SOME INTEGRALS OCCURING IN FRACTURE MECHANICS

K. n. Srivastava, R.m. Palaiya \& Arati Choudhary

M. A. College of Teohnology, Bhopal
(Received 19 Jainuary 1078)
 obtaining stress intensity factor at the edge of interface crack.

Recently, in several problems of fracture mechanics for example, $[1,2,3,4 \& 5]$ integrals of the following type have arisen.

$$
\begin{gather*}
I_{k}=\int_{0}^{1} \frac{\cos \left\{\omega \log \frac{1+x}{1-x}\right\}}{\left(\rho^{3}-x^{2}\right)^{k-1}} d x \tag{1}\\
I_{k}=\int_{0}^{1} \frac{x \sin \left(\omega \log \frac{1+x}{1-x}\right\}}{\left(\rho^{2}-x^{2}\right)^{k-1 / 2}} d x \tag{2}
\end{gather*} \quad \rho>1,
$$

Whëre $k=0,1,2 \ldots \ldots, ~ \omega$ is a constant, and

$$
\begin{align*}
L_{k} & =\int_{a}^{b} \frac{x^{k} \cos \omega \theta}{\left\{\left(x^{2}-a^{2}\right)\left(b^{2}-x^{2}\right)\right\}} d x \tag{3}\\
L_{1} & =\int_{a}^{b} \frac{x \sin \omega \theta^{2}}{\left\{\left(x^{2}-a^{2}\right)\left(b^{2}-x^{2}\right)\right\}^{1 / 2}} \quad d x \tag{4}
\end{align*}
$$

where

$$
\theta=\log \{(x-a)(b+x)((x+a)(b-x)\} .
$$

The evaltation of these integrals in closed form is, therefore of paiticular importance in fracture meoharics. In ihis rote, we have evaluated these integrals in closed form for $\rho>1$. These result thà vie béent used for obtaining expressions for the components of stress and stress inter sity factors at the tip of the orack lying at the interface of two bonded dissimilar elasticic solids.

SOME USEFUL RESULTS

In this section, we shall give some useful result for ready reference. These results will be used in the next sections for deriving closed form expressions for thé integràm in question.

From Erdelyi's ${ }^{6}$ we have

$$
\begin{equation*}
\int_{0}^{\infty} \operatorname{sech}^{\nu} \alpha x \cos x y d x=\frac{2^{\nu-2}}{\alpha \Gamma(\nu)} \Gamma\{(\alpha \nu+i y) / 2 \alpha\} \Gamma\{(\alpha \nu-i y) / 2 \alpha\} \tag{5}
\end{equation*}
$$

and following relations for hypergeometric functions ${ }^{7}$ -

$$
\begin{gather*}
c_{2} F_{1}(a, b-1 ; c ; z) c_{2} F_{1}(a-1, b ; c ; z)=(b-a) z_{2} F_{1}(a, b ; c+1 ; z) \tag{6}\\
(1-z)(b-a)_{2} F_{1}(a, b ; c ; z)=(c-a)_{2} F_{1}(a-1, b ; c ; z)-(c-b)_{2} F_{1}(a, b-1 ; c ; z) \tag{7}
\end{gather*}
$$

The following quadratic transformation will also be used in the next section ${ }^{7}$

$$
\begin{align*}
{ }_{2} F_{1}(a, 1-a ; c ;-z)= & (1+z)^{c-1}\left[(1+z)^{\frac{1}{2}}+z^{\frac{1}{2}}\right]^{2-2 a-2 c} \\
& \cdot{ }_{2} F_{1}\left[c+a-1, c-\frac{1}{2} ; \overline{2} c-1 ; 4 z^{\frac{1}{2}}(1+z)^{\frac{1}{2}}\left\{(1+z)^{\frac{1}{2}}+z^{\frac{1}{2}}\right\}^{-2}\right] \tag{8}
\end{align*}
$$

