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ABSTRACT

In this paper, vibration and damping analyse~ of glass fibre-reinforced laminateq composite
cantilever beams and ~Iates are studied using Ct finite element using sh~ardeformation theory and also
through experiments. The formulation in the theoretical model includes in-plane and r6tary inertia
terms. The governing equations for the complex eigen~alue problem based on complex elastic moduli
are formlllated. !I1le solutions are obtained using QR algorithm. Parametric study is carried out to
hig~light; the effects of lay-up and ply-angle of the laminates. A limited number of experimental
investigafions on cantilever laminates are conducted for obtaining the natural frequenciqs, damping
factor and frequency responses. The comparison between the theoretical and the experimfntal results
shows good agreement.

INTRODUCrON
I. ofa~rospacestructures and thus in prolonging their

service life under repeated loading or impact.

Fibre-reinforced composites, in general, have
higher damping than metals. However, their values
depend on fibre and resin types, fibre orientation,
and stacking sequence. Research on the damping

analysis of composites is not so extensive as that of
I,
undamped free vibration a,nalysis. Experimental

and analytical efforts based on refined theories and

teliable instruments to characterise the actual

dynamic characteristics of composite laminates are
essential for the designers/engineers in optim ising
the structural design.

I
The activity an~ the effort in the field of

fibre-reinrorced com~olsites are on the increase for
the laminAted construction, and t~is is mainly'due to

their high\specific strength and stiffness. frh1 static

and the dynamic analyses 6f the fibre-reinforced
I

composite material plates are ge,nerally carried out

by repl~cing a laminated plate~by a homogenous

orthotropic material plate. This simplification may
not lead to the true representation of the

deformatioJ in the laxers because of neglecting

shear deformation due to high ratio of the in-plane

Young's modulus to the transverse shear modulus
for most of the 'composite materials.. IHence,

analysis based or1 shear deformation theory is

essential for predicling accurate behaviour. Further,

the damping in co.bposite materials plays an
I

important role in controlling the resonant response
"

Considerabl~ research has been carried out

on the vibration and damping of laminated

beams, such as constrained layer/sandwich layer

and it has been reviewed by Nakral-3 on the topic

dealing with vit>ration control with viscoelastic
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composite beams and plates are studied employing

finite element based on shear deformation theory,
I

as outlined by Beakou a;nd Touratiero. ' The

forn;tulation in the theoretical model includes
in-pJane an"d rotary' inertia terms. The governing
equations are solved ~sing standard eig~nv'alue
approach. Numerical itlvestigations, considering
cantilever laminated be~ms and pla~es, are carried
out to bring out the influences of different
parameters. Some experimental studies on the
laminates are ~Iso conducted for obtaining the
natural frequencies, damping factij>r and frequency
responses. A good correlation betweFn numerical
and eiperimental results is establishe\j.,

2. FOR.~tULATION I

A Idminatea composite ~Iate is considered with
the coordinates x, y along ipe in-plane directions
and z along the thickness direction, refPectively.
Using formulation based on shear flexIble theory,
the displacements in kth layfr u (k), v (k) ana w (k) at a

point (x, y, z) from the mediiln surface are expressed
as functions of mid-~lane displacement u, v, wand
independent rotation 8x and 8y of normall in xz and
yz planes, respectively, as :

,

U(k) (x,y,z,t) = 1(X,Y,t)-zawlax+[fl (Z)+8~k) (z)]

{fw lax +8 x }+ 8~t) (z){awl ay +8" }
\ I (k)

V(k)(XJY,z,t) = v(x,y,t),zawIOy+83 (z)[awlax
, I t

, +8k]+[f2 (z) +8~k) (z)]{awlay+8,,}(k)( . ) ( "

) I
w x,y,z,t =w x,y,t (I)

where t is the time. T~e functions involved in

Eqn (I) for defining the kinematics are as follows:

h (Z) = h/1t si!l (1tz/h) -:h/1tb55 cos(1tz/h)

f2.(Z): =h/1t sin (1tz/h) -h/1tb44 cos(1tz/h)

