THERMOELASTIC CONTACT PROBLEM OF AN ELASTIC LAYER RESTING ON AN ELASTIC FOUNDATION

K. N. Srivastava \& O.P. Gupta
Maulana Azad College of Technology, Bhopal

(Received 17 March 1971; revised 25 June 1971)

Abstract

This paper gives an analysis of the distribution of thermal stress in an infinite isotropic elastic layer, which rests on a semi-infinite isotropic elastio foundation and is indented by a rigid heated punch. The thermal and elastio properties of the layer and foundation are assumed to be different. Two problems are discussed. In the first problem the punch is a flat ended ciroular cylinder of unit radius, while in the second it is of conical shape. The problems are first reduced to dual integral equations, which are further reduced to two Fredholm integral equations of the second kind. Iterative solutions of these equations are obtained for large value of h. Expressions for quantities of physical interest are derived.

George \& Sneddon ${ }^{1}$ have discussed an axially symmetric problem of elastic half-space indented by a heated punch and made a comparision between the stresses caused by the punch alone and the stresses induced by thermal effects. Using a different technique Keer \& $F u^{2}$ considered stress distribution in an elastic plate due to heated punch. Recently Dhaliwal ${ }^{3}$ has considered a punch problem for an elastic layer lying over an elastic foundation.

In this paper we shall study distribution of thermal stresses in an elastic layer indented by a rigid heated punch and resting on an elastic foundation. We shall consider two problems. In the first problem the punch is a flat ended circular cylinder while in the second it is of comical shape.

By making a suitable representation of the temperature function, the heat conduction problem is reduced to the solution of a Fredholm integral equation of the second kind. Then using the salution of thermoelastic displacement differential equation, the problem is reduced to the solution of similar Fredholm integral equation in which the solution of the earlier integral equation arising from the heat conduction prablem occurs as a known function. Iterative solutions of the integral equations are found, which are valid for large values of h. These solutions are used for deriving expressions for quantities of physical interest.

FORMULATIONOF THE PROBLEM

Consider an infinite, isatropic homageneous elastic layer included between the planes $z=0$ and $z=-h$ of a cylindrical co-ordinate system (r, θ, z). The semi-infinite isotropic homogeneous space $z \Rightarrow 0$ is an elastic foundation upon which the layer rests. The thermal and elastic properties of the layer and of the foundation are assumed to be different. In the case of symmetrical deformation the displacement vector U assumes the form ($u_{r}, 0, u_{z}$) and the non-vanishing components of stress tensar will be $\sigma_{r r}, \sigma_{\phi \phi}, \sigma_{z z}$, and $\sigma_{r z}$. The region is divided into two domains (1) the layer - $h \preccurlyeq z<0$ and (2) the semi-infinite elastic space $0<z \leqslant \infty$.

The boundary conditions at the free surface $z=-h$, when it is indented by the rigid heated punch are :

$$
\begin{array}{lr}
u_{z}^{(1)}(r,-h)=g(r) & 0 \leqslant r<1 \\
\sigma_{z z}^{(1)}(r,-h)=0 & r>1 \\
\sigma_{r z}^{(1)}(r,-h)=0 & r \geqslant 0 \tag{3}
\end{array}
$$

the function $g(r)$ can be expressed according to the shape of the punch.
We shall consider the following two cases of temperature conditions at the free surface $z=-h$:

Case (${ }^{\text {a }}$)

When the temperature is prescribed,

$$
\left.\begin{array}{rlrl}
T^{(1)}(r,-h) & =T_{1}(r) & 0 \leqslant r & <1 \tag{4}\\
& =0 & r>1
\end{array}\right\}
$$

Case (b)

When the flux of heat is prescribed,

$$
\begin{array}{cr}
\left.\frac{\partial T^{(1)}}{\partial z}\right|_{z=-h}=T_{1}(r) & 0 \leqslant r<1 \\
T^{(1)}(r,-h)=0 & r>1 \tag{6}
\end{array}
$$

Since the elastic layer is perfectly in contact with elastic foundation, the continuity conditions on the interface $z=0$ are

$$
\begin{array}{ll}
u_{r}^{(1)}(r, 0) & -u_{r}^{(2)}(r, 0) \\
u_{z}^{(1)}(r, 0) & =u_{z}^{(2)}(r, 0) \\
\sigma_{z z}^{(1)}(r, 0) & =\sigma_{z z}^{(2)}(r, 0) \text { for all values of } r \\
\sigma_{r z}^{(1)}(r, 0) & =\sigma_{r z}^{(2)}(r, 0) \\
T^{(1)}(r, 0) & =T^{(2)}(r, 0) \\
\left.k_{1} \frac{s T^{(1)}}{z z}\right|_{z=0}=\left.k_{2} \frac{3 T^{(2)}}{z}\right|_{z=0} \tag{12}
\end{array}
$$

where k_{1} and k_{2} are thermal conductivities of the layer and foundation, respectively.

EQUILIBRIUMEQUATIONS OFTHERMOELASTICITY

The thermoelastic displacement components U_{i} in the absence of bady forces, satisfy the following system of equations ${ }^{4}$:

$$
\begin{equation*}
\mu U_{i, k t}+(\lambda+\mu) U_{k, k i}-T, i=0 \tag{13}
\end{equation*}
$$

where the temperature field is determined by Laplace equation

$$
\begin{equation*}
T, k k=0 \tag{14}
\end{equation*}
$$

in the steady state, and in the absence of heat sources.
In the particular case of symmetry of temperature and stress fields with respect to z-axis, equations (13), (14) reduce to two equations

$$
\left.\begin{array}{rl}
\nabla^{2} u_{r}-r-2 u_{r}+\frac{1}{1-2 \eta} e,_{r}-\frac{2(1+\eta)}{1-2 \eta} \alpha_{t} T_{, r} & =0 \tag{15}\\
\nabla^{2} u_{z}+\frac{1}{1-2 \eta} e_{g z}-\frac{2(1+\eta)}{1-2 \eta} \alpha_{t} T & =0 \\
y_{y z} & \nabla^{3} T
\end{array}\right\}
$$

where

$$
e=u_{r, r}+r u_{r}+u_{z ; z} \quad \nabla^{2}=g_{2}^{2} r+r^{-1} \imath r+\imath^{z}
$$

