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ABSTRACT

This paper provides an error model of the strapped down inertial navigation system in the state
space format. A method to estimate the circular error probability is presented using time propagation
of error covariance matrix. Numerical results have been obtained for a typical flight trajectory .
Sensitivity studies have also been conducted for variation of sensor noise covariances and initial state
uncertainty. This methodoJogy seems to work in all the practical cases considered so far. Software
has been tested for both the local vertical frame and the inertial frame. The covariance propagation
technique provides accurate estimation of dispersions of position at impact. This in turn enables to

estimate the circular error probability (CEP) very accurately.

I. INTRODUCTION are gyros and accelerometers. These are mounted on

the vehicle body which is subject to fast changing

environmental disturbances during flight causing
motion induced errors in the system. The sensor errors

could be classified into a deterministic and a random

part. The deterministic errors could be compensated in

the navigation computer whereas the random part

results in a circular error probability (CEP) of the

Strapdown systems are of interest to almost all
aerospace missions employing inertial navigation to
achieve high performance. These systems eliminate the
gimbals normally employed in a stabilized platform
resulting in easier maintenance, less cost and perhaps
improved reliabilityl.2. The sensors employed by them
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Figure I. Block diagram of strapdown inertial navigation and guidance system.
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fixed coordinates and navigation coordinates 7. This

error model is highly suitable to missile and aircraft

navigation. The error covariance propagation studies

using thIs error model of terrestrial navigation

employing the quaternion parametrization for attitude

have not been reported so far. Shibata's model employs

the relative quaternion between body fixed coordinates

and local vertical coordinates 7. The tilt errors and

quaternion errors are related by a matrix

transformation 7. The potential of this transfonnation

for stable numerical computation of the error covariance

matrix has been fully utilised.

system-l. Estimation of CEP of the system calls for a

stochastic error analysis of the inertial navigation

system. Figure 1 shows the schematic system.

2. OVERVIEW OF TECHNIQUE

Friedland has presepted the theoretical analysis of

strapdown navigation system using quaternions3. The

covarIance propagation equations have been derived

for attitude estimation using KALMAN and non linear

filters5.h. While the error equations of reference 3 are

mainly applicable to inertial frame of reference, recently
Minoru Shibata has derived error equations for

terrestrial applications using the. local vertical frame of

reference based on a quaternion relation between body

The conventional method of error analysis is using
Monte Carlo simulation in which the system errors are
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a proven formula. Figure 2. presents the block diagram
of covariance propagation package which has been
developed and tested.

3. ERROR MODELS OF STRAPDOWN INERTIAL
NA VIGA TION SYSTEM

T.he error models normally employ the quaternion
errors, velocity errors and position errors as the state
variables. Let XI = [ ql' q2' q3' q4' VI, Vy, Vz, X, y,z] T

denote the navigation state of the system with reference
to an inertial coordinate reference frame in Fig. 3 The
navigation equations are given below.

(1)

3.1 Inectial Frame

q(t) = 1- O.[(J)(t)] q(t); q(to) = qo
2

CJ [q(t)] a(t) + g[r{t)]; V( to) =to

obtained by root sum square (RSS) of errors due to
individual component errors. It has been found that
conservative estimates of errors are obtained by the
RSS technique. On the other hand the covariance
propagation technique provides a lower bound of errors.
Since all the errors are treated in the error covariance
matrix simultaneously, the cancellation of certain errors
in the final output of the navigation system is
automatically considered in this approach of error
analysis. For estimation of circular error probability
(CEP), the one sigma dispersions of position are
necessary which can be directly obtained from the error
covariance matrix. In the case of Monte Carlo approach,
it is a time consuming process to obtain the one sigmavalues. .

Covariance. propagation results are given for
terrestrial navigation using a set of flight data which are
obtained from a strapdown inertial navigation system.
The CEP of the system has also been estimated using

(2)V(t)

,(t) = V(t); y(to) = yo (3)

YAW (Y) \
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where q(t) = [ql. q2. q3, q4]T; V(t) = [VX, Vy, Vz]T

J'(t) = [X, y, Z]T

h =VNz (9)

where VN = [ VNx, VNy, VNzJT; R=[A.,A,h]T

/I sin )..]Tp = [/I Cas ). -).

