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1.	 Introduction
Aircraft is a kind of nonrigid targets with complex shapes. 

The nonrigid vibration or attitude change of aircraft relative 
to the observation radar will induce complicated nonlinear 
modulations on the echo amplitude and its phase1. In addition, 
the jet engine modulation (JEM) induced by the rotation of the 
aircraft rotating parts, such as the rotor, empennage, propeller, 
turbine fan, etc., is also a typical nonlinear modulation, which 
embodies in the echo characteristics such as amplitude, phase, 
frequency, and polarization1-3. These kinds of nonlinear 
modulations reflect the complicated micro-motion modulation 
effects of various parts of aircraft and contain target attribute 
information such as the geometric structure, material 
composition, etc.4-5. Generally speaking, different types of 
aircraft often have different structure and rotating parts, and 
have different nonrigid vibration and JEM characteristics. 
So if these nonlinear modulation signatures which reflect the 
physical characteristics of an aircraft target can be extracted 
effectively, then one may apply them to target classification 
and recognition directly6-7.

So far, some scholars have proposed several theoretical 
models for aircraft echoes from low-resolution radars8-12. 
However, due to the complexity of the nonlinear modulation 
induced by the nonrigid vibration or attitude change, most 
models have paid more attention to the modeling of the JEM 
echo section, and simplified the modeling of the airframe echo 
section; so in some cases they are unsatisfactory in analyzing 
the nonlinear modulation characteristics of aircraft echoes from 
low-resolution radars. In recent years, some fractal geometry 

methods, such as mono-fractal, fuzzy fractal, multifractal, 
etc., have been introduced into the characteristic analysis of 
aircraft echoes from low-resolution radars6-7,13-14. However, it 
has not been reported that multifractal theory has been applied 
to the modeling of real-recorded aircraft echo data from low-
resolution radars so far. Therefore, the paper plans to take 
multifractal theory based on structural functions as the tool to 
model aircraft echoes from low-resolution radars. On basis of 
introducing multifractal theory based on structural functions, 
the text models aircraft echoes from low-resolution radars by 
using the random walk process and the incremental process 
respectively15, judges their multifractal characteristics, and 
investigates the application of echo multifractal signatures in 
aircraft target classification.

2.	 Multifractal theory based on 
structural functions
Multifractal models based on structural functions, such 

as the random walk process, incremental process, etc., may 
explain the multifractal properties of a fractal object preferably, 
from which one can see the relationships between multifractal 
and mono-fractal easily.

Multifractal analysis based on structural functions 
is mainly composed of a series of power law proof-tests of 
different orders of statistical momenta. Let X = {Xi, i = 1, 2, …, 
N} be a generalized stationary random series with the mean μ 
and variance σ2, then the analysis process is as follows.
(a) Zero the mean of X, then the series can be expressed as

{ },    1, 2, ,i ix X i N= = − µ =x  .                                (1)
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(b)	 Calculate the sum of the preceding k items of x, then one 
can construct a new series y = {yk, k = 1, 2, …, N}, viz.

1

k

k i
i

y x
=

= ∑
.                                                                       (2)

y is called a random walk process of x, and x itself is 
known as an incremental process of y correspondingly.
(c)	 Check up whether the following power law relationship is 

tenable or not:
( ) ( ) ( ) ( )

1
( )

qq H qqF m y k m y k m= + − ∝ ,                          (3)

where m denotes the analysis scale, q is a real number, and H(q) 
is a function of q. It can be seen from Eqn. (3), the negative 
values of q highlight the lesser absolute increments of y, while 
the positive values of q highlight the larger absolute increments 
of y. If the power law relationship shown by Eqn. (3) is tenable, 
then y is a fractal process. Moreover, if H(q) is a constant, then 
y is a mono-fractal process; contrarily, if H(q) is not a constant, 
then y is a multifractal process.

