ON PRESSURE RISE IN ROCKETS

By S. K. Gupta and A. K. Mehta, Defence Science Organisation, Ministry of Defence, New Delhi.

ABSTRACT

12.0

The phenomenon of pressure rise in rockets has been discussed on the basis of $r=CP^n$ as the law of burning. An explicit expression for the chamber pressure at any instant has been derived and illustrated by a table and a graph.

INTRODUCTION

During burning in a rocket the mass rate of burning is equal to the mass rate of discharge plus the mass rate of accumulation in the chamber, that is, (Kershner, 1944)

$$S\rho r = C_D A_i P + \frac{d}{dt} \left(V \rho \right)$$
(1)

where S is the area of the burning surface of the propellant.

- $\mathbf{\rho}$ is the density of the propellant which is about $\cdot 057 \cdot 059$ lb/in³ for most of the propellants.
- r is the rate of surface regression in in/sec.
- C_D is the discharge coefficient which is about $\cdot 007$ per sec. for most rockets using smokeless powder as propellant.
- A_t is the area of the throat,

P is the chamber pressure,

 ρ_g is the density of the gas in the chamber.

V is the volume of the chamber available to the gas. Putting $\frac{\mathrm{d}v}{-sm} = Sr$

and $\frac{d}{dt}\left(\rho_{g}\right) = 0$ for a steady state and assuming $r = CP^{n}$ as the law of burning

we get the steady state solution of equation (1) as

$$P_{eq} = \left(\frac{K_{p'C}}{C}\right)^{-1}$$
(2)

where P_{eq} is the equilibrium pressure,

K is S/A_t and $\rho' = \rho - \rho_g$

Kershner (1944) has discussed the phenomenon of pressure rise in rockets, assuming a linear law of burning. In this communication the authors have discussed the phenomenon on another equally valid law of burning viz. $r=CP^n$.

Pressure Rise in Rockets

We may assume $\rho_g = BP$ i.e. a constant chamber temperature as has been done by Kershner (1944) in his calculations based on the linear law of burning. Putting $r = CP^n$ and

$$\frac{dv}{dt} = Sr \text{ in equation (1) we get}$$

$$\int_{H^{-}}^{H^{-}} S_{\rho}' CP^{n} = C_{\nu} A_{t} P + BV \frac{dP}{dt}$$
(3)

 $\frac{BV}{C_{D}A_{t}} \quad \frac{1}{P^{n}} \quad \frac{dP}{dt} + \frac{1}{P^{n-1}} = \frac{K\rho'C}{C_{D}} = P_{eq}^{1-n} \text{ from equation } 2$ or putting $Z=P^{(1-n)}$

S. P. Startes

$$\frac{BV}{\left(1-n\right)C A_{t}} \quad \frac{dZ}{dt} + Z = P_{eq}^{1-n}$$

$$\text{ or } \frac{\mathrm{dZ}}{\mathrm{dt}} + \text{ aZ} = \text{aP}_{eq} \quad \text{where } \quad a = \frac{\mathrm{C}_{b} \quad (1-n)}{BV}$$

The solution of the above differential equation is

$$\mathbf{Z}e^{at} = \mathbf{P}_{eq}^{1-n} e^{at} + \mathbf{A}$$

where A is the constant of integration.

Applying the boundary condition

P=0 when t=0,

$$Z = P^{1-n} = P_{eq}^{1-n} \left(1 - e^{-at}\right)$$

$$P/P_{eq} = \left(-at\right)^{1/(1-n)}$$
(4)

Putting b= $\frac{a}{1-n} = \frac{C_{\rm D} A_t}{\rm RV}$ (5)

$$P/P_{eq} = \left(1 - e^{-(1 - n) \text{ bt}}\right)^{1/(1 - n)}$$
(6)

The variation of P/P_{eq} with bt for various common values of n (0.40 -0.80) is illustrated by table I and Figure I.

TABLE IValues of P/P_{eq} for various values of bt and n

n bt	0.2	1.0	2.0	3.0	4.0	6.0	8∙0	10.0	15.0	20.0	25.0
•4	·1053	·2655	·5503	•7401	·8535	·9550	·9863	$\cdot 9972$	1	1	1
•5	·0489	·1548	•3996	·6037	•7478	·9028	·9638	·9863	·9991	1	1
•6	·0140	·0624	$\cdot 2250$	·4083	·5692	·7883	·9010	•9550	·9936	- 999 5	1
•7	·0014	·0114	$\cdot 0705$	·1757	· 3030	·5479	·7283	·8433	·9636	-9915	·9984
•75	·0002	·0024	·0240	·0775	·1600	·3643	•55 91	·7099	·9093	· 9735	•9952
•8	0	·0002	·0039	·0187	·0506	·1667	·3240	·4837	•7745	·9120	·9661

ACKNOWLEDGEMENTS

The authors thank Dr. D. S. Kothari, Dr. R. S. Varma, Shri M. S. Sodha and Shri A. Bhattacharjie for their kind interest in the investigation.

REFERENCE

SH YA

N.D.R.C. Rocket Fundamentals, Chapter 3, Page 49-82, by KERSHNER, R. B. (Office of the Publication Board, Department of Commerce, Washington 25, D. C.) 1944.

