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Interaction of Explosive Shocks with Airborne Cylindrical
Targets of Elliptical Cross-Section
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ABSTRACT

A theoretical model to find pressure-space history around a
cylindrical target of elliptical cross-section has been presented for
assessing the damage by warheads exploding in the vicinity of an
airborne vehicle. The energy hypothesis has been used to find the
attenuation law from a point explosion. The Whitham-Bryson and
Gross theory for shock interaction has been modified to take into
account the finite strength of incident shock. The theoretical results
have also been compared with Heilig's experimental results.

I. INTRODUCTION

The determination of dynamic pressures exerted on the target becomes necessary
in order to assess the damage caused by airblasts of anti-aircraft shells or any other
warhead exploding in the vicinity of the airborne vehicles. This problem has gained
importance due to its relation with the investigation of large blast fields around
aerospace vehicles in an attempt to accumulate a database for survivability and
vulnerability studies.

It is well-known that the blast wave is the predominant mechanism for damage,
especially for larger ammunitions. Depending on the angles and distances, a structure
might be impulsively loaded by incident-reflected shock pair or by a single stronger
Mach stem. The interaction of a shock wave with various targets has been of interest
for the last three decades and literature both on theoretical and experimental aspects
has appeared since World War-lI. In this pioneering work, Von-Neumannl gave the
two- and three-shock theories. Whitham2-4gave approximate theories for interaction
with two and three dimensional objects assuming the incident shock to be plane.
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Based on Whitham's methods, Bryson and Gross5 studied the diffraction of strong
shocks by cones, cylinders and spheres both theoretically and experimentally using

\ligh-speed Schliren-systems. Heilig6.7 presented the experimental results for shock
wave diffraction by a cylinder using Cranz-Schard in camera and M~lch-Zehunder

interferograms. More recent workers, such as Kutler and Shankerx and Shanker et
al.9 and Yang et al.lo have used refined computational meffiods and have also presented
the pressure and density plots for shock diffraction. Ben-Dor and Qlassll.12 carried
out experiments and compared the results with Kutler and Shanker8 and other
theoretical results. Griffithl3 has given an excellent review on virtually all aspects of
shock waves.

In the present work, a theoretical model has been proposed for obtaining

pressure-space history around any airborne target, which has been assumed to be of
cylindrical shape for simplicity. Both circular and elliptical cross-sections have been
taken into consideration. The theory used by Bryson and Gross5 for shocks of finite
strength has been modified. The former had the limitation that it had assumed a
constant value for Chester's function K(M), which in turn assumes an infinitely large
value for the incident shock strength M. Another limitation was that it assumed the
outset of the Mach stem right from the point of normal impact of the shock, which
does not appear to be physically realisable. On the other hand, Heilig6.7 had shown
that the beginning point of Mach stem lies somewhere between the stagnation point
and the zenith of the cylinder; depending upon the strength of the intident shock,
and it can be found as limiting case for either two or three shock theories.

The attenuation of shock wave in air using the 'energy hypothesis' of Singh and
Bolal4, has also been taken into consideration. Using this hypothesis, the pressure at
any point near explosion can be expressed as a function of distance from the point
of blast.

In the absence of any well-accepted theory to give the net pressure on the

cylindrical surface for Mach reflection, an eD\pirical correction has been used which
indicates that I)early 20-30 per cent of the pressure behind the incident shock
contributes towards the total pressure on the surface. This is based on the assumption
(Kinney and Grahaml5) that the Mach stem results in limit, as a fusion of the incident
and reflected shocks. However, being the first attempt of its own type this needs
experimental verification.

The results have also been compared with experimental results of Heilig7 , obtained
from shock tube experiments. It shows good agreemept at low shock strength. In the
present analysis, the usual tWo-shock theory to obtain the critical angle «<criJ has been
used. In contrast to Bryson-Gross asSumption of infinite incident shock strength, the
present model takes into account finite shock strength, thus tWo first order
simultaneous differential equations for length and strength of Mach stem are obtained.

A striking feature of this model is that it indicates the existence of a threshold
Mach stem length for a physically realisable solution. This implies that outset of Mach
stem takes place somewhere in the region of regular reflection itself. Further, as it
has been noted by several authors (for example Itoh and Itaya16), the Mach stem
formation and its growth strongly depends oQ the curvature .of the target's boundary ,
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an attempt has been made for a more generalised surface by taking the cross-section

as an ellipse. In fact, the present method can be generalised to analyse the
shock-interaction with targets whose cross-section can be approximated by any
arbitrary conic or a combination of conic-sections.

