OPTIMUM TRAJECTORIES WITH SPECIFIED TRANSFER ANGLE

T. N. Srivastava \& M. Sivgh

Defence Science Laboratory, Delhi
(Received 24 March 1969)

Abstract

Inter-orbital optimum trajectories with specified transfer angle in an inverse square gravitational field have been analysed. Criterion of optimization adopted is minimum velocity increment in the entire transfer operation with one impulse each at the initial and final terminal. Particular cases of the above problem are discussed and as a numerical illustration, results are obtained for transfer trajectories between two orbits in Earth's gravitational field.

Srivastava \& Singh ${ }^{1}$ have studied optimum transfer trajectory between any two terminals constrained by a specified transfer angle in an inverse square gravitational field, the initial terminal being a point on an elliptic orbit and final terminal a point on another elliptic orbit. The optimum trajectory defined there ${ }^{\mathbf{1}}$ was one which minimizes the single velocity increment applied to the rocket at the initial terminal. In the present paper optimum inter-orbital trajectory with specified transfer angle is analysed under a different optimization criterion which is defined as that which minimizes the total characteristic velocity required in the entire two impulsive transfer operation. Two particular cases of the above problem are : (i) when the mission is to achieve inter-orbital transfer with least velocity increment at the initial terminal which is the problem studied earlier ${ }^{1}$, (ii) when the mission is to minimize the velocity increment applied at the final terminal for rocket's entry into the final orbit. Case (ii) has been discussed in some detail. Numerical results are also obtained for orbits in Earth's gravitational field.

TUNDAMENTAL EQUATIONS AND CHARACTERISTIC VELOCITY
Let the equations of the elliptic orbits corresponding to initial and final terminals be

$$
\begin{gather*}
l_{1}=r\left(1+e_{1} \cos \theta\right) \tag{1}\\
l_{2}=r\left[1+e_{2} \cos (\theta-\alpha)\right] \tag{2}
\end{gather*}
$$

where suffixes (1) and (2) relate to initial and final terminals, l is semi-latus rectum, e is eccentricity, (r, θ) are polar co-ordinates with force centre (focus) as the pole and the line joining the force centre to the peri-apsis of the initial orbit as the initial line and α is the angle between the major axes of the initial and final orbits.

If $\left(r_{1}, \theta_{1}\right)$ and $\left(r_{2}, \theta_{1}+\phi\right)$ be the initial and final terminals, equations (1) and (2) give

$$
\begin{equation*}
\rho=\frac{r_{1}}{r_{2}}=\frac{l_{1}}{l_{2}}\left(\frac{1+e_{2} \cos \left(\theta_{1}+\phi-\alpha\right)}{1+e_{1} \cos \theta_{1}}\right) \tag{3}
\end{equation*}
$$

where ϕ is the specified transfer angle. The velocity change ΔV_{1}, required at the initial terminal in directing the rocket along the transfer trajectory will be given by

$$
\begin{equation*}
\Delta V_{1}=\left[V_{0}^{2}+V_{1}^{2}-2 V_{0} V_{1} \cos \left(\gamma_{0}-\gamma_{1}\right)\right]^{\frac{1}{2}} \tag{4}
\end{equation*}
$$

where V_{0}, V_{1} are rocket velocities just before and after the application of impulse and
γ_{0}, γ_{1} are the corresponding heading angles. We can show that

$$
\begin{gather*}
\tan \gamma_{0}=\frac{e_{1} \sin \theta_{1}}{1+e_{1} \cos \theta_{1}} \tag{5}\\
V_{0}^{2}=\frac{\mu}{l_{1}}\left[1+e_{1}^{2}+2 e_{1} \cos \theta_{1}\right] \tag{6}
\end{gather*}
$$

where μ is gravitational parameter.
If ∇_{2} is the rocket velocity along the transfer trajectory just before the application of the impulse at the final terminal, V_{f} is the orbital velocity to be obtained for entry in the final orbit and γ_{2}, γ_{f} the corresponding heading angles, the required velocity change ΔV_{2} will be given by the relation,

$$
\begin{equation*}
\Delta V_{2}=\left[V_{2}^{2}+V_{f}^{2}-2 V_{2} V_{f} \cos \left(\gamma_{2}-\gamma_{f}\right)\right]^{\frac{1}{2}} \tag{7}
\end{equation*}
$$

