
Defence Science Journal, Vol 43, No 2, April 1993, pp 129-137
@ 1993, DESIDOC

Parallel Processing for Supercomputing Speeds

K. Neelakantan, p .P .Ghosh, M.S. Ganagi, A. V .S.S. Prasad,
Anu Khendry and K. Mahesh

Advanced Numerical Research and Analysis Group, Hyderabad-500 258

ABSTRACT

The various approaches to improving the speeds of computers by exploiting parallelism is briefly
described. The architecture of PACE which is a loosely coupled. message-passing MIMD machine

developed by ANURAG is described. PACE is an open architecture which is independent of the
specific hardware used for the computing nodes. Several versions of PACE have been configured
and the performance figures for some applications are presented.

I. INTRODUCTION

(d)

exploration. They allow for rapid processing of

seismic signals and oil reservoir modeling. Nuclear

reactor design and safety analysis is another area

where high speed computers are needed.

Medical, military and basic research: Super-

computers are needed in modern medical

diagnosis equipment such as computer aided

tomography. High speed computers are also

required in medical image processing and

reconstruction of 3-d images from 2-d X-ray and

MRI data. Genetic engineers demand fast

computers for studying molecular biology,

artificial synthesis of proteins, etc.

Supercomputers are required for weapons

research and the design of missiles, cartographic

surveys, etc. Basic research, in almost all areas,

requires supe~l,;omputers. Standard examples are

quantum chromodynamics, molecular dynamics.

crystal growth studies and chemical kinetics

studies. Breakthroughs in many areas depend on

the availability of reliable computing systems that

can be used to suggest new theories, interpret

experiments, model real processes and provide

accurate calculations in a reasonable time.

There are several areas of science and technology
which rely very heavily on high speed digital computers.
Some of these include:

(a) Predictive scientific modelling: This requires
extensive numerical simulation experiments on
fast computers. Often, large scale numerical
computations have to be performed on a
tremendous volume of data in order to achieve
the required accuracy and turn-around time.
Examples are weather forecasting, oceanographic
studies, astrophysical models,. world economics,
and biological system simulations.

(b) Engineering and design automation: Structural
analysis using finite element techniques involves
the solution of large systems of algebraic
equations. Such computations require
supercomputing speeds when the number of
elements is large. Computational fluid dynamics
(CFD) is another area which requires
supercomputing speeds. The use of CFD codes
for aircraft design reduces the dependency on wind
tunnel experiments and is therefore being used
extensively. Supercomputers are also used in AI
systems, VLSI design, etc.

I Energy resource exploration: Supercomputers find
an important application in oil and natural gas

Traditionally, CFD has been the most demanding

of calculations performed on computers. The demand

for computation speeds has always outstripped the

(c)

29

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Defence Science Journal

https://core.ac.uk/display/333721123?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DEF SCl J. VOL 43. NO 2. APRIL 1993

capability of available technology. This is because a
typical calculation involves around 1012 computations.
Even with a system capable of lOS to 109 floating point
operations per second, each calculation would take 1000
to 10,000 seconds.

PACE is an acronym for the Processor for
I erodynamic Computations and Evaluation. PACE is
a loosely coupled, message-passing, MIMD machine
based on a cluster concept. ANURAG has developed
P ACE for use in CFD calculations. However, since
CFD calculations involve the solution of partial
differential equations, PACE finds a very wide variety
of applications in scientific computing.

The purpose of this paper is to describe the
architecture of PACE, its user's model and report its
performance figures. A brief overview of parallel
architectures is given in the next section. This is
followed, in section 3, by a detailed description of the
Pf~,--2 architecture. The user's model of PACE and the
programming environment is explained in section 4
while the performance figures are givcn in section 5.
Section 6 is devoted to conclusions.

2. AN OVERVIEW OF PARALLEL PROCESSING

Ever since the first digital electronic computer (the
ENIAC) was built in 1946, the need for higher and
higher computing speeds has been felt. The earlier
computers used vacuum tubes which offered switching
speeds in the range of microseconds. Computer speeds
have improved with technology in the area of
semiconductors till the mid 1970s saw logic gates based
on emitter-coupled-logic devices with switching speeds
of around one nanosecond. At this stage, the speed of
computation was limited by the amount of time it took
for the information to be transmitted within the system
rather than the gate delays. There were two options at
this stage: (a) to look for newer architectures, or,
(b) reduce the physical size of systems. Attempts have
been made in both directions but the real breakthrough
in speeds came with the evolution of newer architectures
which exploited parallelism.

