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1.	 Introduction
Hyperspectral images portray a continuous spectrum 

of each pixel by capturing the data in several narrow and 
contiguous spectral bands. This makes them possible to 
discriminate among various targets on earth surface. Typically, 
a detection problem can be formulated either as anomaly 
detection or target detection. An anomaly in a dataset has a 
different unknown spectral response as compared to the pixels 
in its neighbourhood and generally has a small spatial extent 
with low probability of occurrence. As anomaly detection is an 
unsupervised way of detecting these rare and scare objects, it 
requires no a priori knowledge about the image or the object to 
be detected. It may however signify that the detected anomaly 
may or may not be a target of interest. On the contrary, target 
detection is a supervised way of detecting small and rare 
objects from the hyperspectral image. The objective of which 
is to detect a specific target in a given image assuming that the 
spectral signature of the target, also called reference signature, 
is known from other sources such as the spectral library, 
reference data, field data or the image itself1,2.	

From amongst a number of target detection algorithms 
in vogue, some are based on linear unmixing of endmembers 
present in the scene, which require complete knowledge of 
image endmembers. These may be limited by the determination 
of an appropriate number of endmembers present in the scene. 

Alternatively, some algorithms require the knowledge of only 
target endmembers. 

A set of other algorithms such as independent component 
analysis (ICA) aims to find a linear representation of non-
Gaussian data so that the components (constituting components 
of an image) are statistically independent. Further, the ICA 
does not require any priori information about the targets 
and may still be able to segment independent sources, thus, 
detecting small and even camouflage targets. Yet some other 
target detection algorithms may be nonlinear that make use of 
kernel functions. The main aim of this paper is to provide a 
comparative assessment of a few target detection algorithms. 
These include OSP, CEM, and KOSP algorithms. 

2.	 ORTHOGONAL SUBSPACE PROJECTION 
Algorithm
Target detection using orthogonal subspace projection 

(OSP) is an extension of OSP based classification of 
hyperspectral data in which the spectral signatures of interest 
(i.e., of target) act as the desired signature and the other 
spectral signatures (i.e., of background) in the image act as 
the undesired signatures. The ultimate goal of the OSP is to 
suppress the undesired signatures in the output image and 
highlight the desired signature (i.e., the targets in a target 
detection problem). 
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Typically, at the spatial resolution of a hyperspectral 
image, a single pixel may include multiple classes (i.e., it may 
be a mixed pixel). Thus, the spectral signature of a single pixel 
may be the average of the spectral signature of various classes 
(endmembers) present in the pixel.

Mathematically, a hyperspectral image can be considered 
as a (b x N) matrix X = {x1, x2… xN}, where N is the total number 
of pixels in the image and b is the total number of spectral 
bands. xi = {xi1, xi2,….xib}

T is a (b x 1) vector corresponding to 
the ith mixed pixel in the image. Using linear mixture model, 
each pixel xi can be modeled as a linear combination of the 
endmembers present in the pixel. Mathematically, it can be 
expressed as,

x = Mα + n		               			           (1)
where M = {m1,m2,……,mp} is a (b x p) matrix of spectral 
signatures of p endmembers in the image and mi = {mi1, mi2,….
mib}

T is a (b x 1) vector corresponding to the ith endmember 
spectral signature, α={α1, α2,…., αp}

T is a (p x 1) vector in which 
αj corresponds to the fraction of the jth endmember present 
in the pixel. n is the (b x 1) vector representing the random 
noise, which is assumed to be an additive Gaussian white noise 
with zero mean and a covariance matrix of σ2I (with σ2 is the 
variance of the noise) and I is the (b x b) identity matrix.

When the objective is to detect a particular target 
with spectral signature d, the remaining signatures can be 
considered as undesired. Let U be the matrix corresponding 
to the undesired spectral signatures, then Mα for each pixel 
vector x can be broken as3,

x = dαd + UαU + n 	              			          (2)
where d is a (b x 1) spectral signature corresponding to the 
target of interest and αd is a (1 x 1) fraction of target in the 
pixel x. U is a (b x p-1) matrix corresponding to the spectral 
signatures of the remaining p-1 undesired endmembers and αU 
is a (p-1 x 1) vector, which corresponds to the fractions of p-1 
undesired signatures in the pixel x.

