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1. INTRODUCTION
1.1 Hand Vein Biometrics 

Biometrics is the study of techniques for measuring 
features of living entity that can be used to determine the 
individual identity. Choi1 and Badawi2 state that the vein 
pattern is a unique property of each individual in the hand. 
The whole physical arrangement of blood vessels, veins and 
capillaries within the human body is considered to be different 
for each individual3. The uniqueness of veins in the hand is 
sparse. The mechanisms underlying the development of the 
vascular system and the studies on the spatial arrangement of 
the final vascular network could provide more insight into the 
probability that no vein pattern will be the same between two 
individuals. 

The hand vein biometric system acquires a vein image 
which can be taken only at live body, thus the vein image at non-
live hand cannot be taken. It extracts the vein pattern inside a 
hand rather than the outside features of a human body. It is also 
a good alternative to biometric systems that require physical 
contact because it extracts the vein pattern, the hand is not in 
contact with the device instead hand is just easily stretched and 
the capturing of vein pattern is completed. Due to non-contact, 
it is hygienic. Since the system has got the three features live 
body, internal features and non-contact, there is no forgery, 
and no misuse by evildoers, thus it grasps high security status 
and can be used at high level security places.

1.2 Literature Review
Daugman4 discovered that simple cells in the visual cortex 

of mammalian brains can be modeled by Gabor functions. The 

image analysis of the Gabor functions is similar to perception 
in the human visual system. The frequency and orientation 
representations of Gabor filters are similar to those human 
visual systems. Gabor filters are found to be particularly 
appropriate for texture representation and discrimination. In 
the spatial domain, a 2-D Gabor filter is a Gaussian kernel 
function modulated by a sinusoidal plane wave. The Gabor 
filters are self-similar: all filters can be generated from one 
mother wavelet by dilation and rotation.

Tanaka and Kubo5 developed a hand vein acquisition 
device using near IR imaging and employed fast Fourier 
transform based phase correlation scheme for user verification 
tested with noise reduction filters, sharpness filters and 
histogram manipulation. Shahin6, et al. presented fast spatial 
correlation of hand vein patterns for recognition. After 
segmentation and pattern post processing correlation is used 
to measure identity.

Wang7, et al. proposed local scale invariant feature 
transform (SIFT) which has practical significance due to its 
translation and rotation invariance. The hand vein image is 
preprocessed to remove the background and reduce image 
noises and the SIFT features are extracted to describe the 
gradient information of hand vein. Minimum distance classifier 
is used for matching. Tang8, et al. proposed multi-level keypoint 
detection and SIFT feature based local matching for hand-dorsa 
vein recognition. In multi-level keypoint detection approach 
Harris-Laplace and Hessian-Laplace detectors are combined 
to localize key points that highlight the more discriminating 
information. Then SIFT based local matching associates these 
key points between hand dorsa of the same individual. Huang9, 
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et al. make use of oriented gradient maps (OGMs) to represent 
the hand vein images and SIFT based local matching is then 
performed to associate the key points between corresponding 
OGM pairs of the same subject.

Kumar and Prathyusha10 proposed an approach to 
authenticate user by triangulation of hand vein images and 
knuckle shape of information palm dorsa hand vein images. 
The knuckle tips are used for extraction of ROI. The matching 
scores are generated from the four topologies of triangulation in 
the binarized vein structures and from the geometrical features 
consisting of knuckle point perimeter distances in the acquired 
images. The weighted score level combination of these two 
matching scores are used to authenticate the individuals.

Wang11, et al. presented partition local binary pattern 
(LBP) for hand-dorsa vein recognition. In this work after 
preprocessing the image is divided into sub-images. LBP 
features are extracted from all the sub-images Minimum 
distance classifier is used for identification. Wang and Liao12 
presented the feature code for hand vein recognition. The 
output of partition LBP is extracted and given as input to back 
propagation encoder. The orthogonal gold code is selected as the 
output code for back propagation. Correlation classifier is used 
as the final classifier. Wang13, et al. proposed feature descriptor 
in which partition LBP is added with feature weighting and 
error correction code. Feature weighting reduces the influence 
of insignificant local binary patterns and error correction code 
increases the distances between feature classes. 

