Transition Metal Complexes of 6-Methyl-2-Amino Benzothiazole—Part III

M. R. Chaurasia & (Miss) Prema Shukla

Department of Chemistry, D.A.V. (P-G) College, Dehradun-248 001

N. K. SINGH

Department of Chemistry, Banaras Hindu University, Varanasi-221 005

Received 10 September 1980; revised 21 April 1981

Abstract. Complexes of the type ML_2X_2 and ML_4X_2 (where M = Cu(II), Ni(II), Co(II), Mn(II), Zn(II), Hg(II) and Cd(II); L=6-methyl-2-aminobenzothiazole; X=-I, $\neg NCS$ and $\neg OAC$) have been isolated and characterised on the basis of analytical, magnetic moment, molar conductance, electronic and i.r. spectral data. The antifungal screening of Cu(II) and Hg(II) complexes is also reported.

1. Introduction

A survey of literature reveals that substituted benzothiazoles have analytical¹⁻² and biological³⁻⁵ importance. It was, therefore, thought worthwhile to investigate the metal complexes of 6-methly-2-aminobenzothiazole.

The activities of many enzymes depend upon the interaction of thiozole group with a transition metal ion⁶. It was, therefore, interesting to know the coordinating behaviour of the ligand containing these groups. It had been found that the substituents in 2, 4, 5 and 6 positions modify the stoichiometries and stereochemistries of the complexes formed⁶. The i.r. data show that the coordination in these complexes is through NH_2 of the thiozole group.

The Cu(II) and Hg(II) complexes were screened for antifungal activity on Aspergillus niger, Alternaria alternata, Curvularia plunata and Penicillium fumculorus by the Potato dextrose agar method at two dilutions.

2. Experimental

All the chemicals used in this study were of BDH make. 6-Methyl-2-aminobenzothiazole was prepared by the method of Hugershoff⁷.

Preparation of ML_2X_2 and ML_4X_2 type of complexes

The above referred complexes were prepared by mixing together hot ethanolic solution of metal iodide, thiocyanate, acetate and 6-methyl-2-aminobenzothiazole in 1:2 and 1:4 (metal: ligand) molar ratio except cadmium and mercury complexes which were prepared by mixing the solution in acetone of cadmium or mercuric iodide and the ligand. The reaction mixtures were refluxed for 3 to 4 hours. The solutions were evaporated to dryness. The resulting coloured solids were washed with distilled water and 10 per cent alcohol and dried in vacuo over anhydrous calcium chloride.

Physical Measurements

Molar conductance of the complexes in methanol, chloroform and acetone (M/1000) was measured in WTW conductivity meter. Magnetic susceptibility measurements were carried out at room temperature on Cahn-Faraday (model-7550) electrobalance using $Hg[Co(NCS)_4]$ as calibrant. Diamagnetic corrections were applied by a method outlined by Figgis and Lewis⁸. The values of electromagnetic moments (μ_{eff}) and molar conductance of the complexes are included in Table 1.

Complexes	M.P.	Analysis					Molar	Heff (BM)	Stereo-	
	(0)	M.		N.		S.		tance at	(1).111.)	try
		Found	Calcd.	Found	Calcd.	Found	Calcd.	10 ^{-s} M (უcm²)		
CuL_3I_2	137	9.83	9.85	8.87	8.67	9.77	9.92	0.05	1.84	D₄h
NiL ₂ I ₂	60	9.36	9.16	8.91	8.74	9.72	9.92	20.92	dia.	,,
CoL_2I_2	97	9.49	9.19	8.92	8.73	9.82	9.98	0.00	4.44	Td
$CoL_2(NCS)_2$	60	11.99	11.72	16.72	16.70	25.75	25.45	0.00	4.40	,,
MnL_2I_2	108	8.82	8.62	8.52	8.79	10.45	10.05	0.03	5.90	,,
ZnL_2I_2	151	10.40	10.10	8.51	8.65	9.90	9 .88	0.01	dia.	,,
CdL_2I_2	125	16.42	16.12	8.29	8.06	9.48	9.21	7.37	**	
CuL_4I_2	99	6.79	6.66	11.96	11.75	13.67	13.42	0.09	1.92	Oh
NiL ₄ I ₂	60	6.09	6.05	11.69	11.56	13.56	13.21	18.26	3.20	>>
CoL_4I_2	143	7.60	6.08	11.59	11.56	13.42	13.20	0.00	4.70	,,
$CoL_4(OAC)_2$	69	7.27	7.08	13.76	13.45	15.46	15.36	0.00	4.58	,
MnL ₄ I ₂	85	5.89	5.69	11.31	11.61	13.56	13.26	0.04	6.10	,,
ZnL ₄ I ₂	113	6.41	6.10	11.59	11.48	13.32	13.12	0.01	dia.	
CdL_4I_2	110	10.92	10.99	10.89	10.95	12.99	12.52	6.39	,,	,,
HgL_4I_2	87	18.96	18.86	10.81	10.08	11.59	11.52	0.00		**