Lastly, we have the following Barne's contour integral representation

$$
\begin{equation*}
\frac{\Gamma_{(a)} \Gamma_{(b)} \Gamma_{(c)}}{\Gamma_{(d)} \Gamma_{(e)}}{ }_{3} F_{2}(a, b, c ; d, e ; z)=\frac{1}{2 \pi i} \int_{0 \rightarrow i \infty}^{c+i^{\infty}} \frac{\Gamma(a+s) \Gamma(b+s) \Gamma(c+s) \Gamma(-s)(-z)^{2} d s}{\Gamma(d+s) \Gamma(e+s)} \tag{9}
\end{equation*}
$$

- We further note that there is a general remark ${ }^{7}$ except for the connection between generalized hypergeometric series of argument z and z^{-1} which are the olution of the same differential equation, no linear transformation of $q+F_{q}$ seems to be known in the general case $q>1$. For ${ }_{3} F_{2}$ this relation is easily derived by evaluating the above integral by the calculus of residuts as the sum of the residucs at the poles $s=-a-k, s=-b-1, s=-c-m$ where $k, 1, m=0,1,2, \ldots \ldots \ldots$. Thus we get

$$
\begin{align*}
{ }_{3} F_{2}(a, b, c ; a, e, z)= & (-z) \frac{-a(b-a) \Gamma(c-a) \Gamma d \Gamma e}{\Gamma(d-a) \Gamma(e-a) \Gamma b}{ }_{3} F_{2}\left[\begin{array}{c}
1+a-d, 1+a-e, \\
1+a-b, 1+a-c, \\
z^{-1}
\end{array}\right]+ \\
& +(-z) \frac{\Gamma(a-b) \Gamma(c-b) \Gamma d \Gamma c}{\Gamma(d-b) \Gamma(e-b) \Gamma a \Gamma c}{ }_{3} F_{2}\left[\begin{array}{c}
1+b-d, 1+b-e, \\
b, \\
1+b-a, 1+b-c,
\end{array}\right]+ \\
& +(-z)^{-c} \overline{\Gamma(a-c) \Gamma(b-c) \Gamma d \Gamma e} \overline{\Gamma(d-c) \Gamma(e-c) \Gamma a \Gamma b^{3}} F_{2}\left[\begin{array}{c}
1+c-d, 1+c-e, z^{-1} \\
1+c-a, 1+c-b,
\end{array}\right] \tag{10}
\end{align*}
$$

This formula is useful in determining the asymptotic behaviour of ${ }_{3} F_{2}$ when z is very large.

EVALUATION OF INTEGRALS

In this section, we shall evaluate the following integrals which arise in the problems of fracture mechanics.

$$
\begin{align*}
& I_{k}=\int_{0}^{1} \frac{\cos [\omega \log \{(1+x) /(1-x)\}]}{\left(\rho^{2}-x^{2}\right)^{\frac{1}{k}-1}} d x, \rho>1 \tag{11}\\
& J_{k}=\int_{0}^{1} \frac{x \sin [\omega \log \{(1+x) /(1-x)\}]}{\left(\underline{L} \rho^{2}-x^{2}\right)^{\frac{1}{1}-\frac{1}{4}}} d x \tag{12}
\end{align*}
$$

By substituting $x=\tanh \varphi$ and using the binomial expansion and (5) we get