In this study NCUT dataset is used to evaluate the 
proposed algorithm. During preprocessing the region of interest 
(ROI) is identified from the hand vein images. In the proposed 
work the quantized phase of the Gabor filter quadrature pair 
is computed in local image window at every pixel location. 
Decorrelation technique is applied on quantized image which 
enhance the differences found in each pixel of an image. The 
whitening transform is used for decorrelation. The histogram 
of decorrelated image is considered as the features for the 
images. Minimum distance classifier and correlation are used 
for classification purpose.

2. ROI EXTRACTION OF NCUT HAND DORSA 
VEIN DATASETS
In this dataset to avoid the major hand vein image 

registration issue a handle is pre-mounted at the bottom of the 
device to position the hand14. The hand vein images are roughly 
aligned and differed by slight translations and rotations. Back 
of the hand vein is captured as an image with a resolution of 
640 × 480. A dataset of 2040 hand vein images was acquired 
under the natural lighting condition. It was named as North 
China University of Technology hand-dorsa vein dataset or 
NCUT dataset. In detail, 10 right and 10 left back of the hand 
vein images were captured from all 102 subjects, aged from 
18 to 29, of which 50 were male while 52 were female. As the 
vein pattern is best defined when the skin on the back of the 
hand is stretched tight, subjects were asked to clench their fists 
as acquiring vein patterns. 

The image coverage area is larger than the back of the 
hand as shown in Fig. 1(a). In this work, the image centroid 
was identified to extract the ROI. Let (x0, y0) be the centroid of 

vein image f(x, y) then
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A square region of size R × R pixels with the centroid as 
the centre is extracted as the vein image to be processed. To 
confirm the size, ROI with R ranging from 300 pixels to 420 
pixels are extracted as shown in Fig. 1.        

       
From Fig. 1 when R = 360 pixels, almost all the hand-

dorsa vein information is included. The redundant background 
information with little hand information is introduced when R 
= 380 pixels, R = 400 pixels and R = 420 pixels. Therefore 360 
× 360 is introduced in this work.

Figure 1: Result of ROI extraction

3. LOCAL GABOR PHASE QUANTIZATION 
The most important method for image representation 

and analysis is the spatial frequency transform, which can be 
represented in terms of magnitude and phase. Phase is highly 
invulnerable to noise and contrast distortions and it is an 
important feature desirable in image processing. The phase in 
image can be represented by global phase. The global Fourier 
analysis provides information on the frequency contents of the 
whole image. Since the content of an image is not stationary, 
therefore localized frequency analysis has become important 
in image representation15. 

The discrete model for spatially invariant blurring of an 
original image f(x) resulting in an observed image g(x) can be 



PREMALATHA, et al.: A DORSAL HAND VEIN RECOGNITION BASED ON LOCAL GABOR PHASE QUANTIzATION 

161

expressed by a convolution given by

 ( ) ( )( )g x = f * h x                            (3)                              

where * denotes 2-D convolution, h(x) is the point spread 
function (PSF) of the blur, and x is a vector of coordinates [x, 
y]T . In the Fourier domain, this corresponds to  
 ( ) ( ) ( )G u = F u .H u                                                (4)                              

where G(u), F(u) and H(u) are the discrete Fourier transforms 
(DFT) of the blurred image g(x), the original image f(x), and the 
h(x) respectively, and u is a vector of coordinates [u, v]T. The 
magnitude and phase parts of the above equation are separated 
by 

 ( ) ( ) ( )G u = F u . H u                                           (5)                              

 ( ) ( ) ( )G u F u H u∠ = ∠ + ∠                                       (6)
The local phase quantization is based on the blur invariance 

property of the Fourier phase spectrum. It uses the local phase 
information extracted using the Short-Term Fourier Transform 
(STFT) computed over a rectangular M × M neighbour hood 
Nx at each pixel position x of the image f(x) defined by

       
                        ( ) - 2, ( - )
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where zu is the basis vector of the 2-D discrete Fourier 
transform at frequency u, and fx is another vector containing all 
M2 image samples from Nx. An efficient way of implementing 
the STFT is to use 2-D convolutions - 2( )*

Tj u yf x e π

 for all u. 
Since the basis functions are separable, computation can be 
performed using 1-D convolutions for the rows and columns 
successively.

The analysis of the combined spatial-frequency space 
can be achieved using various tools, such as short time 
fourier transform (STFT), gabor transform (GT) and wavelets 
transform. In the proposed work STFT is computed in local 
image windows of a preselected form Gabor filter quadrature 
pair (LGPQ).