RE = ~(l+E siifA.); RN= Ro(1-2 E + 3E sin2A.)

c~.o.[(t)(t)] =

E= ; Ro = 6378163 mI
294.978613

The state vector Xv = (ql' q2' q3' q4' VNx, VNy, VNz,

).,I,h)T
Linearizing Eqns (4) to (8) over nominal values ui

(ql' q2' q3' q4' VNx, VNy,
VNz, l,r, h)T

an error model in ,local vertical frame or the geographic
frame can be derived which can be expressed in vector
matrix notation asg[r(t)] lyl2 = X2+y2+Z2=

ITI

JXv = Fv JXv+ Gv wv; JXV< to) = JXvo (10)
Linearizing Eqns (1) to (3) over nominal values of

(q,V,r), an error model in inertial frame can be derived

which can be expressed in compact fonn as

For details of derivation of Eqn (10), one can refer to
Appendix 'B' The vector Wv represents the random
errors of sensors nam~ly the gyros and accelerometers.

l5Xl = Fl l5Xl + Gl Wl; l5X(to) = l5Xo (4)

For details of derivation of Eqn (4) reference has to be

made to Appendix' A '. The vector WI represents the

random errors of sensors.

4. COV ARIANCE PROPAGATION STUDIES

From Eqn (4), the error covariance propagation

equations can be derived. Let

Pi ~ E [l5Xi l5Xn (11)3.2 Local Vertical Frame

Inertially referenced navigation systems are widely

used for spacecraft applications where geographic

navigation information is not needed. For terrestrial

navigation, the time varying relationships between the

inertial and geographic frames complicate the system

design. Then the local vertical mechanization is a better

choice for terrestrial applications7. With reference to

local vertical frame shown in Fig. 2, the navigation

equations are presented below

where E(.) is the expectation operator

The propagation of PI is governed by the following

matrix differential equation

P, = F,P, + P,FJ + a, °, aJ; P, = P,o (12)

For the local vertical frame

Pv = E [t5Xv t5XJ) (13)

(5) andq= n [(JJn] q

2
(14)

(6)

Pv = Fv Pv + PvFJ + GvOvGJ; Pv = Pvob

01 = E [WIWJ]; Ov = E[ wvwJ]
(15)

VN = C; ab -[(2.0.)we) + (P)]VN + g(R)n

i. = VNx/(RN + h) (7)
Computation of Eqns (12) and (14) is beset with

numerical problems in the sense that PJ or Pv does not11 = VN.v/(RE + h) cas}.] (8)
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maintain its definite positive property. For maintaining

a positive definite covariance matrix, the following

transformation matrix S has been used to obtain reduced

order and numerically stable covariance matrix5. The

transformation is shown below

ET = ST(q) PT ST(q) (16)

Ev = ST(q) Pv ST(q)
(17)

where

Q(q)

o

o

O

I

O ~

(18)s=

il4

il3

il2

ill

q3

'14

lj1

lj2

q2

ql

q4

qJ

O(q) = Figure s. Propagation of velocity errors (I(J values).

(19)

The alignment errors can be set as initial condition in
PI (0) or Pv (0).

4.1 Numerical Results

The major inputs to the numerical studies are the
body angular rates w =[wx, Wy, wz)T and linear
acceleration

ab =[abx' ;]by, abz) T
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Figure 6. Propagation of velocity errors (la values).

The one sigma errors of the sensors are fed into the QI

or Ov noise covariance matrix. For initial validation of

the software package the nominal body angular

velocities, accelerations, quaternions, linear velocities,

(north, east, down) and positions (latitude, longiwde

and altitude) have been generated from the available

six degree of freedom simulation package. The

covariance matrix PI or p v is symmetric and positive

t.ISt.1t-L
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Figure 4. Propagation or tilt an21e errors (la values).
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A quadratic polynomial fit has been made to derive
(wx, Wy, wz)Tat intervals of 18 ms. The (abx' aby, abz)T
data from accelerometers is available at 18 m sec in
terms of incf"emental velocities ( ~ V x' ~ V Y' ~ Vz) T. For
covariance propagation, one needs to solve 45 coupled
time varing differential equations. It ha!i been carried
out using the fourth order Range-Kutta scheme of
solving the differential equations at an interval of 18
ms. Many parameter sensitivity studies and
performance comparisons have' been made with
simulated data before feeding the actual flight data into
the program. Typical tilt angle errors, velocity errors
and position errors are shown through Figs. 4 to 8.

4.2 Estimation or Circular Error Probability

The terminal miss distance accuracy is normally
estimated using Monte Carlo simulations and CEP is
derived from the analysis of simulated data. This process
is time consuming and costly. From the propagated
covariance, it is relatively easy to fit an error ellipsoid
and approximate it to circular to represent the CEP of

the system2,

-M
TK 1.1

225~

Figure 7. Propagation or position errors (North & East) (1t1 ).

//

If aXNE and aXEE represent the north and east position

errors then

(20)C.E.P = 0.589 (aXNE + aXEE) :!: 3%

O'XNE
if < qXEE < 3 qXNE

3
Eqn (20) is less conservative when compared to the root
sum square value. Table 1 presents a comparision of
CEP values obtained by Eqn (20) and RSS techniques
for different sensors used in the study.