It can be shown that

$$
\begin{align*}
& \tan \gamma_{f}=\frac{e_{2} \sin \left(\theta_{1}+\phi-\alpha\right)}{1+e_{2} \cos \left(\theta_{1}+\phi-\alpha\right)} \tag{8}\\
& \nabla_{f}^{2}=\frac{\mu}{l_{2}}\left[1+2 e_{2} \cos \left(\theta_{1}+\phi-\alpha\right)+e_{2}^{2}\right] \tag{9}
\end{align*}
$$

and

$$
\begin{equation*}
\nabla_{2}^{2}=\nabla_{1}^{2}+2 \mu\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right) \tag{10}
\end{equation*}
$$

By conservation of angular momentum we have

$$
\begin{equation*}
\cos \gamma_{2}=\frac{V_{1} \rho \cos \gamma_{1}}{V_{2}} \tag{11}
\end{equation*}
$$

Further, V_{1} can be expressed in terms of γ_{1} and ϕ as ${ }^{1}$

$$
\begin{equation*}
\nabla_{1}^{2}=\frac{\mu(1-\cos \phi) \sec ^{2} \gamma_{1}}{r_{1}\left(\rho+\sin \phi \tan \gamma_{1}-\cos \phi\right)}\left|\gamma_{1}\right| \leqslant \frac{\pi}{2} \tag{12}
\end{equation*}
$$

Substituting from equations (10) and (11) into equation (7) we have

$$
\begin{align*}
\Delta V_{2} & =\left[\nabla_{1}{ }^{2}+2 \mu\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)+\nabla^{2}{ }_{f}-2 \nabla_{f}\left\{\nabla_{1}{ }^{2}+2 \mu\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)\right\}^{\frac{1}{2}}\right. \\
& \left.\quad \cos \left\{\cos ^{-1}\left(\frac{V_{1} \rho \cos \gamma_{1}}{\left\{V_{1}{ }^{2}+2 \mu\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)\right\}^{\frac{1}{2}}}\right)-\gamma_{f}\right\}\right]^{\frac{1}{2}} \tag{1.3}
\end{align*}
$$

characteristic velocity is then given by

$$
\begin{equation*}
\Delta V=\left|\Delta V_{1}\right|+\left|\Delta V_{2}\right| \tag{14}
\end{equation*}
$$

where ΔV_{1} and ΔV_{2} are given by equations (4) and (13). Evidently ΔV is a function of two variables θ_{1} and γ_{1}.

Thie problem now is to find out values of θ_{1} and γ_{1} which minimize ΔV. For this
we have

$$
\begin{align*}
& \frac{\partial(\triangle V)}{\partial \theta_{1}}=0 \tag{15}\\
& \frac{\partial(\triangle V)}{\partial \gamma_{1}}=0 \tag{16}
\end{align*}
$$