The effect of undesired signatures U can be eliminated by 
developing an operator P, which projects the pixel vector x in 
a subspace that is orthogonal to the vectors of U. This projected 
vector nullifies the effect of signatures in U and corresponds 
to the energy of the desired signature and the noise. The least 
square optimal rejection operator P is a (b x b) matrix given 
as4,

P = I - UUᴪ	
 				                  (3)

where Uᴪ = (UTU)-1UT is the pseudoinverse of U.
After applying P, Eqn (2) reduces to, 
Px = Pdαd + Pn 		     	      	         (4)
Once the background is supressed, the next step is to 

maximize the signal to noise ratio, Let rT be a (1 x b) operator 
that maximizes the signal to noise ratio which is given as,

rT = βdT			             		          (5)
here, β = 1. Thus, the detection operator for the desired 
target signature in the presence of white Gaussian noise and 
the undesired background signatures is given by a (1 x b)  
vector wT,

 wT = dTP		               			           (6) 
The detection operator is applied to each pixel in the 

image resulting in a scalar quantity for each pixel. The scalar 
quantity has higher values for the pixels, where the target is 

located in the image and lower values for the pixels which 
correspond to the background so that in the resulting gray scale 
image the target pixels have higher brightness as compared to 
the background pixels. 

3.	 Constrained energy minimization 
Algorithm
The OSP algorithm for target detection is based on the 

assumption that complete knowledge of image endmembers 
(target as well as background) is known, which may practically 
be difficult. Constrained energy minimization (CEM) algorithm 
focuses only on the desired signature (i.e., of target) and neither 
on the background signature nor noise in the image.

The CEM algorithm imposes a constraint on the desired 
signature while minimizing the interfering effects caused by the 
undesired (background) as well as the unknown signal sources. 
Since, it is assumed that only the desired target signature is 
known, the undesired signatures and the noise are suppressed 
in terms of their energies5. The objective of the CEM is to 
design a finite impulse response (FIR) linear filter with b filter 
coefficients {w1, w2,....... wb}, denoted by a b dimensional vector 
w = {w1, w2,....... wb}

T that minimize the filter output energy 
corresponding to the constraint, 

	 dTw = wTd = 1		            		          (7)
The CEM has been developed to solve the linearly 

constrained optimization problem given as, 
{ }w K wT

w
min  subject to dTw = wTd = 1      	         (8)
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with the optimal weight vector w′, the CEM filter can be 
obtained by, 
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Similar to the OSP algorithm, the operator obtained in 
Eqn (10) is applied on each pixel in the input image which 
results in a grey scale image in which the brighter pixels 
corresponds to the target pixels and the darker ones correspond 
to the background pixels.

4.	 Kernel orthogonal subspace 
projection Algorithm
When the classes in the original space are not linearly 

separable, an appropriate non-linear mapping may be applied to 
transform the data in much higher dimensional space where the 
classes become linearly separable and hence can be classified 
using a linear classifier. However, the application of linear 
algorithm is not feasible in the transformed space because of the 
high dimensionality; therefore, the original linear algorithm is 
kernelized by using the well-known kernel trick property of the 
Mercer kernels, where the linear algorithm in the feature space 
is reformulated only in terms of inner products of the mapped 
input data. These inner products are then replaced by the kernel 
functions that are computed directly in terms of the original 
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input data. Here, a kernelized OSP algorithm (KOSP), which is 
equivalent, to a nonlinear version of the OSP algorithm in the 
original input space has been considered for target detection. 

For the detection purpose, the Gaussian radial basis 
function (RBF) kernel has been selected, which is given by,

( ) ( )( )2k v , v exp || v v || /i j i j h= − 	      
 	       (11)

where h ε R (the set of real numbers) and represents the width 
of the Gaussian distribution. 

The reason for selecting the Gaussian RBF kernel is its 
translation invariant nature and smoothness of the associated 
nonlinear map. The translation invariant property ensures the 
robust detection performance since it depends on the difference 
between spectral vectors therefore even if the spectral signatures 
are subject to irregular illumination conditions, it does not make 
a difference in the detection performance. The smoothness of 
the associated nonlinear map implies that topographic ordering 
of the data in the original input space is preserved in the mapped 
feature space.

The detection operator as derived in Eqn (6) for target 
detection using OSP algorithm is given as wT = dTP. Using 
the singular value decomposition of U = S∑VT where S is the 
eigenvectors of UUT = S∑∑TST and V is the eigenvectors of 
UTU = V∑T ∑VT. Thus the rejection operator given in Eqn (3) 
can be rewritten as 

P = I - UUᴪ = I - U(UTU)-1UT = I - SST          	            (12)
Thus the OSP algorithm can also be rewritten as 
wTx = dTPx = dT (I - SST)x		        	       (13)
The OSP algorithm in feature space is given as7, 	

( ) ( ) ( ) ( )t tt tw x d I x d S S xF F F F= F F − F F 	  (14)  
where F is the nonlinear mapping.