μ is modulus of rigidity, η Poisson's ratio, α_{t} the coefficient of linear expansion.
The two components of stress, in terms of displacements are

$$
\begin{align*}
& \sigma_{r z}(r, z)=\mu\left(\frac{s u_{r}}{z}+\frac{s u_{z}}{\partial r}\right) \tag{16}\\
& \sigma_{z z}(r, z)=\frac{2 \mu}{1-2 \eta}\left[(1-\eta) \frac{u_{z}}{z z}+\eta\left(\frac{3 u_{r}}{z r}+\frac{u_{r}}{r}\right)-(1+\eta) \alpha_{t} T\right] \tag{17}
\end{align*}
$$

In region $1(-h \leqslant z<0)$. we follow the method given by Srivastava \& Palaiya ${ }^{5}$ for deriving the expressions for the displacements, stresses and the temperature field. These expressions are

$$
\begin{align*}
& 2 \mu_{1} u_{r}^{(1)}=\int_{0}^{\infty} \xi\left[(C+D Z) e^{\xi z}+(E+F Z) e^{-\xi z}\right] J_{0}^{\prime}(\xi r) d \xi \tag{18}\\
& 2 \mu_{1} u_{z}^{(1)}=\int_{0}^{\infty}\left[\left\{\xi(C+D Z)-\left(3-4 \eta_{\eta}\right) D+2 A\right\} e^{\xi z}\right. \\
& \left.-\left\{\xi(E+F Z)-\left(3-4_{\eta_{i}}\right) F+2 B\right\} \varepsilon^{2} \epsilon^{2}\right] J_{0}(\xi r) d \xi \tag{19}\\
& \sigma_{z z}{ }^{(1)}=\int_{0}^{\infty}\left[\left\{\xi(C+D Z)-\left(2-2 \eta_{1}\right) D+A\right\} e^{\xi z}+\right. \\
& \left.+\left\{\xi(E+F Z)+\left(2-2 \eta_{1}\right) F+B\right\} e^{-\xi z}\right] \xi J_{0}(\xi r) d \xi \tag{20}\\
& \sigma_{r z}(1)=\int_{0}^{\infty}\left[\left\{\xi(C+D Z)-\left(1-2 \eta_{1}\right) D+A\right\} e^{\xi z}\right. \\
& \left.-\left\{\xi(E+F Z)+\left(1-2 \eta_{1}\right) F+B\right\} e-\xi z\right] \xi J_{0}^{\prime}(\xi r) d \xi \tag{21}\\
& T(1)=\frac{1}{\alpha_{1}\left(1+\eta_{1}\right)} \int_{0}^{\infty}\left[A e^{\xi z}+B e^{-\xi z}\right] \xi J_{0}(\xi r) d \xi \tag{22}
\end{align*}
$$

where $A, B, C, \ldots . E$ and F are unknown constants to be determined.

The corresponding expressions for the region $2(z>0)$, which are abtained by replacing $\alpha_{1}, \mu_{1}, \eta_{1}, E$, F and B by $\alpha_{2}, \mu_{2}, \eta_{2}, E_{1}, F_{1}$ and B_{1} respectively and putting $A=C=D=0$ in the above expressions, are :

$$
\begin{align*}
& 2 \mu_{2} u_{r}^{(2)}=\int_{0}^{\infty} \xi\left(E_{1}+F_{1} Z\right) e^{\xi_{z}} J_{0}^{\prime}(\xi r) d \xi \tag{23}\\
& 2 \mu_{2} u_{z}^{(2)}=-\int_{0}^{\infty}\left[\xi\left(E_{1}+F_{1} Z\right)+\left(3-4 \eta_{2}\right) F_{1}+2 B_{1}\right] e^{-\xi z} J_{0}(\xi r) d \xi \tag{24}\\
& \sigma_{z z^{2}}{ }^{2}=\int_{0}^{\infty}\left[\xi\left(E_{1}+F_{1} Z\right)+\left(2-2 \eta_{2}\right) F_{1}+B_{1}\right] e^{-\xi z} \xi J_{0}(\xi r) d \xi \tag{25}\\
& \sigma_{r r}{ }^{(2)}=-\int_{0}^{\infty}\left[\xi\left(E_{1}+F_{1} Z\right)+\left(1-2 \eta_{2}\right) F_{1}+B_{1}\right] e^{-\xi z \xi J_{0}^{\prime}(\xi r) d \xi} \tag{26}\\
& T^{(2)}=\frac{1}{\alpha_{2}\left(1+\eta_{2}\right)} \int_{0}^{\infty} \xi B_{1} \varepsilon-\xi J_{0}(\xi r) d \xi \tag{27}
\end{align*}
$$

where

$$
\mu_{i}=E_{i}^{\prime} / 2\left(1+\eta_{i}\right), \quad i=1,2
$$

and E_{i} ' is the Young's modulus.