From equations (15) and (16) we have
$\frac{1}{\Delta V_{1}}\left[V_{0}\left\{\frac{\partial V_{0}}{\partial \theta_{1}}-V_{1} \sin \left(\gamma_{1}-\gamma_{0}\right) \frac{\partial \gamma_{0}}{\partial \theta_{1}}-\cos \left(\gamma_{1}-\gamma_{0}\right) \frac{\partial V_{1}}{\partial \theta_{1}}\right\}+V_{1}\left\{\frac{\partial V_{1}}{\partial \theta_{1}}\right.\right.$
$\left.\left.-\cos \left(\gamma_{1}-\gamma_{0}\right) \frac{\partial V_{0}}{\partial \theta_{1}}\right\}\right]+\frac{1}{\Delta V_{2}}\left[\xi+V_{f} \frac{\partial V_{f}}{\partial \theta_{1}}-\cos \zeta\left(\xi \eta V_{f}+\frac{1}{\eta} \frac{\partial V_{f}}{\partial \theta_{1}}\right)\right.$
$-V_{f} \sin \zeta\left[\left\{1-\left(V_{1} \rho \eta \cos \gamma_{1}\right)^{2}\right\}^{-1}\left\{\left(V_{1} \cos \gamma_{1}\left(\frac{1}{r_{2}} \frac{r_{1}}{\partial \theta_{1}}-\frac{\rho}{r_{2}} \frac{\partial_{2}}{2 \theta_{1}}\right)\right.\right.\right.$
$\left.\left.\left.\left.+\rho \cos \gamma_{1} \frac{\partial V_{1}}{\partial \theta_{1}}\right)-V_{1} \rho \xi \eta^{2} \cos \gamma_{1}\right\}+\frac{1}{\eta} \frac{\partial \gamma_{f}}{\partial \theta_{1}}\right]\right]=0$
and

$$
\begin{align*}
& \frac{1}{\Delta V_{1}}\left[\nabla_{0}\left\{V_{1} \sin \left(\gamma_{1}-\gamma_{0}\right)-\cos \left(\gamma_{1}-\gamma_{0}\right) \frac{\partial V_{1}}{\partial \gamma_{1}}\right\}+\nabla_{1} \frac{\partial \nabla_{1}}{\partial \gamma_{1}}\right] \\
& +\frac{1}{\triangle V_{2}}\left[\nabla_{1} \frac{\partial V_{1}}{\partial \gamma_{1}}\left(1-\eta \nabla_{f} \cos \zeta\right)-V_{f} \sin \zeta\left\{1-\left(V_{1} \rho \eta \cos \gamma_{1}\right)^{2}\right\}-\right. \\
& \left.\left\{\rho\left(\cos \gamma_{1} \frac{\partial V_{1}}{\partial \gamma_{1}}-V_{1} \sin \gamma_{1}\right)-V_{1}^{2} \rho \cos \gamma_{y^{\prime} \eta^{2}} \frac{\partial V_{1}}{\partial \gamma_{1}}\right\}\right]=0 \tag{18}
\end{align*}
$$

where

$$
\begin{aligned}
\xi & =V_{1} \frac{\partial V_{1}}{\partial \theta_{1}}+\mu\left(\frac{1}{r_{1}^{2}} \frac{\partial r_{1}}{\partial \theta_{1}}-\frac{1}{r_{2}^{2}} \frac{2 r_{2}}{\partial \theta_{1}}\right) \\
\eta & =\frac{1}{V_{2}}=\left\{\nabla_{1}^{2}+2 \mu\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)\right\}^{-\frac{1}{2}} \\
\zeta & =\cos ^{-1}\left(V_{1} \rho \eta \cos \gamma_{1}\right)-\gamma_{f} \\
\frac{\partial r_{1}}{\partial \theta_{1}} & =\frac{e_{1} l_{1} \sin \theta_{1}}{\left(1+e_{1} \cos \theta_{1}\right)^{2}} \\
\frac{\partial r_{2}}{\partial \theta_{1}} & =\frac{e_{2} l_{2} \sin \left(\theta_{1}+\phi-\alpha\right)}{\left.1+e_{2} \cos \left(\theta_{1}+\phi-\alpha\right)\right\}^{2}} \\
\frac{\partial V_{0}}{\partial \theta_{1}^{\prime}} & =-\frac{\mu e_{1} \sin \theta_{1}}{V_{0} l_{1}} \\
\frac{\partial \gamma_{0}}{\partial \theta_{1}} & =\frac{e_{1}\left(e_{1}+\cos \theta\right)}{1+2 e_{1} \cos \theta_{1}+e_{1}^{2}} \\
\frac{\partial V_{f}}{\partial \theta_{1}} & =-\frac{\mu e_{2} \sin \left(\theta_{1}+\phi-\alpha\right)}{V_{f} l_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial \gamma_{f}}{\partial \theta_{1}}=\frac{e_{2}\left\{e_{2}+\cos \left(\theta_{1}+\phi-\alpha\right)\right\}}{1+2 e_{2} \cos \left(\theta_{1}+\phi-\alpha\right)+e_{2}^{2}} \\
& \frac{\partial V_{1}}{\partial \gamma_{1}}=\frac{\mu(1-\cos \phi)\left(1+e_{1} \cos \theta_{1}\right)}{2 V_{1} l_{1}}\left[\frac{\sec ^{2} \gamma_{1}\left(2 A \tan \gamma_{1}-\sin \phi \sec ^{2} \gamma_{1}\right)}{A^{2}}\right] \\
& \frac{\partial V_{1}}{2 \theta_{1}}=\frac{\mu(1-\cos \phi) \sec ^{2} \gamma_{1}}{2 V_{1} l_{1}}\left[\frac{l_{1}\left(e_{1} e_{2} \sin (\phi-\alpha)+e_{2} \sin \left(\theta_{1}+\phi-\alpha\right)-e_{1} \sin \theta\right)}{l_{2} A^{2}\left(1+e_{1} \cos \theta_{1}\right)}\right.
\end{aligned}
$$

