}$$

184-

DATTA & MITRA : Vibration in Layered Flat-Topped Conical Hill

Applying boundary condition (II)

$$A_{1} \left\{ J_{3:2} \left(\nu_{1} a_{1}\right) - \nu_{1} a_{1} J_{5/2} \left(\nu_{1} a_{1}\right) \right\} + B_{1} \left\{ Y_{3/2} \left(\nu_{1} a_{1}\right) - \nu_{1} a_{1} Y_{5/2} \left(\overline{\nu_{1}} a_{1}\right) \right\} = \frac{S a_{1}^{3/2}}{\mu_{1}}$$
(7)
pundary condition III(a)

1. 2

Applying boundary condition III(a)

$$A_{N} P_{N}^{(N+1)} J_{3/2} \left(\begin{array}{c} \nu_{n} & a_{n} \end{array} \right) + B_{N} Q_{N}^{(N+1)} J_{3/2} \left(\begin{array}{c} \nu_{n} & a_{n} \end{array} \right) - \frac{\mu_{N+1}}{\mu_{N}} B_{n} .$$

$$\cdot \left\{ Q_{N+1}^{(N)} J_{3/2} \left(\begin{array}{c} \nu_{n} & a_{n} \end{array} \right) - \tilde{P}_{N+1}^{(N)} Y_{3/2} \left(\begin{array}{c} \nu_{n} & a_{n} \end{array} \right) \right\} = 0 .$$
(8)

where

$$\begin{split} P_{N}^{(N+1)} &= J_{3/2} \left(\begin{array}{c} \nu_{N} & a_{N(N+1)} \end{array} \right) - \nu_{N} & a_{N(N+1)} & J_{5/2} \left(\begin{array}{c} \nu_{N} & a_{N(N+1)} \end{array} \right) \\ Q_{N}^{(N+1)} &= Y_{3/2} \left(\begin{array}{c} \nu_{N} & a_{N(N+1)} \end{array} \right) - \nu_{N} & a_{N(N+1)} & Y_{5/2} \left(\begin{array}{c} \nu_{N} & a_{N(N+1)} \end{array} \right) \\ P_{N+1}^{(N)} &= J_{3/2} \left(\begin{array}{c} \nu_{N+1} & a_{N(N+1)} \end{array} \right) - \nu_{N+1} & a_{N(N+1)} & J_{5/2} \left(\begin{array}{c} \nu_{N+1} & a_{N(N+1)} \end{array} \right) \\ Q_{N+1}^{(N)} &= Y_{3/2} \left(\begin{array}{c} \nu_{N+1} & a_{N(N+1)} \end{array} \right) - \nu_{N+1} & a_{N(N+1)} & J_{3/2} \left(\begin{array}{c} \nu_{N+1} & a_{N(N+1)} \end{array} \right) \\ for & N = 1, 2, 3, \dots, (n-1). \end{split}$$

Applying boundary condition (III) (b) we get

$$A_{N} J_{3/2} \left\{ \nu_{N} a_{N(N+1)} \right\} J_{3/2} \left(\nu_{n} a_{n} \right) + B_{N} Y_{3/2} \left\{ \nu_{N} a_{N(N+1)} \right\} J_{3/2} \left(\nu_{n} a_{n} \right) - \\ - B_{N} \left[Y_{3/2} \left\{ \nu_{N+1} a_{N(N+1)} \right\} J_{3/2} \left(\nu_{n} a_{n} \right) - J_{3/2} \left\{ \nu_{N+1} a_{N(N+1)} \right\} Y_{3/2} \left(\nu_{n} a_{n} \right) \right] = 0$$

$$(9)$$

.

If we eliminate the constants from equations (8) & (9) after putting N=n-1 and using equation (6), we get

$$A_{n-1} = \frac{B_n}{J_{3/2} \left(\nu_n \ a_n\right)} \cdot \frac{D_{A_{n-1}}}{D_{B_n}}$$
(10)

$$B_{n-1} = \frac{B_n}{J_{3/2} \left(\nu_n \ a_n\right)} \frac{D_{B_{n-1}}}{D_{B_n}}$$
(11)