The formula for Gabor filter is 

   ( )
2 2 2

2

' ' ', ; , , , , exp exp 2
2

x y xg x y i
   + γ  λ θ ψ σ γ = − π + ψ    λσ      

          (8)
where x' =  xcosθ+ ysinθ, y'  = - xcosθ+ ysinθ, λ is a wavelength 
of the sinusoidal factor, θ is an orientation of the normal to the 
parallel stripes of a Gabor function, ψ is a phase offset, σ is 
a sigma of the Gaussian envelope and γ is the spatial aspect 
ratio.

It is mostly useful while making derivatives of an image 
rather than differentiating on the raw signal that should be 
obtained from the smoothed image. A quadrature pair is a 
set of two linear operators with the same amplitude response 
but phase responses shifted by 90 degrees. Quadrature pairs 
measure local oriented energy. These can be used to identify 
contours, independently of the phase of the contour. Gabor filter 
quadrature pair in spatial domain converted into the frequency 
domain by taking the Fourier transform. Fourier transform 
transforms the measured k-space data into image space and 

the image data is a complex type. The complex argument of a 
complex number is called as phase.

In LGPQ six complex coefficients are considered 
corresponding to 2-D frequencies    u1 = [b,0]T, u2 = [0,b]T , u3 
= [b,b]T , u4 = [b,-b]T , u5 = [-b,-b]T and u6 = [-b,b]T where b is 
a scalar frequency. Let

[ ]1 2 3 4 5 6( ) ( , ), ( , ), ( , ), ( , ), ( , ), ( , )F x F u x   F u x   F u x   F u x F u x F u x=    
  (9)

[ ]( ) { ( )}, { ( )} TG x real F x img F x=                          (10) 
where real{.} and img{.} return real and imaginary parts of 
a complex number respectively. The corresponding 12-by-M2 
transformation matrix is 

 
{ } { }[ ]T6u5u4u3u2u1u6u5u4u3u2u1u z,z,z,z,zz,imgz,z,z,z,zzrealz =  

                                       (11)
So that ( ) xG x Zf=
Window size determines the locality of the quantized 

phase. Increasing the window size will result in a further 
degradation of the original signal, as more features located 
in each window will be affected. Increasing quantization will 
reduce the feature (edge) degradation on one hand, and reduce 
the energy of the signal on the other hand. The number of 
quantization levels is in between 2 and ∞. 

In the proposed work the LGPQ descriptor is formed 
locally for every pixel. The STFT coefficients are computed 
in the M × M neighbour hood of the pixel for the lowest 
horizontal, vertical, and diagonal frequencies (1,0), (0,1), 
(1,1), (1,-1), (-1,-1) and (-1,1). Real and imaginary parts of 
these six frequencies are binary quantized based on their sign. 
If it is greater than 0 then the corresponding quantized value is 
0 otherwise 1.
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where gj is the jth component of G(x). The quantized coefficients 
are represented as integer values between 0-4095 using binary 
coding
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3.1 Decorrelation with Whitening Transformation
Before quantization the coefficients are decorrelated, 

because it is shown that the information is maximally 
preserved in scalar quantization if the samples to be quantized 
are statistically independent15. A whitening transformation is 
a decorrelation transformation that transforms a set of random 
variables having a known covariance matrix M into a set of 
new random variables whose covariance is the identity matrix. 
The transformation is called whitening because it changes the 
input vector into a white noise vector. 

The inverse colouring transformation transforms a vector 
Y of uncorrelated variables (a white random vector) into a 
vector Z with a specified covariance matrix. Suppose Z is a 
random vector with covariance matrix M and mean 0. The 
matrix M can be written as the expected value of the outer 
product of Z by itself, namely
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[ ]TM ZZ= Ε                                                                 (14)

 
since M is symmetric and positive semi definite, it has a 

square root M1/2, such that 1/2 1/2( )TM M M= . If M is positive 
definite, M1/2 is invertible. Then the vector -1/2Y M Z=  has 
covariance matrix:

1/2 1/2( ) [ ] [ ]( )T T TCov Y YY M ZZ M− −= Ε = Ε                   (15)
 

1/2 1/2 1/2 1/2 1/2 1/2( ) ( ) ( )(( ) ( ) )T T TCov Y M M M M M M M I− − − −= = =                  
                                                                                (16)

and is therefore a white random vector. Since the square 
root of a matrix is not unique, the whitening transformation is 
not unique either. If M is not positive definite, then M1/2 is not 
invertible, and it is impossible to map Z to a white vector of 
the same length. In that case the vector Z can still be mapped 
to a smaller white vector Y with m elements, where m is the 
number of non-zero eigenvalues of M.