TEMPERATUREFIELDS

Let us consider both the cases of temperature fields.
The conditions (11) and (12) are satisfied, provided

$$
\begin{aligned}
& A=\frac{1}{2}(1-k) \frac{\alpha_{1}\left(1+\eta_{1}\right)}{\alpha_{2}\left(1+\eta_{2}\right)} B_{1} \\
& B=\frac{1}{2}(1+k) \frac{\alpha_{1}\left(1+\eta_{1}\right)}{\alpha_{2}\left(1+\eta_{2}\right)} B_{1}
\end{aligned}
$$

Hence (22) can be written as

$$
\begin{equation*}
T^{(1)}=\frac{1}{2 \alpha_{2}\left(1+\eta_{2}\right) k_{1}} \int_{0}^{\infty} \xi B_{1}(\xi)\left[\left(k_{1}-k_{2}\right) e^{\xi z}+\left(k_{1}+k_{2}\right) e^{-\xi z}\right] J_{0}(\xi r) d \xi \tag{28}
\end{equation*}
$$

where

$$
k=k_{1} / k_{2}
$$

Case (a)
Thus case (a) gives the following equations

$$
\left.\int_{0}^{\infty} \xi B_{1}(\xi)\left[\left(k_{1}-k_{2}\right) e^{-\xi h_{1}}+\left(k_{1}+k_{2}\right) e^{\xi / \pi}\right] J_{0}(\xi r) d \xi \quad=T_{1}^{\prime}(r) \quad 0<r<1 \quad \begin{array}{rr}
& 0<1 \tag{29}
\end{array}\right\}
$$

or we have

$$
\begin{equation*}
\left[\left(k_{1}-k_{2}\right) e^{-\xi h}+\left(k_{1}+k_{2}\right) e^{\xi h}\right] B_{1}(\xi)=\int_{0}^{1} r T_{1}^{\prime}(r) J_{0}(\xi r) d r \tag{30}
\end{equation*}
$$

where

$$
T_{1}^{\prime}(r)=2 \alpha_{2}\left(1+\eta_{2}\right) k_{1} T_{1}(r)
$$

Cas (b)
Similarly for the case (b) we abtain the following pair of dual integral equations

$$
\begin{align*}
& \int_{0}^{\infty}\left[1 \neq H^{\prime}(2 \xi h)\right] \xi \phi(\xi) J_{0}(\xi r) d \xi=T_{1}^{\prime \prime}(r) \tag{31}\\
& 0 \leqslant r<1 \\
& \int_{0}^{\infty} \phi(\xi) J_{0}(\xi r) d \xi
\end{align*}
$$

where

$$
H^{\prime}(2 \xi h)=\frac{2 a^{\prime} e^{-2 \xi h}}{1-a^{\prime} e^{-2 \xi h}} \quad \text { and } \quad a^{\prime}=\frac{k_{2}-k_{1}}{k_{2}+k_{1}}
$$

and

$$
\begin{align*}
& T_{1}^{\prime \prime}(r)=-2 \alpha_{2}\left(1+\eta_{2}\right) k_{1} T_{1}(r) \\
& \phi(\xi)=\xi B_{1}(\xi)\left[\left(k_{1}-k_{2}\right) e^{-\xi h}+\left(k_{1}+k_{2}\right) e^{\xi h}\right] \tag{32}
\end{align*}
$$

The solution of the above dual integral equations as given by Sneddone is

$$
\begin{equation*}
\phi(\xi)=\int_{0}^{1} g^{\prime}(t) \sin (\xi t) d t \tag{33}
\end{equation*}
$$

where

$$
g^{\prime}(0)=0
$$

and $g^{\prime}(t)$ is determined from the Frodholm integral equation

$$
\begin{equation*}
g^{\prime}(t)=A(t)-\int_{0}^{1} g^{\prime}(t) K^{\prime}(S, t) d S \tag{34}
\end{equation*}
$$

where $A(t)=\frac{2}{\pi} \int_{0}^{t} \frac{r T_{1}^{\prime \prime}(r) d r}{\left(t^{2}-r^{2}\right)^{\frac{1}{4}}}$

$$
\begin{align*}
K^{\prime}(S, t) & =\frac{2}{\pi} \int_{0}^{\infty} H^{\prime}(2 \xi h) \sin (\xi t) \sin (\xi S) d \xi \\
& =\frac{1}{\pi}\left[\frac{2 t S}{h^{3}} I_{1}-\frac{t S\left(t^{2}+S^{2}\right)}{3 h^{5}} I_{2}+O\left(h^{-7}\right)\right] \tag{36}
\end{align*}
$$

and

$$
\begin{equation*}
I_{n}=\int_{0}^{\infty} \lambda^{2 n} H^{\prime}(2 \lambda) d \lambda, \quad n=1,2 \tag{37}
\end{equation*}
$$

We assume that the iterative solution of (34) is

$$
\begin{equation*}
g^{\prime}(t)=g_{0}^{\prime}(t)+\frac{g_{1}^{\prime}(t)}{h}+\ldots .+\frac{g_{5}^{\prime}(t)}{h^{5}}+o\left(h^{-6}\right) \tag{38}
\end{equation*}
$$

If we take $T_{1}^{\prime \prime}(r)=$ constant $=\theta_{0}$ (say) then,

$$
\begin{aligned}
& g_{0}^{\prime}(t)=\frac{2}{\pi} \theta_{0} t=\theta t(\text { say }) \\
& g_{2}^{\prime}(t)=g_{2}^{\prime}(t)=0 \\
& g_{3}^{\prime}(t)=-\frac{2 I_{1} t}{\pi} \int_{0}^{1} S g_{0}{ }^{\prime}(S) d S=-\frac{2 I_{1}}{3 \pi} \theta t
\end{aligned}
$$

$$
\begin{aligned}
g_{1}^{\prime}(t) & =-\frac{2 I_{1} t}{\pi} \int_{0}^{1} S g_{1}^{\prime}(S) d S=0 \\
g_{5}^{\prime}(t) & =-\frac{1}{\pi} \int_{0}^{1}\left[2 I_{1} t S g_{2}^{\prime}(S)-\frac{t S\left(t^{2}+S^{2}\right)}{3} I_{2} g_{0}^{\prime}(S)\right] d S \\
& =\frac{I_{2} \theta}{45 \pi} t\left(3+5 t^{2}\right)
\end{aligned}
$$

so that

$$
\begin{equation*}
g^{\prime}(t)=\theta t\left[1-\frac{2 I_{1}}{3 \pi h^{3}}+\frac{I_{2}}{45 \pi h^{5}}\left(3+5 t^{2}\right)+0\left(h^{-7}\right)\right] \tag{39}
\end{equation*}
$$

