
Defence Science Journal, Vol49ho 4, August 1999, pp. 3 17-322
01999, DESIDOC

Tools and Techniques for Testing of Flight-Critical Software

G. Venkat Reddy and Ahalya Chandrasekhar
Aeronautical Development Establishment, Bangalore-560 093.

I ABSTRACT

Flight control system software is a critical component of the digital flight control computer of light
combat aircraft. The problems associated with the testing of flight critical software and the test tools, and
techniques used to achieve maintainability, and structural and functional coverage of test cases are presented.
Also, the experience gained throughout the cycle of testing-design and implementation. reviews and revisions,
test execution and software error detection and ~ d i f i c a t o n of test cases based on requirements and design
changes, and regression testing are enumerated. 'It presents an object-oriented approach towards testing to
make it less tedious, more creative, reviewable and easily maintainable.

1. INTRODUCTION

Software testing is an important aspect in the
software development lifecycle. Only its role and
expectations are controversial. While the literature
survey on software testing indicates that the testing can
only claim for the errors found, and the project
management claims that the software has matured and
become reliable after testing. Whichever way one looks
at it, software testing builds confidence in the software
product and cuts down the cost and time for software
repair during the system level testing if most of the
errors are found during the module level and software
integration level testing. The test results are subject
to the scrutiny of the certification agency for the
eventual acceptance of the product.

The requirement of software testing are stringent
for flight-critical software. A process is worked out,
based on DOD-STD-2167A, for carrying out the task
in an efficient manner. This paper describes the
process, the techniques and the tools used during the
testing of flight control software of light combat aircraft

(LCA) developed at the Aeronautical Development
Establishment (ADE), Bangalore. It also presents a
case study of an Aeronautical Development Agency
(ADA) package of LCA-FCS software-PACT-MNGR,
which deals with primary actuators.

2. SOFTWARE TESTING PROCESS

Testing is a continuous activity right from the start
of the lifecycle to the operational use of the product.
The software gets tested everytime it gets executed.
However, a systematic process is evolved to find out
errors at the earlier stages, so that the manifestation
of errors/faults should not result in the failure of the
system at a later stage which will cost the project more.

The guiding principle of quality-PDCA (plan, do,
check and act) cycle is followed. First, a test plan is
developed which forms the guiding document for the
testers on how to proceed with the testing, what are
the minimum requirements of testing which shall be
adhered to, like test coverage criteria, etc. This test
plan is a deliverable item and is formally reviewed.

Received 03 June 1999

DEF SCI J, VOL 49, NO 4, AUGUST 1999

The following steps have been described in the test
plan: (i) review of design and code by testers, (ii)
generation of test traceability matrix, (iii) guidelines for
generating test cases, (iv) test drivers, (v) test procedures,
(vi) test execution, and (vii) test report generation. A
separate test team, independent of design team, is
established to carry out testing.

The first activity which the tester should undertake
is to review the design and code for testability and
traceability of requirement to design. A thorough design
and code walkthrough should be carried out and also
non-execution-based testing should be carried out for
different test scenarios wrt requirement. This has
enormous benefits, and the experience shows that 60-
80 per cent errors are detected during these reviews.
The cleanroom engineering methodology that is getting
vague also emphasises the advantages of pre-execution
testing activities as experienced. The checklists are
filled to this effect.

The software test description (STD) document
is prepared, while the detailed coding is carried out.
STD consists of test cases, i.e., the test input and the
expected output. These are reviewed during test
readiness review (TRR) activity. STD should be well-
documented, and the purpose of each test case should
be elaborate enough for maintainability, reviewability
for correctness and completeness. The test cases are
generally documented in input and expected data files
which form the part of STD.

The test drivers and stubs are developed for
module testing. The test driver reads the input from
the input data file and assigns these values to the right
data structures for input as documented in the input
file and calls the unit under test @JUT) module and
acquires the values from the different data structures
for output and writes these values to an actual output
file in the same order of output as documented in the
expected output file.

