
TORSIONAL VIBRATION OF A NON-HOMOGENEOUS COMPOSITE CYLINDRICAL 
SHELL SUBJECTED TO A MAGNETIC FIELD 

SURYA NARAIN 
Department of Mathematics 

H. C. (P.G.) College, Varanasi 

(Received 28 April 1978; revised 9 March 1979) 

This paper investigates the propagation of torsional wave in a non-homogeneous composite cylindrical shell 
characterised by an aeolotropic material in the region r,  < r < r,  and visco-elastic material representing a parallel 
union of Kelvin and Maxwell bodies in the rogion r,  < r g r, The non-homogeneity of the shell is due to the 
variable elasticconstants Ci3, variable density p and variable shear modulus p. Lastly, frequency equation and 
phase velocity of the wave have been calculated. The perturbation equations of the field and the torsional vibration 
of aeolotropic as well as visco-elastic shell have also been investigated 

The investigations relating to the combined effect of mechanical and electromagnetic fields in elastic 
and visco-elastic materials have received an impetus in recent years due to their extensive applications in 
various branches of science and technology, particularly in plasmatrons and aeromagnetic flutter. The signi- 
ficance of these investigations, derived chiefly from the behaviour of seismic wave propagation, has a 
reasonable bearing on many seismological problems, particularly in the detection of mechanical explosions 
in the interior of the earth and in radiation of electromagnetic energy into vacuum adjacent to magnetoelastic 
bodies. Such problems have been discussed in a series of papers by Kaliski I", Sinha3, Giri4, Yadava5, 
Narain & Verma6, Narain7, and many others. As a sequal to these, the present paper is an attempt to discuss 
the torsional vibration of a non-homogeneous composite cylindrical shell subjected to a magnetic field. 
The non-homogeneity of the shell is due to the variable elastic constants cij (i, j=1,2,. . . .6), variable 
density p and variable shear modulus p. 

P R O B L E M ,  F U N D A M E N T A L  E Q U A T I O N S  A N D  B O U N D A R Y  C O N D I T ~ O N S  

We consider a perfectly conducting non-homogeneous cylindrical shell characterized by an aeolotropic 
material in the region r ,  < r < r, and visco-elastic material representing a parallel union of Kelvin and 
Maxwell bodies in the region r,G r < r,. The boundary of the she1 is supposed to be mechanically stress free. 
We assume that the shell is placed in vacuum and initially there exists an axial magnetic field of intensityH. 
Since the problem considered is of magnetoelasticity, we consi&r the expressions connecting the component 
of stress and strain; the constitutive relations of material together with magnetoelastic equations supp- 
lemented by electro-magnetic equations of Maxwell. The constitutive relations of the aeolotropic bodies 
in the cylindrical coordinates (r,B,z) as in Loves are given by 

a 0 = ~2~ err + ~ 2 2  egg -t C23 ezz i 

are = Gas erg 

where a,,, am, . . . . etc and err, egg, . . . . . . etc are components of stress and strain respectively and 
ci (i, j=;, 2 .  .6) are elastic constants. Assuming that the temperature remains constant the stress-strain 
relation for visco-elastic solid under consideration as in NowackiQ is 
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where 
1 

~3 = oij - - ~Sij ( S  = 3ke) 
7 

1 i J 
(3 )  

eij = eU - - 
3 eSag (e = c & )  

are deviatoric components of stress and strain tensors oij and rij; A, are Lame's constants; k=A+ 2 S P  
is the bulk modulus, m, m2 are visco-elastic moduli and Sij is Kronecker's delta. The strain displacement 
relation is, 

2€ij = Ui, j 'Uj, ; (4) 
and the stress equation of motion is 

Maxwell's equations governing the electromagnetic field in the body and the electromagnetic field equations 
in vacuum are similar to that given in the paper of Narain7. Since we are considering torsional vibration, 
displacement vector u has only v as its non-vanishing component which is independent of 8. Thus 

and the magnetic intensity H has the components 

Using equations (1) and (6) the only non-vanishing stress equation of motion (5) for aeolotropic material of 
the shell comes out to be 

f + $ a ('66) ( - ) = 322.'1 5 (8) 

and using equations (2), (3), (4), and (5) the non-vanishing stress equation of motion for visco-elastic material . 

of the shell comes out to be 

For hqrmonic torsional vibration we seek the solutions of the form 
vj = pj ( r )  eq("+pi ( j = l ,  2 )  (10) 

and consequently the equations (8) & (9) take the following forms 
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and 

The electromagnetic field equations in vaeuum take the follo$ing forms 

where 
w Z  = p2 2 4 

If tl+e expression for the material in the region r, < r < r2 be denoted by the suffix 1 and for that in the 
region r2 < r < r ,  by the suffix 2 then the boundary conditions on the surface are 

( 0"- 11 + ( Tro )1 - ( F*re 11 = 0 on r\ = r1 
(16) 

( 0 , ) 2 + ( T T o ) 2 - ( T * q ) 2 = O o n r = r 3  

and the continuity of the stress displacement and Maxwellian tensor in the shell on the surface r = r2 when 
formulated are 

where Tre and T*,e are Maxwell tensors in the shell and vacuum respectively. 