Table 1	Analytical Data	and General	Behaviour of	the Complexes
---------	-----------------	-------------	--------------	---------------

Electronic spectra were recorded on Cary-14 and VSU-2Ph spectrophotometers. The i.r spectra were obtained in the 4000-200 cm⁻¹ range in KBr and Nujol Mulls on Perkin-Elmer spectrophotometer (model-621 and 720). The spectral data are given in Table 2.

Complexes	10Dq (cm ⁻¹)	B' (cm ⁻¹)	β	β° (%)	∖ 2/∨1	λ' (cm ⁻¹)	ζ3d (cm ⁻¹)	LFSE (K.J./ mole
CuL ₂ I ₂	17123					494.8	494.8	122.8
CoL ₂ /2	3440	703.09	0.72	27.52	1.55	-119.6	358.8	49.35
CoL ₂ (NCS) ₂	3483.1	704.60	0.71	27.36	1.55	-116.7	350.1	49. 97
CuL ₄ / ₂	14451		-	—		793.6	793.6	103.65
NiL	8211	1154.6	1.12	12.10	1.87		710.8	117.80
CoL ₄ I ₂	10413.95	968.13	0.99	0.41	1.90			99.59
CoL4(OAC)2	10472.95	1034.73	1.07	6.67	1.89			100.16

Table 2 Ligand Field Parameters of the Complexes

3. Results and Discussion

The complexes are soluble in methanol, dioxan and acetone. The low molar conductivities of 10^{-3} M solutions demonstrate that the complexes are non-electrolytes⁹.

Magnetic Moments

The magnetic moments (Table 1) are all normal and indicate that CuL_2I_2 and NiL_2I_2 are square planar. The magnetic moments of CoL_2I_2 and $CoL_2(NCS)_2$ (4.44 and 4.40 B.M.) in the range 4.4 to 4.8 B.M., normally observed for the tetrahedral Co(II) complexes¹⁰ confirm tetrahedral geometries. The complexes of Cu(II), Ni(II), Co(II), Zn(II), Cd(II) and Hg(II) in 1 : 4 molar ratio show octahedral geometry. The diamagnetic ZnL_2I_2 and CdL_2I_2 show sp3 type of hybridization.

Electronic Spectra

Ni(II) complexes: The intraligand bands occur in the Nujol spectra of NiL_2I_2 and NiL_4I_2 in the regions 19942-46463 cm⁻¹ and 15342-26611 cm⁻¹ respectively. The spectrum of NiL_2I_2 assumes D_4h symmetry¹¹. The bands can be assigned to the transitions 15949 $I_{A_{1g}} \rightarrow I_{A_{2g}}(v_1)$, 19942 $I_{A_{1g}} \rightarrow I_{E_g}(v_2)$, 23469 $I_{A_{1g}} \rightarrow I_{B_{1g}}(v_3)$.

The electronic spectrum of NiL_4I_2 is in accordance with the octahedral $\dot{N}i(II)$ environment¹² with the ligand fields $v_1 = 8211$, $v_2 = 15342$, $v_3 = 26611$ cm⁻¹ which can be assigned to $3_{A_2g}(F)$, $\rightarrow 3T_{2g}(F)$, $3_{T_1g}(F)$, $3_{T_1g}(P)$ transitions.