and $\quad A=\frac{l_{1}}{l_{2}}\left(\frac{1+e_{2} \cos \left(\theta_{1}+\phi-\alpha\right)}{1+e_{1} \cos \theta_{1}}\right)+\sin \phi \tan \gamma_{1}-\cos \phi$
Equations (17) and (18) are two transcendental equations in two unknown θ_{1} and γ_{1} which can be numerically solved for given values of orbital parameters and ϕ. Having known θ_{1} and γ_{1}, location of initial and final terminals can be obtained from equations (1) and (2) and then optimum values of V_{1}, V_{2} and γ_{2} can be evaluated frôm equations (12), (10) and (11) respectively. $\gamma_{0}, V_{0}, \gamma_{f}$ and V_{f} can be found out from equations (5), (6), (8) and (9) and hence $(\Delta V)_{m i n}$ can be calculated from equation (14).

PARTICULAR CASES

Two particular cases of the above problem are (i) when the mission is inter-orbital transfer ander specified transfer angle constraint with least velocity increment at the initial terminal (ii) when the mission is inter-orbital transfer under specified transfer angle constraint with least velocity increment at the final terminal. In case (i) characteristic velocity will be given by $\left|\triangle V_{1}\right|$ and equations (17) \& (18) are reduced to those obtained by Srivastava \& Singh ${ }^{\mathbf{1}}$. In case (ii) characteristic velocity is given by $\left|\Delta V_{2}\right|$ and hence

Table 1
Parameters of optimum transfer trajectories

Mission	Launch heading angle γ_{1}	Lisunch vectorial angle θ_{1}	Launch radius vector r_{1} (km)	Arrival radius vector r_{2} (km)	Launch velocity $\begin{gathered} V_{1} \\ \mathrm{~km} / \mathrm{sec} \end{gathered}$	Arrival velocity $\begin{gathered} V_{2} \\ \mathrm{~km} / \mathrm{sec} \end{gathered}$	Arrival heading angle γ_{3}	Volooity change $\mathrm{km} / \mathrm{sec}$
General Case	$54 \cdot 05^{\circ}$	123.5°	11985	28555	$6 \cdot 7937$	$2 \cdot 4466$	$47 \cdot 72^{\circ}$	$5 \cdot 6618$
Case (i)	49.20°	$111 \cdot 0^{\circ}$	11204	26147	$7 \cdot 4203$	3-7909	$56 \cdot 7{ }^{\circ}$	$\begin{aligned} & \left\|\triangle V_{3}\right\| \min \\ & =3 \cdot 9280 \end{aligned}$
Case (ii)	$58 \cdot 70^{\circ}$	153.5°	13670	32895	6.0178	1-4534	$26 \cdot 62^{\circ}$	$\left\|\Delta_{1} V_{1} V_{2}\right\| \min$