The kernelized version of the OSP algorithm in  
Eqn (14) is given by,	

( ) ( ) ( ) ( )T TT T T
bd bdw x K M ,d K M ,x K U,d K U,xF = hh − bb  (15)  

where x = pixel vector
K = kernel function
d = desired target signature
Mbd = (U U d) (union of U and d) where U corresponds to 

the matrix containing all the background signatures 	   
η = a matrix whose columns are the eigenvectors of the 

centered kernel matrix K(Mbd,Mbd)
In deriving Eqn (15), a centred Gram matrix 

^
K  can be 

obtained from an uncentred Gram Matrix K by,

	 ( )
^

N N N N1 1 1 1K K K K K= − − +
	       	       (16)

where (1N)ij = 1/N is an N X N matrix. Also, the empirical 
maps K(Mbd,d), K(Mbd,x), K(U,d), and K(U,x) are centred 
by removing their corresponding kernel map means. (e.g. 

( ) ( ) ( ) ( ) ( )
^

bd bd i i bd
1

,d ,d 1 . 1 / k r ,d , rK m K m m
p

i
p

→

=
= − ε∑

where ( )1 1,1,.....,1 T→
=  , a N x 1 column vector). 

Thus, Eqn (15) gives the KOSP algorithm processed output 
pixel corresponding to each input pixel resulting in a grey scale 
image in which the brighter pixels corresponds to the target 
pixels and the darker ones correspond to the background pixels.

5.	 Experimental Datasets
Two experimental datasets have been considered 

to examine the efficacy of the selected target detection 
algorithms.

5.1	 Dataset I: Synthetic Data
The dataset I is a 30 bands synthetic image generated 

based on the statistics of an actual hyperspectral image and has 
been obtained from Tiwari8. The synthetic image is composed 
of five different segments each containing one target. Four 
of these segments measures 140 x 60 pixels and one central 
segment is made up of 80 x 80 pixels. Thus, the 200 x 200 
pixels synthetic image contains five small targets matching 

Figure 1.  Dataset I: Synthetic image. The encircled areas mark 
the position of five aircrafts along with the labels8. 

the shape of aircraft (size ~ 18 pixels) centered at (30, 70), 
(70,170), (170,130), (130, 30) and (100,100) (Fig. 1). These 
have been labeled as P1 to P5. 

A glance at the spectral profiles of the five aircrafts indicates 
that the spectral characteristics of the targets P1-P4 are similar 
whereas the target P5 has just opposite spectral characteristics 
to the others. This may have bearing on the detection of targets 
using different algorithms. Therefore, the target detection 
has been performed twice, first for the detection of P1 - P4 
targets and then for the detection of P5 target separately. Five 
background endmembers, named as Back1 through Back5, 
from each of the five segments have been identified in the 
image. Only two background endmembers Back 1 and Back 
5, having distinct spectral characteristics have been considered 
further in the experiments on target detection. 

5.2	 Dataset II: AVIRIS Image
The AVIRIS image is composed of 400 x 400 pixels in 

224 bands data at a spatial resolution of 4 meter, acquired 
over naval air station in San Diego, California. The image has 
been borrowed from the example datasets in ENVI 4.2 image 
processing software. Out of the 224 bands, after removing bad 
bands and water absorption bands, only 189 bands have been 
used for the analysis. In the present case, the image supplied 
has already been atmospherically corrected using ENVI’s 
FLAASH module resulting in a reflectance image.

A 286 x 198 pixels subset of the image containing six 
aircrafts as targets has been extracted with targets centred at 
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locations (50,30), (69,20), (87,8), (230,134), (243,142), and 
(197,156) and labelled as P1 to P6 respectively (Fig 2(a)). The 
total number of pixels constituting the target is not known. 
Further, since no reference for this dataset is available, the 
Google Earth image (Fig 2(b)) acquired over the same area has 
been taken as a reference data for the identification of various 
background classes present in the image.