Co(II) Complexes: CoL_2I_2 and $CoL_1(NCS)_2$ may be proposed to have tetrahedral structures¹³ as the electronic spectra of the complexes resemble those of Co(2-amino-thiazole)_2I_2 and Co(2-bromo thiazole)_2Cl_2. The complexes show absorptions at 15523, 15610 cm⁻¹(v₃) and 5343, 5410 cm⁻¹(v₂) attributed to the transitions $4A_2 \rightarrow 4r_1$ (F), $4r_1(P)$ and are characteristics of Co(II) ion in the tetrahedral environment having C_2v symmetry.

Using the values of v_2 and v_3 , 10Dq and B' were calculated by the equation for Co(II) T.I. given by Drago¹⁴. Two bands, observed at 7946 and 20000 cm⁻¹ in CoL₄I₂ and at 8002 and 21052 cm⁻¹ in $CoL_4(OAC)_2$, are typical of Co(II) complexes in octahedral¹⁵ environment and may be assigned to the transitions $4_{T_{1g}}(F) \rightarrow 4_{T_{2g}}(F)(v_1)$ and $4_{T_{1g}}(P)(v_2)$ respectively.

Cu(II) complexes: CuL₂I₂ yields one broad band at 17123 cm⁻¹ which is supposed to be a composite envelope of three transitions¹⁶ $2_{B_{1g}} \rightarrow 2_{A_{1g}}$, $2_{B_{2g}}$, $2_{E_{1g}}$.

14451 cm⁻¹ band in the spectrum of CuL_4I_2 may be due to $2r_g \rightarrow 2r_{2g}$ transition¹². The ratio $\nu Cu/\nu Ni$ comes out to be 1.76 indicating considerable distortion¹⁷ in the octahedral geometry of the complexes.

The electronic spectra of Mn(II) complexes in Nujol do not show any d-d transition bands in the visible region.

Using the above assignments, the values of 10Dq, Racah Parameter (B'), Nephelauxetic ratio (β), percentage lowering of the energy of 3p state in the complexes compared to the energy of 3p in the free gaseous ion(β°), ligand field stabilization energy (LFSE), spin-orbit coupling constant(λ') and spin-orbit coupling constant per electron (ζ 3d) have also been calculated by the method of Lever¹⁸.

The i.r spectrum of the ligand shows vas(NH), $vs(NH)^{19}$, v(C = N), $\delta(NH)$, $pr(NH_2)$, $pw(NH_2)$ and v(C - S - C) at 3425, 3315, 1550, 1650, 1120, 760 and 815 cm⁻¹ respectively²⁰. The complexes show considerable change in vas(NH), (3300-3410-cm⁻¹), vs(NH) (3200-3310 cm⁻¹), δNH (1615-1640 cm⁻¹) $pr(NH_2)$ (1100-1115 cm⁻¹) and $pw(NH_2)$ (715-725 cm⁻¹) indicating the coordination through NH_2 group. The v(C-S-C) and vC = N remain unchanged showing the absence of coordination through cyclic sulpher and C = N groups.

Using i.r. spectra of the metal complexes containing coordinated thiocyanate groups, certain correlations between vCN and vCS modes and the type of thiocyanate bonding, have been made²¹⁻²³. For M-NCS bonding, vCN and vCS appear to fall in the range 2080-2040 cm⁻¹ and 860-780 cm⁻¹ respectively. The corresponding ranges for M-SCN bonding are 2120-2080 cm⁻¹ and 720-680 cm⁻¹. For bridging thiocyanate groups M-SCN-M, vCN fall in a broader and generally in higher range than M-NCS while vCS usually occurs at intermediate frequencies. In the ionic thiocyanate, vCN occurs at 1963 cm⁻¹ and vCS at 963 cm⁻¹. Moreover, the mode of thiocyanate bonding may also be characterised by examining the doubly degenerate δNCS frequency²⁴.