where

$$
\theta=2 / \pi \theta_{0} .
$$

REDUCTION OF PROBLEM TO DUAL INTEGRALEQUATIONS .
The continuity conditions (7) to (10) are satisfied, provided

$$
\begin{align*}
& 4\left(1-\eta_{1}\right) \xi C=(\mu-1)\left(3-4 \eta_{1}\right) \xi E_{1}+\alpha F_{1}+\beta B_{1} \tag{40}\\
& 4\left(1-\eta_{1}\right) D=2(\mu-1) \xi E_{1}+(\mu-1)\left(3-4 \eta_{2}\right) F_{1}+\nu B_{1} \tag{41}\\
& 4\left(1-\eta_{1}\right) \xi E=\left(\mu+3-4 \eta_{1}\right) \xi E_{1}-\alpha F_{1}-\beta B_{1} \tag{42}\\
& 4\left(1-\eta_{1}\right) F=\left[1+\mu\left(3-4 \eta_{2}\right)\right] F_{1}+\alpha_{0} B_{1} \tag{43}
\end{align*}
$$

where

$$
\begin{aligned}
& \alpha=\mu\left(3-4 \eta_{2}\right)\left(1-2 \eta_{1}\right)-\left(1-2 \eta_{2}\right)\left(3-4 \eta_{1}\right) \\
& \alpha_{0}=2 \mu-(1+k) L \\
& \beta=\mu\left(2-4 \eta_{1}\right)-3+4 \eta_{1}+L k \\
& \nu=2 \mu-2+(1-k) L \\
& L=\alpha_{1}\left(1+\eta_{1}\right) / \alpha_{2}\left(1+\eta_{2}\right) \\
& \mu=\mu_{1} / \mu_{2}
\end{aligned}
$$

and
Now the application of (3) leads to

$$
\begin{align*}
& \xi E_{1}\left[(\mu-1)(1-2 \xi h) e^{-2 \xi h}-\mu-3+4 \eta_{1}\right] \\
= & -F_{1}\left[\left\{\alpha-(\mu-1)\left(3-4 \eta_{2}\right)\left(\xi h+1-2 \eta_{1}\right)\right\} e^{-2 \xi h}-\right. \\
& \left.-\left(1-2 \eta_{1}-\xi h\right)\left\{1+\mu\left(3-4 \eta_{2}\right)\right\}+\alpha\right]- \\
& -B_{1}\left[(L-1-\nu \xi h) e^{-2 \xi h}-L-3+4 \eta_{1}+\alpha_{0} \xi h\right] \tag{44}
\end{align*}
$$

Equations (40) to (43) express the unknown functions $C(\xi), D(\xi), E(\xi)$ and $F(\xi)$ in terms of $E_{1}(\xi)$, $\boldsymbol{F}_{1}(\xi)$ and $B_{1}(\xi)$ and (41) expresses the finknown function $E_{1}(\xi)$ in terms of single unknown function $F_{1}(\xi)$.

Now, if we define $F_{1}(\xi)$ in terms of another unknown function $G(\xi)$ by the relation

$$
\begin{equation*}
\frac{\boldsymbol{F}_{1}(\xi)}{4\left(1-\eta_{1}\right)}=-\frac{\mu^{\prime}(1-x) e^{-x-M_{3}}}{M_{2} M_{3} x(x)} e^{-\xi h} G(\xi)-\frac{B_{1}(\xi)\left[\mu^{\prime} \alpha_{0} e^{-2 x}+\alpha_{11} e^{-x}+M_{3} \alpha_{0}\right]}{M_{2} M_{3} \chi(x)} \tag{45}
\end{equation*}
$$

where

$$
\begin{array}{ll}
x=2 \xi h, & M_{1}=\left(3-4 \eta_{1}\right)-\mu\left(3-4 \eta_{2}\right) \\
M_{2}=1+\mu\left(3-4 \eta_{2}\right), & M_{3}=\mu+3-4 \eta_{1} \\
\mu^{\prime}=\mu-1 & \alpha_{1_{1}}-8 L(1-k)\left(1-\eta_{1}\right) \\
\chi(x)=1+\left[a+b\left(1-x^{2}\right)\right] e^{-x}+c e^{-2 x}
\end{array}
$$

and

$$
a=M_{1} / M_{2}, \quad b=-\mu^{\prime} / M_{3}, \quad c=-\mu^{\prime} M_{1} / M_{2} M_{3}
$$

the boundary conditions (1) and (2) are satisfied if $G(\xi)$ is the solution of the dual integral equations

$$
\begin{gather*}
\int_{0}^{\infty}[1+H(2 \xi h)] G(\xi) J_{0}(\xi r) d \xi=-\frac{G^{\prime}(r)}{2-2 \eta_{1}} \quad 0 \leqslant r<1 \tag{46}\\
\int_{0}^{\infty} \xi G(\xi) J_{0}(\xi r) d \xi=0 \quad r>1 \tag{47}
\end{gather*}
$$

where

$$
\begin{equation*}
H(x)=-\frac{e^{-x}\left[a+b\left(1+x^{2}\right)+2 c e^{-x}\right]}{x(x)} \tag{48}
\end{equation*}
$$

and $G^{\prime}(r)$ is defined as

$$
\begin{equation*}
G^{\prime}(r)=g(r)+\frac{k_{1}}{M_{3}\left(k_{2}+k_{1}\right)} \int_{0}^{\infty} \frac{\phi(\xi)}{\xi}[1+Q(2 \xi h)] J_{0}(\xi r) d \xi \tag{49}
\end{equation*}
$$