$$\begin{split} D_{A_{n-1}} &= \frac{\mu_{n}}{\mu_{n-1}} Y_{3/2} \left(\nu_{n-1} a_{(n-1)n} \right) \left[Q_{n}^{(n-1)} J_{3/2} \left(\nu_{n} a_{n} \right) - P_{n}^{(n-1)} Y_{3/2} \left(\nu_{n} a_{n} \right) \right] - \\ &- Q_{n-1}^{(n)} \left[Y_{3/2} \left(\nu_{n} a_{(n-1)n} \right) J_{3/2} \left(\nu_{n} a_{n} \right) - J_{3/2} \left(\nu_{n} a_{(n-1)n} \right) Y_{3/2} \left(\nu_{n} a_{n} \right) \right] \\ D_{B_{n-1}} &= P_{n-1}^{(n)} \left[Y_{3/2} \left(\nu_{n} a_{(n-1)n} \right) J_{3/2} \left(\nu_{n} a_{n} \right) - J_{3/2} \left(\nu_{n} a_{(n-1)n} \right) Y_{3/2} \left(\nu_{n} a_{n} \right) \right] - \\ \end{bmatrix} \end{split}$$

DEF. SCI. J., VOL. 26, OCTOBER 1976

$$-\frac{\mu_{n}}{\mu_{n-1}} J_{3/2} \left(\nu_{N-1} a_{(n-1)n} \right) \left[Q_{n}^{(n-1)} J_{3/2} \left(\nu_{n} a_{n} \right) - P_{n}^{(n-1)} Y_{3/2} \left(\nu_{n} a_{n} \right) \right]$$
$$D_{B_{n}}^{(n)} = P_{n-1}^{(n)} Y_{3/2} \left(\nu_{n-1} a_{(n-1)n} \right) - Q_{n-1}^{(n)} J_{3/2} \left(\nu_{n-1} a_{(n-1)n} \right)$$

Substituting N = n-2 and using (9) and (10) from equations (7) & (8), we obtain

$$A_{n-2} = \frac{B_{n}}{J_{3/2} \left(\nu_{n} a_{n}\right) D_{B_{n}}^{n}} \qquad \frac{D_{A_{n-2}}}{D_{B_{n}}^{(n-1)}} \qquad (12)$$

$$B_{n-2} = \frac{B_n}{J_{3/2} \left(\nu_n \ a_n\right) D_{B_n}^n \ D_{B_n}^{(n-1)}} \ D_{B_n-2}$$
(13)

where

$$\begin{split} D_{A_{n-2}} &= \frac{\mu_{n-1}}{\mu_{n-2}} Y_{3/2} \left(v_{n-2} a_{(n-2)(n-1)} \right) \left[P_{n-1}^{(n-2)} D_{A_{n-1}} + \\ &+ Q_{n-1}^{(n-2)} D_{B_{n-1}} \right] - Q_{n-2}^{(n-1)} \left[J_{3/2} \left(v_{n-1} a_{(n-2)(n-1)} \right) D_{A_{(n-1)}} + \\ &+ Y_{3/2} \left(v_{n-1} a_{(n-2)(n-1)} \right) D_{B_{(n-1)}} \right] \\ D_{B_{n-2}} &= P_{n-2}^{(n-1)} \left[J_{3/2} \left\{ v_{n-1} a_{(n-2)(n-1)} \right\} D_{A_{n-1}} + \\ &+ Y_{3/2} \left\{ v_{n-1} a_{(n-2)(n-1)} \right\} D_{B_{n-1}} \right] - \frac{\mu_{n-1}}{\mu_{n-2}} J_{3/2} \left\{ v_{n-2} a_{(n-2)(n-1)} \right\} \cdot \\ &\left[P_{n-1}^{(n-2)} D_{A_{n-1}} + Q_{n-1}^{(n-2)} D_{B_{n-1}} \right] \\ D_{B_{n}} &= \left[P_{n-2}^{(n-1)} Y_{3/2} \left\{ v_{n-2} a_{(n-2)(n-1)} \right\} - \\ &- Q_{n-2}^{(n-1)} J_{3/2} \left\{ v_{n-2} a_{(n-2)(n-1)} \right\} \right] \end{split}$$

Proceedings in this manner, we get

$$A_{2} = \frac{B_{n} D_{A_{2}}}{J_{3/2} \left(\nu_{n} a_{n}\right) D_{B_{n}}^{(n)} D_{B_{n}}^{(n-1)} D_{B_{n}}^{(n-2)} \dots D_{B_{n}}^{(3)}}$$
(14)

$$B_{2} = \frac{B_{n} D_{B_{2}}}{J_{2/2} \left(\nu_{n} a_{n}\right) D_{B_{n}}^{(n)} D_{B_{n}}^{(n-1)} \dots D_{B_{n}}^{(3)}}$$
(15)