I 

M E T H O D  O F  S O L U T I O N  

We suppose that the elastic constants Cij, density p and the shear modulus p of the shell vary-as 

CQ = pij r2 I 

P = Po r2 
1 
) ( i , j = l , ?  ,.... 6 )  (17) 
1 

CL == PO r2 J 

where pij, p,, and po are constants and r is the radius vector. The solutions of the equations (1 1) and (12) with 
help of (17) are given by (c.f. Narain7). 

and , 
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A2 ( A2r3J~a-l ( ) - ( A2v2 + 2 ) Jv2 ( A2r3 ) 1 ,  + 
4 + B2 ( Yv2-1 ( A 2 ~ 3  ) - ( 4 ~ 2  + 2 ) Jv2 ( A2r3 ) = 0 

Zk 1 ( 2 4 )  

A i J v ,  ( ) f B1 Yvl ( hr2 = A2 Jv2 ( 4 2 ~ 2  ) + B2 Yv, ( A2r2 ) (25) 
\ 

and I 

r s  [A1 { Air2 Jv1-1 ! Alp2 ) - ( Alvl+ 2 1 Jvl ( Alr2 ) ) + 
+ ~ ~ . ( ~ l r ~ ~ ~ ~ - i ( ~ ~ r ~ ) -  ( A l v l + 2 ) Y v ,  ( A ~ T ~ ) ) ]  = - 

= PO ( 1 + % ip  ) A2 h2r2Jv,-1 ( A 2 r ~  1 - ( A2v2 + 2 ) JvB ( A2r2 ) + [ I 
+ B2 ( .\2r2Yv2-1 ( h2r, ). - ( A,v2 t 2 Yv2 ( n2r2 ) ) ] 

1 
(26) 

Thus we have four linear.equations (23) to (26) to determine four constants A1, Bl, A,, B2 in for)ns of 
material constants of the problem. Eliminating these constants from (23) to (26) the frequency equation is 
obtained as 

[ ( A2& Jy2-i ( 1 - ( A2v2 + 2 1 Jv2 ( A 2 ~ 3  ) 1 Yva ( A2r2 ) - 

v ( 2 ) ( 2 1 ( 2 - ( 2 ) V ( A 2  ) ) 1 X 

[ Po8 ( A i r 2  Jvl-1 ( ) - ( hlvl + 2 ) J v l  ( Alp2 ) 1 Alrl yvl-1 ( Alrl ) - 

', - ( & v l  + 2 )  Y ~ ~ ~ ~ ~ ~ ~ ~ ) - ( ~ ~ ~ ~  ~ ~ ~ - i ( ~ ~ r ~  ) - ( A 1 v l  + 2 )  &I ( A ~ T ~ ) ]  x 

( hir,Yvl-1 ( A1r2 ) - ( ha1 + 2 ) Y", ( A1r2 1 ) Pr,d ] = [ P o ( 1 + n r 2 i p , )  

( A2r2 Yv f  1 ( A2r2 ) h)_ ( A2v2 4- 2 ) Yv. ( A ~ r 2  ) ) [ JV2-l ( A2r8 ) - ( A2v2 -+ 2 

( 2 ) ) ] [ Jv, ( h r 2  ) { Alrl y~l-l ( Alrl ) - ( Alv l  + 2 ) yv, ( ) )! - 
\ 

- ( Jv1-l ( Alrl ) - ( A l v l  + 2 1 Jv1 ( Alp1 )) ( Yvl ( A1r2 ) ] . (27) 

271. P Introducing the wave lenght A = - and the phase velocity el = - of the torsional wave inside the shell 
4 4 

we can determine el from equation 

"' " A1 CL66 * I 2  c & = B ( ~ ( F ) B + M a )  ( 2 8 )  ; 4 

I 

135 
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As a consequence of the result (33) the equation (29) takes the form 

If there were no magnetic field, i.e. H=O then from equation (19) we have vl=v2= 2 and hence the equation 
(34) becomes 

N U M E R I C A L  R E S U L T S  
1 For r-2 the equation (35) takes the form 

- 2 (1 1 { 4 c 2 - 2  (A, 4 -2 )  ) ] = 
- A21 za2 f 2  - 2 (A2 + 1 )  + 

I 
f { x 2 1 ~ 2 - 2 ( A ~ S  I ) ] ]  [ I 6  { t 2 - 2 ( & +  2 ) } - - 2 ( l - h , ) ]  

1 
(36) 

where , 

k = Po (1 + m2 ip)  
Pee , 

Taking h1 = 1 .3, A2 = 1 . 6  and k = 1, we get t2 = 1 .58 and - 4 . 3 3  approximately. Thus for one set of 
values of XI, A2, k and r we get four values of 6  corresponding to four modes of vibration. From equation 
(32) we can obtain different values of c* for different wave numbers. 