(k) ( ) -(k) d (k) .- 1 2' 3 4 . k - l.2 3gj z-aj Z+j,'-"", -"
N (2)

w~ere N is the number of~ayers of the multilayered
structure, h is th~ total thickn'ess of the lam inate, 1[
is equal .to (3.141592, an,d b44, b55, a:k) , d:k) are

coefficients to be dietermined from contact
conditions for dlisplace~en!s and stresses between

material. Rao4 has extensively dealt with the

dynam ics of plates made of isotropic and com posite
materials. Some research has also been carried out

on optimum design of viscoeLastic damping layer
treatment for peams and plates. The notable
contributions are the studies by'Yildiz and Stevens5,
Hajela and Lin6, and Marcelin7, et al. Dynamic
response due to forced vibrations of a beam with
constrained damp~ng layer treatment has been
studied by Mead and Markus8, and Roy and

Ganesan9. In all these studies, complex modulus,
which consists of a real part representing ela~tic
stiffnes5 and an imaginary part representing
dissipation, has been widely .used to model the
behaviour of linear viscoelastic materials under
harmonic vibratiC'n. Furt.~ermC're. 3\\ these stlJdie5
are based on the classical theof)'. The investigation
using shear deformation theory is considered by
Moser and LumasseggerlO, He and Raoll, and
Rikardsl2. Imaino and Harrisonl3 pointed out that

I
the classical thefj>ry is not suitable to predict the
system loss factor~ when the viscoelastic layer, has a
considerably lower modulus Icompared to the base
and constraining layer moduli or core layer in the
sandwich case. 1;herefore, it may be necessary to
use a sandwich beam theory , which satisties

interface stress and displacement continuity with
van~shing shear stress on the top and bottom
surfaces of the beam and is based on higher-order

deformation theory .

Gibson and Plunkett4, and Gibsonl5 reviewed
experimental and analytical efforts to chararterise
the damping properties of fibre-reinforced
materials. The important contributions are cited
here. The analysis of vibration and damping of
fibre-reinforced composite plate has' been carried
out by Alam and Asnanil6, Maihotra, Ganesan and1
Veluswamil7, and Koo and Leel8. Alam and Asnani
employed solution in the form of series summation,
and the finite element procedure was adopted by

,Malhotra, Ganesan and Veluswamil7, and Koo and
Leel8. Shi~u, et al.19 recently investigated the
dynamic response and stability characteristics of
rotating composite blades with frictional damping.

In the present study, vibration and damping
analyses of glass fibre-reinforced laminated
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the layers and from theibound~ry conditions on the {Q} = [A]{yO }

top and bottom surfa~es of the plate. The details of
the derivations of these ~oefficibnts are presented The different matrices involved in Eqns (5) and
by Beakou and Touratiero. (6) are defined by Beakou and Touratiero.

The linear strai~s in tetms lof mid-plane For a composite laminate of layer thickne,ss hk
deformation can bd written as (k = 1,2,3..), and the ply-angle <l>k (k = 1,2,3..), the

necessary expressions for computing the stiffness
coefficients, available in the literature 21 are used.

For the damping analysis, the complex moduli of an
o~hotropic material are defined, according to the
elastic-viscoelastic correspondence principle, as

I
follows:

i -, D

{E} = l;

(3)

y

The mid-plane strains {EO}, bending strains (due to

lower and higher-order terms involved in defining

the kinematici, Eqn (I», {X}, {00} and shear strainsI
{yO} in E,Gn (3) are written as

E . E R I.E I E . E R .E l E . E R .E l1 = I +l I' 2 = 2 +l 2' 3 = 3 +l 3'

G . G R .G I G . G R .G I G . G R .G I12 = 12 +l 12' 23 = 23 +l 23' 13 = 13 +l 13- (7)

