Rocket Rendezvous at Preassigned Destinations with Optimum Exit Trajectories

T. N. Srivastaya
Institute for Systems Studies \& Analysis, Old Secretariat, Delhi-110 054

Ashok Kumar nangia
U.P.S,C. Computer Centre, New Delhi-110 011

Received 30 March 1981

Abstract

The problem of rendezvous of an interceptor rocket vehicle through optimal exit path with a destination rocket vehicle at a preassigned location on the destination orbit has been investigated for non-coaxial coplanar elliptic launch and destination orbits in an inverse square gravitational field. The case, when launch and destination orbits are coplanar circular, is also discussed. In the end numerical results for rendezvous have been obtained taking Earth and Mars orbit as launch and destination orbits respectively.

Nomenclature

$\theta=$ Vectorial angle
$u=$ Reciprocal of radius vector
$E=$ Eccentricity
$h=$ Twice the aerial velocity
$K=$ Gravitational parameter
$\alpha=$ Angle of inclination of major axis of destination orbit with reference line, that is, the line joining the force centre (focus) and the pericentre of the launch orbit
$\beta=$ Angle of inclination of major axis of transfer trajectory with reference line
$V=$ Velocity
$\gamma=$ Heading angle, that is, angle between velocity vector and local horizontal
$a=$ Length of semi-major axis

Subscripts

$l=$ Corresponds to launch orbit
$d=$ Corresponds to destination orbit
$i=$ Corresponds to velocity-injection point
$1^{-}=$Relates to parameters of transfer trajectory before velocity injection point
2 = Relates to parameters of transfer trajectory after velocity injection point
$e=$ Denotes values just after impulsive velocity change of interceptor rocket at launch point
$f=$ Denotes values just before impulsive velocity change of interceptor rocket at velocity injection point
$g=$ Denotes values just after impulsive velocity change of interceptor rocket at velocity injection point

Superscripts

$(-)=$ relates to optimum transfer trajectory

1. Introduction

Paiewonsky ${ }^{1}$ has treated the problem of rocket rendezvous for a very restricted case of coplanar concentric circular orbits taking only Hohmann transfer trajectories. Later, for non-coaxial coplanar elliptic orbits, the problem of interception of a rocket vehicle by optimal path at a preassigned point on the destination orbit by a commuter rocket vehicle launched from the pericentre of the launch orbit was solved by evaluating launch angle and orbital parameters of the transfer trajectory. In this context two assumptions have been made. Firstly, that no intermediate velocity injection is given to the commuter rocket vehicle and secondly, that the commuter rocket vehicle is launclied from the pericentre of the launch orbit. Both the assumptions have been relaxed in the present paper which analyses the problem of rendezvous at a preassigned location by an interceptor rocket vehicle-with a rocket on the destination orbit through optimal exit path. The interceptor rocket vehicle after having been launched from the launch orbit is imparted a velocity impulse at a specified intermediate space point to achieve rendezvous. The optimum exit path is characterized by the minimum fuel expenditure required in launching and imparting intermediate velocity injection to the interceptor rocket vehicle to achieve rendezvous with the destination rocket.

Elements of the optimum exit path to achieve rendezvous and launch angle, that is, the vectorial angle of the destination rocket vehicle at the instant launch rocket vehicle is fired so as to achieve rendezvous with the former at the preassigned space point on the destination orbit have been investigated. Analysis for the case when
both launch and destination orbits are coplanar circular has also been done. In the end, numerical results for the rendezvous bave been obtained taking Earth und. Mart orbit as launch and destination orbit respectively.