From the Google Earth image, four background 
endmembers, namely, vegetation, buildings and two types of 
roads, have been identified. A glance at the spectral curves of 
the six aircrafts indicates that the spectral characteristics of the 
six targets follow the same trend. Additionally, the spectral 
characteristics of targets P1 - P3 are almost similar. Thus, to 
investigate the effect of spectral variability in targets, five 
cases corresponding to five different target endmembers have 
been considered for the same background endmembers. These 
five cases include,
•	 The target signature taken as an average of signatures 

of all the target endmembers P1, P4, P5 and P6.This has 

been named as Pavg
•	 The target signature of P1
•	 The target signature of P4
•	 The target signature of P5
•	 The target signature of P6

Also, to investigate the behaviour of the algorithm 
corresponding to the selection of background endmembers, 
the number of background endmembers have been changed as 
three (vegetation, buildings, road1), two (vegetation, buildings) 
and one (vegetation) as separate experiments.

6.	Resul ts and Discussion
6.1	 Assessment of OSP Algorithm on Dataset I

As discussed earlier the detection of the targets P1-P4 and 
P5 has been considered separately. On conducting experiments 
for the detection of P1-P4 with Back1 and Back5 as background 
endmembers, all the five targets (shown in Fig. 3(a)) appear 
suppressed as the spectral signature of Back1 is similar to that 
of P1-P4. Further, P5 is not detected due to its similar spectral 
signature with that of Back5. Thus, for the detection of targets 
P1-P4, only Back5 has been used as background endmember. 
(Figs. 3(b) - 3(c)). This has resulted in detection of all the 
targets P1-P4, with 100% detection rate and no false alarms.

Figure 2.	 (a) Dataset II: Subset of a true color (R: 28, G: 19 and 
B: 10) image extracted from AVIRIS image acquired 
over San Diego area. The encircled areas show the 
location of six targets (aircrafts) (b) A portion of 
Google Earth image.

Figure 3.	G rey scale outputs from OSP algorithm for the 
detection of P1-P4 in dataset I using (a) Back1 and 
Back5 (b) Back5, as background endmembers. (c) 
Binary outputs for detection of P1 using Back5 
background endmember. The encircled areas mark 
the detected targets.

Similarly, when the experiment has been conducted for the 
detection of target P5 with Back1 and Back5 as the background 
endmembers, all the targets have been suppressed (shown in 
Fig.4(a)) leading to no detection. Hence, for the detection of 
P5, only Back1 has been used as background endmember. 
However, the target P5 (Fig. 4(b)) still has not been detected. 
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Figure 4.	 Grey scale outputs from OSP for detection of P5 in dataset I using (a) Back1 and Back5 (b) Back5, as background  
endmembers.  (c) Pseudo colour image corresponding to (b).

Figure 5.	 ROC curves for the outputs from OSP for detection 
of targets P1-P4 and P5.

This may be due to the fact that spectral characteristics of 
Back1 and P5 are similar.

This can further be illustrated from the pseudo color 
image of the output (Fig.4(c)) where the pixels with output 
values (obtained as a result from the application of OSP 
algorithm) less than that of the target has been assigned yellow 
color and those equal to and higher than the targets have been 
assigned blue and green colors, respectively. It is clear from 
the pseudo colored image that background in the four segments 
corresponding to targets P1-P4 is completely suppressed. The 
ROC curves for detection of these two categories of targets are 
shown in Fig. 5.

A glance on the ROC curves also verifies the 100% 
detection rate and 0% false alarm rate in case of detection of 
the targets P1-P4 and 0% detection rate in case of detection 
of target P5. jdk.

6.2	 Assessment of OSP Algorithm on Dataset II
Five cases as discussed earlier have been considered 

while detecting the targets in dataset II. Figures 6 and 7 show 
the binary images and the ROC curves corresponding to these 
experiments. 

These binary images and the corresponding ROC curves 
signify that the detection performance is very much similar in 
all the cases and is about more than 80% of detection rate at a 
false alarm rate of 7-8%. This indicates that spectral variability 
among the targets in this dataset is not an issue. Thus, the 

average of target endmembers Pavg, has been taken as the 
spectral endmember representing the target class for further 
analysis of the algorithm on this dataset. 

In order to analyse the impact of background endmembers 
on the detection algorithm, the number of background 
endmembers have been changed as three (vegetation, buildings, 
road1), two (vegetation, buildings) and one (vegetation) 
separately with the target endmember taken as an average of 
spectral signatures of all the targets. The binary images thus 
produced from OSP algorithm for the four cases are shown in 
Figs. 8 (a) - 8(d).