2.1 Levels or Parallelism

2.1.1 Job Level Parallelism

Job level parallelism is implemented in most
computer installations. Viewed in a simplistic manner ,
every job is divided into several sequential phases each
of which requires a different systems program and
system resources. It is therefore natural to ha.le several
jobs running on the system to exploit system resources
in parallel. For example, an 1/0 operation is very slow
compared to the actual program execution and
therefore, any reasonably large computer installation
provides several 110 channels or peripheral processors
which can perform the 1/0 in parallel with program
execution.

2.1.2 Program Level Parallelism

Program level parallelism is most important in the
context of supercomputers. Within a large program,
there could be sections of. code which are quite
independent and could therefore be executed in parallel
on different processors in a multiprocessor
environment. This is the central idea in parallel
processing. There are several methods of implementing
this architecturally and we will discuss these presently.

Program level parallelism could arise in several
ways, the most commonly encountered one being a 'DO'
loop which can be replaced by one or more vector
instructions. Essentially', the idea is to exploit the
parallelism offered by the vector hardware and execute
the DO loop instructions in a single vector operation.
This has been exploited in the well-known vector
machines such as the CRA Y , CYBER, etc.

In certain programs, the successive executions of
the body of a loop may be completely independent of
each other. This arises, for example, in Monte Carlo
analysis where.the same calculations are repeated many
times with different data chosen in a random fashion.
In such cases, the full code can be loaded onto each
processor in a multi-processor environment and the
calculations for each sample done in parallel. In this
case the various processors do not need to exchange
data. They merely post the final results to a particular

processor.

However, things are not usually so simple. Most
often, the various segments of code running on different
processors cannot run indefinitely without the need to
exchange data. It would be nice if. the onus of
recognizing the parallelism could be left to the compiler .
However, in practice, the programmer has to take care

Parallelism is not a new concept and h~ been used
to improve the effectiveness of computers since the
earliest designs. It can be applied at various levels which
can be classifiedl as (a) job level, (b) program level,
(c ,nstruction level, and (d) arithmetic and bit level.

130

NEELAKANTAN et 8/: PARALLEL PROCESSING FOR SUPERCOMPUTING SPEEDS

SIMD: Single instruction/multiple data stream. This

is a computer that retains a single stream of

instructions but has vector instructions that

initiate many operations.

MISD: Multiple instruction/single data stream. This

is essentially a void class.

MIMD: Multiple instruction/multiple data stream

Multiple instruction streams imply the

existence of several instruction processing

units and therefore, necessarily, several data

streams.

One can see that only two of the categories described

above are of interest as far as parallel processing is

concerned i.e. , the SIMD and MIMD machines. The

sIrvfD architecture can be realised in three ways as

shown in Fig.l. Of these, the vector pipelined

of parallelizing the application. Presently, the hardware
and architecture in general can only provide the
necessary computing power \ ~nd the ability to
communicate. The actual parallelizing is left to the
programmer at present. A lot of effort is being put into
the development of automatic parallelizers but these

are yet to mature.

2.1.3 [nstruction Level Parallelism

~ ~

Instruction level parallelism is important in enabling
the unit processors in a multiprocessor environment to
work faster. The instructions in a unit processor may
be divided into several sub-operations, which may then
be pipelined to speed up execution. Another approach
which is popular in the newer microprocessors is
instruction prefetching and the use of an instruction
cache. Here, while a particular instruction is being
executed and the processor bus is free, new instructions
are fetched and loaded into an instruction cache. This
o'lerlap of instruction fetch cycles with the execution

cycles enhances the processor speed.

2.1.4 Arithmetic and Bit Level Parallelism

Arithmetic and bit level parallelism is the lowest
level of parallelism in computers. This is a self-evident
concept. Obviously, using an 8-bit machine to do 64-bit
arithmetic is going to be much slower than using a 64-bit
machine in the single precision mode. This level of
parallelism is dictated by considerations such as the
requirements of the typical problem to be solved,
available technology, the amount of hardware the

syste~ iesigner wants to use, etc.

Figure 1 Classification or parallel computers.

2.2 Architectures

technique, is the most popular one. We shall not go

into the details of this architecture but detailed

descriptions may be found el~~where.

The MIMD machines have multiple processors (as

opposed to processing elements such ALUs) and can

therefore operate on multiple data streams. Unlike the

SIMD machines, the processors in a MIMD machine

are complete in t.:emselves and can really operate

independently if required (they are not subject to

centralised control except for synchronisation).