The results obtained for elliptical cross-section also exhibit varying trends for
lengths and strength of Mach stem. For increasing values of eccentricity from zero
(i.e. , circular section) to 0.5, the Mach stem length and pressure distribution exhibit

decreasing trend, while for eccentricity values exceeding 0.5 the trend is reversed,
presumably because of the model is applicable only for low eccentricities.

2. PROPAGATION AND ATTENUATION OF SHOCK WAVES

Due to the geometry as well as a number of dissipative mechanisms, the shock
front undergoes attenuation while propagating in any material medium. For
underwater explosion, attenuation laws based on Whitham's method and energy
hypothesis were studied by Singh and Bola14 and Singh17. It was also shown that in
case of underwater shocks, energy hypothesis gives better agreement with experimental
data17.

Following Singh and Bola14 and Bhutanil8, the energy hypothesis for sphericaJ
blast wave is given by
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Where Q is the energy of explosion released at R=O, R is the radius of expanding

blast wave at any instant, a is the velocity of sound and U is the velocity of blast wgve.

The constant cx is given by
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Also from the jump-condition for energy
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Combining Eqns. (1) and (4), we get the biquadratic equation for U as
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2(Y- l)a4 6cxQa2C = Y(Y + I) --~

Solving Eqn. (5) the strength of the spherical blast wave at any point in the vicinity
of explosion can be obtained. In the present problem, the incident spherical waves
have been approximated as plane. Strictly speaking this assumption holds only when

R- 00.

3. REGULAR REFLECTION OF SHOCK W A VES FROM A CURVED

BOUNDARY

The regular reflection of plane shock waves from 3 plane boundary has been

studied by Von Neumannl, Polachek and Seegerl'!, Kinney and Grahaml5. This theory
has been applied to find the reflected shock strength and the angle of reflection until

the angle of incidence reaches a critical value, beyond which there is no regular
reflection and the reflection phenomena has to be studied using three-shock theory .

An out line of the theory is explained in the following paragraphs.

Let 10 be the incident plane shock, making an angle « with the rigid target
boundary (assumed to be plane over a small region around the point of incidence
0). After reflection, this is shown as OR, making an angle p with the wall; UI' u2'

u"\ being the fluid velocities in regions I, II, and III respectively, UI and u:l being
parallel to boundary (Fig. 1). Now the two physical conditions imposed on the flow

are: (a) Velocity of OR cannot be more than that of 01, and (b) net normal component
of fluid flow is zero. These conditions when compounded with well-known

Rankine-Hugoniot jump conditions yield the following set of equationsl5,

J-
/""""""""

/

n

o

~

Figure I. Oblique reflection from a plane surface.

(6)tan 8 =

(7)(M2 sin «< -8)]2 = (5 + M;)/(7M; -I)

tan 8 6 + {M2 sin (.B + 8)P
tan (.B +8) = -6{M2 sin (.B + 8)P

M .Q )2 5 + (M2 sin (.B + 8)P3 Stn t' -' -7{M2 sin (.B. + 8)p -

(8)

(9)
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where
M... = MI sin a, MI = UI!CI, M2 = U2fC2 and MJ = UJ!CJ

are the Mach numbers, and Cl' C2' and C3 are local sound velocities in the respective

regions.
The above system is numerically solved for any given values of (l and M, giving

both the strength (M3) and the angle of reflection 1>' for the reflected shock. This also
yields a specific critical angle ( ~riJ for every known value of the strength of incident

shock (M ).x

4. MACH REFLECTION FROM ELLIYfICAL CYLINDER SURFACE

As the angle of incidence «<) increases above « ., the phenomenon enters thecnt
domain of Mach reflection (or three-shock reflection). Bryson and Gross5 have given
the diffraction theory of shocks from circular cylinder sUflace, assuming the Chester's
function K(M) to be constant. But this assumption, proposed by Whitham2 holds
only when the incident shock strength M ~oo. Singh and Murthy20, presented a
m?dification for finite (and also unknown) strength of the Mach stem in the case of

underwater shocks. The same approach was followed here for air blast and the theory
was generalised by tak.ing the cross-section of the cylinder as elliptical. Assuming the
most general case, the explosion may be assumed to occur anywhere in the vicinity

of the target.

Suppose the explosion takes place at the point E in the vicinity of the target, so
that the shock front (assumed plane for simplicity) is normally incident'at the point
Lofthe target whose cross-section is taken as the standard ellipse (Fig. 2) given by,

Then,
X2 y2

"""ii+fj'i=
(10)
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Let r/> be the eccentric angle of the ellipse at any point on it. For small values of
eccentricities, it is reasonable to assume r/> = « (in the case of a circle, r/> exactly

equals «) .