2. Flight Durations ot Rocket Vehicles and Launch, Angle

Let the equations of the launch and destination orbits be

$$
\begin{align*}
& h_{1}^{2} u=K\left[1+E_{l} \cos \theta\right] \tag{1}\\
& h_{d}^{0} u=K\left[1+E_{c} \cos (\theta-\alpha)\right] \tag{2}
\end{align*}
$$

Also let the equations of tho transfer trajectory of interceptor rocket before and after the application of intermediate velocity impulse be respectively given by

$$
\begin{align*}
& h_{1}^{2} u=K\left[\left[+E_{2} \cos \left(\theta-\beta_{1}\right)\right]\right. \tag{3}\\
& h_{8}^{\mathbf{2}} u=K\left[1+E_{2} \cos \left(\theta-\beta_{2}\right)\right] \tag{4}
\end{align*}
$$

By conservation of momentum principle, the flight time T_{1} of interceptor rocket from the launch point (μ_{i}, θ_{2}) to the velocity injection point ($\left.\mu_{i}, \theta\right)$ is given by

$$
\begin{align*}
& T_{1}=\int_{0}^{T_{1}} d t=h_{X_{2}^{2}}^{\theta_{1}} \int_{\theta_{2}}\left[+E_{1} \cos \left(\theta-\beta_{1}\right)\right]^{2} \\
& =\frac{a_{1}^{8 / 8}}{\sqrt{K}}\left[2 \tan ^{-1}\left\{\left(\frac{1-E_{1}}{1+E_{1}}\right)^{1 / 2} \tan \left(\frac{\theta_{1}-\beta}{2}\right)\right]\right. \\
& -2 \tan ^{-1}\left\{\left(\frac{1-E_{1}}{T}\right)^{1 / k} \tan \left(\frac{\theta_{i}-\beta_{2}}{2}\right)\right\} \\
& -E_{1}\left(1-E_{1}\right)^{1 / 2}\left[\begin{array}{l}
\sin \left(\theta_{1}-\beta_{1}\right) \\
+E_{1} \cos \left(\theta_{1}-\beta_{1}\right)
\end{array} \frac{\sin \left(\theta_{1}-\beta_{1},\right.}{1+E_{i} \cos \left(\theta_{i}-\beta_{i}\right)}\right] \tag{5}
\end{align*}
$$

The time of flight $\left(T_{;}-T_{1}\right)$ of the intercepter tocket from the velocity injection point to the destivation polnt (ua; θ) on the destination orbit will be

$$
\begin{align*}
& -\frac{\left(a_{i}\right)^{3 / 3}}{\sqrt{K}}\left[2 \tan ^{-1}\left[\frac{1-B_{1}}{1+E}\right)^{1 / 2} \tan \left(\frac{\theta-\beta}{2}\right)\right] \\
& -2 \tan ^{-}\left[\left(\frac{1-E_{2}}{1+E_{i}}\right)^{1 / 9} \tan \left(\frac{\theta_{1}-\beta_{2}}{2}\right)\right] \\
& -E_{1}\left(1-E_{2}^{2}\right)^{1 / 2}\left\{\frac{\sin \left(\theta_{n}-\beta\right)}{1+E_{2} \cos \left(\theta_{2}-\beta_{0}\right)}, \frac{\sin \left(\theta_{1}-\beta\right)}{1+L_{2} \cos \left(\theta_{1}-\beta_{i}\right)}\right] \tag{6}
\end{align*}
$$

Where Tu is the total time of flight of the interceptor rocket. For flight time t of the destination rocket a procedure similar as above gives

$$
\begin{align*}
& t=\int_{0}^{T} d t=\frac{h_{d}}{R^{2}} \int_{\theta_{0}}^{\theta_{d}}\left[1+E_{t} \cos (\theta-\alpha)\right]^{2} \\
& -\frac{a_{a} a^{1 / 2}}{\sqrt{K}}\left[2 \tan ^{-1}\left\{\left(\frac{1-E_{a}}{1+E_{a}}\right)^{1 / 2} \tan \left(\frac{\theta_{a}-\alpha}{2}\right)\right\}\right. \\
& -2 \tan -\left\{\left(\frac{1-E_{d}}{1+E_{a}}\right)^{1 / 2} \tan \left(\frac{\theta_{0}-\alpha}{2}\right)\right\} \\
& \left.-E_{a}\left(1-E_{\alpha}^{\alpha}\right)^{1 / 2}\left\{\frac{\sin \left(\theta_{a}-\alpha\right)}{+E_{d} \cos \left(\theta_{d}-\alpha\right)}-1+\frac{\sin \left(\theta_{0}-\alpha\right)}{+E_{d} \cos \left(\theta_{0}-\alpha\right)}\right\}\right] \tag{7}
\end{align*}
$$