The various processors in a MIMD machine are

linked together. This link can be established in two

ways: (a) tightly-coupled systems where the processors

share a global memory (this does not preclude each

processor from having its ~wn local memory); and

(b) loosely-coupled systems where there is no shared

memory but the processors communicate with each

other through 1/0 ports.

Having seen that program level parallelism offers a
major increase in computation speed, we will now
examine the various archite..:tural concepts which allow
for such parallelism. One can classify computers into
four broad categories according to whether the
instruction or the data streams are single or multiplel.
(A stream is defined as a sequence of items -instructions
or data -as executed or operation on by a processor) :

SISD: Single instruction/single data stream. This is
the conventional serial von Neumann
computer in which there is one stream of
instructions (and consequently only one
processing unit) and each arithmetic
instruction initiates one arithmetic operation.

31

DEF SCI J, VOL 43, NO 2, APRIL 1993

neighbours. The most convenient classification is in
terms of the communication network topology. Again
as in the case of tigt.tly coupled systems, one would
ideally require a network which is completely
connected. However, this is expensive, and therefore
the usual topologies2 (Fig. 3) are (i) the linear

2.2.1 Ti::Jhii.,. Courlptf Systems

In general, these systems consist of m prOCesiOrs
connecting n memory banks through a communication
network2.3 as shown in Fig. 2 (n and m are equal and,
in order to reduce contentions for memory , n is usually
a prime number). It may be noted that each processor
P, can act as a master so that this is a multi-master
system. Problems arise in the interconnection network,
these being: (a) two or more processors can request
access to the same memory bank at the same time, and
(b) two or more processors can require a particular
communication path in the interconnection network to
access different memory banks. ill both these cases,
some of the processors must wait. In turn this leads to
the requirement of an arbitration mechanism to resolve
contention (as is expected in any multimaster system).
The commonly used communication networks
structures are: (i) the shared bus, (ii) the cross-bar
switched network, and (iii) the multiple shared bus

structure.

-0-0-0-0--

(a)

(b)

1

r-
'(
(e)(d)

(PROCESSORS) MASTER MODULES

(j)

Figure 3. Some of the common topologies use4 in loosely coupled
architectures (a) linear I-dimensional array, (b) the ring,
(c) the star, (d) the tree, (e) near-neighbour mesh, (f) the
systolic array, (g) the chordal ring, (h) the cube, (i) the
3-cube connected cycle, and (j) the n-dimensinal hyper
cube.

Figure 2. A generalized block diagram or a tightly coupled MIMD
machine.

';!.2.2 Loosely Coupled Systems

These systems do not have any shared global

memory but consist of a network of N processors each

with its own local memory .The processors communicate

with each other via 1/0 ports. In the case of p ACE,

the processors do not use an explicit 110 port but write

the data directly into the buffer memory space of their

I-dimensional array, (ii) the ring, (iii) the star, (iv) the
tree, (v) the nearest neighbour mesh, (vi) the systolic
array, (vii) the chordal ring, (viii) the cube, (ix) the
3-cube connected cycle and finally (x) the n-dimensional

hypercube4.
In the case of the MIMD machines, the ~ffective

utilisation of the machines does not depend on the

132

NEELAKANTAN et a1: PARALLEL PROCESSING FOR SUPERCOMPUTING SPEEDS

vectorizability of the problem. This is obviously a more
general architectural concept and therefore parallelism
can be invoked in other ways as well. One could break
up the problem jnto several sub-tasks which could be
carried out independently and in parallel without arly
need for the various sub-tasks to communicate with
each other. Obviously this cannot be carried too far
and the sub-tasks would need to interact with each other
at some stage. One can therefore define a granularity
for the problem, i.e. , the size of the sub-tasks that can
be defined before there is a need for synchronization
between them. Large granularity reduces the need for
communication but some processors which finish their
tasks earlier will have to wait (i.e., be idle) for long
times while small granularity increases the
communication overheads.

explicit locking mechanism has been implemented
within a cluster .

The architecture of PACE is shown in Fig. 4. P ACE
consists of a Front-End-Processor (FEP) which is
connected to 4 supe(-clusters by means of
VME-to- V ME communication links. These VME-
to-VME links provide high speed parallel (32-bit wide)
communications between the two V ME backplanes. As
shown the super-clusters are completely connected to
each other by VME-to- V ME links. Each super-cluster
has two CPUs exclusively devoted to communications.
One CPU handles intra-super-cluster messages while
the other handles inter-super-cluster messages.