When q equals 2, the analysis process shown by Eqn. 
(3) is often called fluctuation analysis (FA), which depicts the 
correlation characteristics of the investigated process. In this 
case, the autocorrelation function of y satisfies the following 
power law relationship

( ) ( )2 2H
yR m m∝                                                                 (4)

where H(2) is the so-called Hurst exponent, which is often noted 
as H and satisfies 0< H <1. When H equals 0.5, the process is 
memoryless or called a short-range correlation process, and 
Brownian motion is its typical model. For a natural or man-
made system, its Hurst exponent H is often unequal to 0.5, 
and fractional Brownian motion (FBM) is its typical model. 
If H > 0.5, the process is called a durative correlation process; 
However, if H < 0.5, the process is called a non-durative 
correlation process.

According to the Wiener-Khinchin theorem16

( ) ( )S F R mw =   P P ,                                                        (5)

where P is a stationary stochastic process, Rp(m) is its 
autocorrelation function, Sp(w) is its power spectrum density 
function, and F[ ] denotes the Fourier transform, if the 
stochastic process y is a fractal object, then one can see from 
Eqn. (4), the power spectrum density function of y has the 
following form:

( ) 2 11 H
yS +w ∝ w ,                                                              (6)

where ω is the radian frequency, and that of the corresponding 
incremental process x has the form of

( ) 2 11 H
xS −w ∝ w .                                                               (7)

Therefore, the investigated process is also called a 1/ωα 
noise. Generally speaking, a 1/ωα process is nonstationary17 
when 1 < α < 3. For example, a Gaussian process (α = 0) 
is stationary, however a Brown motion process (α = 2) is 
nonstationary.

3.	 Multifractal modeling of aircraft 
echoes
The echo data used in the text are recorded from a 

surveillance radar, and they are from two different types of 
aircraft targets with the one fighter aircraft and the other civil 
aircraft. There into, the radar operates in the VHF band with 

its PRF 100 Hz and pulse width 25 μs, and the flight attitude 
of both types of aircraft targets contains two kinds: towards 
the radar station and off the radar station. In the following 
analysis, since it is difficult to obtain the prior information to 
determine whether an aircraft echo is a random walk process or 
an incremental process, therefore, both models will be used to 
analyze the real recorded echo data from aircraft targets. 

3.1	 Modelling Using Random Walk Process
Here one can substitute the normalized aircraft echo series 

for y(k) in Eqn. (3). Figure 1 shows the lbF(q)(m)~lbm curves 
(q = 2) of a group of normalized echo data from both types of 
aircraft targets when they fly off the radar station. It can be 
seen from the figure, with the scale m ranging from 20 to 23 or 
from 23 to 26, both lbF(2)(m)~lbm curves can be approximated 
as straight lines. It comes to light that, aircraft are man-made 
targets, they can be depicted by some regular geometric cells, 
and their surface is very slippery. When the analysis scale m 
is lesser, the fractal characteristics are mainly determined by 
the relationship among scattering points with closer distance, 
and the smoothness of small areas plays a main role. However, 
when the analysis scale m is larger, the fractal characteristics are 
mainly determined by the relationship among scattering points 
with longer distance, and the irregularity among different areas 
gradually takes the place of the smoothness of small areas, and 
thus the large-scale fractal characteristics may better reflect 
the difference among the physical characteristics of different 
types of aircraft targets. Therefore, here the scale range 23 ~ 
26 is selected, and one can fit the curves within this range with 
beelines and obtain the estimate of the Hurst exponent H. Also 
it can be seen from Fig. 1, the civil aircraft has more distinct 
fractal characteristics than the fighter aircraft as a whole, 
because a civil aircraft often has intenser nonrigid vibration 
and attitude change than a fighter aircraft, and its JEM effect 
is also more distinct than that of the fighter aircraft. However, 
along with the farther increase of the analysis scale (m is more 
than 26), the difference between their fractal characteristics will 
reduce, here the fractal characteristics are mainly determined 
by the noise, and that is the reason that there is a sudden overlap 
in the data of Fig. 1 for civil vs fighter aircraft.

Figure 1.  lbF(2)(m) ~ lbm curves.

Next, judge the multifractal characteristics of the echo 
data. Figure 2 presents the lbF(q)(m)~lbm curves in different 
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q values of a group of echo data from both types of aircraft 
targets when they fly off the radar station. As can be seen from 
Fig. 2, lbF(q)(m) of the echo data from both types of aircraft 
targets show significant nonlinear relationships with lbm, so 
they are multifractal process, especially the echo data from 
the civil aircraft behave more obviously. Calculate the sample 
mean and standard deviation of H(q), then Fig. 3 shows the 
variational curves of the mean of H(q) with q, where the 
vertical line is the standard deviation from the corresponding 
mean. From Fig. 3 one can see, in the conditions of a lesser q 
value, H(q) has better discrimination ability for different types 
of aircraft targets.