The actual output and the expected output are
compared using a comparator tool. The discrepancies
are analysed and the code is debugged to validate
the discrepancies. A software probIem report is generated
to track a fault and its corrections. After a test
execution is complete, the test cases are subjected to
coverage analysis to verify whether the path coverage

or decision-to-decision coverage is adequate. The test
cases are augmented if found inadequate.

The test procedures are developed to automate
the process of test execution, i.e., compile, link, run
and compare expected and actual output and also to
do coverage analysis. A test report is generated -
documenting the module being tested, the revision
number of module, the date of testing, the status of
testing passlfail the coverage and the reinarks.

3. TESTING TECHNIQUES

The philosophy of the testing techniques to be
adopted to generate test cases is documented in the
test plan. The two basic approaches are: black box
testing, (i) and (ii) the white box testing techniques.
First, modules are tested in stand-alone fashion and
then gradually integrated in bottom-up fashion, the
main emphasis in the integration testing is on the testing
of interfaces.

3.1 Black Box Testing

Black box testing, also known as functional
testing, or specification-based testing, assumes the
module being tested as a black box whose internal
details are not known. It is like testing a custom-built
integrated circuit with the knowledge of its functional
specifications and input-output pin details and without
knowing its internal circuitry. If every possible value
for each input and all possible combinations of input
are taken into account, the number of test cases
become so large that it will be humanly impossible to
execute these with all available resources. Hence,
some techniques have to be evolved which will help
the tester to generate reasonable number of finite test
cases like equivalence partitioning, boundary value
analysis, cause-effect graphing and error guessing, etc.

3.1. I Equivalence Partitioning

The .. word equivalence partitioning is derived from
the modern algebra's set theory. In software testing
parlance, it means partitioning of input space, though
not strictly in mathematical sense, i.e., if one value
for the representative class (partition) is tested, it can
be assumed that the test is valid for all values of that
representative class. Unlike equivalence classes of

REDDY TOOLS AND TECHNIQUES FOR TESTING FLIGHT-CRITICAL SOFTWARE .

mathematical sense, these sub-divisions of input space
can be overlapped.

3.1.2 Boundary Value Analysis

The boundary value analysis is based on the
hypothesis that we are likely to commit mistakes at
the boundaries of linear regions. An analogy can be
that accidents are more likely to happen at the turnings
or cross-roads than on the straight roads. Test cases
have higher yield of fault detection at the boundary
values of input equivalence classes than any
representative values.

3.1.3 Cause-Efect Graphing

The program is visualised as a transformation of
input conditions or states (causes) to output conditions
or states (effects). A graph can be drawn linking the
causes and effects with the relations like AND, OR,
NOT. Equivalently, a decision table or a set of Boolean
expressions can be derived from the specifications.
This will give an insight into the requirements as well
as provide the test cases which need to be exercised
to test the functionality of the software.

3.1.4 Error Guessing

Some test cases can be derived based on intuition
or experience. There are no set rules for error guessing
but individual experiences of the test team members
can be shared among all the ether members about the
kind of test cases that have likely high yield of fault
detection, may be typical to the domain-dependent or
processor-dependent.

3.2 White Box Testing

White box testing, also known as structural testing
or code-based testing, assumes the complete knowledge
of implementation details of the module being tested.
The idea of this testing technique is to test all the
statements and paths inside the code.

Statement coverage implies that all the statements
are executed during testing. Assignment expressions of
the nature, output = a1 *inpl + a2*inp2 + a3 *inp3 can
be tested by setting one input at a time and monitoring
the output. Assignment of Boolean epressions (using
AND, OR and NOT) can be tested with < 2" test

cases. Simple Boolean expressions like bool-outp =

bool-inpl && bool-inp2 && bool-inp3 can be tested
with 4 test cases TTT, TTF, TFT, FTT. If there are
complex Boolean expressions having exclusive-OR etc.
then exhaustive testing of the expression with 2" test
cases will be required.

