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Following the methoddeveloped by Bhatnagar & Prassd, based on the investigatiow of Kulikov- 
skii & Slobodkina, we study the stability of self-similar flows generated by thepropagation 
of shock-wave inaninhomogeneous medium with density varying either exponentially or as a power 
of distance. Also we consider the shocks produced by impulsive load. We find that all these 
flows are stable in the neighbourhood of critical point, which is a saddle point of the system of 
differential equations goverxting the flow in its neighbourhood. 

The stability of the self-similar flows of the second kind as defined by Zeldovich & 
Raiz5r1, in the neighbourhood of a critical point by reducing the system of equations to a 
quasi-linear equation has been investigated. Bhatnagar & Prasad2 who have shown 
that the investigations of Kulikovskii and SlobodkinaS for the propagations of disturbance8 
in a steady flow can be extended to self-similar flows, have been followed. It has been 
shown that a self-similar flow of second kind due to imploding shock-wave in the neigh- 
bourhood of a critical point is stable with respect to radially symmetric disturbances. 
Applying this method to the problem of the flow into a cavity, discussed by Huntet, i t  
has been shown5 that the flow is unstable, when the boundary of the cavity is accelerating. 
It is found that the critical point is a node5. 

The expressions for the discussion of stability, for a very general unsteady one-dimen- 
sional flow with variable density have been obtained. As a particular case, for spherically 
symmetric flow with constant initial density, the result of Bhatnagar & Prasad2 are ob- 
tained. For spherically symmetric isentropic flow with constant initial dezisity, results of . 
Prasnd & Tagares are obtained. 

Next the stability of the self-similar flow behind a shock-wave propagating towards 
the edge of a gas is discussed. This problem was first studied by Sakurais and has been 
given as one of the examples of self-similar flows of second kind by Zeldovich and Raizerl. 
Further the stability of the self-similar flow due to propagation of a sbock-wave due to an 
impulsive load, a problem discussed in Zeldovich & Raize9 have been considered. Next 
the stability of the self-similar flow due to propagation of a shockwave in an exponential 
medium, a problem oonsidered by Hayes7 and discussed in Zeldovich & Raizerl has been 
considered. 

F O R M U L A T I O N  O F  T H E  P R O B L E M  A N D  B A S I C  E Q U A T I O N S  

The equations of one dimensional unsteady motion of a polytropic gas are , 
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and 

. . 

v = 1, 2 ' and 3 0 0 4  respptively tb plan6 $ow, c$indrikally symmetric flow and 
spherically symmetric flow. 

In terms of the new dependent variabfes '@, 3' and Z and new independent variables 
q and T defined by 

I Bk 
p = PC@ (9,r)a U = - B v (rlY 7) 

r 
and ' I )  = ln 

where, p, (ti  = p * R ~  and R (t)  =. A I t 1 8 are functions of time and p*, a, , A and 6 aie 
oonsta~$, the eqns, (I) to (3) *reduce to 

, 

Z 
V7+(V-S)Vvi -  yG 

zri 22 
G,+,+-, + V ( V - l ) = O  (7) 

,- 

and 
ZT ( Y ~ ~ W  QT @--r)z (v - 1) 

(v -- 8) ( v - 8 ) ' -  G 4-zq-2  [ ( v 7 8 )  

The charaotePietios of the eqns. (6) ta (8) in (9 , ?.)-plane are , 
" !, - * L 

Let $he su& zero represent the vahes of the flow var'ables in a self-similar' flow, SO 

tial equations 
It that Go ,' Vo ; a d  Zo are ffuntions of q only, and satisfy t e system of ordinary dmren- 

/ . t  



T A O ~ ~ D  : Stability of 5elf-Similar Flow 

P- In order that the solution of the eqns. (10) to (12) satisfy the correct boundary cqd i -  
tions in a self-similar flow of m n d  kind, it is necessary &t the integral curve in 
(2, , Ya)-pbne must pass through the singylar point (Zo*, ' p*) d e t e d  by tho 
equations 

and 
z(,* = ,(8 - (14) 

Tor planar motion with v = l ,  eqns. (13) and (14) determine a unique singular point 
(Zo* , V,,*). The condition that the integral curve-passes thmugh this s i p 7  point 
(Zo* , VQ*) determinas the d u e  of'$he similarity elsponent 6. I n  the case 0 nm-planar 
motion v # 1 it is found in all cases we have considered that only the larger root V,* of 
eqn. (13) correeponds to physically realisable Bows. Consequently, the sidlarity egponent 
i~ determined through that integral curve whioh passes through the singulartpoint cotms- 
poncling to this larger root. , I  

The characteristic velocity 

co = (VO - 8) 4- d-zu 
which vanishes at (Vo* , Zo*) satisfiee 

(6 -1) (~+?19 - d g  dc@ = - .Vo - - -  
drl Y Y . Y 

{ (VQ - 8) - ( Y 7  1) 
Y 4% I f  (Vo) + iv, - - ZQ (15) 

We aan also  how that at the point (Vo*, Z,*) 

In the neighburhood of the singylsr point (Vo*, ZO*) we have, 

where ?* is the value of when V ,  = To*. Therefore, it follows from (15) that 

( 2- )'i. given by 

where 



. . - - 
and 

- - ,  

2(6-1)  Sw- 
4 

Fobwing Rulikovskii & Slobodkina8, tihe propagation of the self-similar flow and the 
self-similar flaw in the neighbowhood of the critical point are governed by 

a n d  

S T A B I L I T Y  O F  S E L F - S I M I L A B  B L O W  DUE 90 P R O P A G A T I O N  O F  
8 a O C K - W A V E  T O W A R D S  THE E D G E  O $  THE G A S  , 