The covariance matrix of the transform coefficient vector 
Fx can be obtained from ( )TM E ZZ= . If the data points in Z 
are correlated, then their covariance M will not be a diagonal 
matrix. In order to decorrelate the data, the data need to be 
transformed and the transformed data will have a diagonal 
covariance matrix. This transform can be done by using the 
eigenvalue problem.

Thus, the data have been decorrelated: its covariance is 
now a diagonal matrix. The diagonal elements (eigenvalues) 
may be the same or different. If they are same then it is called 
whitening the data. Each eigenvalue determines the length 
of its associated eigenvector; the covariance will correspond 
to an ellipse when the data is not whitened. The covariance 
will correspond to a sphere and all dimensions have the same 
length, or uniform when the data is whitened. 

The uniform phase shift to all vectors happens due to the 
whitening transform it makes the coefficient vectors are subject 
to a twelve dimensional rotation. The twelve dimensional 
spaces are divided into 4096 hypercubes during quantization. 
Based on the phase information the vector is assigned to one 
of these hypercubes. 

Figure 2 shows the LGPQ method which illustrates 

the computation of LGPQ code for the gray pixel using 5 × 
5 neighbourhood at 6 frequency levels. The histogram is 
obtained by adding the LGPQ code at every pixel position after 
decorrelation with whitening transformation.

4. EXPERIMENT RESULT ANALYSIS
The biometric authentication system compares enrolled 

biometric data with the identity of the person claimed if the 
matching is closer, then the match score is higher. If the match 
score exceeds a given threshold then the person authenticating 
is accepted. The system will generate two types of errors called 
the false negative rate (FNR) and the false positive rate (FPR). 
Both FPR and FNR depend on a threshold. A higher threshold 
will generally reduce FPR, but at the expense of increased 
FNR, and vice versa. The threshold affects FNR and FPR. At a 
low threshold FNR will be low and FPR will be high. When the 
threshold is increased more genuine users will be rejected and 
fewer impostors will be accepted. At some point FNR and FPR 
will be equal. The value of the FPR and FNR at this point is the 
equal error rate (EER). The EER tells about what the FPR and 
FNR will be at any other threshold. Sensitivity is also called 
as true positive rate (TPR) or the Recall rate. It measures the 
proportion of actual positives which are correctly identified. 
Specificity measures the proportion of negatives which are 
correctly identified as such. 

Receiver operating characteristic (ROC) curve plots 
parametrically the FPR (i.e. imposter attempts is accepted) 
on the x-axis, against the corresponding TPR (i.e. genuine 
attempts accepted) on the y-axis as a function of the decision 
threshold. As the match threshold raised both detection and 
false alarms decrease. In biometric system these conflicting 
rates must be balanced to find an acceptable operating point 
and each point in ROC represents a possible combination. 
A detection error trade-off (DET) curve plots error rates on 
both axes, giving uniform action to both types of error16. The 
DET curves can be used to plot matching error rates FNR 
against FPR. The cumulative match curve (CMC) is used as 
a measure of 1:m identification system performance. It is used 
to discover the ranking capabilities of an identification system. 

Figure 2. The LGPQ with Whitening Transformation.
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The CMC curve gives the graphical presentation of results of 
an identification task test, it plots rank values on the x-axis and 
the probability of correct identification at or below that rank 
on the y-axis.

In the proposed work LGPQ is used for texture 
classification and the 12 bit code for every image pixel is added 
to create a 4095 bin histogram which describes the texture. 
Texture classification is then carried out based on the distance 
between the histograms, example, using the Chi square distance 
measure with the minimum distance classifier. The chi-square 
distance hinges in the widespread use of the goodness of fit test 
as one of the most common for statistical conformity

The proposed system evaluates its performance in NCUT 
dataset. For classification the minimum distance classifier is 
used to classify the test image data to classes which minimize 
the distance between the training image data and the class in 
feature space. To compare the histogram distance measure is 
used. The distance is defined as an index of similarity, so that 
the minimum distance is identical to the maximum similarity. 
The following distance measures are used to identify the 
distance between two histograms.

Euclidean distance : ( ) ( )2, -
i

i id p q p q= ∑              (17)

City block distance : ( ), -i i
i

d p q p q= ∑                 (18) 

        Minkowski distance: ( )
1

, -
i

n n
i id p q p q

 
 =
 
 
∑         (19)

Chi square : ( ) ( )2
2 -

,
i

i i

i i

p q
p q

p q
χ =

+∑                             (20)

where p and q represent the individual histogram bin values.