Path coverage implies that all the path combinations
are executed during testing. If all the possible paths
are taken into account, it will be a combinatorial
explosion which will be humanly impossible to execute
and test with all the available resources. Hence, some
techniques like decision coverage, decision/condition
coverage, loop coverage, etc. have been evolved.

When the test cases are designed using black box
methodology based obfunctionality, it is observed that
they cater for more than 90 per cent of the structural
coverage. Whichever structural coverage is missing,
that can be appended by additional test cases.

3.2.1 Decision Coverage

Each decision in the module should be executed
for its TRUE and FALSE values, such that if-then-
else paths are exercised fully. The number of decision
paths in the module is called Cyclomatic complexity
number, denoted by VC, which is equal to E-V+l,
where E is the number of edges, and V is the number
of vertices in the graph representing the module. This
gives the lowest upper bound for the number of test
cases for path coverage. There are many tools (static
analysis) that give VC, while other test tools (dynamic
analysis) give the decision coverage for the test cases.

3.2.2 Decision/Condition Coverage

If the decision consists of a condition or a
Boolean expression of multiple conditions and Boolean
variables, then the test cases should be developed to
give the coverage of conditions and Boolean expmsions.
A condition like x <= 2 requires a minimum of 3 test
cases. When multiple conditions exist in the expression,
judicious selection of test cases should ensure that each
condition is independently tested, while other conditions
are set to proper default values. There are no tools
that can verify the decision/condition coverage of a
given set of test cases.

DEF SCI J, VOL 49, NO 4, AUGUST 1999

3.2.3 Loop Testing

The loops should be tested such that the
termination of a loop is proper wrt terminating
condition (decision/condition coverage) and by executing
the loop for nil times, one time, typical number of
times, n-1, n and n+l times (when loop parameter is
compared against n count) as it is possible to test.

3.3 Module Integration Testing

After the modules are tested independently for
their specified functionality and structural coverage, the
integration of modules is tested. The testing is done
to veriQ that the definition of interfaces is consistent
across the modules and the modules together satisfy
the requirements. This approach is bottom-up integration
method. If required, the dynamic execution of modules
is done to verifj the functionality of dynamic elements
like filters, transient free-sw' hes, persistency checks. 0
3.4 Hardwarehtegration Testing

After the testing of software modules (stand-alone
and integrated) the software is tested end-to-end in
embedded hardware in a simulated test environment
(Engineering Test Station). The hardware input are set
and hardware output and some software output are
monitored to verify and validate the requirements.

4. TESTING TOOLS

Various tools that are used in the testing process
should enable the testing easier, efficient, less tedious
and more creative. Some of the tools that are used
in 'the testing are mentioned below.

4.1 Software Simulator

Software simulator is a tool that simulates the
processor's execution environment, i.e., the instruction
set, call mechanism, registers, interrupt and fault
handling mechanisms, floating point arithmetic, etc.
Hence, it allows the cross-compiled code to be
executed and tested on the host environment well
before the target system development is complete. It
also helps in debugging the software, both at the source
level and the machine level. It may not be feasible
to test the module level functionality for some of the
modules end-to-end where there may be strobing or

setting and resetting of the signals. The only way to
test and document the testing is by using the debugger
of the simulator.

4.2 Static & Dynamic Analysis Tools

There are software tools that assess the path
coverage and code complexity during testing. Logiscope
and LDRA testbed tools are some of the popular tools.
Logiscope evaluates the coding and design quality
through static analysis of source code. The dynamic
analysis of code is used to measure path coverage.

4.2.1 Static Analysis Tool

ADA static AnaIyser tool takes ADA source code
as input and provides the various measurements of the
code like number of statements, cyclomatic complexity
and many other parameters that provide quality metrics
for the design.

4.2.2 Dynamic Analysis Tool

The dynamic analyser tool instruments the source
code with execution trace call procedures. When the
instrumented code is executed with the test cases, the
trace calls will generate traces in the raw execution
results file. It is these traces that allow the path
coverage to be evaluated.