 Figure 4 shows the distributing circumstances of the 

2-D signatures composed of the H(0.5) and H(1) of echo data 
from both types of aircraft targets, with ‘*’ and ‘o’ denoting the 
fighter aircraft and the civil aircraft respectively. Among them, 
the group numbers of echo data from both types of aircraft are 
all 2560, with the echo group numbers for each flight attitude 
1280. It can be seen from the figure, although there are some 
overlaps between the 2-D signatures of both types of aircraft 
targets, as a whole, the signatures belonging to different types 
of aircraft separate from each other distinctly. Therefore, if one 
combines the two characteristic parameters together to identify 
different types of aircraft targets, it is hopeful to obtain a better 
performance. Also it can be seen from Fig. 4, most of the Hurst 
exponents H of echo data from both types of aircraft targets 
are located between 0.1 and 0.7, their α values are generally 
in the range from 1 to 3, and thus according to the previously 
described, one can know that echo data from both types of 
aircraft targets have the nonstationary characteristics.

Figure 3.  H(q) ~ q curves.

Figure 2.  lbF(q)(m) ~ lbm curves with different q with q = 1, 
2,…, 6 from bottom to top. (a) Fighter aircraft (b) 
Civil aircraft

(a)

(b)

Figure 4. 	 Distributing circumstances of 2-D signatures composed 
of H(0.5) and H(1) of echo data from both types of 
aircraft.

What may be expected is that, if PRF is increased and pulse 
width is lowered, the multifractal characteristics of aircraft echo 
data will be more distinct, the characteristic difference between 
different types of aircraft targets will be more prominent, and 
thus it is hopeful to identify different types of aircraft targets 
more effectively in the domain of multifractal features.

3.2	  Modeling using the Incremental Process
In this case, firstly one should zero the mean of the 

investigated aircraft echo series, form its partial sum series, and 
then substitute the new series for y(k) in Eqn. (3). Figure 5(a) 
presents the lbF(2)(m)~lbm curves of a group of echo data from 
both types of aircraft targets when they fly off the radar station, 
and the corresponding H(q) ~ q curves are given by Fig. 5(b). 
It can be seen from the figure, the lbF(2)(m)~lbm curves hold a 
good linear relationship within a wide scale range, and H(q) 
in different q values still have certain discrimination abilities 
for different types of aircraft targets. However, by reason that 
H(q) is very close to 1, the effect by using fractal scale analysis 
to distinguish echo data from different types of aircraft targets 
is greatly reduced. If taking H(2) as the example, then Fig. 6 
shows its probability density curves for both types of aircraft 
targets. It is obvious that there are serious overlaps between 
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mainly subject to the control of such items with larger k values. 
This is called the ‘saturation’ phenomenon in FA. Therefore, 
when the Hurst exponent is close to 1, one should consider the 
aircraft echo series as a random walk process rather than an 
incremental process.

4.	Ai rcraft target classification 
based on multifractal signatures
The previous section shows that the random walk 

process can model an aircraft echo from low-resolution radar 
effectively. As pointed out in the introduction, echo data from 
different types of aircraft targets often have different nonlinear 
characteristics, and thus they certainly will appear different 
multifractal signatures. Therefore, it provides a probability 
for aircraft target classification and recognition with low-
resolution radars. Based on the foregoing real recorded aircraft 
echo data, below the paper will investigate the application of 
multifractal signatures in aircraft target classification with low-
resolution radars.