$$
\begin{align*}
& I_{i}=\rho^{1-2 k} \sum_{n=0}^{\infty} \sum_{\delta=0}^{n} \frac{(-)^{s}\left(k-\frac{1}{2}\right)_{n}}{\rho^{2 n} s!(n-s)!} \int_{0}^{\infty} \cos 2 \omega^{n} \operatorname{sech}^{2 n+2} \varphi d \rho \\
& =\rho^{1-2 k} \sum_{n=0}^{\infty} \sum_{s=0}^{n} \frac{(-)\left(k-\frac{1}{2}\right)_{n} 2^{2 s}}{\rho^{2 n} s!(n-s)!\Gamma(2 s+2)} \Gamma(s+1+i \omega) \Gamma(s+1-i \omega) \\
& =\frac{\Gamma \frac{1}{2} \Gamma(1+i \omega) \Gamma(1-i \omega)}{2 \rho^{2 k-1}} \sum_{s=0}^{\infty} \frac{(1+i \omega)_{s}(1-i \omega)_{s}\left(k-\frac{1}{2}\right)_{s}}{s!\Gamma(s+1)(s+3 / 2) \rho^{2 \theta}} \sum_{m=0}^{\infty} \frac{\left(k-\frac{1}{2}+s\right)_{m}}{m!\rho^{2 m}} \\
& =\frac{\Gamma(1+i \omega) \Gamma(1-i \omega)}{\left(\rho^{2}-1\right)^{k-\frac{1}{2}}} \sum_{s=0}^{\infty} \frac{(1+i \omega)_{s}(1-i \omega)_{s}\left(k-\frac{1}{2}\right)_{s}}{s!(3 / 2)_{s}(1)_{s}}\left(-\frac{1}{\rho^{2}-1}\right)^{s} \\
& =\frac{\pi \omega}{\left(\rho^{2}-1\right)^{k-\frac{1}{2}} \sinh \pi \omega}{ }_{3} F_{2}\left[1+i \omega, 1-i \omega, k-\frac{1}{2} ; 1, \frac{3}{2} ;-\frac{1}{\rho^{2}-1}\right], \rho>\sqrt{2} \tag{13}
\end{align*}
$$

Similarly, by substituting $x=\tanh \varphi$ in the integral (12) and by using the bincmial expansion we have

$$
J_{k}=\rho^{1-2 k} \sum_{n=0}^{\infty} \sum_{s=0}^{n} \frac{(-1)^{s}\left(k-\frac{1}{2}\right)_{n}}{s!(n-s)!\rho^{2 n}} \int_{0}^{\infty} \operatorname{sech}^{2 s+2} \varphi \tanh \varphi \sin 2 \omega_{\rho} d p
$$

Since

$$
\int_{0}^{\infty} \operatorname{sech}^{2 s+2} \psi \tanh \varphi \sin 2 \omega \varphi d \varphi=\frac{\omega}{s+1} \int_{0}^{\infty} \operatorname{sech}^{2 s+2} \varphi \cos 2 \omega, d \rho
$$

we have

$$
\begin{align*}
& J_{k}=\omega \rho \\
&= \frac{1-2 k}{} \sum_{n=0}^{\infty} \sum_{s=0}^{n} \frac{(-)^{s}\left(k-\frac{1}{2}\right)_{n}}{s!(n-s)!(s+1) \rho^{2 n}} \int_{0}^{\infty} \operatorname{sech}^{2 s+2} \varphi \cos 2 \omega p d \rho \tag{14}\\
&\left(\rho^{2}-1\right) \sinh \omega^{-m-\frac{1}{2}}{ }_{0} F_{2}\left[1+i \omega, 1-i \omega ; k-\frac{1}{2} ; 2 ; 3 / 2 ;-\frac{1}{\rho^{2}-1}\right], \rho>\sqrt{2},
\end{align*}
$$

The values of the above integrals for $\rho<\sqrt{2}$ can be calculated with the help of the formula (10). Next we evaluate the following integrals.

$$
\begin{equation*}
L_{x}=\int_{a}^{b} \frac{x^{k} \cos \omega \theta}{\left\{\left(x^{2}-a^{2}\right)\left(b^{2}-x^{2}\right)\right\}} d x, \quad k=0,2 \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
L_{1}=\int_{\dot{a}}^{b} \frac{x \sin \omega \theta}{\left\{\left(x^{2}-a^{2}\right)\left(b^{2}-x^{2}\right)\right)^{\frac{1}{2}}} d x \tag{16}
\end{equation*}
$$