Each super-cluster has four clusters connected to it.
Each cluster has 8 CPUs connected on a V ME
backplane. The clusters are linked to the super-clusters
by VME-to- V ME links as shown in Fig. 4. Thus each
super-cluster has 32 CPUs and the 4 super-clusters can
accommodate 128 CPUs. The CPUs within the cluster
are completely connected over the V ME bus. They
communicate with each other by directly writing the
messages into the appropriate buffer space over the
V ME bus. For communication across clusters within
the same super-cluster, the CPUs within a cluster pass
the message on to the super-cluster which then passes
on the message to the node in the destination cluster .
Communication between nodes in different
super-clusters, takes three hops which involves two
super-clusters, the source cluster, and the destination
cluster .

3. PACE ARCHITECTURE AND HARDWARE

PACE is a loosely coupled MIMD machine. PACE
is a parallel processing system which is scaleable. This
scaleability was planned along two fronts:

(a) The number of processors can be varied to suit
the requirements of the applications. For example,
certain applications such as spectral analysis
through the FFT algorithm cannot be efficiently
parallelised with a large number of processors. On
the other hand, CFD codes can be run efficiently
even on massively parallel machines.

(b) The power of each processing node can be scaled .
With advances in processor technology, today one
can get extremely fast processors which pack a lot
of computing power. The PACE concept allows
for upgrading the basic processor at each node.

Originally, it was planned to implement PACE as
a 7-dimensional hypercube. For various reasons as
reported elsewhere5, the Motorola 68020 processors
were selected for implementing the first prototype of
PACE. However, during the detailed planning it was
realised that, since each processor was based on the
V ME standard, the VME back-plane provides the most
inexpensive medium of communication. Consequently,
the approach was modified and the final architecture is
based on a cluster approach. Though the common bus
architecture is more common in a tightly coupled
system, we based the P ACE model on a loosely coupled
architecture where messages are transmitted by merely
writing data into a linear communication buffer. No Figure 4. The architecure 0(PACE.

]33

DEF SCI J, VOL 43, NO 2, APRIL 1993

4. USER'S MODEL

The user's model of P ACE has been designed to
minimize the programming efforts on the part of the
user. The user interacts with the PEP which is a standard
UNIX engine. The PEP maintains all the system
resources such as winchester space, floppy drives,
cartridge tape drives, etc. All I/O devices and terminals
are connected to the PEP .

The parallel processor is really treated as a resource
of the PEP. The user writes his program in a sequential
fashion (called the 'host' program). All computation ally
intensive portions of the programs are written as
subroutines which are executed in parallel on the
parallel processor. The user therefore needs to
parallelise only the computationally intensive parts of
the program which are treated as subroutines (called
the 'node' program) to be called by the host program.

In order to enable the user to create, debug --i
execute his programs, ANURAG has written a parallel
programming environment called ANUP AM
(ANURAG's Parallel Applications Manager).
ANUP AM runs under UNIX and consists of several
modules and utilities which are explained below.

4. Preprocessor

The initial prototypes of PACE were based on the
MOTOROLA MC 68020 processor. A 4-node
prototype based on the MC 68020 processor (working
at 16.67 MHz) was first established. This used the V ME
bus for communication. The V ME backplane is 'natural'
to the MOTOROLA family of processor and was found
to provide the necessary bandwidth and operational
flexibility. Later a 8-node prototype based on the MC
68030 processor (working at 25 MHz) was developed6.
This 8-node cluster forms the back-bone of the PACE
architecture. The 128 node prototype is based on the
MC 68030 processor working at 33 MHz. In order to
enhance the floating point speed, ANURAG has
developed its own custom floating point processor ,
ANUCO. The processor board has been specially
designed to accommodate the MC 68881, MC 68882 or
the ANUCO floating point accelerators.

The architecture of P ACE depends only on the fact
that each processor board should be able to access the
memory of another CPU through a suitable bus.
Necessary care has been taken in the systems software
to ensure that there is no dependence on any hardware
specific functions. Consequently, it was possible for us
to configure models of PACE based on other

processors.
ANURAG configured a 2-node version of PACE

based on the Intel i860 processor. Since the specific
CPU boards used were not configured on a standard
bus, the communications were established through a
common multiported memory .This was basically done
as a demonstration to prove that the concept was

portable.