Where $\left(u_{0}, \theta_{0}\right)$ is the position of the destination rocket at the instant interceptor rocket is laurched. For rendezvous of the interceptor rocket with destination rocket at the preassigned destination point $\left(u_{d}, \theta_{d}\right)$, the following condition should be satisfied

$$
\begin{equation*}
t-T_{2}-\left(T_{9}-T_{1}\right)+T_{1} \tag{8}
\end{equation*}
$$

Where $T_{1},\left(T_{2}-T_{1}\right)$ and t are given by (5) (6) and (7) respectively. Eqn. (8) gives launch θ_{0} for any value of θ_{d}, if the elements of the transfer trajectory ($E_{1}, E_{2}, a_{3}, a_{v} \beta_{1}$ and β_{2}) are known.

3. Elements of Optipum Trausfer Tralectory for Rendezrous

The characteristio velooity ΔV of the interceptor rocket can be written as

$$
\begin{align*}
& \Delta V-\left|\Delta V_{i}\right|+\Delta v_{i}\left|=1\left[V_{i}^{2}+V_{0}^{2}-2 V_{i} V_{i} \operatorname{cog}\left(r_{0}-r_{i}\right)\right]^{1 / 2}\right| \\
& +\left[V_{1}^{2}+v_{0}^{\prime}-2 V_{\rho} V_{0} \cos \left(v_{0}-r_{j}\right)\right]^{1 / 4} \text {. } \tag{9}
\end{align*}
$$

By principle of conservetion of angular momentum we have

$$
\begin{equation*}
V_{1} u_{l} \cos \gamma_{r}=V_{0} u_{s} \cos \gamma_{6} \tag{10}
\end{equation*}
$$

Also V, and V can be related as

$$
\begin{equation*}
V_{f}^{2}-V_{i}^{2}=2 K\left(u_{1}-u_{i}\right) \tag{11}
\end{equation*}
$$

Substitution of (10) and (1) in (9) gives

$$
\begin{aligned}
& \left.\Delta V-| | V^{d}+v_{0}^{s}-2 V v_{\cdot} \cos (v-r)\right)^{1 / 2} \mid
\end{aligned}
$$

$$
\begin{equation*}
\left.\left.\left.-V_{t}^{2} d_{i}^{2} \cos ^{8} \gamma\right]^{1,2}\right]+V^{1}+2\left(u_{t}-\mu_{\nu}\right)\right]^{1 / /} \mid \tag{12}
\end{equation*}
$$

Where

$$
d_{1}=u i / u_{x}
$$

The relationship between V_{e} and y_{0} can be expressed as

$$
\begin{equation*}
V_{0}^{2}=\frac{K u_{1}\left\{1-\cos \left(\theta_{1}-\theta_{i}\right)\right\} \sec ^{2} \gamma_{0}}{\left\{a_{1}+\sin \left(\theta_{1}-\theta_{i}\right) \tan \gamma-\cos \left(\theta_{1}-\theta_{i}\right)\right\}} \tag{13}
\end{equation*}
$$

Similatly we can write

$$
\begin{equation*}
V_{0}^{2}=\frac{K u}{} \frac{\left.L_{1}-\cos \left(\theta_{G}-\theta_{i}\right)\right) \sec ^{2} \gamma_{0},}{\left(a_{2}+\sin \left(\theta_{0}-\theta_{5}\right) \tan \gamma_{0}-\cos \left(\theta_{0}-\theta_{i}\right)\right\}} \tag{14}
\end{equation*}
$$