where

$$
\theta=\log \{(x-a)(b+x) /(x+a)(b-x)\}
$$

These integrals are evaluated by separating the real and imaginary parts of the following a integrals, which have been evaluated by making the substitution $x=a \cos ^{2} \varphi+b \sin ^{2} \varphi$ and using the binomial expansion :

$$
\begin{align*}
\int_{a}^{b} \frac{\exp (i \omega \theta)}{\left\{\left(x^{2}-a^{2}\right)\left(b^{2}-x^{2}\right)\right\}^{\frac{1}{2}}} d x & =\int_{a}^{b}(x-a)^{-\frac{1}{2}+i \omega}(x+a)^{-\frac{1}{2}-i \omega}(b-x)^{-\frac{1}{2} i \omega}(b+x)^{-\frac{1}{2}+i \omega} d x \tag{17}\\
& =\frac{\pi}{(a+b) \cosh \pi \omega} F_{3}\left(\frac{1}{2}+i \omega, \frac{1}{2}-i \omega, \frac{1}{2}-i \omega, \frac{1}{2}+i \omega ; 1 ; z,-z\right)
\end{align*}
$$

$$
\begin{gather*}
\int_{a}^{b} \frac{x \exp (i \omega \theta)}{\left\{\left(x^{2}-a^{2}\right)\left(b^{2}-x^{2}\right)\right\}} d x=z \Gamma\left(\frac{1}{2}-i \omega\right) \Gamma(3 / 2+i \omega) F_{3}\left(\frac{1}{2}+i \omega, \frac{1}{2}-i \omega, \frac{1}{2}-i \omega, 3 / 2 ;+i \omega, 2 ; z,-z\right)+ \\
+\frac{a}{a+b} \Gamma\left(\frac{1}{2}-i \omega\right) \Gamma\left(\frac{1}{2}+i \omega\right) F_{3}\left(\frac{1}{2}+i \omega, \frac{1}{2}-i \omega, \frac{1}{2}-i \omega, \frac{1}{2}+i \omega ; 1, z,-z\right) \tag{18}
\end{gather*}
$$

$$
\begin{align*}
& \int_{a}^{b} \frac{x^{2} \exp (i \omega \theta)}{\left\{\left(x^{2}-a^{2}\right)\left(b-x^{2}\right)\right\}} d x=\frac{\pi_{a}^{2}}{(a+b) \cosh \pi \omega} F_{3}\left(\frac{1}{2}+i \omega, \frac{1}{2}-i \omega, \frac{1}{2}-i \omega, \frac{1}{2}+i \omega ; 1 ; z,-z\right)+ \\
&+(b-a) \Gamma\left(\frac{1}{2}-i \omega\right) \Gamma(3 / 2+i \omega) F_{3}\left(\frac{1}{2}+i \omega, \frac{1}{2}-i \omega, \frac{1}{2}-i \omega, \frac{1}{2}+i \omega ; 2 ; z,-z\right)- \\
&-\Gamma\left(\frac{3}{2}+i \omega\right) \Gamma\left(\frac{3}{2}-i \omega\right) \frac{(b-a) z}{b} F_{3}\left(\frac{1}{2}+i \omega, \frac{1}{2}-i \omega, 3 / 2-i \omega, 3 / 2+i \omega ; 3 ; z,-z\right) \tag{19}
\end{align*}
$$

where $z=(b-a) /(b+a)$ and F_{3} is hypergeometric function of two variables ${ }^{7}$. By separating the real and imaginary parts, we get