4.1 NCUT Dataset
The experiments are done on left hand vein images, 

right hand vein images and both the left and right hand vein 
images. Since vein patterns of both hands of the same person 
are naturally different to some level16 the left and right dorsal 
hands of a person should have complementary information 
for recognition. To estimate the generalisation error k fold 
cross-validation is applied17. The 10 samples of 102 subjects 
are divided into 5 equal parts. The classification model is 
trained on 4 parts and tested on the remaining one part. This 
is performed 5 times and the average error over the 5 runs is 

considered as an estimate of the generalization error. Table 1 
shows the recognition rate and run time of NCUT left dorsal 
hand dataset, right dorsal hand dataset and both fusion for chi-
square test and 3 different distance measures. The chi-square 
test outperforms other distance measures city block, Euclidean 
and Minkowski both in recognition rate and computational 
time. By considering the hands the fusion of both dorsa hands 
outperforms single dorsa hand vein and it gives 100 per cent 
results for chi square and Euclidean distance measures. 

The proposed work was tested in favour of limited sample 
images per person enrollment. This is due to the difficulties of 
sample collection or the blockage of storage capability of the 
systems. Therefore the test is made on by varying the size of 
gallery samples of each person from 1 to 9. For each size of 
the training data set with the number of images used increasing 
from 1 to 9 (NT = 1, 2,3…, 9) 10 tests were performed with the 
training samples selected randomly in each test. Obviously, as 
the number of training images increases, the number of images 
available for test is decreased, and the recognition performance 
has improved with more time required for computation. Table 2 
shows that the recognition rate of LGPQ is generally improved 
as the gallery size increases and the proposed work can achieve 
a recognition rate of 97.79 per cent for chi-square when only 
one sample is enrolled in the gallery set of each subject for 
both hands.

Figure 3 shows (a) ROC curve, (b) DET curve, and (c) 
CMC curve obtained from the fusion of left and right hand 
dorsa vein for Euclidean, Cityblock, Minkowski and Chi-
square measures. In ROC the more bowed the curve is 
towards the upper left corner, the better the classifier’s ability 
to discriminate between the pattern classes. DET curve helps 
to indicate the performance of the system by plotting false 
match rate against the false non-match rate for a range of 
score thresholds. This will also estimate the widely used equal 
error rate (EER) which is the point at which the false match 
rate is equal to the false non-match rate. Figure 4 shows the 
EER obtained from Chi-square, Cityblock, Euclidean, and 
Minkowski for fusion of both hands. EER curve plots the FAR 
and the FRR on the vertical axis against the threshold score 
on the horizontal axis. The point of intersection of these two 
curves is the EER, i.e. when the false acceptance rate is equal to 
the false rejection rate. Table 3 shows EER obtained from a left 
hand dorsa vein, right hand dorsa vein and fusion of both. The 

Table 1.  Recognition rate and run time for NCUT Hand-Dorsa vein dataset
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measure Chi - square City block Euclidean Minkowski
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Left hand 99.71 0.073 99.60 0.113 98.23 0.113 96.18 0.181

Right hand 99.71 0.069 99.31 0.560 98.62 0.113 96.27 0.180

Both hand 100.00 0.090 100.00 0.140 98.92 0.141 97.94 0.220
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Training 
images 

Test  
images

Chi-square Cityblock Euclidean Minkowski
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1 1836 93.30 94.39 97.79 92.12 93.95 96.22 78.52 79.84 85.98 67.07 71.02 75.20

2 1632 96.22 95.83 98.04 95.24 94.47 97.69 91.72 89.58 91.68 84.77 88.45 91.43

3 1428 97.47 98.04 99.44 96.91 97.33 99.15 92.01 92.71 93.69 85.71 90.09 92.97

4 1224 98.36 99.02 100.00 98.04 98.36 99.51 94.43 95.75 97.54 88.88 92.15 92.97

5 1020 98.82 99.02 100.00 98.82 99.02 99.80 96.86 95.68 98.62 92.15 92.74 96.07

6 816 99.02 99.02 100.00 99.01 99.02 99.75 97.05 96.32 98.77 94.60 94.36 96.07

7 612 99.67 100.00 100.00 99.67 100.00 100.00 98.36 99.01 99.34 95.09 96.40 97.71

8 408 99.51 100.00 100.00 99.51 100.00 100.00 98.04 99.51 99.01 94.60 97.54 98.03

9 204 100.00 100.00 100.00 100.00 100.00 100.00 99.01 100.00 100.00 94.11 96.07 98.03

Table 2. Recognition rate (%) of using different number of training images

Figure 3.  (a) ROC, (b) DET, and (c) CMC curve for fusion of both hands.