, ..
Here, E and G are Young's modulus and shear

modulus, respectively. The subscript 1 denotes
longitudinal direction, whereas subscripts 2 and 3
refer to the transverse directions, wrt the fibres. The

superscripts R and I denote the real and imaginary
parts of the complex moduli. The material loss
factors 11/, 112, 113 under tension-compression and,
1112, 1123, 1113 under shear are defined as

I

82w/8x2

82w/8y2

282 w/8xay

{e ° } = {x}!= -

ley~

f;)y~

I By~

~,o
vl2

y~l = fOwIBx+ex
y~f lOwIOy+ey

{ro } = {yO} =
111 =' E{ IE~ ,112 =,E~ IE: ,113 =E~ IE: ,

1112 =G{2/G~,1123=G~3/G:3, '1113 =G{3/G~ (8)
I

The total potential enJrgy functional

consisting of energy stored in tHe plate is given by:

(4)

uIf !{N} represents the mem~rane stress
resultants (N xx, NYY'; Nxy) and {M},{M}, represent
the bending stress I resultants due to lower and
higher-order terms ~nvolve~ I in- def~ing the

kinematics (Mxx, MyY' fMxy), ( M xx , Myy , M xy )], one
can relate !these to mdmbrane strains {EO}, and

bending str\1ins ({X}, {(0}] througH the conlstitutive
relations as I

(9)

where O is the vector of the degrees-of-freedom

(]j)OFs) associated to the displacement field in a

finite element discretisation and f is the force

acting on the structure.
, I

The kinetic energy of the plate is written as

T(8) = .!. f (
2 -h12

[U(k) V(k) w~k)]dz)dA

hl2

f pj[U(k) V(k) W(k)],T

{N} = [A]{EO}+[B] {X}+{E}{~}

{M}' L [B]T {EO}+[Dr{X}+[ii]{ro}

{M} = [fJT {E O}+[BJ,T {X}+[l>]{ro} (5)

\

Smmilarly, the transvbrse shear stress resultants
"

{Q} representing the quantities (Qxz, QyD are

related to the transyerse strains. {yO} through the

constitutive relationi as (10)
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(14)
where the dot over the variable d'enotes the partial

derivative wrt time and p is the "1ass density.

Substituting Eqns (9) and (10) in Lagrange's
equation of motion, one obtains the governing
equation for the vibration of the beam structure as,

where roF is the harmonic ~rcing frequency.
t ,

3. ELEMENT DESCRIPTION

The eight-noded elem~nt used here is pased on
Herm ite cubict function for transverse
displacement (w) I according to the Cl continuity
requirjCment, Serendipity quadratic fJnction for the
in-plane Klisplacements u, v and rotatiors ex, ey.
Further, the elembnt needs eight nodal DOFs (u, v,

2 f I
w, 8w/8x, aw/8y, 8 w/8x8y, Jex, ey) for all corner
nodes and four DOfs (u, v, ex, ey) for the mid-node
ofall four sIdes. The element is developed based on
new kinematics as given in Eqn '( 1) which accounts
for interlayer continuity for cJisplaceme,ts and
transverse shear stresses of the laminate. The
element behaves very well fort both thick add thin
situations. It has no spuripus mode and is
represented by correct ri~id bo:dy n:lodes.

[M] {8} + [K] {0} ::; {F} (11)

t
where [M] is the consistent mass matrix, [K] the

structural stiffness matrix of the laminate which is a

complex matrix, and {F} is the load vector.

The eigenvalues for the damped structure can
be determined from Eqn (11) by letting {F} equal to
zero for the free vibrations.