At L, the reflection is governed by simple rules of normal incidence and as we
move away from the point L (with increasing <P ), the reflection phenomenon remains
within two shock theor y .The Mach stem formation begins when ,« exceeds « .

cnl
( = 40 degrees) .By experimental studies, the Mach stem has been found to be nearly

normal to the target's surface. We may assume it to be directed towards the centre
of the ellipse (Bryson and Gross5).

The undisturbed rays would have occupied a length TN, which is now constrained
to a length TP ( = ).). Therefore A = ). per unit length of cylinder and All = TN per

unit length of cyli,nder .

Using the elementary properties of conic, it can be shown that

)1/2
(II)TN = ( r ,\.) sin 1!>( ~ +

ma

where mo -~ cot 4- and r = (02 COS2 4- + b2 sin2 4-)1/2
a

(12)Hence Ao = k( r + A) sin q, and A = A

)1/2
where k = ( ~ +

ma

Let P' be a neighbouring point to P. Let L be the distance between the shock
fronts at p «/J) and P' «/J+L1</J), then it can be shown that (Fig. 3)

~

/

/ie -

N

Figure 3. Mach stem formation.

L = [(.d r + .d'\) cos <P -( r + ,\) sin <p.d<p

-m{(.dr + .d'\) sin <P + (r -f- ,\) cos <p.d<p}]/(l + m2)J/2

where

m = tan e. Also L = -MoA(X and A(X = aoAI (Whithaml)
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Taking the limit as A<f> -O we get

(a2 -b2)
1-

2,
sin 2"'

where we have used the results~

and

Also from Whitham2, we have

A
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The system of Eqns. (13) and (15) determine the length and strength of the Mach
stem, originating due to scattering of a plane shock front of strength Mo at the point
on the ellipse. The outset of Mach stem is governed by the condition ~ > .X.'rit

where « = tan

(16)

4.1 Particular Cases

4.1.1 Norma/Incidence at the End of Major AxiS
In this case the Eqns. (13) and (15) simplify to the following pair

r + ~
)2 Mo 1 ..--t- - ( a2 b2 ) SIn .'.I.

M 2r ..'1"cos 4>

~=(r++)/M

dr 1d;;; = -2; (a2 -b2) sin 24>

(')I -I)M2 + 2
and 11-2 = YM2 -('r- 1)

Using Eqns. (12) and (13), Eqn. (14) gives finally
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dM

d",
tan <{1

Jr (02 -b2) sin 24> ]

4.1.2 Incidence on a Circular Cylinder of Radius Unity ( Non-Dimensional)

The Eqns. (13) and (15) are simplified to the following :

dM
MK(M)

f(M) = exp

where A! ,\1)

and b being a parameter in the equation of state for the case of underwater shocks
around a circular cylinder .

5. RESULTS AND DISCUSSIONS

Eqns. (9) and (10) have been integrated using Runge-Kutta method of fourth
.

order and results are shown in Figs. 4 and 5. Four values of eccentricity, viz., e =

0.0, 0.25, 0.50 and 0.75 have been taken. The first value, i.e., e = 0.0 corresponds
to the case of circular cylinder, whereas e = 0.75 gives us highly elliptical cylinder .
In Fig.4 variation of Mach stem length has been plotted against the angle of incidence
for the typical case of Mo = 3.75. As mentioned in section 1, this curve indicates a
threshold value of A. at the critical angle. The Mach stem grows exponentially for

higher values of 4>. The nature of curve is almost similar to the one obtained by Singh
and Murthy2° for underwater shocks. It was also observed that the nature of curves
for other Mach numbers is also exactly similar, exhibiting the same trends for varying

eccentricities. The critical angles for different shock strengths, its corresponding
threshold value of Mach stem length and the distance from the point of explosion

(the lengths being non-dimensionalised with respect to the cylinder's average radius)
are given in Table 1.

Figure 5 shows the variation of the pressure on the cylindrical surface against 4>
for Mo = 2.15,2.95 and 3.75 along with the experimental results obtained by Heilig

from shock tube experiments. A remarkable agreement for low strength shocks with

[l-j- ~]
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.

Figure.4. Variation of). with I/>.
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Table 1

O.(XX)12

O.(XX)lS

0. (XX)46

1.2308
0.8683
0.6917

2.15
2.95
3.75

increasing deviation as the shock strength increases is observed. It is also seen that
the attenuation effect is quite remarkable in the regular reflection region, while the

decay in pressure becomes very slow after the critical angle.

The deviation of our theoretical curves from Heitig's experimental ones might
be attributed to the different attenuation laws for explosives (RDXn'NT in the
present case) and piercing of diaphragm in usual shock tube experiments.

The aim of the present paper was to find the pressure-space history around an
arbitrary-shaped cylindrical body. The eccentricity of the cross-section affects the
~owth of Mach stem appreciably, on the other hand it does not appear to affect the

pressure profile to any remarkable extent.
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