$\phi(\xi)$ ean be obtained from equation (33) and $Q(x)$ is given as

$$
\begin{align*}
Q(x)= & {\left[e^{-4 x}\left(\theta_{1}-c P_{2} x\right)+e^{-3 x}\left(\theta_{2}+\theta_{3} x+b P_{1} x^{2}-b P_{2} x^{3}\right)+e^{-2 x}\left(\theta_{4}+\theta_{5} x-\right.\right.} \\
& \left.\left.-b P_{3} x^{2}-b P_{4} x^{3}\right)+e^{-x}\left(\theta_{6}+\theta_{7} x+b P_{5} x^{2}\right)\right] \div\left[\left\{1+h(1-x) e^{-x}\right\}\right. \\
& \left.\quad .\left(1-a^{\prime} e^{-x}\right) x(x)\right] \tag{50}
\end{align*}
$$

where

$$
\begin{array}{ll}
\dot{P}_{1}=\frac{\mu^{\prime}(L-\mu)}{K}+a^{\prime} b, & P_{2}=\frac{\mu^{\prime} L(1-k)}{2 K}+a^{\prime} b \\
\dot{P}_{3}=\frac{\mu^{\prime} L}{K}-a^{\prime}+b, & \boldsymbol{P}_{4}=\frac{\mu^{\prime}[L(1+k)-4 \mu]}{2 K}-b
\end{array}
$$

$$
P_{5}=\frac{\mu M_{3}}{K}-1
$$

and

$$
\begin{aligned}
& \theta_{1}=P_{1}+\frac{\mu^{\prime} \alpha_{0}\left(2-2 \eta_{1}\right)}{K} \\
& \theta_{2}=P_{1}(a+b)-c\left[\frac{\mu^{\prime} L}{K}+\frac{16 L(1-k)\left(1-\eta_{1}\right)^{2}}{K}-a^{\prime}+b\right] \\
& \theta_{3}=2 b \frac{\mu^{\prime} \alpha_{0}\left(2-2 \eta_{1}\right)}{K}-c P_{4}(a+b) P_{2}, \\
& \theta_{4}=P_{1}+c P_{5}-\left(\mu^{\prime}-c M_{3}\right) \frac{\mu^{\prime} \alpha_{0}\left(2-2 \eta_{1}\right)}{K}-(a+b) P_{3} \\
& \theta_{5}=32 b \frac{L(1-k)\left(1-\eta_{1}\right)^{2}}{K}-P_{2}-(a+b) P_{4} \\
& \theta_{6}=(a+b) P_{5}-\left[\frac{\mu^{\prime} L}{K}+\frac{16 L(1-k)\left(1-\eta_{1}\right)^{2}}{K}-a^{\prime}+b\right] \\
& \theta_{7}=2 b M_{3} \frac{\mu^{\prime} \alpha_{0}\left(2-2 \eta_{1}\right)}{K}-P_{4}
\end{aligned}
$$

where $K=\alpha_{0}\left[1-\left(2-2 n_{1}\right) M_{3}\right]$.

The solution of the dual integral equations (46) and (47) as given by Sneddon ${ }^{6}$ is

$$
\begin{equation*}
G(\xi)=\int_{0}^{1} W(t) \cos (\xi t) d t \tag{51}
\end{equation*}
$$

$W(t)$ is determined from the Fredholm integral equation

$$
\begin{equation*}
W(t)=p_{1} \psi(t)+p_{1} p_{2} \int_{0}^{\infty} \frac{\phi(\xi)}{\xi}[1+Q(2 \xi h)] \cos \xi t d t-\int_{0}^{1} K(S, t) W(S) d S \tag{52}
\end{equation*}
$$

where $\quad p_{1}=-\frac{2}{\pi\left(2-2 \eta_{1}\right)} \quad p_{2}=\frac{k_{1}}{M_{3}\left(k_{2}+k_{1}\right)}$

$$
\begin{align*}
\psi(t) & =\frac{d}{d t} \int_{0}^{t} \frac{r g(r) d r}{\left(t^{2}-r^{2}\right)^{\frac{1}{2}}} \tag{53}\\
K(S, t) & =\frac{2}{h \pi} \int_{0}^{\infty} H(2 \lambda) \cos (\lambda S / h) \cos (\lambda t / h) d \lambda \\
& =\frac{1}{\pi}\left[\frac{j_{0}}{h}-\frac{S^{2}+t^{2}}{h^{3}} j_{1}+\frac{t^{4}+6 t^{2} S^{2}+S^{4}}{h^{5}} j_{2}+O\left(h^{-7}\right)\right] \tag{54}
\end{align*}
$$

and

$$
\begin{equation*}
\jmath_{n}=\frac{1}{2 n!} \int_{0}^{\infty} H(2 \lambda) \lambda^{2 n} d \lambda \quad(n=(0,1,2) \tag{55}
\end{equation*}
$$

The expression for $K(S, t)$ is obtained by substituting $\xi /=\lambda$ and writing the expansion for cosine and sine functions in powers of h.

On substituting the value of $\phi(\xi)$ from (33) into (52), we get

$$
\begin{align*}
W(t)= & p_{1} \psi(t)+\frac{p_{1} p_{2}}{2} \pi \int_{t}^{1} g^{\prime}(u) d u+p_{1} p_{2} \int_{0}^{1} g^{\prime}(u) d u \int_{0}^{\infty} \frac{1}{\xi} Q(2 \xi h) \sin (\xi u)^{\prime} \\
& \cdot \cos (\xi t) d \xi-\int_{0}^{1} K(S, t) W(S) d S \tag{56}
\end{align*}
$$

Inserting the value of $g^{\prime}(u)$ from (39) into (56), we get.