$$
\begin{align*}
& L_{0}=\frac{\pi}{(A+b) \cosh \pi \omega}{ }_{2} F_{1}\left(\frac{1}{2}+i \omega, \frac{1}{2}-i \omega ; 1 ; z^{2}\right) \tag{20}\\
& L_{1}=\frac{z \pi \omega}{\cosh \pi \omega} F_{3}\left(\frac{1}{2}+i_{\omega}, \frac{1}{2}-i \omega, \frac{1}{2}-i \omega, \frac{1}{2}+i \omega ; 2 ; z,-z\right) \tag{21}\\
& L_{2}=\frac{\pi a^{2}}{(a+b) \cosh \pi \omega} F_{3}\left(\frac{1}{2}-i \omega, \frac{1}{2}+i \omega, \frac{1}{2}+i \omega, \frac{1}{2}-i \omega ; 1 ; z,-z\right)+ \\
&+\frac{\pi(b-a}{2 \cosh \pi \omega} F_{3}\left(\frac{1}{2}-i \omega, \frac{1}{2}+i \omega, \frac{1}{2}+i \omega, \frac{1}{2}-i \omega ; 2 ; z, z\right)+ \\
&+\frac{(b-a)^{2}}{4(b+a) \cosh \pi \omega} \sum_{p=0}^{\infty} \sum_{q=0}^{\infty} \frac{\left(\frac{1}{2}-i \omega\right)_{p}\left(\frac{1}{2}+i \omega\right)_{q}\left(\frac{1}{2}+i \omega\right)_{p}\left(\frac{1}{2}-i \varphi\right)_{q}(2 q+1)(p-q) z^{p}(-z)^{q}}{p!q!(3)_{p+q}} \tag{22}
\end{align*}
$$

It is worthwhile to remark that the above series are rapidly converging eries. For any numerical computation of these integrals it is sufficient to consider only a few terms of the above series.

PARTIOULAR CASES

In the next section we shall require the values of the integrals I_{2} and J_{2}. From (13), with the help of (7) and (8) we have

$$
\begin{align*}
& I_{2}=\frac{\pi \omega}{\left(\rho^{2}-1\right)^{3 / 2} \sinh \pi \omega}{ }_{2} F_{1}\left(1+i \omega, 1-i \omega ; 1 ;-\frac{1}{\rho^{2}-1}\right), \rho>\sqrt{2} \tag{23}\\
& =\frac{\pi \omega}{2 \rho^{2}\left(\rho^{2}-1\right)^{1 / 2} \sinh \pi_{\omega}}\left[F\left(i \omega, 1-i \omega ; 1 ;-\frac{1}{\rho^{2}-1}\right)+F\left(-i \omega, 1+i \omega ; 1 ;-\frac{1}{\rho^{2}-1}\right)\right] \rho>\sqrt{2} \\
& =\frac{\pi \omega}{2 \rho^{2}\left(\rho^{2}-1\right)^{1 / 2} \sinh \pi \omega}\left[\left(\frac{\rho-1}{\rho+1}\right)^{i \omega} F\left(i \omega, \frac{1}{2} ; 1 ; \frac{4 \rho}{(\rho+1)^{2}}\right)+\left(\frac{\rho-1}{\rho+1}\right)^{-i \omega} F\left(-i \omega, \frac{1}{2} ; 1 ; \frac{4 \rho}{(\rho+1)^{2}}\right)\right] \rho>1,(24) \tag{24}
\end{align*}
$$

Similarly, from (14) with the help of (6) and (8), we have

$$
\begin{gather*}
J_{2}=\frac{\pi \omega^{2}}{\left(\rho^{2}-1\right)^{3 / 2} \sinh \# \omega} F\left(1+i \omega, 1-i \omega ; 2 ; \frac{-1}{\rho^{2}-1}\right), \rho>\sqrt{2} \tag{25}\\
=\frac{\pi \omega}{2 i\left(\rho^{2}-1\right)^{1 / 2} \sinh \pi \omega}\left[F\left(1+i \omega,-i \omega ; 1 ;-\frac{1}{\rho^{2}-1}\right)-F\left(1-i \omega, i \omega ;-\frac{1}{\rho^{2}-1}\right)\right], \rho>\sqrt{2}, \\
=\frac{\pi \omega}{2 i\left(\rho^{2}-1\right)^{1 / 2} \sinh \pi \omega}\left[\left(\frac{\rho-1}{\rho+1}\right)^{-i \omega} F\left(-i \omega, \frac{1}{2} ; 1 ; \frac{4 \rho}{(\rho+1)^{2}}\right)-\left(\frac{\rho-1}{\rho+1}\right)^{i \omega} F\left(i \omega, \frac{1}{2} ; 1 ; \frac{4 \rho}{(\rho+1)^{2}}\right) \rho>1\right. \tag{26}
\end{gather*}
$$