Condder the sbbir;ty ~f a plane flow with v = 1, when a shock-wave propagates 
through B m-uniform medi~m of decreaying dellsity (o + 0) @nd re 
where the density vanishes. This problem was first discussed by Sakurai*, ??hen, 

and , 

The same values of the parameters w , 6 and Y are taken as given by Zeldovich & 
Raiserl. We then tabul* u and j? (See Tables 1 to .. - 3). . - 



From Tables 1 to 3 i t  can be seen that for all these cases, a < 0 and > 0 and, 
hence the singular point is a saddle point. 

In this problem the time is measured when the shock reaches the edge of the gas so 
that T = 1% (-t), R ( t )  = A (-t)a and t increases from - o~ to 0. 7 = In I t I decrtases 
from + co to - oo as t increases from - GO to 0. Hence as t increpses 7 decreases. But a < 0. 
Hence as t increases a7 also increases and hence the area of the perturbation S = i-n 
(C , +plane increases. Following Kulikovskii & Slobodkinas i t  is.concluded that only one 
of the four steady flows passing through the saddle point is stable. Here actual flow is 
represented by 1 of in Fig. 1 and is stable in the neighbourhood of the singular point. 

S T A B I L I T Y  O F  S E L F - S I M I L A R  F L O W  O F  A  G A S  U N D E R  T H E  
A C T I O N  O F  A N  I M P U L S I V E  L O A D  \ 

The stability of self-similar flow of a gas under the action of an impulsive load have been 
diecussed. \ When the gas-surface is subjected togn impulsive load by methods described i~ 
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Zeldovich & Raizer], the motion is self-similar motion of second kind. In  this w e  plane 
wave (v = 1) propagates in a gas of u n i f m  density (o = 0). The time is measured from 
the instant the impulsive load is applied and the self-similar, motion is realised for 
t  > 0. 

Thus 

R ( t )  = A (t)  6, T = 112 (t) I (26) 

By putting v = 1, w = 0 in equations (13), (19) and (203, we get 

In Table 4 the values of a , /3 for values of 8 and Y as given in Zeldovich & Raizerl are 
given. 

It will be seen from Table 4 that the singular point is a saddle point. 

Here t increases from 0 to f oo and hence T = In ( t )  also increases from - oo to + oo 
Thus as t increases T also increases and c ( ~  decreases. Thus all the four possible( flows 
near the singular point are stable. Here the actual flow is represented by aob in Fig. 1 and is 
stable. 

S T A B I L I T Y  O F  S E L F - S I M I L - A R  F L O W  D U E  T O  P R O P A G A T I O N  
O F  S H O C K - W A V E  I N  A N  E X P O N E N T I A L  M E D I U M  

Let a strong shock propagate in a medium in which the density varies exponentially 
with initial density, producing a self-similar motion of second kind. Such models have been 
used for atmospheres of skrs  as well as of earth by many. 

The gas is assumed to be polytropic with polytropic exponent Y. The gas is initially at  
lest at  zero temperature and zero pressure under no body force, with a density distribution 
.g+xm by t 

P = P*~'/A (29) 
c 
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Here p* is the density a t  surface and is the chartderistic length for the thyity 
variation. Following Hayes7 , we suppose that the density increases as r increases down- 
wards the aurface. 

Let a plane shock-wave be located a t  r = R ( t ) ,  and the motion of the shock is assumed 
to follow *the law 

R =snh 1 t 1 = 8 A ~ ( s a y )  (30) 
where 6 is the similarity parameter. The velocity of the shock is then given by 

The similarity variable f is defined by 

When the shock front is propagating towards the surface, the similarity parameter I 
is negative behind the shock and the time t is positive and tends to f oo. The situation is 
reversed when the shock is propagating outwards from the surface. 

In order to study the stability of this flow behind the shock the following non-dimen- 
sional variables have been introduced : 

and 

P (r  9 t )  u(r , t )  
. ( P , i )  = h p n 2  I I 8-2 3 J ' ( f 2 ~ )  = -- 

a n t  -I 

Separate analysis is needed according as whether shock is propagating into thinner 
atmosphere or into denser atmosphere. 

6* 
Case 1 : Let the shock traverse into thinner atmosphere. The characteristic speed C 

in (f , T )  - plane which vanishey a t  the singular point satisfies an equation similar to 
equation (21) and is given by 

where I* is the value of I when Vo = Vo*. 

The coefficient cc is identically equal to 260 and the coefficient ,5 = (y-4-8-2) , 
2Y 

since1 Y > 1 and 6 > 1. Hence the singular point is a saddle point and the area of 
perturbation S = Soe ar in (G , 6) - plane is always a constant for all values of 7. 

Here T decreases from oo to 0 as t increases from 0 to GO. The actual flow $ this case is 
lof in Fig. 1 and is stable. 

Case 2 : When motion of a shook front is in the direction of increasing densjty, 
a remains zero and r 0 since* Y > 1 and S > 1. The singular point is a saddle 
point. The area of perturbation is constant for all values of 7. Here T increases from - af 
to + a, as t increase from 0 to f a. Actual flow in this case ia ~ o b  in Fig. 1 and is stable. 
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