4.1	 Echo Data Preprocessing 
Due to complexities of the actual target state and the 

environment, the target attitude, distance, background, etc. 
often change, which makes the raw target echo data can not be 
directly used for feature analysis and extraction, and therefore 
one must do some data preprocessing to reduce the influence 
of these factors. Here the following two kinds of preprocessing 
will mainly be done: one is attitude partition, the other is energy 
normalization.
(a) Attitude Partition

Attitude is an important factor which influences the 
performance of classification methods for aircraft targets, 
especially for high-resolution range profile (HRRP) 
recognition. For conventional low-resolution radars, aircraft 
targets are generally considered as point targets, and their 
JEM phenomena can be observed within the range -30o ~ 30o 
from the front or back view9. However, on the one hand, it is 
very difficult to obtain the accurate description of the target 
scattering characteristics varying with the attitude in practical 
applications; on the other hand, it is also unnecessary to 
divide the attitude meticulously. So here the attitude partition 
processing method is adopted, and the attitude is divided into 
three sections: towards the radar station, off the radar station, 
and in side direction. Generally speaking, only the former two 
sections are useful for target classification.
(b) Energy Normalization

Due to the different distance or azimuth relative to the 
observation radar, the echo intensity of an aircraft target 
varies within a wide range. However, what a target signature 
describes is not the absolute change of the echo amplitude or 
intensity, but its relative change, therefore, in order to analyze 
and extract echo signatures more reliably, one must eliminate 
the influence induced by the intensity difference. Considering 
the echo characteristic analysis is often performed in various 
transform domains, here the energy normalization processing 
is chosen, which is also a commonly used method.

Let {xk}, k = 0, 1, …, N-1 be the target echo series, then its 
signal energy can be written as

H(2) values of both types of aircraft targets.
The reason for this situation is that the maximum Hurst 

exponent got by FA is 1. The concrete analysis is as follows. If 
y(k)∝kα, α > 1, then one has

( ) ( ) ( )
22

y k m y k k m kα α + − ∝ + −  .                         (8)

If k >> m, then (k + m)α ≈ kα(1+αm/k). Substitute it into 
Eqn. (7), and further one can get

( ) ( ) 22 mkymky ∝−+ ,                                            (9)

i.e., H(2) = 1. It is obvious that, in this case, Eqn. (8) is 

(a)

(b)

Figure 5.  (a) lbF(2)(m) ~ lbm (b)  H(q) ~ q curves.

Figure 6. 	 Probability density curves of H(2) of echo data from 
both types of aircraft targets.
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Thus the normalized series can be expressed as

k k xx x E= ,                                                   	       (11)

i.e., one can get    
1
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=

= =∑

 .                                                              (12)

4.2 Classification Experiment
Based on the difference between the distributing 

circumstances of the 2-D signatures of echo data from both 
types of aircraft targets shown by Fig. 4, here H(0.5) and 
H(1) are chosen as the characteristic parameters for target 
classification. Compared to other classifiers, support vector 
machine (SVM) has stronger generalization abilities and a 
faster convergence rate18, so in the experiment SVM using 
the Gaussian kernel function is taken as the classifier, and 
the kernel function parameters are selected rationally without 
going beyond the calculation burden.

Table 1 shows the classification results of the two types of 
aircraft targets, and as a contrast, the results using the raw echo 
data without performing any preprocessing are also presented. 
Among them, the group numbers of echo data from both 
types of aircraft targets are the same as those in Fig. 4, and for 
each type of aircraft targets, the signature data extracted from 
512 groups of echo data are chosen as training samples (the 
group numbers for each of the two flight attitudes useful for 
classification are 256), with the rest signature data as testing 
samples. As can be seen from Table 1, the average correct 
classification rate (CCR) is more than 98 per cent, and the 
data preprocessing obtains a classification gain more than one 
percent. Therefore the classification effect is satisfactory. What 
should be pointed out is that the signature dimension reduction 
processing has been done in the classification experiment. If 
the whole signatures are made full use of, the average CCR 
could still have an increase to a certain extent.

classification with low-resolution radars. The experimental 
results show that: 
(i)	 It is an effective method to model aircraft echoes from 

low-resolution radar using a multifractal model, and one 
should consider the aircraft echo series as a random walk 
process rather than an incremental process to perform the 
multifractal analysis; 

(ii) 	If one performs the multifractal analysis of measures on an 
aircraft echo, it is hopeful to reveal its internal dynamics 
evolution mechanism; 

(iii) Multifractal characteristic parameters of aircraft echoes 
can be used as effective signatures for aircraft target 
classification with low-resolution radars.
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