Next, we prove that I_{1} is bounded.

$$
\left|I_{1}\right|=\left|\int_{0}^{1} \frac{\cos \left\{\omega \log \frac{(1+x)}{(1-x)}\right\}}{\left(\rho^{2}-x^{2}\right)} d x\right| \leqslant \int_{0}^{1 / 2} \frac{d x}{\sqrt{\rho^{2}-x^{2}}}=\sin ^{1} \frac{1}{\rho} ; \rho>1
$$

The integral for I_{1} is singular only for $\rho=1$, but this is a weak singularily of the integral. The value of this integral can easily be evałuated for $\rho=1$. For, on putting $x=\cos 2 \theta$, we can easily obtain

$$
\int_{-1}^{+1} \frac{\left(\frac{1+x}{1-x}\right)^{i \omega}}{\sqrt{1-x^{2}}} d x=\frac{\pi}{\cosh \pi \omega}
$$

and on separating the real and imaginary parts, we get

$$
\int_{0}^{1} \frac{\cos \left(\omega \log \frac{1+x}{1-x}\right)}{\sqrt{1-x^{2}}} d x=\frac{\cdot \pi}{2 \cosh \pi \omega}, \int_{0}^{1} \frac{\sin \left(\omega \log \frac{1+x}{1-x}\right)}{\sqrt{1-x^{2}}} d x=0 .
$$

Lowengrub and Sneddon ${ }^{1}$ considered the problem of determining the displacement and stress field in the vicinity of a penny-shaped crack situated at the interface of two half-spaces of different elastic mateterials bcnded together along their plane boundary. We shall follow their notation. They have expressed normal stress component in the plane of the crack by the relation $[1,37]$

$$
\begin{equation*}
\sigma_{z z}\left(\rho, 0+1=-\frac{K \beta}{\rho} \sqrt{\frac{2}{\pi}} \frac{3}{2 \rho} \int_{0}^{1} \frac{x S(x)}{\left(\rho^{2}-x^{2}\right)^{\frac{1}{2}}} d x=K \beta \sqrt{\frac{2}{\pi}} \int_{0}^{1} \frac{x S(x)}{\left(\rho^{2}-x^{2}\right)^{3 / 2}} d x, \rho>1\right. \tag{27}
\end{equation*}
$$

Similarly the shearing stress in the plane of crack is given by the relation
$\sigma_{\rho} z(\rho, 0+)=K \beta \sqrt{\frac{2}{\pi}} \frac{3}{2 \rho} \int_{0}^{1} \frac{R(x)}{\left(\rho^{2}-x^{2}\right)^{t}} d x=-K \beta \rho \sqrt{\frac{2}{\pi}} \int_{0}^{1} \frac{R(x)}{\left(\rho^{2}-x^{2}\right)^{3 / 2}} d x, \rho>1$,
where

$$
\begin{gathered}
S(x)=\sqrt{\frac{2}{\pi}} \frac{f_{0} \cosh \pi \omega}{\beta}[x \cos \omega \theta+\omega \sin \omega \theta], \\
R(x)=\sqrt{\frac{2}{\pi}} \frac{f_{0} \cosh \pi \omega}{\beta}[x \sin \omega \theta-\infty \operatorname{oos} \omega \theta], \\
\theta=\log (1+x) /(1-x), \omega=\frac{1}{2 \pi} \log \frac{k_{1} G_{2}+G_{1}}{k_{2} G_{1}+G_{2}}=\frac{1}{2 \pi} \log \frac{\beta+\alpha}{\beta-\alpha}=\gamma .
\end{gathered}
$$