Figure 4. EER curve for fusion of both hands.
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lower the EER value, the higher the accuracy of the biometric 
system. Fusion with chi-square gives the lowest value.

Table 4 shows the performance of different methodologies 
for distinct hand dorsa vein images.

5. CONCLUSION 
In this paper LGPQ is proposed that operates on the Fourier 

phase local window in every image position. The phases of the 
six low-frequency coefficients are uniformly quantized with 
whitening transformation into one of 4095 hypercubes in 12 
dimensional spaces; it gives a twelve bit code. These codes for 
all image pixel neighbour hoods are collected into a histogram 
bin, which can be used for classification. The NCUT dataset 
is used for analysis and the minimum distance classifier is 
used for classification. Among the distance measures the chi 
square outperforms both in recognition rate and run time. A 
fusion of both hands gives 100 per cent recognition rate for 
chi square and Euclidian distance measure and it gives 1 per 
cent EER for chi-square distance measure. The results are also 
analyzed for gallery of images due to the complicatedness of 
sample collection. The leave one out cross validation gives 

Reference Methodology Imaging Number of 
subjects

Samples for 
each subject

Total images Performance (%)

Cross and 
Smith18

Sequential correlation in 
vein maps NIR, HDF 20 5 100 FAR = 0 

FRR = 7.9 

Im19, et al. DSP processor NIR imaging Not 
mentioned

Not 
mentioned 5000 FAR = 0.001  

Reliability = 99.45 

Tanaga and 
kubo5 

FFT based phase 
correlation NIR,HDF 25 Not 

mentioned Not mentioned FAR = 0.073 
FRR = 4 

Fan20, et al. Multi-resolution analysis 
and combination

Thermal hand 
vein imaging 32 30 960 FAR = 3.5 

FRR = 1.5  

Wang and 
Leedham21

Line Segment Housdorff 
distance matching

Thermal hand 
vein imaging 12 9 108 FAR = 0 

FRR = 0 

Ding22, et al. Distance between feature 
points NIR imaging, 48 5 240 FAR = 0 

FRR = 0.9 

Shahin6, et al. fast spatial correlation NIR imaging 50 10 500 EER = 0.25 

Wang23, et al. A multi-resolution 
wavelet algorithm NIR imaging 82 10 820 FAR = 0.046 

FRR = 5.08 

Wang24, et al. Modified Hausdorff 
distance algorithm

Far-infrared 
imaging 47 3 141 EER = 0 

Kumar and 
Prathyusha10

Vein triangulation and 
knuckle tips NIR imaging Not 

mentioned
Not 

mentioned 100 FAR = 1.14 
FRR = 1.14 

Wang7, et al. SIFT NIR imaging 102 20 2040 FAR = 0.002 
FRR  = 0.93 .

Wang11, et al. LBP NIR imaging 102 20 2040 Recognition rate = 8.13 

Crisan25, et al. Thinning algorithm NIR imaging 306 2 612 FAR = 0.012 
FRR = 1.03 

Huang9, et al. Oriented gradient maps NIR imaging 102 20 2040 Recognition rate = 7.60 

Wang and Liao12 LBP with back 
propagation encoder NIR imaging 102 20 2040 Recognition rate = 7.60 

Wang13, et al. Coded  and weighted LBP NIR imaging 102 20 2040 Recognition rate = 8.63 

Authors LGPQ with  whitening 
transformation NIR imaging 102 20 2040 Recognition rate = 100 

EER =1 

Table 4. Performance of different methodologies

Distance measure
Equal error rate

Left Right Fusion

Chi-Square 0.035 0.025 0.010

Cityblock 0.050 0.030 0.025

Euclidean 0.090 0.080 0.050

Minkowski 0.120 0.110 0.095

Table 3. Equal error rate
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97.79 per cent recognition rate for both hands in chi square. 
The experimental results are also examined with SIFT, LBP 
variants and oriented gradient maps for this NCUT data set. The 
LGPQ gives 100 per cent  recognition rate and it outperforms 
the existing methods.
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