186

DATTA & MITTRA : Vibration in Layered Flat-Topped Conical Hill

where

)

$$\begin{split} D_{A_2} &= \frac{\mu_3}{\mu_2} Y_{3/2} \left(\begin{array}{c} \nu_2 \ a_{23} \end{array} \right) \left[\begin{array}{c} P_3^{(2)} \ D_{A_3} \ + Q_3^{(2)} \ D_{B_3} \end{array} \right] + \\ &+ Q_2^{(3)} \left[\begin{array}{c} J_{3/2} \left(\begin{array}{c} \nu_3 \ a_{23} \end{array} \right) \overline{D}_{A_3} \ + Y_{3/2} \left(\begin{array}{c} \nu_3 \ a_{23} \end{array} \right) D_{B_3} \end{array} \right] + \\ &- \frac{\mu_3}{\mu_2} J_{3/2} \left(\begin{array}{c} \nu_2 \ a_{23} \end{array} \right) \left[\begin{array}{c} P_3^{(2)} \ D_{A_3} \ + Y_{3/2} \left(\begin{array}{c} \nu_3 \ a_{23} \end{array} \right) D_{B_3} \end{array} \right] - \\ &- \frac{\mu_3}{\mu_2} J_{3/2} \left(\begin{array}{c} \nu_2 \ a_{23} \end{array} \right) \left[\begin{array}{c} P_3^{(2)} \ D_{A_3} \ + P_{3/2} \left(\begin{array}{c} \nu_3 \ a_{23} \end{array} \right) D_{B_3} \end{array} \right] - \end{split}$$

Substituting N=1 and using equations (14), (15) and (6), we get,

$$B_{n} = \frac{Sa_{1}^{3/2}}{\mu_{1}E} J_{3/2} \left(\nu_{n} a_{n} \right) D_{B_{n}}^{(n)} D_{B_{n}}^{(n-1)} \dots D_{B_{n}}^{(3)} D_{B_{n}}^{(2)}$$

$$A_{1} = \frac{Sa_{1}^{3/2}}{\mu_{1}E} D_{A_{1}}$$

$$B_{1} = \frac{Sa_{1}^{3/2}}{\mu_{1}E} D_{B_{1}}$$

where

$$\begin{split} E &= \left[\begin{array}{ccc} J_{3/2} & (\nu_2 \, a_{13}) & D_{A_2} &+ Y_{3/2} \cdot (\nu_3 \, a_{12}) & D_{B_2} \end{array} \right] \left[\begin{array}{ccc} P_1^{(2)} & Q_1 - Q_1^{(2)} & P_1 \end{array} \right] - \\ &- \frac{\mu_2}{\mu_1} \left[\begin{array}{ccc} P_2^{(1)} & D_{A_2} + Q_2^{(1)} & D_{B_2} \end{array} \right] \left[\begin{array}{ccc} Q_1 \, J_{3/2} \cdot (\nu_1 \, a_{12}) - P_1 \, Y_{3/2} \cdot (\nu_1 \, a_{12}) \end{array} \right] \\ D_{A_1} &= \frac{\mu_2}{\mu_1} \, Y_{3/2} \left(\begin{array}{ccc} \nu_1 \, a_{12} \end{array} \right) \left[\begin{array}{ccc} D_{A_2} & P_1^{(2)} &+ D_{B_2} & Q_2^{(1)} \end{array} \right] - Q_1^{(2)} \left[\begin{array}{ccc} J_{3/2} \cdot \left(\begin{array}{ccc} \nu_2 \, a_{12} \end{array} \right) & D_{A_2} \end{array} \right] \\ &+ Y_{3/2} \cdot \left(\begin{array}{ccc} \nu_2 \, a_{12} \end{array} \right) \, D_{B_2} \end{array} \right] \\ D_{B_1} &= \begin{array}{ccc} P_1^{(2)} \left[\begin{array}{ccc} D_{A_2} & J_{3/2} \cdot \left(\begin{array}{ccc} \nu_2 \, a_{12} \end{array} \right) + D_{B_2} & Y_{3/2} \cdot \left(\begin{array}{ccc} \nu_2 \, a_{12} \end{array} \right) \right] - \frac{\mu_2}{\mu_1} \, J_{3/2} \cdot \left(\begin{array}{ccc} \nu_1 \, a_{12} \end{array} \right) \\ &\left[\begin{array}{ccc} D_{A_2} & P_2^{(1)} + D_{B_2} & Q_2^{(1)} \end{array} \right] \end{split}$$

where. again

$$P_{1} = J_{3/2} (\nu_{1} a_{1}) - \nu_{1} a_{1} J_{5/2} (\nu_{1} a_{1})$$
$$Q_{1} = Y_{3/2} (\nu_{1} a_{1}) - \nu_{1} a_{1} Y_{5/2} (\nu_{1} a_{1})$$