[Ad] {&} + [J(J {0} ,= {0} (12)

4. RESULTS & DISCUSSION i

There is no n~ed of using shear coriection

factor here, as the ~ransverse strain is represented

by cosine function; which is of ~igher order in
Once the natural/resonance frequencies are nature. Based on prpgressive mesh refinement, 16

obtained, the structure is excited around the natural elements idealisatio,n and 8 x 8 gri~ size ar~ found

frequencies so as to obtain the response of the to be adequate to mopel the laminated beams and

structure from the equation. .plates, respectively, for the flexural/bending
r

Table I. Comparison of flexural frequenci~s and loss factors of s~mply-supported sandwich beams i

--.I
Frequency '(I)' ~oss factor 'TI'

( 0---; (rad/s)

The complex eigenvalues of the form A * =
(AR + iAI ) = (0)*)2, where 0)* = (cOR + i 0)1) are

obtained for Eqn (12) employinglQR algorithm. The

resonance frequencies 0) and the system loss factors
..

" are calculated fro~ the elgenvalues as

I

0)=(oR=(AR)1/2:,,=AJIAR (13)

hllh2 G Core

N/M2

Mode

N Present

865

2560

5215

1646

5244

9672

1101

3623

7705

1592

5266

10304

Analytical23

878
.

2458

4927

1643

5456

9877

1106

3481

7300

1581

5357

10187

Analytical23Present

0.4954

0.3212

0.1927 ,

0.1220
1

0.33201

0.46291

0.3204
,

0.1Q22
1

0.1096
0.1131 I

0.2714

0.3207

2

3
5.50 E 06

2

3

.00 E 08

2

3
2.50 E 08

2

3

7 2.50 E 07

i
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Table 2. N!,tural frequencies and loss factors f~r cantilever cross-ply-laminated plates (90° 10° 190° )
I

No. of

layers
0)1

80.6

91.3

93.6

94.5

94.~

Mode 4

Frequencies (0)(Hz)/Loss factors (11)
-

Mode 2 Mode 3

~ x 10-3 0)3 113 x 10-3

9.4329 501.00 5.4859

8.7144 566.49 3.5499

8.5973 580.46 3.2650

8.5573 586.06 3.1702

8.5389 588.99 3.1269

114 X 10-3

6.41567

6.60910

6.38490

6.30900

6.27430

<1)2

187.09

I 197.22

199.80

200.95

201.60

0)4

713.77

747.76

761.20

766.86

769.91

2

4

6

8

10

4.1 Numerical Results

Fre(f vibration analysis of cross-ply cantilever
I -

laminated plate is carried out and the results are
J

shown in Table 2 varying the number of layers in

the laminate. It is seen from Table 2 that the effect

of number of layers is to increase the frequency

valu~s and to reduce the damping/loss factor of the

structures. Further study is made considering a

laminate with 11 layers to highlight the influence of

ply-angle and the results are tabulated in Table 3. It

can be concluded from. Table 3 that the ply-angle

c~n significantly alter the freque~cy values, and this

is due. to the directional stiffne~s provided by the

anisotropic properties in the multilayered laminate.

I
Table 4(a). Comparison of theoreti~al and experimental

results for free vibrations of ll-layered cross-ply

cantilever plate (90°10°190°t )
IFrequencies Theoretical r Experimental

(£0) (Hz) j (Hz)

£01 88.0 88.0

£02 197.3 184.0

£03 546.3

£04 728.5 ,

Ply-
angle -

(9)

(deg)

90

45

3Q

15

Ta~le 4(b). Comparison of theoretical and experimental
results for free vibrations of ll-layered cross-ply
cantilever beam (90°10°190° )

, Frequencies Theoretical )

«I) (Hz)

<I) I 17.22

<1)2 107.85

<1)3 236.63

damping analysis. Thus, the present form,ulation

can be verified numer:ically by, comparlng the

results based on different models, which are used

for studying the thlin and thick laminat~s. Before

proceeding for the detailed analysis, flexural

frequencies and the 'damping/loss factors obtained

for sandwich }jeam are compared in Table I andI
they are fpund to be in good agreement with the
available analytical/numerical J solutionsl8,23l The

I ' 22 I.
materials considered heie are :