$$
{ }^{*}(\Delta V) \min =\left(\left|\Delta V_{1}\right|+\left|\Delta V_{2}\right|\right) \min =(4 \cdot 0519+1 \cdot 6099)=5 \cdot 6618
$$

equations (17) and (18) give

$$
\begin{align*}
& \xi+V_{f} \frac{\partial V_{f}}{\partial \theta_{1}}-\cos \zeta\left(\xi \eta V_{f}+\frac{1}{\eta} \frac{\partial V_{f}}{\partial \theta_{1}}\right)-\nabla_{f} \sin \zeta\left[\left\{1-\left(\nabla_{1} \rho \eta \cos \gamma_{1}\right)^{2}\right\}^{-\frac{1}{2}}\right. \\
& \left\{\left(V_{1} \cos \gamma_{1}\left(\frac{1}{r_{2}} \frac{\partial r_{1}}{\partial \theta_{1}}-\frac{\rho}{r_{2}} \frac{\partial r_{2}}{\partial \theta_{1}}\right)+\rho \cos \gamma_{1} \frac{e V_{1}}{\partial \theta_{1}}\right)-\nabla_{1} \rho \xi \eta^{2} \cos \gamma_{1}\right\} \\
& \left.+\frac{1}{\eta} \frac{\partial \gamma_{f}}{\partial \theta_{1}}\right]=0 \tag{19}
\end{align*}
$$

and

$$
\begin{align*}
& V_{1} \frac{\partial V_{1}}{\partial \gamma_{1}}\left(1-\eta V_{f} \cos \zeta\right)-V_{f} \sin \zeta\left[\left\{1-\left(V_{1} \rho \eta \cos \gamma_{1}\right)^{2}\right\}^{-1}\right. \\
& \left.\left\{\rho\left(\cos \gamma_{1} \frac{\partial V_{1}}{\partial \gamma_{1}}-V_{1} \sin \gamma_{1}\right)-V_{1}^{2} \rho \cos \gamma_{1} \eta^{2} \frac{\partial V_{1}}{\partial \gamma_{1}}\right\}\right]=0 \tag{20}
\end{align*}
$$

Equations (19) and (20) can be solved for the unknowns θ_{1} and γ_{1} for given values of orbital parameters and ϕ and proceeding as explained in general case we can evaluate the optimum values of $V_{1}, V_{2}, \gamma_{1}, \gamma_{2}$, and $\left|\triangle V_{2}\right| \cdot$ min

NUMERICAL EXAMPLE

Parameters of the optimum transfer trajectories for the general and particular cases have been numerically obtained and are given in Table 1 for the following two orbits in Earth's gravitational field.

Initial Orbit : $l_{1}=10^{4} \mathrm{~km}, e_{1}=0.3$
Final Orbit : $l_{2}=\left(2 \times 10^{4}\right) \mathrm{km}, e_{2}=0 \cdot 4, \alpha=20^{\circ}$
Specified transfer angle $\phi=35^{\circ}$
As should be expected, Table 1 indicates that the velocity changes at the initial and final terminals in the general case are respectively greater than the velocity change at the initia ${ }^{l}$ terminal in case (i) and velocity change at the final terminal in case (ii). Fig. 1 and 2 show respectively the variation of ΔV and $\left|\triangle V_{2}\right|$ with respect to θ_{1} for typical values of γ_{1}. Their study shows that $(\triangle V)_{m_{i n}}$ and $\left.\Delta V_{2}\right|_{m_{i n}}$ do occur at $\vec{\theta}_{1}=123.5^{\circ}$, $\gamma_{1}=54 \cdot 05^{\circ}$ and $\theta_{1}=153 \cdot 5^{\circ}, \gamma_{1}=58 \cdot 7^{\circ}$ respectively.

Fig, $1-$ - Variation of ΔV with respect to vectorial angle.

Fig. 2-Variation of (ΔV_{q}) with respect to vectorial angle.

Science Lishoratory, Delhi for his permission to publish this paper.

RGERETEC