It has been found that CEP based on formula (20)
is always lower than that I>redicted by RSS technique,
in which the square root of the sum of the squares of
errors is obtained.

Computations of the system errors have been caITied
out for both, the inertial frame and the local vertical
frame. It has been found that the error behaviour
appears to be independent of the mechanisation frame.
The reasons could be explained from Eqf/s (4) and (10)
which describe the error model. The covariance
propagation p has been found to be more sensitive to
p o and Q which depict the initial state of uncertainty,
and gyro and accelerometer noise covariances.
Propagation of p is less sensitive to F and G matrices
for the flight trajectory chosen for illustration. It implies

/
I

/
I

FIgure 8. Propagation or altitude error (1/1 values).

definite. It is adequate if the lower half or the upper

half of the matrix is computed numerically. The reduced

order covariance matrix is 9 x 9 in size. For symmetry
it is enough if one computers (nx (n+l)/2 = 45)

elements when compared to 81 elements when

symmetry is not considered. The output (wx, wy, WZ)T
from gyros is not directly available but the incremental
angles ( 64>x, 64>y, 64>z) T are available at 6 ms interval.
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Table I. Perforn18Dce and sensitivity studies

Cases CEP

based on (20)

m

RSS
criterion

m
O'XNE

m
UXEE

m
aXNH

m

53.248 90.~ 26.35 84.40 107.89

2. 109.0954.923 90.15 27.499 85.44

3 52.99 89.95 25.98 84.19 107.58

Sagem gyro
sagam
accelerometer

SFIM gyro
Ferra."lti
accelerometer

Sagemgyro &
Ferranti
accelerometer

that the error behaviour is less sensitive to dynamic
couplings for the present study.

5

6

s. CONCLUSION

Covariance propagation methodology has been
employed successfully for estimating errors of the
strapdown inertial navigation system. The error models
for both the inertial frame and the local vertical frame
have been derived and used in this development. Both
simulated data and actual flight data of the system have
been utilized to estimate CEP and there is a good match
between the two. For the flight trajectory chosen, CEP
appears to be insensitive to the frame of navigation
namely, the local vertical or inertial. The dispersions
in position expected for different combinations of gyros
and accelerometers have also been presented. The CEP
predicted from covariance of errors is shown to be lower
than the conventional RSS technique employed in
Monte Carlo approach. Further work can be done to
extend this approach to a multi sensor hybrid navigation

system.
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APPENDIX' A ,

Here the strapdown navigation system error model

is presented in the inertial frame. Let q. V, r, w. ;1 he

the true value of quaternion , velocity, position, angular
velocity and linear acceleration and q, V, t. w, a he

their estimated quantities. Then

fJq = q -q; {jv = v- v; {jy =y

{)(J) = (u-{i) ; fJa = a-a (A1)

Substituting A 1 into Eqns 1 to 3, expanding by

Taylor series and neglecting higher order terms, one gets

REFERENCES

1. Britting, K.R. Inertial navigation system analysis.

Wiley Inter Science, New York, 1971.

2. Myron, Kay ton & Walter, R Fried. Avionics

navigation systems. John Wiley and sons, Inc. 1969.

3. Friedland, Bernard. Analysis strapdown navigation
using quatenions. 1 EEE Trans. on Aerospace and

Electronic System. 1978, 14(5), 764-68.

4. Adanced in strapdown inertial systems. Agard

lecture series No.133, April 1984.

tJq = -0< q) J(J)
"

A2)~n(w) {jq+

(A3)<5v = D(q, a) Jq + C(q) <5a + G(y)<5y

A4)iSy =is,,
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Eqns (A2) to (A4) can be written in compact vector

matrix notation as
oVN = D(q,a) Jq -[2 (We> + p ]oVN -[2 [ OWe} +

[op]]

VN + C:(q) bab + bg

.--T 2
b"). = b"VJ (RN+h) -V x b"h/(RN+.l)

secJ.
v.(> = ,~ .L" oVy +A tantp. JA-A Jh/(RE+h)

The different submatrices used in the above error
model have been shown in Ref. 3. It can be identified
with Eqn ( 4) of this paper. The matrix Q is defined in

Eqn (19) of this paper .

APPENDIX-B
Here the strapdown navigation system error model

is presented in the local vertical frame. Using the same
notation and assumptions, the error equations can be
derived as provided in Ref (7) .

/Jh = -/JV
z

Eqns (Bl) to (B5) can bc written in vector matrix

notation as

The different submatrices used in the above error

model have been shown in Reference (7). It can be

identified with Eqn (10) of this paper .
(81)

Jq = ! .o.[iiJb] Jq -! .o.[iiJn] Jq + ~ Q(q) JiiJb -
2 2

! R (q)6iiJ JiiJn
2
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