$$
\begin{align*}
W(t)= & p_{1} \psi(t)+\frac{2 p_{1} p_{2}}{\pi} \theta_{0}\left[\frac{\pi}{4}\left(1-t^{2}\right)+\frac{\delta_{0}}{3 h}-\frac{1}{30 h^{3}}\left\{5 I_{1}\left(1-t^{2}\right)+\right.\right. \\
& \left.+6 \delta_{1}\left(1+5 t^{2}\right)\right\}-\frac{2 \delta_{0} I_{1}}{9 \pi h^{4}}+\frac{1}{2520 h^{5}}\left\{7 I_{2}\left(11-6 t^{2}-5 t^{4}\right)+\right. \\
& \left.\left.+120 \delta_{2}\left(3+42 t^{2}+35 t^{4}\right)\right\}+0\left(h^{-6}\right)\right]-\int_{0}^{1} K(S, t) W(S) d S \tag{57}
\end{align*}
$$

whore

$$
\begin{equation*}
\delta_{n}=\frac{1}{(2 n+1)!} \int_{0}^{\infty} Q(2 \lambda) \lambda^{2 n} d \lambda \quad(n=0,1,2) \tag{58}
\end{equation*}
$$

An iterative solution of (57) can be obtainod by writing

$$
\begin{equation*}
W(t)=W_{0}(t)+\frac{W_{1}(t)}{h}+\ldots \ldots .+\frac{W_{5}(t)}{h^{5}}+o\left(h^{-6}\right) \tag{59}
\end{equation*}
$$

where

$$
\begin{align*}
W_{0}(t)= & p_{1} \psi(t)+\frac{p_{1} p_{2}}{2} \theta_{0}\left(1-t^{2}\right) \\
W_{1}(t)= & \frac{2 p_{1} p_{2}}{3 \pi} \theta_{0} \delta_{0}-\frac{j_{0}}{\pi} \int_{0}^{1} W_{0}(S) d S \tag{60}\\
W_{2}(t)= & -\frac{j_{0}}{\pi} \int_{0}^{1} W_{1}(S) d S \\
W_{3}(t)= & -\frac{p_{1} p_{2}}{15 \pi} \theta_{0}\left[5 I_{1}\left(1-t^{2}\right)+6 \delta_{1}\left(1+5 t^{2}\right)\right]-\frac{1}{\pi} \int_{0}^{1}\left[W_{2}(S) j_{0}-\right. \\
& \left.\cdot-j W_{0}(S)\left(S^{2}+t^{2}\right)\right] d S
\end{align*}
$$

$$
\begin{aligned}
W_{4}(t) & =-\frac{4 p_{1} p_{2}}{9 \pi^{2}} \delta_{0} I_{1} \theta_{0}-\frac{1}{\pi} \int_{0}^{1}\left[W_{3}(S) j_{0}-j_{1} W_{1}(S)\left(S^{2}+t^{2}\right)\right] d S \\
W_{5}(t)= & \frac{p_{1} p_{2}}{12 \epsilon 0 \pi} \theta_{0}\left[7 I_{2}\left(11-c t^{2}-5 t^{4}\right)+120 \delta_{2}\left(3+42 t^{2}+35 t^{4}\right)\right]- \\
& -\frac{1}{\pi} \int_{0}^{1}\left[W_{4}(S) j_{0}-W_{2}(S) j_{4}\left(S^{2}+t^{2}\right)+W_{0}(S) j_{2}\left(t^{4}+\left(t^{2} S^{2}+S^{4}\right)\right] d S\right.
\end{aligned}
$$

Numer cal values of $I_{n}(n=1,2), \delta_{n}(n=0,1,2)$ have been computed for $\eta_{1}=.33, \eta_{2}=.25, k_{1}=.42$ $k_{2}=.54, E_{1}^{\prime}=10 \times 10^{11} \mathrm{dyn} / \mathrm{cm}^{2}, E_{2}^{\prime}=21 \times 10^{11} \mathrm{dyn} / \mathrm{cm}^{2}, \alpha_{1}=0.000012$ and $\alpha_{2}=0.0000102$ and $\mu=$

The values of the integral $j_{n}(n=0,1,2)$ lave been ${ }^{3}$ given in Table $\mathbf{1}$,

NORMAL STRESS UNDERTHEPUNCH

We shall now derive the expression for the normal stress under the punsh.
The normal stress under the punch is

$$
\begin{equation*}
\sigma_{z z}(r,-h)=\int_{0}^{\infty} \xi G(\xi) J_{\theta}(\xi x) d \xi \tag{61}
\end{equation*}
$$

Substituting the value of $G(\xi)$ from (51) into (61) and interehanging the order of integration, we get

$$
\begin{equation*}
{ }_{\sigma}^{(1)}(r,-h)=-\frac{1}{r} \frac{d}{d r} \int_{r}^{1} \frac{t W(t) d t}{\left(t^{2}-r^{2}\right)^{\frac{1}{2}}} \tag{62}
\end{equation*}
$$

TOTAL LOADON THE PUNCH

We defive the expression of total load P applied by the punch to maintain the displacement.
The total load under the punoh is

$$
\begin{equation*}
P=-2 \pi \int_{0}^{1} \sigma_{z z}(r,-h) r d r \tag{63}
\end{equation*}
$$

(1)
inserting the value of $\sigma_{z z}(r,-h)$ from (62) into (63) we get

$$
\begin{equation*}
P=-2 \pi \int_{0}^{1} W(t) d t \tag{64}
\end{equation*}
$$

Table 1
Values of integrals $I_{n}, \|_{n}$ and j_{n} for $n=0,1$ and -2

Integrals		n	\vdots
		0	1
I_{n}	\ldots	0.029632	0.088248
δ_{n}	1.191022	0.185111	0.057212
j_{n}	1.246991	0.800334	0.381609

Srivastava \& Gupta : Thermoelastic Contact Problem
 SHAPEOF THEDEFORMED SURFACE

The shape of the deformed surface for $r>1$ is

$$
\begin{equation*}
u_{z}(r,-h)=-\left(2-2 \eta_{1}\right) \int_{0}^{\infty}[1+H(2 \xi h)] G(\xi) J_{0}(\xi r) d \xi \tag{65}
\end{equation*}
$$

