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The flow of an meompressﬂole viscous dusty gas, induced by two mﬁmte ﬂa.tg ates oscillating in their own planes,
is studied. Expressions for both the gas and the dust velocities are derived using the Laplace transform. The
velocity profiles are drawn for different conﬁgura,txons of the dust partioles and the results are compared with
those of the- clean gas.

The contamination of air in cities by dust particles has necessitated the study of the flow of dusty
gases. Saffman’ formulated the basic equations for the flow of a dusty gas. Since then, there have been
several papers in this field. Regarding the plate problems, Liu? and Michael & Miller® have studied the
flow produced by the motion of an infinite plane in & dusty fluid occupying the semi-infinite space above it.
Recently Khan? has discussed the flow of & viscous liquid between two harmonically oscillating infinite
plates, when a constant body force is applied initially in the direction of motion of the plates In this paper,
the flow of a dusty gas between two infinite flat plates oscillating in their own planes is investigated. The
Laplace transform technique is used in solving the problem.

GOVERNING EQUATIONS

A viscous, moompresmble, dusty gas bounded by two infinite flat plates executing simple harmonic
oscillations with a frequency ‘o’ in their own planes y = - ¢ is considered. Both the gas and the particle
cloud are supposed to be static at the beginning. Thedust particlesare assumed to be spherical in shape
and uniform in size so that the conservation equations given by Saffman' are applicable. The number density
of the particles is taken as a constant throughous the flow. Under these assumptions, the flow will be a
parallel flow in which the streamlines are along the z-axis and the velocities are functions of the dlstance P}
and time .

Now let y and ¢ denote the non-dimensionalised distance and time, with reference to @ and 1 respec-
: Ky w :

tively. Let Re bé the Reynolds’ number. Let f be the mass concentration of the dust particles and let + be

the relaxation time of the dust pé,rticles non—dimensiona,lised with respect to Lo « and v are the veloci-
w

ties of the gas and the dust respectively, non-dimensionalised with respect to aw , then Saffman’s
equations! reduce to the following simultaneous equa.tlons

2, . . .
&v IR : . .
T 5 = (u — v) ‘ ' (2)°
which are to be solved under the following initial and boundary conditions :
Initial Conditions . | w
- w=0v=0att=0foraly ' | )
Boundary Condiitons - SN s T
| u=u,sintaty= +1. LT )

Since the flow is symmetmcal about the plane y=0, only the flow in the reglon 0 < % < 1 is consi-
dered and accordingly the boanda.ry conditions (4) are equivalent to the followmg

w =ussintaty=1
8u

P 0 aty=0 o )
59 Y , (5)
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Solving for wand v, we obtein
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Ing@rtmg (see Appendlx), we have
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where :
E = cosh (1/X) cos (\/Y), = smh (\/X) sin (\/Y),

B, = eosh (y\/X) cos (yVY), y = smh \/X) sin (y\/Y),

where X and Y.are given by
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For a clean gas. (ie., for a gas Wlthout dust particles), the veloclty of the gasis given byt

) J (—1)* (27 +1)exp 24 12 t '
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Ast - oo, e and erst vanish (For, p, and P2 aro the roots of the quadratic équatiOn
(4 Rer)p® + { 4Re(l+f) +@n 4 1P P } P +{(2 " ‘1)2 ,‘,z} - 0

with no change of sign and are obviously negative) so that there is no contribution to the velooities from
the summation terms. Hence the solutions for the asymptotic case ¢ > co are: '

Uy

for0<y<1, (@)
L e {“(E"V‘F’)'Sm*m it COSt}‘JF‘
+ Fy{(F + E7) sint + (B — Fr) cost }i
) " “ o D frogy <1, | 21
: Uy ‘- ‘ | - ' : .
V= m[sln‘t——rcost]aty:l, I . (22)

which are periodic functions.

DISCUSSION AND CONCLUSIONS

The velocities u,, 4 and v are calo*til@tpd for times ¢ = 50, 100, 500 taking the parameters chara.cterizing(
the flow as follows : ‘ U

Re=10°; uy=0-1; f=0-1, 02 ; and 7 = 0°05, 0-1.

" Figs. 1-3 represent the variations of u,, u and v with y at different times. The velocity profiles for w are
similar to that of the clean gas showing that the presence of dust does not have any effect on the manner in
which  varies with y . Furthermore, the dust velocity v varies in the same fashion as « does (except for
¢ = 100, for which there is a discrepancy between the shapes of the u.and v profiles which may be due to the
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Fig‘ 3—Velocity distributions at £==500, -

capability, of the scale chosen there to represent velocities correct to five declmal places so that- the change
in the behaviours of u and v is seen only after the fourth decimal place).

It is evident from the graphs that, as we go away from the plate, the change in f has an appreomble

_effect on u compared to the very small effect due to a change in 7, whereas a change ih r has much more

 influence on v than a change in fhas. On the other hand, very near the boundary, the gas veloeity is un-
aﬂ‘eeted by the presence of dust while the dust velocity is the same for all f but depends on 7.

Hence it may be concluded that the gas velomty depends more on the mass concentration of the dust
particles than on their size. On the contrary, the size of the dust particleshasmore influenceonthe velocity
of the dust particles than their concentration itself has. After a long time, the velocities become
periodic but are still dependent on the size and concentration of dust particles in the gas,
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4 : ‘ APPENDIX

The inverse Laplﬁ.gﬁ transformau, v of %, v res-
1) pectively are given by the integrals

r%& i tim

1 ‘ 1 ,
. o — o £ ot -
2w f cudp ad 53 f o dp
£— 0 r—3%

I which can be evaluated by means of contour integra-
g ~ tion. Since there is no branch point, the contour
* chosen is the closed curve ABC formed by theline z—r
» and a semicircle C with origin as centre andradius R
(Fig. 4) so that

r+ i Lw B
. _ 14 _
fe?‘ud'p =R—>oof e 7 dp
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Fig. 4—Contour formed by line s=sr and a semi cirle Using Cauchy’s theorem of residues: and Jordan 8

C with origin as centre and radius R. - : lernma, we have ‘
-+ §o0 ’ | | |
U= :-i ¢” % dp = sum of the residues of { 2 @7} at its poles
#—ioo
Similarly,
r4iw ) K )
v = 271”; f e 5dp = sum of the residues of { e?t b } at its poles
r — 30

Calculating the residues and simplifying further',y we obtain expressions (11) to (13) for »and v.
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