The paper ${ }^{1}$ contains a misprint. The value of $C_{3}=-\gamma=-\omega$.
Substituting the value of $S(x)$ and $R(x)$ in (27) and (28) respectively. we get for $\rho>1$

$$
\begin{gather*}
\sigma_{z z}(\rho, 0+)=\frac{2 K f_{v} \cosh \pi \omega}{\pi}\left[I_{2} \rho^{2}+\omega J_{2}-I_{1}\right]=\frac{2 K f_{0} \cosh \pi \omega}{\pi} \\
{\left[I_{2} \rho^{2}+\omega J_{2}\right]+0(1)} \tag{29}\\
\sigma_{\rho z}(\rho, 0+)=\frac{-2 K \rho f_{0} \cosh \pi \omega}{\pi}\left[J_{2}-\omega I_{2}\right] \tag{30}
\end{gather*}
$$

From (24) and (25) we have

$$
\begin{align*}
& I_{2}=\frac{\pi \omega}{\rho^{2}\left(\rho^{2}-1\right)^{1 / 2} \sinh \pi \omega}(C X-S Y) \tag{31}\\
& J_{2}=-\frac{\pi \omega}{\left(\rho^{2}-1\right)^{1 / 2} \sinh \pi \omega}(C Y+S X) \tag{32}
\end{align*}
$$

where $X+i Y={ }_{2} F_{1}\left[i \omega, \frac{1}{2} ; 1 ; \frac{4 \rho}{(\rho+1)^{2}}\right], C+i S=\cos \omega \psi+i \sin \omega \psi, \psi=\log \frac{\rho-1}{\rho+1}$.
With the help of these equations we get

$$
\begin{align*}
\sigma_{t z}+i \sigma_{\rho z}= & \frac{K f_{0} \omega \operatorname{coth} \pi \omega}{\left(\rho^{2}-1\right)^{1 / 2}}\left(1+\frac{i \omega}{\rho}\right)[(X+i Y)(1+\rho)(C+i S)-(\rho-1)(X-i Y) \\
& =\frac{K f_{0} \omega \operatorname{coth} \pi \omega}{\left(\rho^{2}-1\right)^{1 / 2}}\left(1+\frac{i \omega}{\rho}\right)(X+i Y)(1+\rho) \exp (i \omega \psi)+O(\sqrt{\rho-1})
\end{align*}
$$

The stress intensity factor is defined by the relation

$$
N_{1}+i N_{2}=\lim *\left[(\rho-1)^{\frac{1}{2}}\left(\sigma_{z z}+i \sigma_{\rho z}\right) \exp (-i \omega \psi)\right]
$$

Hence we get

$$
\rho \rightarrow 1+
$$

$$
\begin{align*}
N_{1}+i N_{2} & =\frac{2 K f_{0}}{\sqrt{2}} \omega \operatorname{coth} \pi \omega \Gamma\left(\frac{1}{2}-i \omega\right)(1+i \omega) / \Gamma(1-i \omega) \Gamma\left(\frac{1}{2}\right) \\
& =\frac{2 K f_{0}}{\sqrt{2 \pi}} \frac{\Gamma(2+i \omega)}{\Gamma\left(\frac{1}{2}+i \omega\right)} \tag{34}
\end{align*}
$$

The above formula coincides with the expression for the stress intensity factor derived by Kassir and Bregmann ${ }^{8}$. The stresses in the crack plane in the vicinity of the rim of the crack are given by

$$
\begin{gather*}
\sigma_{z z}(\rho, 0+)=\frac{1}{\sqrt{\rho-1}}\left[N_{1} \cos \omega \psi-N_{2} \sin \omega \psi\right]+O(\sqrt{\rho-1}) \tag{35}\\
\sigma_{\rho z}(\rho, 0+)=\frac{1}{\sqrt{\rho-1}}\left[N_{1} \sin \omega \psi+N_{2} \cos \omega \psi\right]+O(\sqrt{\rho-1}) \tag{36}
\end{gather*}
$$