Where

$$
d_{g}=u_{d} / u_{i}
$$

For minimum ΔV we have

$$
\begin{equation*}
\frac{\partial(\Delta V)}{\partial \gamma_{\theta}}=0, \frac{\partial(\Delta V)}{\partial \gamma_{0}}=0 \tag{15}
\end{equation*}
$$

Substitution from Eqns. (12), (13) and (14) in Eqn. (13) and differentiation gives

$$
\begin{align*}
& \frac{1}{\Delta V_{H}}\left[\lambda-2 V_{i}\left\{\mu \cos \left(r_{0}-r_{i}\right)-V_{0} \sin \left(v_{r}-r_{i}\right)\right]\right. \\
& +\frac{1}{\Delta V_{2}}\left[1-2 V_{Q}\left[d_{d} \cos \gamma_{n}\left\{\mu \cos \gamma_{\theta}-V_{0} \sin \gamma\right\}\right.\right. \\
& +\frac{\sin \gamma_{p}}{2 v}\left[\lambda\left(1-a_{i}^{2} \cos ^{9} \gamma_{r}+2 v_{0}^{2} d_{i}^{2} \cos \gamma_{r} \sin r_{0}\right\}\right]=0 \tag{16}
\end{align*}
$$

and

$$
\begin{align*}
& \left.\left[V_{\theta}-\left[V, d_{1} \cos Y_{\rho} \cos \right\}_{\theta}+v \sin Y_{0}\right]\right] \\
& \times\left[\tan \gamma_{0}-\frac{\sin \left(\theta_{d}-\theta_{0}\right) \sec ^{2} \gamma_{0},}{2\left(d_{0}+\sin \left(\theta_{d}-\theta_{0}\right) \tan \gamma_{0}-\cos \left(\theta_{i}+\theta_{)}\right]\right.}\right. \\
& +V_{0} d_{1} \cos \gamma_{0} \sin \gamma_{0}-v \cos \gamma_{0}=0 \tag{17}
\end{align*}
$$

where

$$
\begin{aligned}
& \lambda-2\left[\frac { K u 1 } { } \left[1-\cos \left(\theta_{i}-\theta_{i)} \sec ^{2} \gamma_{1}, \sin ^{2}\left(\theta_{i}-\theta_{i}\right) \tan \gamma_{0}-\cos \left(\theta_{i}-\theta_{i}\right)\right]^{1 / 2}, u\right.\right. \\
& =\frac{K u_{1}\left(1-\cos \left(\theta_{1}-\theta_{0}\right) \sec r_{0} r_{0}\right.}{\left(d_{1}+\sin \left(\theta_{i}-\theta_{i}\right) \tan \gamma_{0}-\cos \left(\theta_{i}-\theta_{i}\right)^{3}\right.} \\
& \times\left[2 \tan \gamma_{0}\left(d_{1}-\cos \left(\theta_{1}-\theta_{1}\right)+\sin \left(\theta_{1}-\theta_{i}\right)\left(\tan ^{2} \gamma_{0}-1\right)\right]\right.
\end{aligned}
$$

$$
v>\left[r_{i}+2 \lambda_{(}\left(\psi_{t}\right)-V^{2} d_{i} \cos ^{2} \gamma_{t}\right]^{1 / 2}
$$

Eqns. (10) and (17) can be solved numerically for Y_{0} and Y_{θ} giving optimum departure angles γ_{0} and γ_{0} which when substituted in (13) and (14) will give optimum departure velocities ∇_{B} and F_{0} respectively.