GFRP (Gla~s/DX-210): Fl.R = 37.78 GPa,

E:= 10.90 GPa, E:= 10.90 Gp~l, G.~= 4.91 GPa,
G:J = 4.91 GPa, G.~= 4.91 pPa, Vl2 = 0.30,

111 = 13~8465 x 110-4, 112 = 113 = 1112 = 1123 = 1113

= 0.208,} p = 1870 kg/m3

where V12, p are rois~on's vatio and mass density,

respectively. I

The( geometry Jf the cantilever laminates

assumed rere are given as

Beam: Length (a) = 300 mm; breadth (b) =

37 mm; thickness (h) = 03 mrn:
I

Plate: Length (a) = 200 mm; bre~dth (b) =

180 mm; thickness (h) i 06 mm
\ Ij I

Table 3. Influ,nce of ply-angle of. 11-laye~ed cantilFver
laminated plate (eOI- eO/ eO/eo ) \

.~~ --1-
--.!!.~~ (Q»(Hz)/Loss fact~rs (11)(xlO-OOI)
~ofe 1 Mode 2 Mod~ 3 Mode 4

ml TJI m2 TJ2 m3 f13 m4 f14
-

80.68 2.p8 197.35 2.~8 546.73 2.08 738.21 2.08

80.39 2.08 256.91 2.08 485.94 2.08 787.27 2.08

97.77 2.08 253.35 2.d8 583.71 2.08 724.82 2.08

112.902.08231.09 2.08 627.47 2.08 715.26'2.08, l---

Experimental

(Hz)

17.0

96.0
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4.2 General Experimental Setup

The experi"lental setup is accomplished by
,

setting a Dench-vice on a rigid mounting table to

simulate the boundary condition of one side

clamped and other sides free. The vice is mounted

rigidly onto the mounting table with the help of a

steel channel. The equipment required for the tests

include a dynamic sfgnal analyser, two sets of
, ,

tunable bandpass fi}ters, two Isets of signal

conditioning amplifiers, a frequency fontrol meter

and power a~plifier, an electromagnetic shaker,
.\

one accelerol11eter and force transducer, and an

iJnpact hammer with necessary standard cables. The

vice' and the/layout of the instrumehts are planned
, !

~

Figure I. General schematic experimental setup
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so as to enable ea'sy Irecording of measurements as

shown in thcl schematic diagram (Fig.]). Based on

the calibration charts, settings of various
I

instruments lafe initialised before proceeding the

experiment. .A photograph showing the actual
I

experimental layout containing the amplifiers,
I

filters and the analy~er and the setup ready for

vibration tests is sho~n in Fig. 2.I

and then the rn.easured time response characteristics
are fed to the dynamic signal analyser for obtaining

I
the natural frequencies. The consistency of the
results is ensured by repeating the experimental

procedure, i.e., by striking the laminate at a number
of points marked on it. The mode shape of the
laminate is then obtained by impacting (same
amount of force) at different marked points pn the
laminate using the impact hammer and then
recording the frequency response behaviour at the
centre of the laminate. Finally, the frequency
response due to the forced excitation, by means of
placing an electromagnetic shaker below the
laminate at centre of the free end of the beam/plate,
is obtained. Further, for forced response

feasurement, the shaker is kept in contact with the
laminate at the free end.

4.3 Experimental Set~p for Laminated

Plate/Beam I
I :

Here, an instrul1lented halmmer is readied by

assembling all cbmRonents of the hammer. The
j

other required, instruments like co\ditioning

amplifier, filters, cables, accelerometers, etc. areI
placed in position. All the measuring instruments

are connected using standard c~bles. The analyser

used is Hewlett Packcird dynamic signal analyser.