A glance at these binary outputs and the corresponding 
ROC curves in Fig. 9 indicates that targets have been detected 
in all the cases but with different values of false alarm rates 
(i.e., with different accuracy). The least false alarm rate has 
been observed when the background endmembers have been 
considered separately. This may be attributed to the fact the 
background classes have been considered separately, which 
resulted in sufficient suppression of the background thereby 
highlighting the targets. In other cases, when the number of 
background endmembers were decreased to 2, 3, or 4, the 
background classes could not be suppressed, which resulted in 
large number of false alarms. 

Further, an additional target (a very small aircraft) 
encircled by dotted line in the binary output (Fig. 8 (d) has also 
been detected, which in fact has not been visible in the original 
image. The OSP, however, has been successful in detecting this 
invisible target in the binary output. 

6.3	 Assessment of CEM Algorithm on Dataset I
The CEM algorithm produced the same binary image 

obtained is output as shown in Fig. 10 while considering the 
targets P1-P4 and P5 separately. The ROC curves produced 
from CEM for the detection of two types of targets are shown 
in Fig. 11. The ROC curves do not show false alarm rate of 
value 0 because as shown in Fig. 10 in detection of P1-P4, 
the pixels corresponding to P5 has occurred as false alarms 
and in detection of P5, the pixels corresponding to P1-P4 have 
occurred as false alarms.



Def. SCI. J., Vol. 63, No. 1, January 2013

58

Figure 7.	 The ROC curves for the outputs from OSP on dataset 
II corresponding to target endmember (a) P1, (b) P4 , 
(c) P5, (d) P6, and (e) Pavg.

Figure 8.	 Binary images from the OSP algorithm implemented 
on dataset II for different number of endmembers : 
2 in (a), 3 in (b), 4 in (c), and 5 in (d). 

Figure 9.	 ROC curves for the outputs from OSP on dataset II 
for different number.of end members.

Figure 6.	 Binary images obtained from the OSP algorithm implemented on dataset II corresponding to target endmembers (a) Pavg, 
(b) P1,  (c) P4, (d) P5, and (e) P6. The encircled areas mark the detected targets.

Figure 10.	Binary image from CEM corresponding to targets 
P1-P4 and P5 taken separately. The encircled areas 
mark the detected targets.

Figure 11.	ROC curves for the outputs from CEM on dataset I 
for different target signatures
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6.4	 Assessment of CEM Algorithm on Dataset II
The binary outputs obtained as a result corresponding 

to all the five cases mentioned in earlier section, using CEM 
algorithm are shown in Fig. 12. The binary outputs show that 
all the targets have been detected by the CEM algorithm in 
all the cases. The analysis of the corresponding ROC curves 
shown in Fig. 13 reflects that detection and false alarm rate are 
almost similar in all the cases. It shows that spectral variability 
of the targets in dataset II has no bearing on the detection 
performance. The reason being the spectral separation between 
the target and background classes is high for this dataset.

6.5 Assessment of KOSP Algorithm on Dataset I
In both the cases, the binary images obtained from KOSP 

have been shown in Fig. 14. The corresponding ROC curves 
for the detection of two types of targets have been shown in 
Fig. 15. 

Figure 12.	Binary images from CEM on dataset II for target endmember (a) P1, (b) P4, (c) P5, (d) P6, and (e) Pavg. The encircled 
areas mark the detected targets

Figure 13.	ROC curves for the outputs from CEM on dataset 
II for different target endmember

Figure 14.	Binary images from KOSP on dataset I for targets 
(a) P1-P4, (b) P5.

The width of the RBF kernel has been determined 
experimentally which for dataset I has been chosen as 61e+7. 
The binary images and the corresponding ROC curves justify 
the fact that in both the cases the targets have been detected 
with 100% true detection and 0% false alarm rate. This ideal 
detection is possible only due to increased separation between 
the target and the background classes caused by nonlinear 
transformation of the original high dimensional data into much 
higher dimensional space.

6.6	 Assessment of KOSP Algorithm on Dataset II
As discussed in earlier section, the experiments have 

been conducted to evaluate the performance of this algorithm 
corresponding to the spectral variability of the targets. 
The endmembers for these experiments have already been 
discussed. Figures 16 and 17 show the binary images and 
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has yielded the highest detection accuracy due to increased 
separation between the target and background classes in the 
higher transformed space. OSP has not been able to detect 
the target P5 because of the less separation between P5 and 
the background class Back1. However, CEM has been able to 
detect both the targets but with some false alarms. 