Having obtained $\gamma_{0}, \gamma_{0}, \bar{V}_{0}, V_{0}$ olements of the optimum transfer trajectory \bar{E}_{1}, \bar{E}_{8}, $\bar{\beta}_{1}, \bar{\beta}_{2}, \alpha_{1}$ and \bar{a}_{1} can be oltained by following relationships of space dynamics

$$
\begin{align*}
& E_{1}-\left[\left(\frac{\vec{r}_{2}^{2}}{u R}-1\right) \cos ^{2} \gamma_{r}+\sin ^{2} \gamma_{0}^{1 / 2}\right. \tag{18}\\
& E_{1}-\left[\left(\frac{V_{0}^{2}}{\operatorname{un} R}-1\right) \cos ^{2} \gamma_{0}+\sin ^{2} \varepsilon_{0}\right]^{1 / 2} \tag{19}\\
& \bar{\beta}_{1}-\theta_{l}-\tan ^{-1}\left(\frac{V_{8}^{2} \sin \gamma_{0} \cos \gamma_{0}}{\bar{r}_{8}^{2} \cos ^{2} \gamma_{0}-K u_{l}}\right) \tag{20}\\
& \sigma_{r}=\theta_{t}-\tan ^{-1}\left(\frac{V_{0}^{2} \sin \gamma_{0} \cos \gamma_{i}}{V_{\partial} \cos ^{2} \gamma_{p}-K u i}\right) \tag{2}\\
& \bar{a}_{1}-\frac{K}{2 \pi \pi_{i}-\sqrt{2}} \tag{22}\\
& \bar{a}_{2}=\frac{K}{2 K u_{i}-\nabla_{0}^{2}} \tag{23}
\end{align*}
$$

Substituting the values of the elements of optimum transfer trajectory given by $(18-23)$ in (8), the optimum launch aggle θ_{0} for rerdezvous for interception angle θ_{a} can be obtained.

4. Remdenvous Between Clrcular Laideh and Demtination Orbits

For circular launch and destination orbits

$$
\begin{equation*}
E_{t}=E_{a}=\alpha=0 \tag{24}
\end{equation*}
$$

Substituting from (24) in (7), we have

Where at in (25) now signifies orbital redius of the destination orbit. Substituting from (25) in (8) yields

$$
\begin{equation*}
\theta_{0}-\theta_{d}-\frac{\sqrt{K}}{\left(\sigma_{a}\right)^{3 /}}\left[\left(T,-T_{1}\right)+T_{1}\right] \tag{26}
\end{equation*}
$$

Eqn. (20) gives the laupch angle θ_{0} for rendezvous between circular launch and destination orbits where T_{1} and $\left(T_{1}-T_{1}\right)$ are given by Eqns. (5) and (6) respeotively. Expression for T_{1} given by Eqn. (5) can bo simplified in this case by taking the reference line as the line joining the force centre and launch point thas making $\theta_{l}=0$.

In equations giving $\hat{\gamma}_{\text {a }}$ ad γ, viz Equs. (16) and (17), now

$$
\gamma_{t}-0 \text { and } d_{1}=a_{u} u_{1} d_{9}=\left(a_{a} u_{1}\right)^{1}
$$

where a_{3} is the orbit radius of the launch orbit. Also V_{1} in (16) now stands for the circular orbital velocity corresponding to the launch orbit.

Elements of the optimun trajectory $\bar{E}_{2}, \bar{\beta}_{2}, a_{2}$ will be given as before by Eqne (19), (21) and (23) respectively but $E_{1 v} \bar{\beta}_{1}$ and a_{1} are now given by

$$
\begin{aligned}
& E_{1}=\left[\left(\frac{a_{3} \vec{\gamma}_{0}}{\tilde{R}}-1\right) \cos ^{8} \hat{r}_{0}+\sin ^{2} \hat{r}_{0}\right]^{1 / 2} \\
& \bar{\beta}_{1}=\tan ^{-1}\left[\frac{a_{1} \bar{V}_{0}^{4} \sin \gamma_{0} \cos \gamma_{0}}{K-a_{i}\left(\bar{V}_{0} \cos \gamma_{0}\right)^{a}}\right] \\
& \bar{a}_{1}=\frac{a_{1} K}{2 K-a_{i} V_{0}^{2}}
\end{aligned}
$$