The measuring aacelerometer is placed. on the top of

the mounted composite laminates at the centre.
I

With the help of instrumented hammer, small
.

impact is givl:n to the beafl;1/plate on the top surface

4.4 Experimental Results & their Comparisons

The cross-ply laminates (GFRP) with 11 layers
(90%°/90°/ ), as test specimens, are made.
The natural frequencies obtained for the lam inates
(bb~m and. plates) from the experiment are
compared in Table 4 with those of theoretical model
preSented. It can be observed from this table that the
resuJts are in -good agreement. The little
discrepancy in the results may be attributed to the
possible variation in the material properties
{assumed for numerical study and that of actual
laminates use(J for experiment), and to a lesser
extent in simulating the boundary conditions in

experiment.
\ .

The frequency responses are studIed for

laminated plate through experifnent and theoretical

investigations. A force of 1.6421 N is applied at the

centre of the free end of platej and the response is

measured at the centre of the laminate and depicted

in Fig. 3. Furthermore, the response of the

laminated plate is recorded for the range of

frequencies, around fundamental frequency. Using

half-power point mcthod, the values of the damping

faclors arc calculatcd from thc experimental

r~sponse shown in Fig. 3. Introducing the damping

factor obtained from experimental response, the

frequency response characteristics is evaluated
I I

,
~

Figure 2. Actual e~perimentallayout
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20E-O4 FORCE OF 1.621 N A T THE CENTRE OF

FREE END AND RESPONSE MEASURED AT

THE CENTRE OF THE LAMINATED PLATE

o.bs

I.OOE-O4
.
. 0.04

:g
1-
Z
w
~ 0.03
w
U
<
..J
0..
(/)
C 0.02

.
~
.
,

.
i ~

.
~

THEORETICAL

,
,
,
r

:g
1-
Z
w
:?:
w
u
<
-J
11.
U>

c

8.00E-OS

6.00E-OS

4.00E-OS
0.01

2.()()..:-()5 i 0EXPERIMENTAL

~
t ,

0 \ , So 100 150
FREQUENCY IHz)

FigJlre,4. Frequency' response lor laminated ca~tilever 11-

layered beam!

I
through theoretical and experimeptal studies of

models. The theoretical study! is made u~ing finite

element procedure utilising shear deformation

theory .So.me experimental stu~ies are also carried

out. The following conclusions can be made from
this in,-:estigatioh: .

0.00..:+00 l , .,.; ..

0 20 -40 60 HO, 100

FREQUENCY (Hz) I

Figure 3. Frequency response or laminated cantilever 11-

layered plate.

theoretically using Eqn (14) and is presented along
with experimental response ih Fig. 13. The
behaviours predicted (by experimental and
theoretical work), are qualitatively similar and the

displacement at resonance agrees very well.
However, the variation in the results may possibly
be attributed to the difficulty in ensuring the
simulation of the exact boundary conditions (the
shaker, which is used for excitation, is physically in
contact with the laminate at the free end).

The ply-angle in a layel!~d laminate affects the
be~aviour of the ,laminate by. increasing the free
vibration frequencies a,s the angle is decreased.
Th~ change in ply-ang\e d<Des not affect the loss
factor fo~ the modes studied.

I The overall respon~e behaviour predicted by

theory and I that obtained by experimental

investigations are qualjtalively similar.

.

The frequency response of laminated beam,
consisting of 11-layered cross7ply one, obtained
from experiment is demonstrated in Fig. 4. The first

peak in the response, which is predominant,

corresponds to the fundamental frequency ( 17 Hz)
and second peak is near the second natural mode
(96 Hz) of the beam.

1
A good correlation is obslj.rved between

, .c

theoretical and experimental yalues for free

vibration frequencies and disI?la:cements for the

first mode of vibration for the Jarpinates.
I
,

The discrepancies in results for certain cases of
1

plates and beams could pe attributed to variations

in material properties j and difficulties in

simulating, precise arid exact boundary

~onditions.

5. CONCLUSIONS

The vibration and damping analyses of
laminated cross-ply beams and plates are studied
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13. Imaino, W. &1 Harrison, J. C. A comment on

constrained layer damping sthIctures with low

viscoelastic modulus. J. Sound vib., 1991, 149,

354-59.
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