w^{w} wengrub 5 has datermined the stress field in the vicinity of a pair of Griffith cracks located at the interface of the two bonded dissimilar elastic half planes. The stress-components in the plane of the cracks can be written as

$$
\begin{gather*}
\sigma_{y y}(x, 0+)+i \sigma_{x y}(x, 0+)=\frac{p_{0}}{\sqrt{\left(x^{2}-a^{2}\right)\left(x^{2}-b^{2}\right)}}\left[\left(x^{2}+C_{2}^{\prime}\right)-2 i \omega(b-a) x\right] e^{\omega \theta i}+ \\
+0(1), x>b
\end{gather*} \begin{aligned}
& \sigma_{y y}(x, 0+)+i \sigma_{x y}(x, 0+)=-\frac{p_{0}}{\left\{\left(a^{2}-x^{2}\right)\left(b^{2}-x^{2}\right)\right\}^{1 / 2}}\left[\begin{array}{c}
{\left[\left(x^{2}+C_{2}^{\prime}\right)+2 i \omega(b-a) x\right] e^{+\omega \theta i}+} \\
+0(1), x<a
\end{array}\right. \tag{37}
\end{aligned}
$$

where

$$
\theta=\log \{(x-a)(x+b) /(x+a)(x-b)\}
$$

Where the two oracks have been defined by $a \leqslant|x| \leqslant b, y=0, p_{0}$ is the constant pressure applied on the crack faces, ω is a known constant and the constant C_{2}^{\prime} is given by the condition ${ }^{5}$

$$
\begin{equation*}
\int_{a}^{b}\left\{\left(x^{2}-a^{2}\right)\left(b^{2}-x^{2}\right)\right\}^{-1 / 2}\left[\left(x^{2}+C_{2}^{\prime}\right) \cos \omega \theta+2 \omega(b-a) x \sin \omega \theta\right] d x=0 \tag{39}
\end{equation*}
$$

This gives

$$
\begin{equation*}
C_{2}^{\prime}=-\left[L_{2}+2 \omega(b-a) L_{1}\right] / L_{0} \tag{40}
\end{equation*}
$$

where L_{0}, L_{1}, L_{2} are defined by (15) and (16). Lowengrub ${ }^{5}$ has mentioned that the conatant C_{2}^{\prime} has to be calculated numerically. By virtue of the results (20)-(22), ${C^{\prime}}_{2}$ can be expressed in closed form from which its numerical value can be easily computed.

If the normal and the shear stress intensity factors $N_{1 b}$ and $N_{2 b}$ at the edge $x=b$ and $N_{1 a}$ and $N_{2 a}$ at the edge $x=a$ are defined by the relations

$$
\begin{equation*}
N_{1 b}+i N_{2 b}=\lim _{x \rightarrow b+}\left[(x-b)^{1 / 2}\left(\sigma_{y y}+i \sigma_{x y}\right) \exp (i \omega \theta)\right] \tag{41}
\end{equation*}
$$

$$
\begin{equation*}
N_{l a}+i N_{2 a}=\lim _{x \rightarrow a}\left[(a-x)^{\prime / 6}\left(x_{y}+1 o_{x y}\right) \exp (i \in a)\right] \tag{42}
\end{equation*}
$$

Than we have

Lownighte, M. \& Smpppow, I. N., Int. JL Gngg. Soi, 19 (1974), 387.
GuADwHil, G. M. L., Int. J. Engg. Bci., 7 (1969), 295.
Lownearob, M \& Skrppon, I. N., Int. J. Engg. Sci., 11 (1973), 1026.
4. Lowisarub, M. \& Sindodon, I. N., Int. J. Engg. Sci. 10 (1972), 2891

7. Erparity, A., ct. al, 'Higher tra soendental fanctione/fule (raw Hill; New. York) 1954, p. 103, 119

\qquad