Substituting the value of $G(\xi)$ from (51) into (65) we have

$$
\begin{equation*}
u_{z}^{(1)}(r,-h)=-\left(2-2 \eta_{1}\right)\left[\int_{0}^{1} \frac{W(t) d t}{\left(r^{2}-t^{2}\right)^{\frac{1}{2}}}+\int_{0}^{1} W(t) K(r, t) d t\right] \tag{66}
\end{equation*}
$$

where

$$
\begin{align*}
K(r, t) & =\frac{1}{h} \int_{0}^{\infty} H(2 \lambda) J_{0}(\lambda r / h) \cos (\lambda t / h) d \lambda \\
& =\left[\frac{j_{0}}{h}-\frac{j_{1}}{h^{3}}\left(t^{2}+\frac{1}{2} r^{2}\right)+\frac{j_{0}}{h^{h}}\left(t^{4}+\frac{3}{8} r^{4}+3 r^{2} t^{2}\right)\right]+O\left(h-{ }^{7}\right) \tag{67}
\end{align*}
$$

where $j_{n}(n=0,1,2)$ is defined by the equation (55).
The expression for $K(r, t)$ is obtained by substituting $\xi h=\lambda$ and writing the expansions for cosine and J_{0} function in powers of h.

PARTIQULARCASES

Here we consider cases for two different shapes of the punch.

Flat-Ended Cylindrical Punch

The shape of the punch is a flat ended circular cylinder of unit radius and ϵ is the depth to which the punch penetrates (sse Fig. 1). Then we have

$$
\begin{equation*}
g(r)=\epsilon \quad \therefore \leqslant r \leqslant 1 \tag{68}
\end{equation*}
$$

Therefore, the value (52) can be written as

$$
\begin{equation*}
\psi(t)=\epsilon \tag{69}
\end{equation*}
$$

Inserting the value of $\psi(t)$ from (69) into the expressions of (60), (59) can be written as

$$
\begin{equation*}
W(t)=A_{0}+A_{1} t^{2}+A_{2} t^{4}+O\left(h^{-6}\right) \tag{70}
\end{equation*}
$$

$$
\begin{aligned}
A_{1}= & -\epsilon\left[\frac{0.015471}{h^{3}}-\frac{0.048021}{h^{4}}-\frac{0.090309}{h^{5}}\right]+\theta_{0}\left[0.030365-\frac{0.001071}{h^{3}}\right. \\
& \left.-\frac{0.001863}{h^{4}}-\frac{0.000834}{h^{5}}\right] \\
A_{2}= & \epsilon \frac{0.057685}{h^{5}}-\theta_{0} \frac{0.001145}{h^{5}}
\end{aligned}
$$

The normal stress is

$$
\begin{equation*}
{ }_{22}(r,-h)=-\left(1-r^{2}\right)^{-1}\left[\left(A_{2}-A_{1}-A_{0}\right)-2\left(A_{1}-\frac{2}{3} A_{2}\right) r^{2}-\frac{8}{3} A_{2} r^{4}\right]+o\left(h^{-6}\right) \tag{71}
\end{equation*}
$$

and the pressure is

$$
\begin{equation*}
P=-2 \pi\left[A_{0}+\frac{A_{1}}{3}+\frac{A_{2}}{5}\right]+O\left(h^{-6}\right) \tag{72}
\end{equation*}
$$

The shape of the deformed surface, i.e. $u_{z}(r,-h)$ for $r>1$ is

$$
\begin{align*}
&{ }_{z}^{(1)}(r,-h)=-\left(2-2 \eta_{1}\right)\left[\left\{S_{0}+A_{0} \sin 11 / r-\frac{1}{8}\left(r^{2}-1\right)^{\frac{1}{2}}\left(4 A_{1}+2 A_{2}\right)\right\}+\right. \\
&\left.u_{z}\right\} \tag{73}\\
&\left.+\left\{\frac{A_{1}}{2} \sin ^{-1} 1 / r-\frac{3}{8} A_{2}\left(r^{2}-1\right)^{\frac{1}{2}}+S_{1}\right\} r^{2}+\left\{S_{2}+\frac{3}{8} A_{2} \sin ^{-1} 1 / r\right\} r^{4}\right]
\end{align*}
$$

where

$$
\begin{aligned}
& S_{0}=A_{0} L_{1}+A_{1} L_{4}+A_{2} L_{7} \\
& S_{1}=A_{0} L_{2}+A_{1} L_{5}+A_{2} L_{3} \\
& S_{2}=A_{0} L_{3}+A_{1} L_{6}+A_{2} L_{9} \\
& L_{1}=\frac{1 \cdot 246991}{h}-\frac{0 \cdot 381609}{3 h^{3}}+\frac{0 \cdot 381609}{5 h^{5}}
\end{aligned}
$$

Fig. 2-Conical punoh (problem 2)

$$
\begin{aligned}
& L_{2}=-\frac{0 \cdot 800334}{2 h^{3}}+\frac{0 \cdot 381609}{h^{5}} ; \\
& L_{3}=\frac{3}{8} \cdot \frac{0 \cdot 381609}{h^{3}} \\
& L_{4}=\frac{1 \cdot 246991}{3 h}-\frac{0.800334}{5 h^{3}}+\frac{0 \cdot 381609}{7 h^{5}} \\
& L_{5}=-\frac{0 \cdot 800334}{6 h^{3}}+\frac{3}{5} \cdot \frac{0 \cdot 381609}{h^{5}} ; \\
& L_{6}=\frac{0 \cdot 381609}{8 h^{5}} \\
& L_{7}=\frac{1 \cdot 246991}{5 h}-\frac{0 \cdot 800334}{7 h^{3}}+\frac{0 \cdot 381609}{9 h^{5}} \\
& L_{8}=-\frac{0 \cdot 800334}{10 h^{3}}+\frac{3}{7} \cdot \frac{0 \cdot 381609}{h^{5}} ; \\
& L_{9}=\frac{3}{40} \cdot \frac{0 \cdot 381609}{h^{5}}
\end{aligned}
$$