Further, OSP has shown accurate detection on Dataset 
II by suppressing the background classes in the image and 
highlighting the targets. However, the performance of the CEM 
and KOSP algorithms is comparable for Dataset II. The KOSP 
has not been able to perform well for both the dataset. One of 
the reasons may be attributed to the inappropriate selection of 
the kernel parameter.

Figure 16.	Binary images obtained from KOSP on Dataset II corresponding to  target endmember (a) Pavg, (b) P1, (c) P4, (d) P5, 
and (e) P6. The encircled areas mark the detected targets.

Figure 17.	ROC curves for the outputs from KOSP on dataset 
II corresponding to target endmember (a) P1, (b) P4, 
(c) P5, (d) P6, and (e) Pavg.

Figure 15.	ROC curves for the outputs from KOSP on dataset I

the ROC curves corresponding to these experiments. After a 
number of experiments with KOSP on dataset II, the width of 
the RBF kernel has been selected as 20e+7.

The outputs obtained for this dataset show that all the 
targets have been detected by KOSP. The ROC curve shows 
less detection rate for lesser false alarm rate because of miss-
detection of the targets P4-P6 at increased threshold values. 
These ROC curves also justify that the detection performance 
is very much similar when the target endmembers have been 
considered individually or an average of them has been taken. 
This signifies that spectral variability among the targets in this 
dataset is not an issue.

7.	 Comparative Evaluation of Target 
Detection Algorithms
Among all the algorithms implemented on Dataset I, KOSP 
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Further, all the three algorithms have been evaluated 
comparatively on each dataset individually, for their 
performance by making the use of ROC curves. A careful 
evaluation of the ROC curves in Fig.18 shows that OSP has 
resulted either comparable or higher detection accuracy than 
the CEM on all the datasets. KOSP has performed better than 
OSP for Dataset I. The reason for higher performance of KOSP 
is the detection of targets in much higher dimensional space. 
For Dataset II the performance of the KOSP has been found 
to be inferior to that of OSP; this may be due to the improper 
selection of the parameter which represents the width of the 
Gaussian RBF kernel. However, one particular case in which 
CEM has shown a better performance than OSP is in the 
detection of target P5 in Dataset I. This is due to the similarity 
of this target to its background, which suppresses the target P5 
in background during OSP based target detection, resulting in 
no true detection at all.

algorithms discussed are robust enough to detect those pixels 
as anomaly or target which either contain complete or a fraction 
of the anomaly or target. The width of the Gaussian RBF 
kernel in KOSP is determined experimentally, the domain of 
which is the entire set of real numbers. Thus, the development 
of an appropriate technique for deciding criteria to select an 
appropriate value for this parameter of kernel function is a 
great requirement.
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Figure 18.	Comparative assessment of target detection algorithms 
on (a) Dataset I, (b) Dataset II, and (c) Dataset III.
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8.	 Conclusion
For the target detection algorithms, the spectral variability 

does matter when the separation between the background and 
the target class is very less. While using OSP for target detection, 
it has been observed that the identification of sufficient 
number of background classes in the image has bearing on the 
detection rate of the targets. Therefore, these must be selected 
judiciously. The performance of OSP has been found to be 
better than or comparable to CEM, because it suppresses the 
background prior to the detection of targets. However, when 
the separation between the target and the background class 
is very less CEM may outperform the OSP algorithm. KOSP 
algorithm performs better than OSP algorithm. But, the main 
difficulty in implementing this algorithm lies in the selection 
of appropriate value of the width of the kernel function. All the 



DEF. SCI. J., VOL. 63, NO. 1, JAnUARY 2013

62

Ms Shweta Bansal graduated in computer 
science and engineering from VIET in 
2008 and MTech (Civil) from IIT Roorkee 
in 2010. Currently she is working as a 
software engineer at EDA company Atrenta 
Pvt Limited, Noida. Her research interests 
include:Multispectral and hyperspectral 
image analysis, image processing, detection 
of small and rare objects using hyperspectral 

remote sensing.

Dr Sangeeta Khare received her MSc 
(Mathematics) from Allahabad University 
and PhD (Mathematics) from Indian Institute 
of Technology Kanpur. She is  working 
currently as Scientist ‘G’ in Image Analysis 
Center of Defence Electronics Applications 
Laboratory, Dehradun. Her current research 
interest include development of techniques 
and software for Hyper spectral data 

processing and high level analysis of satellite images as well 
as application of soft computing in image analysis. 

Kiran Chauhan 
(Bio-data is not available)
	