Thus we can determine the displacement and the stresses at different layers. The displacements are measured as :

$$u_{1} = \frac{Sa_{1}^{3/2}}{\mu_{1}E} r^{-\frac{1}{2}} \left[D_{A_{1}} J_{3/2} (\nu_{1}r) + D_{B_{1}} Y_{3/2} (\nu_{1}r) \right] e^{ipt}$$

$$u_{2} = \frac{Sa_{1}^{3/2}}{\mu_{1}E} D_{B_{n}}^{(2)} r^{-\frac{1}{2}} \left[D_{A_{2}} J_{3/2} (\nu_{2}r) + D_{B_{2}} Y_{3/2} (\nu_{2}r) \right] e^{ipt}$$

$$u_{n-1} = \frac{Sa_{1}^{3/2}}{\mu_{1}E} D_{B_{n}}^{(2)} D_{B_{n}}^{(3)} D_{B_{n}}^{(4)} \dots D_{B_{n}}^{(n-1)} r^{-\frac{1}{2}} \left[D_{A_{n-1}} J_{3/2} \left(\nu_{n-1} r \right) + D_{B_{n-1}} Y_{3/2} \left(\nu_{n-1} r \right) e^{ipt} \right] e^{ipt}$$

$$(16)$$

187

DEP. SCI. J., VOL. 26, OCTOBER 1976

The stresses at the boundaries of each layers are :

$$(\widehat{rr})_{r=a_{12}} = \frac{\mu_{2}}{\mu_{1}} D_{B_{n}}^{(2)} \frac{a_{1}^{3/2}}{a_{12}^{3/2}} \frac{S}{E} \left[D_{A_{2}} \left\{ J_{3/2} (\nu_{2} a_{12}) - \nu_{2} a_{12} J_{5/2} (\nu_{2} a_{12}) \right\} + D_{B_{2}} \left\{ Y_{3/2} (\nu_{2} a_{12}) - \nu_{2} a_{12} Y_{5/2} (\nu_{2} a_{12}) \right\} \right] e^{ipt}$$

$$= a_{(n-2)(n-1)} = \frac{\mu_{n-1}}{\mu_{1}} \frac{a_{1}^{3/2}}{a_{(n-2)(n-1)}^{3/2}} \frac{S}{E} D_{B_{n}}^{(2)} D_{B_{n}}^{(3)} \dots D_{B_{n}}^{(n-1)}.$$

$$D_{A} = \left\{ J_{3/2} \left(\nu_{(n-1)} a_{(n-2)(n-1)} \right) - \nu_{n-1} a_{(n-2)(n-1)} \right\} = \nu_{n-1} a_{(n-2)(n-1)} \sum_{n=1}^{n} a_{(n-2)(n-1)} \sum_{$$

$$+ D_{B_{n-1}} \left\{ Y_{3/2} \left(\nu_{(n-1)} a_{(n-2)(n-1)} \right) - \nu_{n-1} a_{(n-2)(n-1)} Y_{5/2} \left(\nu_{(n-1)} a_{(n-2)(n-1)} \right) \right\} e^{ipt}$$
(17)

DISCUSSION

When the frequency equation (7) does not tally in adjacent layers, rupture would develop. The other mathematical deductions bring out the point that if there are a large number of flow layers so that elastic vibrational energy is dissipated away and becomes negligible at the top surface, it is possible to calculate at different layers from equations (16) and (17) the displacements and the stresses respectively generated by an enclosed explosion at the base of the layers.

ACKNOWLEDGEMENT

Thanks, are due to the University Grants Commission, New Delhi, for financially supporting the research. Thanks are also due to Dr. A. K. Sen Gupta Department of Mathematics, Jadavpur University, Calcutta for his valuable suggestions in this work and to the Head of the Department of Geological Sciences, Jadavpur University for the offer of necessary laboratory facilities.

REFERENCE

1. LOVE, A.E.H., 'A treatise on the Mathematical Theory of Elasticity, (Dover Publications), 1926, p. 90.