Conical Punch

The shape of the punch is a right circular cone, and the elastic layer is indented normally by it (see Fig. 2). The displacement is

$$
\begin{equation*}
g(r)=\epsilon(\pi / 2-r) \quad 0 \leqslant r<1 \tag{74}
\end{equation*}
$$

Therefore equation (53) is

$$
\begin{equation*}
\psi(t)=(\epsilon / 2) \pi(1-t) \tag{75}
\end{equation*}
$$

Substituting the value of $\psi(t)$ from (75) into (60), equation (59) can be written as

$$
\begin{equation*}
W(t)=A_{3}+A_{4} t+A_{5} t^{2}+A_{8} t^{4}+O\left(h^{-6}\right) \tag{76}
\end{equation*}
$$

where

$$
\begin{aligned}
A_{3}= & \epsilon\left[-0.745968+\frac{0.148049}{h}-\frac{0.058765}{h^{2}}+\frac{0.007489}{h^{3}}+\frac{0.022171}{h^{2}}-\right. \\
& \left.-\frac{0.015760}{h^{5}}\right]+\theta_{0}\left[-0.030365-\frac{0.007314}{h}+\frac{0.002902}{h^{2}}-\frac{0.001138}{h^{3}}-\frac{0.000542}{h^{4}}+\frac{0.000506}{h^{6}}\right] \\
A_{4}= & 0.745968 \epsilon \\
A_{5}= & -\epsilon\left[\frac{0.095022}{h^{3}}-\frac{0.037716}{h^{4}}-\frac{0.030330}{h^{5}}\right]+\theta_{0}[0.030385- \\
& \left.-\frac{0.001071}{h^{3}}-\frac{0.001863}{h^{4}}-\frac{0.000634}{h^{5}}\right] \\
A_{6}= & \frac{0.045300}{h^{5}}-\theta_{0} \frac{0.001145}{h^{5}}
\end{aligned}
$$

The normal stress is

$$
\begin{align*}
\sigma_{62}^{(1)}(r,-h)= & -\left(1-r^{2}\right)^{-\frac{1}{2}}\left[\left(A_{6}+A_{5}-A_{4}-A_{3}\right)+\left(\frac{A_{4}}{2}-2 A_{5}+\frac{4}{3} A_{6}\right) \times\right. \\
& \left.\times r^{2}-\frac{8}{3} A_{6} r^{4}+\left(1-r^{2}\right)^{-\frac{1}{2}} \cosh ^{-1} 1 / r A_{4}\right]+O\left(h^{-6}\right) \tag{77}
\end{align*}
$$

and the pressure is

$$
\begin{equation*}
P=-2 \pi\left[A_{3}+A_{4} / 2+A_{5} / 3+A_{6} / 5\right]+O(h-6) \tag{78}
\end{equation*}
$$

The shape of the deformed surface, i.e. ${ }_{u_{z}}^{(1)}(r,-h)$ for $r>1$ is

$$
\begin{align*}
{ }_{u_{z}}^{(1)}(r,-h)= & -\left(2-2 \eta_{1}\right)\left[\left\{S_{0}^{\prime}+A_{3} \sin -1 / r-1 / 8\left(r^{2}-1\right)^{\frac{1}{2}}\left(8 A_{4}+4 A_{5}+2 A_{4}\right)\right\}+\right. \\
& \left.+A_{4} r+\left\{S_{1}^{\prime}+\frac{A_{5}}{2} \sin ^{-1} 1 / r-3 / 8 \cdot A_{2}\left(r^{2}-1\right)^{\frac{1}{2}}\right\} r^{2}+\left\{S_{2}+3 / 8 \cdot A_{6} \sin ^{-1} 1 / r\right\rangle r^{4}\right] \tag{79}
\end{align*}
$$

where,

$$
\begin{aligned}
& S_{0}^{\prime}=A_{3} L_{1}+A_{4} L_{10}+A_{5} L_{4}+A_{6} L_{5} \\
& S_{1}^{\prime}=A_{3} L_{2}+A_{4} L_{11}+A_{5} L_{5}+A_{6} L_{\mathrm{s}} \\
& S_{2}^{\prime}=A_{3} L_{3}+A_{4} L_{12}+A_{5} L_{6}+A_{8} L_{9}
\end{aligned}
$$

and

$$
L_{10}=\frac{1 \cdot 246991}{2 h}-\frac{0 \cdot 800334}{4 h^{3}}+\frac{0 \cdot 381609}{6 h^{5}}
$$

$$
\begin{aligned}
& L_{11}=-\frac{0 \cdot 800334}{4 h^{3}}+\frac{3}{4}, \frac{0 \cdot 381609}{h^{5}} \\
& L_{12}=\frac{3}{16}>^{\frac{0.381609}{h^{5}}}
\end{aligned}
$$

ACKNOWLEDGEMENTS

The work of the first author has been supported by a C.S.I.R. grant. The second author is thankful to the Ministry of Education for a Research Training Soholarship.

REFERENCES

1. Giozae, D. L. A Sneddon, I. N., The Axisymmetric Boussinesqui's Problem for a Heated Punch, J. Math. Mech., 11 (1962), 665
2. Kuna, L. M. \& Fv, W.S.,Stress Distribution in a Elastic Plate due to Heated Punch, Int. J. Eng. Sci., 5 (1967), 555.
3. Dhaliwal Rasiti, S., Punch Problem for an Elestic Layer Overlying an Elastic Foundation, Int. J. Eng. Sci., 8 (1970), 273.
4. Nowacki, W., "Thermoelasticity" (Pergamon Press, Oxford) 1062, p. 10.
5. Srifastafa, K. N. \& Ralaita, R. M., The Distribution of Thermal Stressin a Semi-infinite Elastic Solid containing a Penny shaped Crack, Int. J. Eng. Sci., 7 (1969), 641.
6. Sneddon, I. N., 'Mixed Boundary Value Problems in Potential Theory' (John Wiley \& Sons Inc., New York), 1966.