The preprocessor allows the user to prepare his task
for execution. It compiles the jobs for execution, links
the appropriate run-time libraries, carries out the
topology mapping and creates the executable modules.
The preprocessor allows the user to specify various
system options such as the amount of communication
buffer space, the programming language, etc. An
integral part of the preprocessor is the Topology Mapper
which maps the logical topology conceived by the user
onto the physical topology of the par&1el machine. This
makes the physical architecture of tI:~ parallel machine
transparent to the user .

4.2 The Simulator

P ACE is a number crunching machine, and, it is
expected that jobs that run on the system are
computation intensive tasics. It is presumed that the
jobs that run on PACE are debugged, well tested codes
as computer time is costly. In order to facilitate
debugging a simulator has been provided on the FEP
of PACE. The simulator provides exactly the same
programming environment as the parallel machine.

Later, the P ACE architecture was ported on the
SP ARC-II processor working at 40 MHz. The
SPARC-II CPUs are based on the VME-bus and the
porting was a relatively simple affair. The advantage of
the SP ARC-II version of PACE is that the front-end
processor is compatible with the SUN workstations. In
fact, the operating system is SOLARIS and even the
graphics features of SUN are fully supported. The user
will therefore have a wide choice of third party software
which can be executed on the front-end. The PACE
user model allows for easy parallelization of some of
this software if it is available in source code form.

Some results obtained on the models based on the
MC68020, MC68030 and SP ARC-II are presented in

section 5.

34

NEELAKANTAN et al: PARALLEL PROCESSING FOR SUPERCOMPtrrlNG SPEEDS

Users can check the logic of their codes by running it
under the simulator, thus obviating the use of parallel
machine for debugging purpose. Besides offering a
framework for parallel computing, it also provides the
user with the communication statistics of the program
which is very essential for evaluating the efficiency of
the user algorithm.

The ANUP AM software only depends on the
availability of UNIX at the front-end. The software is
completely portable a.cross machines with very few
modifications (the modifications relate to the physical
addresses of the CPU boards) .

5. PERFORMANCE FIGURES

4.3 The Queue Manager

The Queue Manager is a program which allows
multiple jobs to be submitted in a multi-user
environment on the FEP. It queues the jobs and allows
them to be executed in order of submission.

4.4 Run-time Libraries

These actually form the core of ANUPAM. These
contain the communication libraries as well as other
utilities required for executing tasks on PACE. The
communications routines have been optimized to allow
for extracting the best performance from the hardware .

Several applications programmes were run on the
various models of PACE. These include the Linpack
benchmark6, FFf7, Simulation of neural networksll,
several CFD codes9, Finite-element analysis codes 10,
etc. Of these the LINP ACK benchmark programme
which solves a set of linear equations is often used as
an index of the computation speeds of present day
computers. The LINP ACK rating of the various models
of PACE is given in Table 1. While the LINPACK
rating is only indicative, it gives a fair idea of the
capability of the system.

It may be seen from Table 1 that PACE-128 (based
on the Motorola 68030 processor with MC 68882
coprocessor) delivers over 30 MFLOPS of speed for
large problems. The speed per node is 0.33 MFLOPS.
The speed per node has been enhanced by incorporating
ANUCO, ANURAG's custom floating point processor
to 0.75 MFLOPS per node. With the SPARC-II
processor, about 4 MFLOPS per node are obtained. A
speed of 15 MFLOPS on Linpack with a l()()() x l()()o
matrix size was obtained. This is around half the
CRA Y-IS speed (27 MFLOPS for 100 x 100 matrix
size) and comparable to CRA Y- XMS (17 MFLO PS for
loo X 100 matrix size).

4.5 Communications Debugger

A comprehensive communications debugger has
been provided with PACE. When invoked, this checks
the communications at run-time for errors, such as
parameter mismatch in the communication calls,
deadlock due to buffer overflow, etc. , and r~ports errors
along with statistics of usage of the communications.

4.6 Source Level Debugger

A window based source l.evel debugger for
debugging the parallel application at the source level is
being designed as part of ANUP AM. This software
provides a user-friendly environment which facilitates
the user to migrate across the nodes in PACE for
debugging from the FEP by a sequential source level
debugger. This also appraises the user of the
communication status of the nodes in the system.

From the preliminary experiments, it is believed that

a 8 node version of PACE based on the SPARC-II

would deliver around 30 MFLOPS while a 32-node

version would deliver around 100 MFLOPS. Such

performance figures put P ACE in the true

Supercomputer class.