In the i.r. spectrum of $CoL_2(NCS)_2$, the vCN occurs at 2075 cm⁻¹ indicative of M-NCS bonding²².

 $CoL_4(OAC)_2$ shows additional bands at 1570 and 1395 cm⁻¹ which are assignable to $vas(C \swarrow O)$ and $vs(C \swarrow O)$ vibrations²².

The CuL_2I_2 , CuL_4I_2 , HgL_2I_2 and HgL_4I_2 were screened for anti fungal activity on Aspergillus niger, Alternaria alternata, Curvularia plunata and Penicillium funculorus by employing Potato dextrose agar method at two dilutions (1:2143 and 1:5000).

The results indicate that the activity of Cu(II) and Hg(II) complexes against Alternaria alternata is of very high order (100%) whereas that of Aspergillus niger is only 91 per cent. CuL_4I_2 inhibits 100 per cent spore germination of Penicillium funculorus and 85 per cent of Culvularia Plunta.

Acknowledgements

Thanks are due to Dr. M. S. Rathi, Wadia Institute of Himalayan Geology, Dehradun for his valuable help. One of us (P. S.) is thankful to the C. S. I. R. New Delhi for the award of Junior Research Fellowhip.

References

- 1. Kawa, K. Y. & Shinra, K., J. Chem. Soc., 75 (1954).
- 2. Tyozo Uno, Terada, K. & Bunseki Kagaku., Akihama Sumiyaki, 10 (1961), 1117.
- 3. Edelson, E. & Haskim, A. H., Dermatol and Syphilal, 66 (1952), 244.
- 4. Rabit, H. G., J. Am. Med. Assoc., 148 (1952), 1005.
- 5. Christison, I, B. et al. "Therapy of Fungus Diseases" (Little Brown & Co, Boston, Mass), 1955, p. 268.
- 6. Campbell, M. J. M. & Card, D. W., J. Chem. Soc. (A) (1970), 672.
- 7. Hughershoff, A., Ber., 36 (1903), 3134.
- 8. Figgis, B. N. & Lewis, J., "In Modern Coordination Chemistry" (Ed. J. Lewis and R. G. Wilkings, Interscience, N. Y.), (1960), 403.
- 9 Geary, W. J., Coord. Chem. Rev., (1964), 3119.
- 10. Duff, E. J., Hughes, M. N., & Rutt, K. J., J. Chem. Soc., (A) (1968), 2499.
- 11. Goodgame, M. L. & Goodgame, M., J. Chem.Soc., (1963), 207.
- 12. Lever, A. P. B., "Inorganic Electronic Spectroscopy" (Elsevier, Amsterdam), 1968.
- 13. Duff, E. J., Hughes, M. N. & Rutt, K. J., J. Inorg. Chim. Acta, 6 (1972), 408.
- 14. Drago, R. S., "Physical Methods in Inorganic Chemistry" (An East-West Edition) p, 411.
- 15. Mathews, R. W. & Walton, R. A., Inorg Chem., 10 (1971), 1433.
- 16. Sacconi, L. & Ciampolini, M., J. Chem. Soc., (1964), 276.
- 17. Agrawal, R. C. & Rao, T. R., Transition Metal Chemistry, 2 (1977), 21.
- 18. Lever, A. P. B., J. Chem. Educ., 45 (1968), 711.
- 19. Ahuja, I. S. and Singh, R., J. Inorg. Nucl. Chem. 35 (1973), 302.
- 20. Mishra, R. P., Mahapatra, B. B. & Guru, S., J. Indian. Chem. Soc., 56 (1979), 832.
- 21. Burmeister, J. L., Co-ord. Chem. Rev., 1 (1966), 205; 3 (1968), 225.
- 22. Nakamoto, K., "Infrared Spectra of Inorganic and Coordination Compounds" (John Wiley, N. Y.), 1970.
- 23. Ahuja, I. S. and Garg, A., J. Inorg Nucl. Chem., 34 (1972), 1929.
- 24. Mishra, B. & Rao, D. V., J. Indian Chem. Soc., 51 (1979), 439.