5. Rendezvous Between Earth and Mars

Launch angles and elements of the corresponding optimum transfer trafectories have been calculated as a numerical illustration for rendezvouts at proastigned destinations between Earth and Mars. Earth and Mars orbit are taten as virculat and Coplanar and their orbital radii as $\left(1.49 \times 10^{\circ}\right) \mathrm{km}$ and $(2.28 \times 109) \mathrm{km}$ respectively. It is assumed that intermediate velocity injection is applied to the interceptor rooket vehide where $\theta_{1}=\theta_{a} / 2$ and it is moving at a distanco of 1.25 日, a from the sun, the forco centre.

Table 1 gives the launch angles and elements of the transfer trajectery before velocity injection for optimum rende2vous between Earth and Mars for different intercoption angles. Elements of the transfer trajectory after the velocity injection for optinum rendezvous are given in Table 2.

Variation of the launch angle and etenents of optimum transfer trajectory for rendezvous between Earth and Mars with respect to interceptor angle are shown in Figs. 14. A study of the Figs. briige out the following interesting results:
(i) Variation of launch angle is slow for lower values of interception angle and gradually becomes fast with increase of interception angle (Fig. 1).
(ii) Variation of length of semi-major axis of optimum transfer trajectory before and after velocity injection (\boldsymbol{a}_{1} and a_{2}) is fast for lower values of interception

Table 4. Lanheh anglas and elements of transfer trajectory before velocity injection $\left(\varepsilon_{1}, \beta_{2}\right.$ and $\left.a_{1}\right)$ for optinum rendezvous between Earth and Murs

Table 2. Elements of the rransfer trajectory after velocity injection ($\mathbf{Z}_{2}, \bar{\beta}_{2}$ and \bar{a}_{3}) for optimum rendezvour between Earth and Mars

Interception anglo θ_{a}	Eccenticity E_{y}	Inclination angle of the major axis $\bar{\beta}_{2}$	$\begin{aligned} & \text { Semi-nator axis } \\ & \text { times } 10^{\circ} \\ & \left(010^{-8}\right) \mathrm{km} \end{aligned}$
180°	10.2262	, $111^{\circ} \mathrm{V}$	1.881
150°	0.2149	$152^{\circ} 43^{\circ}$	1.863
120	0.2120	132931	1.835
90°	0.2441	$13^{\circ} 08^{\circ}$	1.814
60°	0.3332	$90^{\circ} 46^{\prime}$	1.778
45°	008879	$69^{\circ} 39$	1.650

Figure 1. Variation of launch angle θ_{0} with respect to interception on angle θ_{d}.

Figure 2 Vyifition of longths of sempl-major axes a_{3} and a_{2} with nespect to interception angle 0_{a}.

Figure 3 Variation of argleg of inclination β, and 1, with, wespect to interception angle θ_{a}.
angle but gradually becomes slow with increasing value of interceptor, angle (Fig. 2).
(iii) Angles of inclination of major axis of optimum transfer trajectory before and after velocity infection ($\boldsymbol{\beta}_{1}$ and β_{B}) vary almost uniformly with respect to interception tunge (Fig. 3)

Higure 4 Variation of eccentricities E_{1} and E_{4} with respeat to Interception ander θ_{0}.

Achnowledyoments

Authors are thankfil to Maj Gen, A. Aatparbramanian, AVSM, Ditector, EDP Systems, Delhi and Dr L. K. Wadlwa, Direttof hatitute for Systems shethos 4 Analysis, Delhi for their encơuragements in the et ef ritition of this paper.

Referencen

1 Paiewonsk, H, H, Jer Propulston, 28 (1958), 121,
2 Srivestava, T, N, Def $\$ 44 \% 19(198)$, $147-160$.
3. Thomson, W. T, Tnitidinten to Space Dynaphes' COfin Whey and Sous, the, New York, Lonidov),