Table 2 depicts the performance of P ACE on a CFD

code developed by ADA. This program is a generalized

unsteady Euler equation solver. In order to validate the

code, the computations have been carried out on

standard fuselage. The results are reported in terms of

the time taken per iteration,per grid point. It may be

seen from Table 2, that the Euler code is amenable to

reasonably efficient parallelization on as many as 12H

nodes provided the problem size is large enough. Details

of the code and the algorithm is reported elsewhere'l.

4.7 Parallel Library

A library of pre-parallelized subroutine is available

The user can add other subroutines to this library .

4.8 Other Utilities

Other utilities to monitor the status of tasks, provide
timing information etc. , are also available.

135

DEF SCI J, VOL 43, NO 2, APRIL 1993

Table 1 Single precision LINPACK performance of various versions or PACE

P ACE-4 68020

@ 16.67MHz

68030

@ 25 MHz

68030

@ 33 MHz

68030

@ 33 MHz

68030

@ 33 MHz

68030

@ 33 MHz

68030

@ 33 MHz

68030

@ 33 MHz

SPARC-II

@40MHz

68881 0.175*

PACE-8 68882 2.23 2.5

PACE-16 68882 4.6 5.0

P ACE-32 68882 7.35 9.9

p ACE-64 68882 9.16 19

PACE-128 68882 10.2 35

PACE-4

with ANUCO

PACE-S

with ANUCO

P ACE-SP ARC

4 Nodes

ANUCO 2.993

ANUCO 5.4

15.2

.100 x 100 LINPACK

Table 2 Performance of PACE for aerodynamic code (SGUES)*

No. of nodes Problem size

(grid points)
Time/iteration/grid point

(ms)

Uniprocessor

8

24576

24576

104448

24576

104448

52224

104448

52224

104448

104448

5903

635

945

250

313

140

132

78.5

78.5

48

16

32

64

128

.The processor is MC 68030 with MC 68882

Results for other applications have been reported
elsewhere6-10.

6. CONCLUSIONS

MC 68020, MC 68030, Intel i860 and the SPARC-II.
In the future, one can upgrade the processor as

technology develops.

In principle, the number of nodes c~n be increased
to 1024 with only minor modifications in the architecture
and in ANUPAM. In the future, ANURAG will

support massively parallel computers based on the
SP ARC-II. It is also possible for ANURAG to upgrade

The architecture of P ACE has been discribed.
PACE is a scaleable architecture. We have configured
4, 8, 16, 32, 64 and 128-node models of PACE. This
has been done using different processors such as the

136

NEELAKANTAN et al: PARALLEL PROCESSING FOR SUPERCOMPUTING SPEEDS

the processor from the present generation RISC
processors to super scalar processors as and when they
become commercially available. The objective has been
to provide the users with a flexible hardware platform
that can be scaled to meet their requirements.

6.

7.

Neelakantan, K.; Ghosh, P.P.; Ganagi, M.S.;

Athithan, G.; Atre, M.V. & Venkatataman,G.
Performance characteristics of a hypercube type

parallel computer. Current Science, 1990, 59(20) ,

982.

Ganagi, M.S. & Neelakantan, K. Implementation

of the fast-fourier transform algorithm on a

parallel processor. Current Science, 1991,61(2),

105.

8. Athithan, G. Speed-up factors for simulation of

neural networks on a parallel computer. Current

Science, 1992, 62(8), 568.

Ganagi, M.S.; Singh, K.P.; Athithan, G. & Atre,

M. V. A Fluid dynamics study on ANURAG's

parallel computer P ACE-8. Current Science, 1991,

60(12), 694.

9.

Prasad, M.D.R.; Ramanathan, R.K. & Ganagi.

M.S. Performance of ANURAG PACE-16

parallel computer for finite element analysis. In

Innovative applications in computing. Tata

McGraw Hill, New Delhi. 1993.

10

REFERENCES

1. Hockney, R.W. & Jesshope, C.R. Parallel
computers, Adam Hilger, Bristol, 1981.

2. Feng, Tse- Yung. A survey of interconnection
networks. IEEE Computer, 1981,4(12), 12.

3. Yalamanchili, S. & Aggarwal, J.K.
Reconfiguration strategies for parallel
architectures. I EEE Computer, 1985, 18(12) , 44.

4. Fox, G. The caltech hypercube in scientific
calculations: a preliminary analysis. In
Supercomputers, edited by F .A. Matsen &
T. Tajima. University of Texas Pres~, Austin,
1986.

5. Neelakantan, K. & Athithan, G. PACE user
information. ANURAG Report No. ANU/
PACE/89/001, 1989.

117