S O L U T I O N  O F  T H E  P E R T U R B A T I O N  F I E L D  E Q U A T I O N S  

The electromagnetic field equations are solved under the boundary conditions 

and 
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and also the radiation condition as r + Co . As given by Narain7 
H dv 

E =  [---dt 

(40) 

and the solution of the equation (13) and (14) are taken so as to satisfy the radiation condition in the form. 
ho* = CHo(2) (wr)  for r > r3 

= DHJ1) (wr)  for r < .r, (41) 
Eo* = C1Ho(2) ( r )  for r ) r3 1 

= D ~ @ ~ ( ~ )  ( r )  for r < rl 1 (42) 

where HOP), Ho(2~ are Hankel functions of zero ordkr and of first and second kind. C,  D, Cl, Dl are constants. 
The boundary condition (37) with (42) gives I 

The boundary condition (38) with the help of (41) and (42) gives 
Hiq {A1 J v 1 ( 4  5-11 + B1 Yv1 ( A 1  r1) 1 D = -  
r21 HOP) (wrl) (444  

and 
Hiq 

C = - 1 A ,  Jv2 (A2 r3) + B2 Yv2 ( i2r3)  }/H,,(~) (my3) . 
r23 I 

Hence, the perturbed fields are given by 

H~ Jvl ('1 '1)  + B~ ' ~ 1  ('1 ' 1 )  1 H,,(l) (wr) ei(qz + pl) E* = - 
icrl Ho(l) (curl) ( 4 5 4  

* for T < rl , 

H~ Jv2 (A2 r3) + BYv2 ('2 ' 3 )  1 H0(4 ei(qz+ pr) , E* = - 
icr3 H,J2) (wr3) (45b) 

for I. > r3 

h* = - 
r21 (464 

for r < .i., 

Hiq ( ~2 Jb2(h2~3)+~1 Y V ~  ] H ~ ( ~ )  (wr)e~(qz+~t) 
h* = - , (46b) 

r23 Ho(2)(wr,) 
for r > r3 

T O R S I O N A L  V I B R A T I O N  O F  N O N - H O M O G E N E O U S  A E O L O T R O P I C  
S H E L L  > 

Suppose r=Rr and r=Rz betheboundaries of the aeolotropic shell which separates the solid from 
vacuum. In this case the boundary conditions are aro=O on r = R1 and r= R2 hence 
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and x 

A1 ( AlR2Jvl-1 (AIR,) - (Alv1+2) Jv1 (AIR,) I +  
+ 4 ( AlR2Yvi.1-I (AIR2) - (A1v14-2) Yvl (AIR2) = 0 I (48) 

Eliminating Al, Bl from (48), we get the frequency equation as 

( A1R1Jl-1 (AIRl) - (A1v1+2) Jvl (AIRl) ] ( AlR2Yvl-1 (AlR2) + ( A l ~ l  + 2) yvl .(A1 4) - I 
- ( AIR~Yv~-~ (~ IR~) - (A~v I  +2) Yvl(AlR1) ) x ( 4 ~ 2 ~ ~ 1 - 1  (AIR,)--(Alvl +2) Jvl (AIR2) 

2 

The phase velocity c2 = of the torsional waves are given by 
4 

c2 = (?)+ (121  (L-)~ 2nR1 + b5)t 
p66 

(50) 

where el is a root of the equation 

{ h Jvi-1 (51) - (A1 v1 + 2 )  Jvi  (51) 
' 1 x h  Yv1-1 (I .  h) + j. \ 

+ (4 vl f 2) yvl ($11) } - { h Y.1-I (6) - (A1 vl + 2 )  Yvl (&I 

1 { x B Jv l  (.[I) - (4 v1 + 2)  Jv1 ( xh )  j = 0 , (51) 

where . 

For pure elastic solids pb5 = = po and hence - 
i 

Po 1 27r R1 
(53) 

T O R S I O N A L  V I B R A T I O N  O F  N O N - H O M O G E N E O U S  V I S C O - E L A S T I C  
S H E L L  

Let r = R', and r = Rt2 be the boundaries of the visco-elastic shell then proceeding exactly similar 

to the previous case of aeolotropic shell we can find the phase ri elocity c3 = of the torsional waves as 
P 

Po (1 + m2M 7 *  + .=I 
1 Po (1 + m1 i p )  1 { f 2 2  ( & Y + l )  (54) 

where f 2  is the root of the equation 

{ B Jvrl (h) - (A2 v2 + 2) Jv2 ( f 2 )  ) { 3' 52  Yv2-1 (x' 5 2 )  + 
+ (A2 v2 + 2) Yv2 xx;'t2) ) - ( p2 Y,l ( 6 2 )  - (A2 v2 i- 2)  yv2 ( 2 2 )  ) . 

1 . ( x' h Jv2-1 (x' f 2 )  - (A2v2 + 2 )  Jv2 (xt 8) 1 = 0 (56) 

where = - R ' 2  and 5, = A, (56) 
Rtl 
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