4.3 Comparator Tool

This in-house developed tool is used for comparing
the expected and the actual output. It generates a report
containing the number of total test cases, the number
of test cases passed and the number of mismatches
along with the actual and the expected output values
with discrepancies and passffail status.

4.4 Report Generator Tool

This in-house developed tool automates the
generation of the test report by compiling information
from different test output files.

5. OBJECT-ORIENTED TEST CASE
GENERATOR TOOLS

There are several tools for autocode generation
which are quite good for well-defined applications. The
feasibility of autotest case generation was studied for

REDDY: TOOLS AND TECHNIQUES FOR TESTING FLIGHT-CRITICAL SOFTWARE

testing the implementation of control law software. The were reviewed by an independent review team which
control law specification depicts the requirements in
block diagrammatic fashion. This tool also visualises
the requirements as an interconnection of well-defined
objects (blocks). Each block's functionality is tested
for a predetermined input-output specification: the
interconnecting objects cooperate to set the input of
the tested block as required. This tool has been
developed in C++ using object-oriented techniques and
verified for different requirements which could be
depicted as an interconnection of well-defined objects.
The development of the user friendly GUI is being
carried out.

6. PRIMARY ACTUATORS SOFTWARE-

CASE STUDY

The PACT-MNGR package, an ADA package of
LCA-FCS software, is a very critical component in the
flight control of the aircraft. It is responsible for driving
the actuators, failure monitoring and failure detection
of servo-electronics hardware and actuators, redundancy
management and reconfiguration. There are 20 units
in this package. A bottom-up testing is carried out to
test this package. Test cases were generated for unit
testing both from the functional and the structural point
of view. The integration testing was carried out to test
the interfaces and requirements.

The types of errors encountered are (i)
requirements to design translation, (ii) design-to-code
translation, (iii) cross-compilation of ADA code to i960
machine code, and (iv) validity of machine code in
DFCC environment. Except the last one, all the
remaining errors could be detected during software
testing. The test cases and other relevant documents

has verified it for correctness, test coverage and quality.
All the suggestions of the review team have also been
incorporated.

7. CONCLUSION

This paper presents the experiences gained during
fight control system (FCS) software testing. In LCA-
FCS project, the testing is carried out at various levels
like software testing, system integration testing in
minibird environment, validation of FCS in ironbird
environment, aircraft testing on ground and finally in
air. It was observed that there may be some changes
in the requirements based on the feedback from the
tests at different levels due to changes in the values
of different parameters. It is necessary to incorporate
changes in the design and carry out testing in the
shortest possible time. Tools and techniques used to
carry out testing play an important role in achieving
this. The test case generator itself will be helpful in
quickly modifying the test cases. It is hoped that the
special tools developed for this purpose will be useful
in the future work on LCA-FCS.

REFERENCES

1. Myers, Glenford J. The art of software testing.
John Wiley & Sons, New York, 1979.

2. Beizer, Boris. Software testing techniques. Ed.2.
Von-Nostrand, New York, 1990.

3. CSUICSC test plan for primary OFP of LCA-
FCS. Aeronautical Development Establishment,
Bangalore. Report No ADE/LCS/FCS/PRY/STP,
January 1 996.

DEF SCI J, VOL 49, NO 4, AUGUST 1999

Contributors

M r G Venkat Reddy Joined Aeronautical Development Establishment (ADE), Bangalore, in 1987, He

is working in the area of flight control sytems for the last 12 years. He is a member of the-test

team carrying out software and system integration testing of LCA-FCS.

m Smt Ahalya Chandrasekhar joined Aeronautical Development Agency (ADA), Bangalore, in 1986. She

is working in the area of flight control systems for the last 13 years. Recently, she has been deputed

to ADE, Bangalore, where she is the team leader for the CSUICSC testing of LCA-FCS sogware.

She is also involved in system integration testing of LCA-FCS.

